1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22 /*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
49 *
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
52 *
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
56 *
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 *
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
67 *
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
71 *
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
75 *
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 *
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
91 *
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
94 *
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
99 *
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
107 */
108
109 #include <linux/slab.h>
110 #include <linux/crc32.h>
111 #include <linux/freezer.h>
112 #include <linux/kthread.h>
113 #include "ubi.h"
114
115 /* Number of physical eraseblocks reserved for wear-leveling purposes */
116 #define WL_RESERVED_PEBS 1
117
118 /*
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
123 */
124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
125
126 /*
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
136 */
137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
138
139 /*
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
142 */
143 #define WL_MAX_FAILURES 32
144
145 /**
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
151 *
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
156 */
157 struct ubi_work {
158 struct list_head list;
159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry *e;
162 int torture;
163 };
164
165 #ifdef CONFIG_MTD_UBI_DEBUG
166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 struct ubi_wl_entry *e,
169 struct rb_root *root);
170 static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 struct ubi_wl_entry *e);
172 #else
173 #define paranoid_check_ec(ubi, pnum, ec) 0
174 #define paranoid_check_in_wl_tree(ubi, e, root)
175 #define paranoid_check_in_pq(ubi, e) 0
176 #endif
177
178 /**
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
182 *
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
185 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
187 {
188 struct rb_node **p, *parent = NULL;
189
190 p = &root->rb_node;
191 while (*p) {
192 struct ubi_wl_entry *e1;
193
194 parent = *p;
195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196
197 if (e->ec < e1->ec)
198 p = &(*p)->rb_left;
199 else if (e->ec > e1->ec)
200 p = &(*p)->rb_right;
201 else {
202 ubi_assert(e->pnum != e1->pnum);
203 if (e->pnum < e1->pnum)
204 p = &(*p)->rb_left;
205 else
206 p = &(*p)->rb_right;
207 }
208 }
209
210 rb_link_node(&e->u.rb, parent, p);
211 rb_insert_color(&e->u.rb, root);
212 }
213
214 /**
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
217 *
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
220 */
do_work(struct ubi_device * ubi)221 static int do_work(struct ubi_device *ubi)
222 {
223 int err;
224 struct ubi_work *wrk;
225
226 cond_resched();
227
228 /*
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
233 */
234 down_read(&ubi->work_sem);
235 spin_lock(&ubi->wl_lock);
236 if (list_empty(&ubi->works)) {
237 spin_unlock(&ubi->wl_lock);
238 up_read(&ubi->work_sem);
239 return 0;
240 }
241
242 wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 list_del(&wrk->list);
244 ubi->works_count -= 1;
245 ubi_assert(ubi->works_count >= 0);
246 spin_unlock(&ubi->wl_lock);
247
248 /*
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
252 */
253 err = wrk->func(ubi, wrk, 0);
254 if (err)
255 ubi_err("work failed with error code %d", err);
256 up_read(&ubi->work_sem);
257
258 return err;
259 }
260
261 /**
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
264 *
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
269 */
produce_free_peb(struct ubi_device * ubi)270 static int produce_free_peb(struct ubi_device *ubi)
271 {
272 int err;
273
274 spin_lock(&ubi->wl_lock);
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
277
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280 if (err)
281 return err;
282
283 spin_lock(&ubi->wl_lock);
284 }
285 spin_unlock(&ubi->wl_lock);
286
287 return 0;
288 }
289
290 /**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300 struct rb_node *p;
301
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
305
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
311 }
312
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
323 }
324 }
325
326 return 0;
327 }
328
329 /**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341 int pq_tail = ubi->pq_head - 1;
342
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349
350 /**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @diff: maximum possible difference from the smallest erase counter
354 *
355 * This function looks for a wear leveling entry with erase counter closest to
356 * min + @diff, where min is the smallest erase counter.
357 */
find_wl_entry(struct rb_root * root,int diff)358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff)
359 {
360 struct rb_node *p;
361 struct ubi_wl_entry *e;
362 int max;
363
364 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
365 max = e->ec + diff;
366
367 p = root->rb_node;
368 while (p) {
369 struct ubi_wl_entry *e1;
370
371 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
372 if (e1->ec >= max)
373 p = p->rb_left;
374 else {
375 p = p->rb_right;
376 e = e1;
377 }
378 }
379
380 return e;
381 }
382
383 /**
384 * ubi_wl_get_peb - get a physical eraseblock.
385 * @ubi: UBI device description object
386 * @dtype: type of data which will be stored in this physical eraseblock
387 *
388 * This function returns a physical eraseblock in case of success and a
389 * negative error code in case of failure. Might sleep.
390 */
ubi_wl_get_peb(struct ubi_device * ubi,int dtype)391 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
392 {
393 int err;
394 struct ubi_wl_entry *e, *first, *last;
395
396 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
397 dtype == UBI_UNKNOWN);
398
399 retry:
400 spin_lock(&ubi->wl_lock);
401 if (!ubi->free.rb_node) {
402 if (ubi->works_count == 0) {
403 ubi_assert(list_empty(&ubi->works));
404 ubi_err("no free eraseblocks");
405 spin_unlock(&ubi->wl_lock);
406 return -ENOSPC;
407 }
408 spin_unlock(&ubi->wl_lock);
409
410 err = produce_free_peb(ubi);
411 if (err < 0)
412 return err;
413 goto retry;
414 }
415
416 switch (dtype) {
417 case UBI_LONGTERM:
418 /*
419 * For long term data we pick a physical eraseblock with high
420 * erase counter. But the highest erase counter we can pick is
421 * bounded by the the lowest erase counter plus
422 * %WL_FREE_MAX_DIFF.
423 */
424 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
425 break;
426 case UBI_UNKNOWN:
427 /*
428 * For unknown data we pick a physical eraseblock with medium
429 * erase counter. But we by no means can pick a physical
430 * eraseblock with erase counter greater or equivalent than the
431 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
432 */
433 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
434 u.rb);
435 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
436
437 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
438 e = rb_entry(ubi->free.rb_node,
439 struct ubi_wl_entry, u.rb);
440 else
441 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
442 break;
443 case UBI_SHORTTERM:
444 /*
445 * For short term data we pick a physical eraseblock with the
446 * lowest erase counter as we expect it will be erased soon.
447 */
448 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
449 break;
450 default:
451 BUG();
452 }
453
454 paranoid_check_in_wl_tree(ubi, e, &ubi->free);
455
456 /*
457 * Move the physical eraseblock to the protection queue where it will
458 * be protected from being moved for some time.
459 */
460 rb_erase(&e->u.rb, &ubi->free);
461 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
462 prot_queue_add(ubi, e);
463 spin_unlock(&ubi->wl_lock);
464
465 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
466 ubi->peb_size - ubi->vid_hdr_aloffset);
467 if (err) {
468 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
469 return err;
470 }
471
472 return e->pnum;
473 }
474
475 /**
476 * prot_queue_del - remove a physical eraseblock from the protection queue.
477 * @ubi: UBI device description object
478 * @pnum: the physical eraseblock to remove
479 *
480 * This function deletes PEB @pnum from the protection queue and returns zero
481 * in case of success and %-ENODEV if the PEB was not found.
482 */
prot_queue_del(struct ubi_device * ubi,int pnum)483 static int prot_queue_del(struct ubi_device *ubi, int pnum)
484 {
485 struct ubi_wl_entry *e;
486
487 e = ubi->lookuptbl[pnum];
488 if (!e)
489 return -ENODEV;
490
491 if (paranoid_check_in_pq(ubi, e))
492 return -ENODEV;
493
494 list_del(&e->u.list);
495 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
496 return 0;
497 }
498
499 /**
500 * sync_erase - synchronously erase a physical eraseblock.
501 * @ubi: UBI device description object
502 * @e: the the physical eraseblock to erase
503 * @torture: if the physical eraseblock has to be tortured
504 *
505 * This function returns zero in case of success and a negative error code in
506 * case of failure.
507 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)508 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
509 int torture)
510 {
511 int err;
512 struct ubi_ec_hdr *ec_hdr;
513 unsigned long long ec = e->ec;
514
515 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
516
517 err = paranoid_check_ec(ubi, e->pnum, e->ec);
518 if (err)
519 return -EINVAL;
520
521 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
522 if (!ec_hdr)
523 return -ENOMEM;
524
525 err = ubi_io_sync_erase(ubi, e->pnum, torture);
526 if (err < 0)
527 goto out_free;
528
529 ec += err;
530 if (ec > UBI_MAX_ERASECOUNTER) {
531 /*
532 * Erase counter overflow. Upgrade UBI and use 64-bit
533 * erase counters internally.
534 */
535 ubi_err("erase counter overflow at PEB %d, EC %llu",
536 e->pnum, ec);
537 err = -EINVAL;
538 goto out_free;
539 }
540
541 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
542
543 ec_hdr->ec = cpu_to_be64(ec);
544
545 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
546 if (err)
547 goto out_free;
548
549 e->ec = ec;
550 spin_lock(&ubi->wl_lock);
551 if (e->ec > ubi->max_ec)
552 ubi->max_ec = e->ec;
553 spin_unlock(&ubi->wl_lock);
554
555 out_free:
556 kfree(ec_hdr);
557 return err;
558 }
559
560 /**
561 * serve_prot_queue - check if it is time to stop protecting PEBs.
562 * @ubi: UBI device description object
563 *
564 * This function is called after each erase operation and removes PEBs from the
565 * tail of the protection queue. These PEBs have been protected for long enough
566 * and should be moved to the used tree.
567 */
serve_prot_queue(struct ubi_device * ubi)568 static void serve_prot_queue(struct ubi_device *ubi)
569 {
570 struct ubi_wl_entry *e, *tmp;
571 int count;
572
573 /*
574 * There may be several protected physical eraseblock to remove,
575 * process them all.
576 */
577 repeat:
578 count = 0;
579 spin_lock(&ubi->wl_lock);
580 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
581 dbg_wl("PEB %d EC %d protection over, move to used tree",
582 e->pnum, e->ec);
583
584 list_del(&e->u.list);
585 wl_tree_add(e, &ubi->used);
586 if (count++ > 32) {
587 /*
588 * Let's be nice and avoid holding the spinlock for
589 * too long.
590 */
591 spin_unlock(&ubi->wl_lock);
592 cond_resched();
593 goto repeat;
594 }
595 }
596
597 ubi->pq_head += 1;
598 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
599 ubi->pq_head = 0;
600 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
601 spin_unlock(&ubi->wl_lock);
602 }
603
604 /**
605 * schedule_ubi_work - schedule a work.
606 * @ubi: UBI device description object
607 * @wrk: the work to schedule
608 *
609 * This function adds a work defined by @wrk to the tail of the pending works
610 * list.
611 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)612 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
613 {
614 spin_lock(&ubi->wl_lock);
615 list_add_tail(&wrk->list, &ubi->works);
616 ubi_assert(ubi->works_count >= 0);
617 ubi->works_count += 1;
618 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
619 wake_up_process(ubi->bgt_thread);
620 spin_unlock(&ubi->wl_lock);
621 }
622
623 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
624 int cancel);
625
626 /**
627 * schedule_erase - schedule an erase work.
628 * @ubi: UBI device description object
629 * @e: the WL entry of the physical eraseblock to erase
630 * @torture: if the physical eraseblock has to be tortured
631 *
632 * This function returns zero in case of success and a %-ENOMEM in case of
633 * failure.
634 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)635 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
636 int torture)
637 {
638 struct ubi_work *wl_wrk;
639
640 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
641 e->pnum, e->ec, torture);
642
643 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
644 if (!wl_wrk)
645 return -ENOMEM;
646
647 wl_wrk->func = &erase_worker;
648 wl_wrk->e = e;
649 wl_wrk->torture = torture;
650
651 schedule_ubi_work(ubi, wl_wrk);
652 return 0;
653 }
654
655 /**
656 * wear_leveling_worker - wear-leveling worker function.
657 * @ubi: UBI device description object
658 * @wrk: the work object
659 * @cancel: non-zero if the worker has to free memory and exit
660 *
661 * This function copies a more worn out physical eraseblock to a less worn out
662 * one. Returns zero in case of success and a negative error code in case of
663 * failure.
664 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int cancel)665 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
666 int cancel)
667 {
668 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
669 int vol_id = -1, uninitialized_var(lnum);
670 struct ubi_wl_entry *e1, *e2;
671 struct ubi_vid_hdr *vid_hdr;
672
673 kfree(wrk);
674 if (cancel)
675 return 0;
676
677 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
678 if (!vid_hdr)
679 return -ENOMEM;
680
681 mutex_lock(&ubi->move_mutex);
682 spin_lock(&ubi->wl_lock);
683 ubi_assert(!ubi->move_from && !ubi->move_to);
684 ubi_assert(!ubi->move_to_put);
685
686 if (!ubi->free.rb_node ||
687 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
688 /*
689 * No free physical eraseblocks? Well, they must be waiting in
690 * the queue to be erased. Cancel movement - it will be
691 * triggered again when a free physical eraseblock appears.
692 *
693 * No used physical eraseblocks? They must be temporarily
694 * protected from being moved. They will be moved to the
695 * @ubi->used tree later and the wear-leveling will be
696 * triggered again.
697 */
698 dbg_wl("cancel WL, a list is empty: free %d, used %d",
699 !ubi->free.rb_node, !ubi->used.rb_node);
700 goto out_cancel;
701 }
702
703 if (!ubi->scrub.rb_node) {
704 /*
705 * Now pick the least worn-out used physical eraseblock and a
706 * highly worn-out free physical eraseblock. If the erase
707 * counters differ much enough, start wear-leveling.
708 */
709 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
710 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
711
712 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
713 dbg_wl("no WL needed: min used EC %d, max free EC %d",
714 e1->ec, e2->ec);
715 goto out_cancel;
716 }
717 paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
718 rb_erase(&e1->u.rb, &ubi->used);
719 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
720 e1->pnum, e1->ec, e2->pnum, e2->ec);
721 } else {
722 /* Perform scrubbing */
723 scrubbing = 1;
724 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
725 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
726 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
727 rb_erase(&e1->u.rb, &ubi->scrub);
728 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
729 }
730
731 paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
732 rb_erase(&e2->u.rb, &ubi->free);
733 ubi->move_from = e1;
734 ubi->move_to = e2;
735 spin_unlock(&ubi->wl_lock);
736
737 /*
738 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
739 * We so far do not know which logical eraseblock our physical
740 * eraseblock (@e1) belongs to. We have to read the volume identifier
741 * header first.
742 *
743 * Note, we are protected from this PEB being unmapped and erased. The
744 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
745 * which is being moved was unmapped.
746 */
747
748 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
749 if (err && err != UBI_IO_BITFLIPS) {
750 if (err == UBI_IO_FF) {
751 /*
752 * We are trying to move PEB without a VID header. UBI
753 * always write VID headers shortly after the PEB was
754 * given, so we have a situation when it has not yet
755 * had a chance to write it, because it was preempted.
756 * So add this PEB to the protection queue so far,
757 * because presumably more data will be written there
758 * (including the missing VID header), and then we'll
759 * move it.
760 */
761 dbg_wl("PEB %d has no VID header", e1->pnum);
762 protect = 1;
763 goto out_not_moved;
764 } else if (err == UBI_IO_FF_BITFLIPS) {
765 /*
766 * The same situation as %UBI_IO_FF, but bit-flips were
767 * detected. It is better to schedule this PEB for
768 * scrubbing.
769 */
770 dbg_wl("PEB %d has no VID header but has bit-flips",
771 e1->pnum);
772 scrubbing = 1;
773 goto out_not_moved;
774 }
775
776 ubi_err("error %d while reading VID header from PEB %d",
777 err, e1->pnum);
778 goto out_error;
779 }
780
781 vol_id = be32_to_cpu(vid_hdr->vol_id);
782 lnum = be32_to_cpu(vid_hdr->lnum);
783
784 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
785 if (err) {
786 if (err == MOVE_CANCEL_RACE) {
787 /*
788 * The LEB has not been moved because the volume is
789 * being deleted or the PEB has been put meanwhile. We
790 * should prevent this PEB from being selected for
791 * wear-leveling movement again, so put it to the
792 * protection queue.
793 */
794 protect = 1;
795 goto out_not_moved;
796 }
797 if (err == MOVE_RETRY) {
798 scrubbing = 1;
799 goto out_not_moved;
800 }
801 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
802 err == MOVE_TARGET_RD_ERR) {
803 /*
804 * Target PEB had bit-flips or write error - torture it.
805 */
806 torture = 1;
807 goto out_not_moved;
808 }
809
810 if (err == MOVE_SOURCE_RD_ERR) {
811 /*
812 * An error happened while reading the source PEB. Do
813 * not switch to R/O mode in this case, and give the
814 * upper layers a possibility to recover from this,
815 * e.g. by unmapping corresponding LEB. Instead, just
816 * put this PEB to the @ubi->erroneous list to prevent
817 * UBI from trying to move it over and over again.
818 */
819 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
820 ubi_err("too many erroneous eraseblocks (%d)",
821 ubi->erroneous_peb_count);
822 goto out_error;
823 }
824 erroneous = 1;
825 goto out_not_moved;
826 }
827
828 if (err < 0)
829 goto out_error;
830
831 ubi_assert(0);
832 }
833
834 /* The PEB has been successfully moved */
835 if (scrubbing)
836 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
837 e1->pnum, vol_id, lnum, e2->pnum);
838 ubi_free_vid_hdr(ubi, vid_hdr);
839
840 spin_lock(&ubi->wl_lock);
841 if (!ubi->move_to_put) {
842 wl_tree_add(e2, &ubi->used);
843 e2 = NULL;
844 }
845 ubi->move_from = ubi->move_to = NULL;
846 ubi->move_to_put = ubi->wl_scheduled = 0;
847 spin_unlock(&ubi->wl_lock);
848
849 err = schedule_erase(ubi, e1, 0);
850 if (err) {
851 kmem_cache_free(ubi_wl_entry_slab, e1);
852 if (e2)
853 kmem_cache_free(ubi_wl_entry_slab, e2);
854 goto out_ro;
855 }
856
857 if (e2) {
858 /*
859 * Well, the target PEB was put meanwhile, schedule it for
860 * erasure.
861 */
862 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
863 e2->pnum, vol_id, lnum);
864 err = schedule_erase(ubi, e2, 0);
865 if (err) {
866 kmem_cache_free(ubi_wl_entry_slab, e2);
867 goto out_ro;
868 }
869 }
870
871 dbg_wl("done");
872 mutex_unlock(&ubi->move_mutex);
873 return 0;
874
875 /*
876 * For some reasons the LEB was not moved, might be an error, might be
877 * something else. @e1 was not changed, so return it back. @e2 might
878 * have been changed, schedule it for erasure.
879 */
880 out_not_moved:
881 if (vol_id != -1)
882 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
883 e1->pnum, vol_id, lnum, e2->pnum, err);
884 else
885 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
886 e1->pnum, e2->pnum, err);
887 spin_lock(&ubi->wl_lock);
888 if (protect)
889 prot_queue_add(ubi, e1);
890 else if (erroneous) {
891 wl_tree_add(e1, &ubi->erroneous);
892 ubi->erroneous_peb_count += 1;
893 } else if (scrubbing)
894 wl_tree_add(e1, &ubi->scrub);
895 else
896 wl_tree_add(e1, &ubi->used);
897 ubi_assert(!ubi->move_to_put);
898 ubi->move_from = ubi->move_to = NULL;
899 ubi->wl_scheduled = 0;
900 spin_unlock(&ubi->wl_lock);
901
902 ubi_free_vid_hdr(ubi, vid_hdr);
903 err = schedule_erase(ubi, e2, torture);
904 if (err) {
905 kmem_cache_free(ubi_wl_entry_slab, e2);
906 goto out_ro;
907 }
908 mutex_unlock(&ubi->move_mutex);
909 return 0;
910
911 out_error:
912 if (vol_id != -1)
913 ubi_err("error %d while moving PEB %d to PEB %d",
914 err, e1->pnum, e2->pnum);
915 else
916 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
917 err, e1->pnum, vol_id, lnum, e2->pnum);
918 spin_lock(&ubi->wl_lock);
919 ubi->move_from = ubi->move_to = NULL;
920 ubi->move_to_put = ubi->wl_scheduled = 0;
921 spin_unlock(&ubi->wl_lock);
922
923 ubi_free_vid_hdr(ubi, vid_hdr);
924 kmem_cache_free(ubi_wl_entry_slab, e1);
925 kmem_cache_free(ubi_wl_entry_slab, e2);
926
927 out_ro:
928 ubi_ro_mode(ubi);
929 mutex_unlock(&ubi->move_mutex);
930 ubi_assert(err != 0);
931 return err < 0 ? err : -EIO;
932
933 out_cancel:
934 ubi->wl_scheduled = 0;
935 spin_unlock(&ubi->wl_lock);
936 mutex_unlock(&ubi->move_mutex);
937 ubi_free_vid_hdr(ubi, vid_hdr);
938 return 0;
939 }
940
941 /**
942 * ensure_wear_leveling - schedule wear-leveling if it is needed.
943 * @ubi: UBI device description object
944 *
945 * This function checks if it is time to start wear-leveling and schedules it
946 * if yes. This function returns zero in case of success and a negative error
947 * code in case of failure.
948 */
ensure_wear_leveling(struct ubi_device * ubi)949 static int ensure_wear_leveling(struct ubi_device *ubi)
950 {
951 int err = 0;
952 struct ubi_wl_entry *e1;
953 struct ubi_wl_entry *e2;
954 struct ubi_work *wrk;
955
956 spin_lock(&ubi->wl_lock);
957 if (ubi->wl_scheduled)
958 /* Wear-leveling is already in the work queue */
959 goto out_unlock;
960
961 /*
962 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
963 * the WL worker has to be scheduled anyway.
964 */
965 if (!ubi->scrub.rb_node) {
966 if (!ubi->used.rb_node || !ubi->free.rb_node)
967 /* No physical eraseblocks - no deal */
968 goto out_unlock;
969
970 /*
971 * We schedule wear-leveling only if the difference between the
972 * lowest erase counter of used physical eraseblocks and a high
973 * erase counter of free physical eraseblocks is greater than
974 * %UBI_WL_THRESHOLD.
975 */
976 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
977 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
978
979 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
980 goto out_unlock;
981 dbg_wl("schedule wear-leveling");
982 } else
983 dbg_wl("schedule scrubbing");
984
985 ubi->wl_scheduled = 1;
986 spin_unlock(&ubi->wl_lock);
987
988 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
989 if (!wrk) {
990 err = -ENOMEM;
991 goto out_cancel;
992 }
993
994 wrk->func = &wear_leveling_worker;
995 schedule_ubi_work(ubi, wrk);
996 return err;
997
998 out_cancel:
999 spin_lock(&ubi->wl_lock);
1000 ubi->wl_scheduled = 0;
1001 out_unlock:
1002 spin_unlock(&ubi->wl_lock);
1003 return err;
1004 }
1005
1006 /**
1007 * erase_worker - physical eraseblock erase worker function.
1008 * @ubi: UBI device description object
1009 * @wl_wrk: the work object
1010 * @cancel: non-zero if the worker has to free memory and exit
1011 *
1012 * This function erases a physical eraseblock and perform torture testing if
1013 * needed. It also takes care about marking the physical eraseblock bad if
1014 * needed. Returns zero in case of success and a negative error code in case of
1015 * failure.
1016 */
erase_worker(struct ubi_device * ubi,struct ubi_work * wl_wrk,int cancel)1017 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1018 int cancel)
1019 {
1020 struct ubi_wl_entry *e = wl_wrk->e;
1021 int pnum = e->pnum, err, need;
1022
1023 if (cancel) {
1024 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1025 kfree(wl_wrk);
1026 kmem_cache_free(ubi_wl_entry_slab, e);
1027 return 0;
1028 }
1029
1030 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1031
1032 err = sync_erase(ubi, e, wl_wrk->torture);
1033 if (!err) {
1034 /* Fine, we've erased it successfully */
1035 kfree(wl_wrk);
1036
1037 spin_lock(&ubi->wl_lock);
1038 wl_tree_add(e, &ubi->free);
1039 spin_unlock(&ubi->wl_lock);
1040
1041 /*
1042 * One more erase operation has happened, take care about
1043 * protected physical eraseblocks.
1044 */
1045 serve_prot_queue(ubi);
1046
1047 /* And take care about wear-leveling */
1048 err = ensure_wear_leveling(ubi);
1049 return err;
1050 }
1051
1052 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1053 kfree(wl_wrk);
1054
1055 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1056 err == -EBUSY) {
1057 int err1;
1058
1059 /* Re-schedule the LEB for erasure */
1060 err1 = schedule_erase(ubi, e, 0);
1061 if (err1) {
1062 err = err1;
1063 goto out_ro;
1064 }
1065 return err;
1066 }
1067
1068 kmem_cache_free(ubi_wl_entry_slab, e);
1069 if (err != -EIO)
1070 /*
1071 * If this is not %-EIO, we have no idea what to do. Scheduling
1072 * this physical eraseblock for erasure again would cause
1073 * errors again and again. Well, lets switch to R/O mode.
1074 */
1075 goto out_ro;
1076
1077 /* It is %-EIO, the PEB went bad */
1078
1079 if (!ubi->bad_allowed) {
1080 ubi_err("bad physical eraseblock %d detected", pnum);
1081 goto out_ro;
1082 }
1083
1084 spin_lock(&ubi->volumes_lock);
1085 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1086 if (need > 0) {
1087 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1088 ubi->avail_pebs -= need;
1089 ubi->rsvd_pebs += need;
1090 ubi->beb_rsvd_pebs += need;
1091 if (need > 0)
1092 ubi_msg("reserve more %d PEBs", need);
1093 }
1094
1095 if (ubi->beb_rsvd_pebs == 0) {
1096 spin_unlock(&ubi->volumes_lock);
1097 ubi_err("no reserved physical eraseblocks");
1098 goto out_ro;
1099 }
1100 spin_unlock(&ubi->volumes_lock);
1101
1102 ubi_msg("mark PEB %d as bad", pnum);
1103 err = ubi_io_mark_bad(ubi, pnum);
1104 if (err)
1105 goto out_ro;
1106
1107 spin_lock(&ubi->volumes_lock);
1108 ubi->beb_rsvd_pebs -= 1;
1109 ubi->bad_peb_count += 1;
1110 ubi->good_peb_count -= 1;
1111 ubi_calculate_reserved(ubi);
1112 if (ubi->beb_rsvd_pebs)
1113 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1114 else
1115 ubi_warn("last PEB from the reserved pool was used");
1116 spin_unlock(&ubi->volumes_lock);
1117
1118 return err;
1119
1120 out_ro:
1121 ubi_ro_mode(ubi);
1122 return err;
1123 }
1124
1125 /**
1126 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock to return
1129 * @torture: if this physical eraseblock has to be tortured
1130 *
1131 * This function is called to return physical eraseblock @pnum to the pool of
1132 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1133 * occurred to this @pnum and it has to be tested. This function returns zero
1134 * in case of success, and a negative error code in case of failure.
1135 */
ubi_wl_put_peb(struct ubi_device * ubi,int pnum,int torture)1136 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1137 {
1138 int err;
1139 struct ubi_wl_entry *e;
1140
1141 dbg_wl("PEB %d", pnum);
1142 ubi_assert(pnum >= 0);
1143 ubi_assert(pnum < ubi->peb_count);
1144
1145 retry:
1146 spin_lock(&ubi->wl_lock);
1147 e = ubi->lookuptbl[pnum];
1148 if (e == ubi->move_from) {
1149 /*
1150 * User is putting the physical eraseblock which was selected to
1151 * be moved. It will be scheduled for erasure in the
1152 * wear-leveling worker.
1153 */
1154 dbg_wl("PEB %d is being moved, wait", pnum);
1155 spin_unlock(&ubi->wl_lock);
1156
1157 /* Wait for the WL worker by taking the @ubi->move_mutex */
1158 mutex_lock(&ubi->move_mutex);
1159 mutex_unlock(&ubi->move_mutex);
1160 goto retry;
1161 } else if (e == ubi->move_to) {
1162 /*
1163 * User is putting the physical eraseblock which was selected
1164 * as the target the data is moved to. It may happen if the EBA
1165 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1166 * but the WL sub-system has not put the PEB to the "used" tree
1167 * yet, but it is about to do this. So we just set a flag which
1168 * will tell the WL worker that the PEB is not needed anymore
1169 * and should be scheduled for erasure.
1170 */
1171 dbg_wl("PEB %d is the target of data moving", pnum);
1172 ubi_assert(!ubi->move_to_put);
1173 ubi->move_to_put = 1;
1174 spin_unlock(&ubi->wl_lock);
1175 return 0;
1176 } else {
1177 if (in_wl_tree(e, &ubi->used)) {
1178 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1179 rb_erase(&e->u.rb, &ubi->used);
1180 } else if (in_wl_tree(e, &ubi->scrub)) {
1181 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1182 rb_erase(&e->u.rb, &ubi->scrub);
1183 } else if (in_wl_tree(e, &ubi->erroneous)) {
1184 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1185 rb_erase(&e->u.rb, &ubi->erroneous);
1186 ubi->erroneous_peb_count -= 1;
1187 ubi_assert(ubi->erroneous_peb_count >= 0);
1188 /* Erroneous PEBs should be tortured */
1189 torture = 1;
1190 } else {
1191 err = prot_queue_del(ubi, e->pnum);
1192 if (err) {
1193 ubi_err("PEB %d not found", pnum);
1194 ubi_ro_mode(ubi);
1195 spin_unlock(&ubi->wl_lock);
1196 return err;
1197 }
1198 }
1199 }
1200 spin_unlock(&ubi->wl_lock);
1201
1202 err = schedule_erase(ubi, e, torture);
1203 if (err) {
1204 spin_lock(&ubi->wl_lock);
1205 wl_tree_add(e, &ubi->used);
1206 spin_unlock(&ubi->wl_lock);
1207 }
1208
1209 return err;
1210 }
1211
1212 /**
1213 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1214 * @ubi: UBI device description object
1215 * @pnum: the physical eraseblock to schedule
1216 *
1217 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1218 * needs scrubbing. This function schedules a physical eraseblock for
1219 * scrubbing which is done in background. This function returns zero in case of
1220 * success and a negative error code in case of failure.
1221 */
ubi_wl_scrub_peb(struct ubi_device * ubi,int pnum)1222 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1223 {
1224 struct ubi_wl_entry *e;
1225
1226 dbg_msg("schedule PEB %d for scrubbing", pnum);
1227
1228 retry:
1229 spin_lock(&ubi->wl_lock);
1230 e = ubi->lookuptbl[pnum];
1231 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1232 in_wl_tree(e, &ubi->erroneous)) {
1233 spin_unlock(&ubi->wl_lock);
1234 return 0;
1235 }
1236
1237 if (e == ubi->move_to) {
1238 /*
1239 * This physical eraseblock was used to move data to. The data
1240 * was moved but the PEB was not yet inserted to the proper
1241 * tree. We should just wait a little and let the WL worker
1242 * proceed.
1243 */
1244 spin_unlock(&ubi->wl_lock);
1245 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1246 yield();
1247 goto retry;
1248 }
1249
1250 if (in_wl_tree(e, &ubi->used)) {
1251 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1252 rb_erase(&e->u.rb, &ubi->used);
1253 } else {
1254 int err;
1255
1256 err = prot_queue_del(ubi, e->pnum);
1257 if (err) {
1258 ubi_err("PEB %d not found", pnum);
1259 ubi_ro_mode(ubi);
1260 spin_unlock(&ubi->wl_lock);
1261 return err;
1262 }
1263 }
1264
1265 wl_tree_add(e, &ubi->scrub);
1266 spin_unlock(&ubi->wl_lock);
1267
1268 /*
1269 * Technically scrubbing is the same as wear-leveling, so it is done
1270 * by the WL worker.
1271 */
1272 return ensure_wear_leveling(ubi);
1273 }
1274
1275 /**
1276 * ubi_wl_flush - flush all pending works.
1277 * @ubi: UBI device description object
1278 *
1279 * This function returns zero in case of success and a negative error code in
1280 * case of failure.
1281 */
ubi_wl_flush(struct ubi_device * ubi)1282 int ubi_wl_flush(struct ubi_device *ubi)
1283 {
1284 int err;
1285
1286 /*
1287 * Erase while the pending works queue is not empty, but not more than
1288 * the number of currently pending works.
1289 */
1290 dbg_wl("flush (%d pending works)", ubi->works_count);
1291 while (ubi->works_count) {
1292 err = do_work(ubi);
1293 if (err)
1294 return err;
1295 }
1296
1297 /*
1298 * Make sure all the works which have been done in parallel are
1299 * finished.
1300 */
1301 down_write(&ubi->work_sem);
1302 up_write(&ubi->work_sem);
1303
1304 /*
1305 * And in case last was the WL worker and it canceled the LEB
1306 * movement, flush again.
1307 */
1308 while (ubi->works_count) {
1309 dbg_wl("flush more (%d pending works)", ubi->works_count);
1310 err = do_work(ubi);
1311 if (err)
1312 return err;
1313 }
1314
1315 return 0;
1316 }
1317
1318 /**
1319 * tree_destroy - destroy an RB-tree.
1320 * @root: the root of the tree to destroy
1321 */
tree_destroy(struct rb_root * root)1322 static void tree_destroy(struct rb_root *root)
1323 {
1324 struct rb_node *rb;
1325 struct ubi_wl_entry *e;
1326
1327 rb = root->rb_node;
1328 while (rb) {
1329 if (rb->rb_left)
1330 rb = rb->rb_left;
1331 else if (rb->rb_right)
1332 rb = rb->rb_right;
1333 else {
1334 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1335
1336 rb = rb_parent(rb);
1337 if (rb) {
1338 if (rb->rb_left == &e->u.rb)
1339 rb->rb_left = NULL;
1340 else
1341 rb->rb_right = NULL;
1342 }
1343
1344 kmem_cache_free(ubi_wl_entry_slab, e);
1345 }
1346 }
1347 }
1348
1349 /**
1350 * ubi_thread - UBI background thread.
1351 * @u: the UBI device description object pointer
1352 */
ubi_thread(void * u)1353 int ubi_thread(void *u)
1354 {
1355 int failures = 0;
1356 struct ubi_device *ubi = u;
1357
1358 ubi_msg("background thread \"%s\" started, PID %d",
1359 ubi->bgt_name, task_pid_nr(current));
1360
1361 set_freezable();
1362 for (;;) {
1363 int err;
1364
1365 if (kthread_should_stop())
1366 break;
1367
1368 if (try_to_freeze())
1369 continue;
1370
1371 spin_lock(&ubi->wl_lock);
1372 if (list_empty(&ubi->works) || ubi->ro_mode ||
1373 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1374 set_current_state(TASK_INTERRUPTIBLE);
1375 spin_unlock(&ubi->wl_lock);
1376 schedule();
1377 continue;
1378 }
1379 spin_unlock(&ubi->wl_lock);
1380
1381 err = do_work(ubi);
1382 if (err) {
1383 ubi_err("%s: work failed with error code %d",
1384 ubi->bgt_name, err);
1385 if (failures++ > WL_MAX_FAILURES) {
1386 /*
1387 * Too many failures, disable the thread and
1388 * switch to read-only mode.
1389 */
1390 ubi_msg("%s: %d consecutive failures",
1391 ubi->bgt_name, WL_MAX_FAILURES);
1392 ubi_ro_mode(ubi);
1393 ubi->thread_enabled = 0;
1394 continue;
1395 }
1396 } else
1397 failures = 0;
1398
1399 cond_resched();
1400 }
1401
1402 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1403 return 0;
1404 }
1405
1406 /**
1407 * cancel_pending - cancel all pending works.
1408 * @ubi: UBI device description object
1409 */
cancel_pending(struct ubi_device * ubi)1410 static void cancel_pending(struct ubi_device *ubi)
1411 {
1412 while (!list_empty(&ubi->works)) {
1413 struct ubi_work *wrk;
1414
1415 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1416 list_del(&wrk->list);
1417 wrk->func(ubi, wrk, 1);
1418 ubi->works_count -= 1;
1419 ubi_assert(ubi->works_count >= 0);
1420 }
1421 }
1422
1423 /**
1424 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1425 * @ubi: UBI device description object
1426 * @si: scanning information
1427 *
1428 * This function returns zero in case of success, and a negative error code in
1429 * case of failure.
1430 */
ubi_wl_init_scan(struct ubi_device * ubi,struct ubi_scan_info * si)1431 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1432 {
1433 int err, i;
1434 struct rb_node *rb1, *rb2;
1435 struct ubi_scan_volume *sv;
1436 struct ubi_scan_leb *seb, *tmp;
1437 struct ubi_wl_entry *e;
1438
1439 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1440 spin_lock_init(&ubi->wl_lock);
1441 mutex_init(&ubi->move_mutex);
1442 init_rwsem(&ubi->work_sem);
1443 ubi->max_ec = si->max_ec;
1444 INIT_LIST_HEAD(&ubi->works);
1445
1446 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1447
1448 err = -ENOMEM;
1449 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1450 if (!ubi->lookuptbl)
1451 return err;
1452
1453 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1454 INIT_LIST_HEAD(&ubi->pq[i]);
1455 ubi->pq_head = 0;
1456
1457 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1458 cond_resched();
1459
1460 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1461 if (!e)
1462 goto out_free;
1463
1464 e->pnum = seb->pnum;
1465 e->ec = seb->ec;
1466 ubi->lookuptbl[e->pnum] = e;
1467 if (schedule_erase(ubi, e, 0)) {
1468 kmem_cache_free(ubi_wl_entry_slab, e);
1469 goto out_free;
1470 }
1471 }
1472
1473 list_for_each_entry(seb, &si->free, u.list) {
1474 cond_resched();
1475
1476 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1477 if (!e)
1478 goto out_free;
1479
1480 e->pnum = seb->pnum;
1481 e->ec = seb->ec;
1482 ubi_assert(e->ec >= 0);
1483 wl_tree_add(e, &ubi->free);
1484 ubi->lookuptbl[e->pnum] = e;
1485 }
1486
1487 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1488 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1489 cond_resched();
1490
1491 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1492 if (!e)
1493 goto out_free;
1494
1495 e->pnum = seb->pnum;
1496 e->ec = seb->ec;
1497 ubi->lookuptbl[e->pnum] = e;
1498 if (!seb->scrub) {
1499 dbg_wl("add PEB %d EC %d to the used tree",
1500 e->pnum, e->ec);
1501 wl_tree_add(e, &ubi->used);
1502 } else {
1503 dbg_wl("add PEB %d EC %d to the scrub tree",
1504 e->pnum, e->ec);
1505 wl_tree_add(e, &ubi->scrub);
1506 }
1507 }
1508 }
1509
1510 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1511 ubi_err("no enough physical eraseblocks (%d, need %d)",
1512 ubi->avail_pebs, WL_RESERVED_PEBS);
1513 if (ubi->corr_peb_count)
1514 ubi_err("%d PEBs are corrupted and not used",
1515 ubi->corr_peb_count);
1516 goto out_free;
1517 }
1518 ubi->avail_pebs -= WL_RESERVED_PEBS;
1519 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1520
1521 /* Schedule wear-leveling if needed */
1522 err = ensure_wear_leveling(ubi);
1523 if (err)
1524 goto out_free;
1525
1526 return 0;
1527
1528 out_free:
1529 cancel_pending(ubi);
1530 tree_destroy(&ubi->used);
1531 tree_destroy(&ubi->free);
1532 tree_destroy(&ubi->scrub);
1533 kfree(ubi->lookuptbl);
1534 return err;
1535 }
1536
1537 /**
1538 * protection_queue_destroy - destroy the protection queue.
1539 * @ubi: UBI device description object
1540 */
protection_queue_destroy(struct ubi_device * ubi)1541 static void protection_queue_destroy(struct ubi_device *ubi)
1542 {
1543 int i;
1544 struct ubi_wl_entry *e, *tmp;
1545
1546 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1547 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1548 list_del(&e->u.list);
1549 kmem_cache_free(ubi_wl_entry_slab, e);
1550 }
1551 }
1552 }
1553
1554 /**
1555 * ubi_wl_close - close the wear-leveling sub-system.
1556 * @ubi: UBI device description object
1557 */
ubi_wl_close(struct ubi_device * ubi)1558 void ubi_wl_close(struct ubi_device *ubi)
1559 {
1560 dbg_wl("close the WL sub-system");
1561 cancel_pending(ubi);
1562 protection_queue_destroy(ubi);
1563 tree_destroy(&ubi->used);
1564 tree_destroy(&ubi->erroneous);
1565 tree_destroy(&ubi->free);
1566 tree_destroy(&ubi->scrub);
1567 kfree(ubi->lookuptbl);
1568 }
1569
1570 #ifdef CONFIG_MTD_UBI_DEBUG
1571
1572 /**
1573 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1574 * @ubi: UBI device description object
1575 * @pnum: the physical eraseblock number to check
1576 * @ec: the erase counter to check
1577 *
1578 * This function returns zero if the erase counter of physical eraseblock @pnum
1579 * is equivalent to @ec, and a negative error code if not or if an error
1580 * occurred.
1581 */
paranoid_check_ec(struct ubi_device * ubi,int pnum,int ec)1582 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1583 {
1584 int err;
1585 long long read_ec;
1586 struct ubi_ec_hdr *ec_hdr;
1587
1588 if (!ubi->dbg->chk_gen)
1589 return 0;
1590
1591 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1592 if (!ec_hdr)
1593 return -ENOMEM;
1594
1595 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1596 if (err && err != UBI_IO_BITFLIPS) {
1597 /* The header does not have to exist */
1598 err = 0;
1599 goto out_free;
1600 }
1601
1602 read_ec = be64_to_cpu(ec_hdr->ec);
1603 if (ec != read_ec) {
1604 ubi_err("paranoid check failed for PEB %d", pnum);
1605 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1606 ubi_dbg_dump_stack();
1607 err = 1;
1608 } else
1609 err = 0;
1610
1611 out_free:
1612 kfree(ec_hdr);
1613 return err;
1614 }
1615
1616 /**
1617 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1618 * @ubi: UBI device description object
1619 * @e: the wear-leveling entry to check
1620 * @root: the root of the tree
1621 *
1622 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1623 * is not.
1624 */
paranoid_check_in_wl_tree(const struct ubi_device * ubi,struct ubi_wl_entry * e,struct rb_root * root)1625 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1626 struct ubi_wl_entry *e,
1627 struct rb_root *root)
1628 {
1629 if (!ubi->dbg->chk_gen)
1630 return 0;
1631
1632 if (in_wl_tree(e, root))
1633 return 0;
1634
1635 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1636 e->pnum, e->ec, root);
1637 ubi_dbg_dump_stack();
1638 return -EINVAL;
1639 }
1640
1641 /**
1642 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1643 * queue.
1644 * @ubi: UBI device description object
1645 * @e: the wear-leveling entry to check
1646 *
1647 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1648 */
paranoid_check_in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)1649 static int paranoid_check_in_pq(const struct ubi_device *ubi,
1650 struct ubi_wl_entry *e)
1651 {
1652 struct ubi_wl_entry *p;
1653 int i;
1654
1655 if (!ubi->dbg->chk_gen)
1656 return 0;
1657
1658 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1659 list_for_each_entry(p, &ubi->pq[i], u.list)
1660 if (p == e)
1661 return 0;
1662
1663 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1664 e->pnum, e->ec);
1665 ubi_dbg_dump_stack();
1666 return -EINVAL;
1667 }
1668
1669 #endif /* CONFIG_MTD_UBI_DEBUG */
1670