1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/init.h>
18
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #include <asm/uasm.h>
23
24 enum fields {
25 RS = 0x001,
26 RT = 0x002,
27 RD = 0x004,
28 RE = 0x008,
29 SIMM = 0x010,
30 UIMM = 0x020,
31 BIMM = 0x040,
32 JIMM = 0x080,
33 FUNC = 0x100,
34 SET = 0x200,
35 SCIMM = 0x400
36 };
37
38 #define OP_MASK 0x3f
39 #define OP_SH 26
40 #define RS_MASK 0x1f
41 #define RS_SH 21
42 #define RT_MASK 0x1f
43 #define RT_SH 16
44 #define RD_MASK 0x1f
45 #define RD_SH 11
46 #define RE_MASK 0x1f
47 #define RE_SH 6
48 #define IMM_MASK 0xffff
49 #define IMM_SH 0
50 #define JIMM_MASK 0x3ffffff
51 #define JIMM_SH 0
52 #define FUNC_MASK 0x3f
53 #define FUNC_SH 0
54 #define SET_MASK 0x7
55 #define SET_SH 0
56 #define SCIMM_MASK 0xfffff
57 #define SCIMM_SH 6
58
59 enum opcode {
60 insn_invalid,
61 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
62 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
63 insn_bne, insn_cache, insn_daddu, insn_daddiu, insn_dmfc0,
64 insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
65 insn_dsrl32, insn_drotr, insn_drotr32, insn_dsubu, insn_eret,
66 insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld,
67 insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_or, insn_ori,
68 insn_pref, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
69 insn_sra, insn_srl, insn_rotr, insn_subu, insn_sw, insn_tlbp,
70 insn_tlbr, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori,
71 insn_dins, insn_dinsm, insn_syscall, insn_bbit0, insn_bbit1,
72 insn_lwx, insn_ldx
73 };
74
75 struct insn {
76 enum opcode opcode;
77 u32 match;
78 enum fields fields;
79 };
80
81 /* This macro sets the non-variable bits of an instruction. */
82 #define M(a, b, c, d, e, f) \
83 ((a) << OP_SH \
84 | (b) << RS_SH \
85 | (c) << RT_SH \
86 | (d) << RD_SH \
87 | (e) << RE_SH \
88 | (f) << FUNC_SH)
89
90 static struct insn insn_table[] __uasminitdata = {
91 { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
92 { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
93 { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
94 { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
95 { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
96 { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
97 { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
98 { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
99 { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
100 { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
101 { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
102 { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
103 { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
104 { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
105 { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
106 { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
107 { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
108 { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
109 { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
110 { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
111 { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
112 { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
113 { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
114 { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
115 { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
116 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
117 { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
118 { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
119 { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
120 { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
121 { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
122 { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
123 { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
124 { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
125 { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
126 { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
127 { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
128 { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
129 { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
130 { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
131 { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
132 { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
133 { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
134 { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
135 { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
136 { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
137 { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
138 { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
139 { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
140 { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
141 { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
142 { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
143 { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
144 { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
145 { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
146 { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
147 { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
148 { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
149 { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
150 { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
151 { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
152 { insn_invalid, 0, 0 }
153 };
154
155 #undef M
156
build_rs(u32 arg)157 static inline __uasminit u32 build_rs(u32 arg)
158 {
159 WARN(arg & ~RS_MASK, KERN_WARNING "Micro-assembler field overflow\n");
160
161 return (arg & RS_MASK) << RS_SH;
162 }
163
build_rt(u32 arg)164 static inline __uasminit u32 build_rt(u32 arg)
165 {
166 WARN(arg & ~RT_MASK, KERN_WARNING "Micro-assembler field overflow\n");
167
168 return (arg & RT_MASK) << RT_SH;
169 }
170
build_rd(u32 arg)171 static inline __uasminit u32 build_rd(u32 arg)
172 {
173 WARN(arg & ~RD_MASK, KERN_WARNING "Micro-assembler field overflow\n");
174
175 return (arg & RD_MASK) << RD_SH;
176 }
177
build_re(u32 arg)178 static inline __uasminit u32 build_re(u32 arg)
179 {
180 WARN(arg & ~RE_MASK, KERN_WARNING "Micro-assembler field overflow\n");
181
182 return (arg & RE_MASK) << RE_SH;
183 }
184
build_simm(s32 arg)185 static inline __uasminit u32 build_simm(s32 arg)
186 {
187 WARN(arg > 0x7fff || arg < -0x8000,
188 KERN_WARNING "Micro-assembler field overflow\n");
189
190 return arg & 0xffff;
191 }
192
build_uimm(u32 arg)193 static inline __uasminit u32 build_uimm(u32 arg)
194 {
195 WARN(arg & ~IMM_MASK, KERN_WARNING "Micro-assembler field overflow\n");
196
197 return arg & IMM_MASK;
198 }
199
build_bimm(s32 arg)200 static inline __uasminit u32 build_bimm(s32 arg)
201 {
202 WARN(arg > 0x1ffff || arg < -0x20000,
203 KERN_WARNING "Micro-assembler field overflow\n");
204
205 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
206
207 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
208 }
209
build_jimm(u32 arg)210 static inline __uasminit u32 build_jimm(u32 arg)
211 {
212 WARN(arg & ~(JIMM_MASK << 2),
213 KERN_WARNING "Micro-assembler field overflow\n");
214
215 return (arg >> 2) & JIMM_MASK;
216 }
217
build_scimm(u32 arg)218 static inline __uasminit u32 build_scimm(u32 arg)
219 {
220 WARN(arg & ~SCIMM_MASK,
221 KERN_WARNING "Micro-assembler field overflow\n");
222
223 return (arg & SCIMM_MASK) << SCIMM_SH;
224 }
225
build_func(u32 arg)226 static inline __uasminit u32 build_func(u32 arg)
227 {
228 WARN(arg & ~FUNC_MASK, KERN_WARNING "Micro-assembler field overflow\n");
229
230 return arg & FUNC_MASK;
231 }
232
build_set(u32 arg)233 static inline __uasminit u32 build_set(u32 arg)
234 {
235 WARN(arg & ~SET_MASK, KERN_WARNING "Micro-assembler field overflow\n");
236
237 return arg & SET_MASK;
238 }
239
240 /*
241 * The order of opcode arguments is implicitly left to right,
242 * starting with RS and ending with FUNC or IMM.
243 */
build_insn(u32 ** buf,enum opcode opc,...)244 static void __uasminit build_insn(u32 **buf, enum opcode opc, ...)
245 {
246 struct insn *ip = NULL;
247 unsigned int i;
248 va_list ap;
249 u32 op;
250
251 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
252 if (insn_table[i].opcode == opc) {
253 ip = &insn_table[i];
254 break;
255 }
256
257 if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
258 panic("Unsupported Micro-assembler instruction %d", opc);
259
260 op = ip->match;
261 va_start(ap, opc);
262 if (ip->fields & RS)
263 op |= build_rs(va_arg(ap, u32));
264 if (ip->fields & RT)
265 op |= build_rt(va_arg(ap, u32));
266 if (ip->fields & RD)
267 op |= build_rd(va_arg(ap, u32));
268 if (ip->fields & RE)
269 op |= build_re(va_arg(ap, u32));
270 if (ip->fields & SIMM)
271 op |= build_simm(va_arg(ap, s32));
272 if (ip->fields & UIMM)
273 op |= build_uimm(va_arg(ap, u32));
274 if (ip->fields & BIMM)
275 op |= build_bimm(va_arg(ap, s32));
276 if (ip->fields & JIMM)
277 op |= build_jimm(va_arg(ap, u32));
278 if (ip->fields & FUNC)
279 op |= build_func(va_arg(ap, u32));
280 if (ip->fields & SET)
281 op |= build_set(va_arg(ap, u32));
282 if (ip->fields & SCIMM)
283 op |= build_scimm(va_arg(ap, u32));
284 va_end(ap);
285
286 **buf = op;
287 (*buf)++;
288 }
289
290 #define I_u1u2u3(op) \
291 Ip_u1u2u3(op) \
292 { \
293 build_insn(buf, insn##op, a, b, c); \
294 } \
295 UASM_EXPORT_SYMBOL(uasm_i##op);
296
297 #define I_u2u1u3(op) \
298 Ip_u2u1u3(op) \
299 { \
300 build_insn(buf, insn##op, b, a, c); \
301 } \
302 UASM_EXPORT_SYMBOL(uasm_i##op);
303
304 #define I_u3u1u2(op) \
305 Ip_u3u1u2(op) \
306 { \
307 build_insn(buf, insn##op, b, c, a); \
308 } \
309 UASM_EXPORT_SYMBOL(uasm_i##op);
310
311 #define I_u1u2s3(op) \
312 Ip_u1u2s3(op) \
313 { \
314 build_insn(buf, insn##op, a, b, c); \
315 } \
316 UASM_EXPORT_SYMBOL(uasm_i##op);
317
318 #define I_u2s3u1(op) \
319 Ip_u2s3u1(op) \
320 { \
321 build_insn(buf, insn##op, c, a, b); \
322 } \
323 UASM_EXPORT_SYMBOL(uasm_i##op);
324
325 #define I_u2u1s3(op) \
326 Ip_u2u1s3(op) \
327 { \
328 build_insn(buf, insn##op, b, a, c); \
329 } \
330 UASM_EXPORT_SYMBOL(uasm_i##op);
331
332 #define I_u2u1msbu3(op) \
333 Ip_u2u1msbu3(op) \
334 { \
335 build_insn(buf, insn##op, b, a, c+d-1, c); \
336 } \
337 UASM_EXPORT_SYMBOL(uasm_i##op);
338
339 #define I_u2u1msb32u3(op) \
340 Ip_u2u1msbu3(op) \
341 { \
342 build_insn(buf, insn##op, b, a, c+d-33, c); \
343 } \
344 UASM_EXPORT_SYMBOL(uasm_i##op);
345
346 #define I_u1u2(op) \
347 Ip_u1u2(op) \
348 { \
349 build_insn(buf, insn##op, a, b); \
350 } \
351 UASM_EXPORT_SYMBOL(uasm_i##op);
352
353 #define I_u1s2(op) \
354 Ip_u1s2(op) \
355 { \
356 build_insn(buf, insn##op, a, b); \
357 } \
358 UASM_EXPORT_SYMBOL(uasm_i##op);
359
360 #define I_u1(op) \
361 Ip_u1(op) \
362 { \
363 build_insn(buf, insn##op, a); \
364 } \
365 UASM_EXPORT_SYMBOL(uasm_i##op);
366
367 #define I_0(op) \
368 Ip_0(op) \
369 { \
370 build_insn(buf, insn##op); \
371 } \
372 UASM_EXPORT_SYMBOL(uasm_i##op);
373
374 I_u2u1s3(_addiu)
375 I_u3u1u2(_addu)
376 I_u2u1u3(_andi)
377 I_u3u1u2(_and)
378 I_u1u2s3(_beq)
379 I_u1u2s3(_beql)
380 I_u1s2(_bgez)
381 I_u1s2(_bgezl)
382 I_u1s2(_bltz)
383 I_u1s2(_bltzl)
384 I_u1u2s3(_bne)
385 I_u2s3u1(_cache)
386 I_u1u2u3(_dmfc0)
387 I_u1u2u3(_dmtc0)
388 I_u2u1s3(_daddiu)
389 I_u3u1u2(_daddu)
390 I_u2u1u3(_dsll)
391 I_u2u1u3(_dsll32)
392 I_u2u1u3(_dsra)
393 I_u2u1u3(_dsrl)
394 I_u2u1u3(_dsrl32)
395 I_u2u1u3(_drotr)
396 I_u2u1u3(_drotr32)
397 I_u3u1u2(_dsubu)
398 I_0(_eret)
399 I_u1(_j)
400 I_u1(_jal)
401 I_u1(_jr)
402 I_u2s3u1(_ld)
403 I_u2s3u1(_ll)
404 I_u2s3u1(_lld)
405 I_u1s2(_lui)
406 I_u2s3u1(_lw)
407 I_u1u2u3(_mfc0)
408 I_u1u2u3(_mtc0)
409 I_u2u1u3(_ori)
410 I_u3u1u2(_or)
411 I_0(_rfe)
412 I_u2s3u1(_sc)
413 I_u2s3u1(_scd)
414 I_u2s3u1(_sd)
415 I_u2u1u3(_sll)
416 I_u2u1u3(_sra)
417 I_u2u1u3(_srl)
418 I_u2u1u3(_rotr)
419 I_u3u1u2(_subu)
420 I_u2s3u1(_sw)
421 I_0(_tlbp)
422 I_0(_tlbr)
423 I_0(_tlbwi)
424 I_0(_tlbwr)
425 I_u3u1u2(_xor)
426 I_u2u1u3(_xori)
427 I_u2u1msbu3(_dins);
428 I_u2u1msb32u3(_dinsm);
429 I_u1(_syscall);
430 I_u1u2s3(_bbit0);
431 I_u1u2s3(_bbit1);
432 I_u3u1u2(_lwx)
I_u3u1u2(_ldx)433 I_u3u1u2(_ldx)
434
435 #ifdef CONFIG_CPU_CAVIUM_OCTEON
436 #include <asm/octeon/octeon.h>
437 void __uasminit uasm_i_pref(u32 **buf, unsigned int a, signed int b,
438 unsigned int c)
439 {
440 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) && a <= 24 && a != 5)
441 /*
442 * As per erratum Core-14449, replace prefetches 0-4,
443 * 6-24 with 'pref 28'.
444 */
445 build_insn(buf, insn_pref, c, 28, b);
446 else
447 build_insn(buf, insn_pref, c, a, b);
448 }
449 UASM_EXPORT_SYMBOL(uasm_i_pref);
450 #else
451 I_u2s3u1(_pref)
452 #endif
453
454 /* Handle labels. */
uasm_build_label(struct uasm_label ** lab,u32 * addr,int lid)455 void __uasminit uasm_build_label(struct uasm_label **lab, u32 *addr, int lid)
456 {
457 (*lab)->addr = addr;
458 (*lab)->lab = lid;
459 (*lab)++;
460 }
461 UASM_EXPORT_SYMBOL(uasm_build_label);
462
uasm_in_compat_space_p(long addr)463 int __uasminit uasm_in_compat_space_p(long addr)
464 {
465 /* Is this address in 32bit compat space? */
466 #ifdef CONFIG_64BIT
467 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
468 #else
469 return 1;
470 #endif
471 }
472 UASM_EXPORT_SYMBOL(uasm_in_compat_space_p);
473
uasm_rel_highest(long val)474 static int __uasminit uasm_rel_highest(long val)
475 {
476 #ifdef CONFIG_64BIT
477 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
478 #else
479 return 0;
480 #endif
481 }
482
uasm_rel_higher(long val)483 static int __uasminit uasm_rel_higher(long val)
484 {
485 #ifdef CONFIG_64BIT
486 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
487 #else
488 return 0;
489 #endif
490 }
491
uasm_rel_hi(long val)492 int __uasminit uasm_rel_hi(long val)
493 {
494 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
495 }
496 UASM_EXPORT_SYMBOL(uasm_rel_hi);
497
uasm_rel_lo(long val)498 int __uasminit uasm_rel_lo(long val)
499 {
500 return ((val & 0xffff) ^ 0x8000) - 0x8000;
501 }
502 UASM_EXPORT_SYMBOL(uasm_rel_lo);
503
UASM_i_LA_mostly(u32 ** buf,unsigned int rs,long addr)504 void __uasminit UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr)
505 {
506 if (!uasm_in_compat_space_p(addr)) {
507 uasm_i_lui(buf, rs, uasm_rel_highest(addr));
508 if (uasm_rel_higher(addr))
509 uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr));
510 if (uasm_rel_hi(addr)) {
511 uasm_i_dsll(buf, rs, rs, 16);
512 uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr));
513 uasm_i_dsll(buf, rs, rs, 16);
514 } else
515 uasm_i_dsll32(buf, rs, rs, 0);
516 } else
517 uasm_i_lui(buf, rs, uasm_rel_hi(addr));
518 }
519 UASM_EXPORT_SYMBOL(UASM_i_LA_mostly);
520
UASM_i_LA(u32 ** buf,unsigned int rs,long addr)521 void __uasminit UASM_i_LA(u32 **buf, unsigned int rs, long addr)
522 {
523 UASM_i_LA_mostly(buf, rs, addr);
524 if (uasm_rel_lo(addr)) {
525 if (!uasm_in_compat_space_p(addr))
526 uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr));
527 else
528 uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr));
529 }
530 }
531 UASM_EXPORT_SYMBOL(UASM_i_LA);
532
533 /* Handle relocations. */
534 void __uasminit
uasm_r_mips_pc16(struct uasm_reloc ** rel,u32 * addr,int lid)535 uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid)
536 {
537 (*rel)->addr = addr;
538 (*rel)->type = R_MIPS_PC16;
539 (*rel)->lab = lid;
540 (*rel)++;
541 }
542 UASM_EXPORT_SYMBOL(uasm_r_mips_pc16);
543
544 static inline void __uasminit
__resolve_relocs(struct uasm_reloc * rel,struct uasm_label * lab)545 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
546 {
547 long laddr = (long)lab->addr;
548 long raddr = (long)rel->addr;
549
550 switch (rel->type) {
551 case R_MIPS_PC16:
552 *rel->addr |= build_bimm(laddr - (raddr + 4));
553 break;
554
555 default:
556 panic("Unsupported Micro-assembler relocation %d",
557 rel->type);
558 }
559 }
560
561 void __uasminit
uasm_resolve_relocs(struct uasm_reloc * rel,struct uasm_label * lab)562 uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
563 {
564 struct uasm_label *l;
565
566 for (; rel->lab != UASM_LABEL_INVALID; rel++)
567 for (l = lab; l->lab != UASM_LABEL_INVALID; l++)
568 if (rel->lab == l->lab)
569 __resolve_relocs(rel, l);
570 }
571 UASM_EXPORT_SYMBOL(uasm_resolve_relocs);
572
573 void __uasminit
uasm_move_relocs(struct uasm_reloc * rel,u32 * first,u32 * end,long off)574 uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off)
575 {
576 for (; rel->lab != UASM_LABEL_INVALID; rel++)
577 if (rel->addr >= first && rel->addr < end)
578 rel->addr += off;
579 }
580 UASM_EXPORT_SYMBOL(uasm_move_relocs);
581
582 void __uasminit
uasm_move_labels(struct uasm_label * lab,u32 * first,u32 * end,long off)583 uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off)
584 {
585 for (; lab->lab != UASM_LABEL_INVALID; lab++)
586 if (lab->addr >= first && lab->addr < end)
587 lab->addr += off;
588 }
589 UASM_EXPORT_SYMBOL(uasm_move_labels);
590
591 void __uasminit
uasm_copy_handler(struct uasm_reloc * rel,struct uasm_label * lab,u32 * first,u32 * end,u32 * target)592 uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first,
593 u32 *end, u32 *target)
594 {
595 long off = (long)(target - first);
596
597 memcpy(target, first, (end - first) * sizeof(u32));
598
599 uasm_move_relocs(rel, first, end, off);
600 uasm_move_labels(lab, first, end, off);
601 }
602 UASM_EXPORT_SYMBOL(uasm_copy_handler);
603
uasm_insn_has_bdelay(struct uasm_reloc * rel,u32 * addr)604 int __uasminit uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr)
605 {
606 for (; rel->lab != UASM_LABEL_INVALID; rel++) {
607 if (rel->addr == addr
608 && (rel->type == R_MIPS_PC16
609 || rel->type == R_MIPS_26))
610 return 1;
611 }
612
613 return 0;
614 }
615 UASM_EXPORT_SYMBOL(uasm_insn_has_bdelay);
616
617 /* Convenience functions for labeled branches. */
618 void __uasminit
uasm_il_bltz(u32 ** p,struct uasm_reloc ** r,unsigned int reg,int lid)619 uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
620 {
621 uasm_r_mips_pc16(r, *p, lid);
622 uasm_i_bltz(p, reg, 0);
623 }
624 UASM_EXPORT_SYMBOL(uasm_il_bltz);
625
626 void __uasminit
uasm_il_b(u32 ** p,struct uasm_reloc ** r,int lid)627 uasm_il_b(u32 **p, struct uasm_reloc **r, int lid)
628 {
629 uasm_r_mips_pc16(r, *p, lid);
630 uasm_i_b(p, 0);
631 }
632 UASM_EXPORT_SYMBOL(uasm_il_b);
633
634 void __uasminit
uasm_il_beqz(u32 ** p,struct uasm_reloc ** r,unsigned int reg,int lid)635 uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
636 {
637 uasm_r_mips_pc16(r, *p, lid);
638 uasm_i_beqz(p, reg, 0);
639 }
640 UASM_EXPORT_SYMBOL(uasm_il_beqz);
641
642 void __uasminit
uasm_il_beqzl(u32 ** p,struct uasm_reloc ** r,unsigned int reg,int lid)643 uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
644 {
645 uasm_r_mips_pc16(r, *p, lid);
646 uasm_i_beqzl(p, reg, 0);
647 }
648 UASM_EXPORT_SYMBOL(uasm_il_beqzl);
649
650 void __uasminit
uasm_il_bne(u32 ** p,struct uasm_reloc ** r,unsigned int reg1,unsigned int reg2,int lid)651 uasm_il_bne(u32 **p, struct uasm_reloc **r, unsigned int reg1,
652 unsigned int reg2, int lid)
653 {
654 uasm_r_mips_pc16(r, *p, lid);
655 uasm_i_bne(p, reg1, reg2, 0);
656 }
657 UASM_EXPORT_SYMBOL(uasm_il_bne);
658
659 void __uasminit
uasm_il_bnez(u32 ** p,struct uasm_reloc ** r,unsigned int reg,int lid)660 uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
661 {
662 uasm_r_mips_pc16(r, *p, lid);
663 uasm_i_bnez(p, reg, 0);
664 }
665 UASM_EXPORT_SYMBOL(uasm_il_bnez);
666
667 void __uasminit
uasm_il_bgezl(u32 ** p,struct uasm_reloc ** r,unsigned int reg,int lid)668 uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
669 {
670 uasm_r_mips_pc16(r, *p, lid);
671 uasm_i_bgezl(p, reg, 0);
672 }
673 UASM_EXPORT_SYMBOL(uasm_il_bgezl);
674
675 void __uasminit
uasm_il_bgez(u32 ** p,struct uasm_reloc ** r,unsigned int reg,int lid)676 uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
677 {
678 uasm_r_mips_pc16(r, *p, lid);
679 uasm_i_bgez(p, reg, 0);
680 }
681 UASM_EXPORT_SYMBOL(uasm_il_bgez);
682
683 void __uasminit
uasm_il_bbit0(u32 ** p,struct uasm_reloc ** r,unsigned int reg,unsigned int bit,int lid)684 uasm_il_bbit0(u32 **p, struct uasm_reloc **r, unsigned int reg,
685 unsigned int bit, int lid)
686 {
687 uasm_r_mips_pc16(r, *p, lid);
688 uasm_i_bbit0(p, reg, bit, 0);
689 }
690 UASM_EXPORT_SYMBOL(uasm_il_bbit0);
691
692 void __uasminit
uasm_il_bbit1(u32 ** p,struct uasm_reloc ** r,unsigned int reg,unsigned int bit,int lid)693 uasm_il_bbit1(u32 **p, struct uasm_reloc **r, unsigned int reg,
694 unsigned int bit, int lid)
695 {
696 uasm_r_mips_pc16(r, *p, lid);
697 uasm_i_bbit1(p, reg, bit, 0);
698 }
699 UASM_EXPORT_SYMBOL(uasm_il_bbit1);
700