1 /*
2 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3 *
4 * Author: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 *
7 * Description:
8 * QE UCC Gigabit Ethernet Driver
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/slab.h>
19 #include <linux/stddef.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/mii.h>
29 #include <linux/phy.h>
30 #include <linux/workqueue.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_platform.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/irq.h>
37 #include <asm/io.h>
38 #include <asm/immap_qe.h>
39 #include <asm/qe.h>
40 #include <asm/ucc.h>
41 #include <asm/ucc_fast.h>
42 #include <asm/machdep.h>
43
44 #include "ucc_geth.h"
45 #include "fsl_pq_mdio.h"
46
47 #undef DEBUG
48
49 #define ugeth_printk(level, format, arg...) \
50 printk(level format "\n", ## arg)
51
52 #define ugeth_dbg(format, arg...) \
53 ugeth_printk(KERN_DEBUG , format , ## arg)
54 #define ugeth_err(format, arg...) \
55 ugeth_printk(KERN_ERR , format , ## arg)
56 #define ugeth_info(format, arg...) \
57 ugeth_printk(KERN_INFO , format , ## arg)
58 #define ugeth_warn(format, arg...) \
59 ugeth_printk(KERN_WARNING , format , ## arg)
60
61 #ifdef UGETH_VERBOSE_DEBUG
62 #define ugeth_vdbg ugeth_dbg
63 #else
64 #define ugeth_vdbg(fmt, args...) do { } while (0)
65 #endif /* UGETH_VERBOSE_DEBUG */
66 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1
67
68
69 static DEFINE_SPINLOCK(ugeth_lock);
70
71 static struct {
72 u32 msg_enable;
73 } debug = { -1 };
74
75 module_param_named(debug, debug.msg_enable, int, 0);
76 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
77
78 static struct ucc_geth_info ugeth_primary_info = {
79 .uf_info = {
80 .bd_mem_part = MEM_PART_SYSTEM,
81 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
82 .max_rx_buf_length = 1536,
83 /* adjusted at startup if max-speed 1000 */
84 .urfs = UCC_GETH_URFS_INIT,
85 .urfet = UCC_GETH_URFET_INIT,
86 .urfset = UCC_GETH_URFSET_INIT,
87 .utfs = UCC_GETH_UTFS_INIT,
88 .utfet = UCC_GETH_UTFET_INIT,
89 .utftt = UCC_GETH_UTFTT_INIT,
90 .ufpt = 256,
91 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
92 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
93 .tenc = UCC_FAST_TX_ENCODING_NRZ,
94 .renc = UCC_FAST_RX_ENCODING_NRZ,
95 .tcrc = UCC_FAST_16_BIT_CRC,
96 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
97 },
98 .numQueuesTx = 1,
99 .numQueuesRx = 1,
100 .extendedFilteringChainPointer = ((uint32_t) NULL),
101 .typeorlen = 3072 /*1536 */ ,
102 .nonBackToBackIfgPart1 = 0x40,
103 .nonBackToBackIfgPart2 = 0x60,
104 .miminumInterFrameGapEnforcement = 0x50,
105 .backToBackInterFrameGap = 0x60,
106 .mblinterval = 128,
107 .nortsrbytetime = 5,
108 .fracsiz = 1,
109 .strictpriorityq = 0xff,
110 .altBebTruncation = 0xa,
111 .excessDefer = 1,
112 .maxRetransmission = 0xf,
113 .collisionWindow = 0x37,
114 .receiveFlowControl = 1,
115 .transmitFlowControl = 1,
116 .maxGroupAddrInHash = 4,
117 .maxIndAddrInHash = 4,
118 .prel = 7,
119 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
120 .minFrameLength = 64,
121 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
122 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
123 .vlantype = 0x8100,
124 .ecamptr = ((uint32_t) NULL),
125 .eventRegMask = UCCE_OTHER,
126 .pausePeriod = 0xf000,
127 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
128 .bdRingLenTx = {
129 TX_BD_RING_LEN,
130 TX_BD_RING_LEN,
131 TX_BD_RING_LEN,
132 TX_BD_RING_LEN,
133 TX_BD_RING_LEN,
134 TX_BD_RING_LEN,
135 TX_BD_RING_LEN,
136 TX_BD_RING_LEN},
137
138 .bdRingLenRx = {
139 RX_BD_RING_LEN,
140 RX_BD_RING_LEN,
141 RX_BD_RING_LEN,
142 RX_BD_RING_LEN,
143 RX_BD_RING_LEN,
144 RX_BD_RING_LEN,
145 RX_BD_RING_LEN,
146 RX_BD_RING_LEN},
147
148 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
149 .largestexternallookupkeysize =
150 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
151 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
152 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
153 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
154 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
155 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
156 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
157 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
158 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
159 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
160 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
161 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
162 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
163 };
164
165 static struct ucc_geth_info ugeth_info[8];
166
167 #ifdef DEBUG
mem_disp(u8 * addr,int size)168 static void mem_disp(u8 *addr, int size)
169 {
170 u8 *i;
171 int size16Aling = (size >> 4) << 4;
172 int size4Aling = (size >> 2) << 2;
173 int notAlign = 0;
174 if (size % 16)
175 notAlign = 1;
176
177 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
178 printk("0x%08x: %08x %08x %08x %08x\r\n",
179 (u32) i,
180 *((u32 *) (i)),
181 *((u32 *) (i + 4)),
182 *((u32 *) (i + 8)), *((u32 *) (i + 12)));
183 if (notAlign == 1)
184 printk("0x%08x: ", (u32) i);
185 for (; (u32) i < (u32) addr + size4Aling; i += 4)
186 printk("%08x ", *((u32 *) (i)));
187 for (; (u32) i < (u32) addr + size; i++)
188 printk("%02x", *((u8 *) (i)));
189 if (notAlign == 1)
190 printk("\r\n");
191 }
192 #endif /* DEBUG */
193
dequeue(struct list_head * lh)194 static struct list_head *dequeue(struct list_head *lh)
195 {
196 unsigned long flags;
197
198 spin_lock_irqsave(&ugeth_lock, flags);
199 if (!list_empty(lh)) {
200 struct list_head *node = lh->next;
201 list_del(node);
202 spin_unlock_irqrestore(&ugeth_lock, flags);
203 return node;
204 } else {
205 spin_unlock_irqrestore(&ugeth_lock, flags);
206 return NULL;
207 }
208 }
209
get_new_skb(struct ucc_geth_private * ugeth,u8 __iomem * bd)210 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
211 u8 __iomem *bd)
212 {
213 struct sk_buff *skb = NULL;
214
215 skb = __skb_dequeue(&ugeth->rx_recycle);
216 if (!skb)
217 skb = netdev_alloc_skb(ugeth->ndev,
218 ugeth->ug_info->uf_info.max_rx_buf_length +
219 UCC_GETH_RX_DATA_BUF_ALIGNMENT);
220 if (skb == NULL)
221 return NULL;
222
223 /* We need the data buffer to be aligned properly. We will reserve
224 * as many bytes as needed to align the data properly
225 */
226 skb_reserve(skb,
227 UCC_GETH_RX_DATA_BUF_ALIGNMENT -
228 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
229 1)));
230
231 out_be32(&((struct qe_bd __iomem *)bd)->buf,
232 dma_map_single(ugeth->dev,
233 skb->data,
234 ugeth->ug_info->uf_info.max_rx_buf_length +
235 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
236 DMA_FROM_DEVICE));
237
238 out_be32((u32 __iomem *)bd,
239 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
240
241 return skb;
242 }
243
rx_bd_buffer_set(struct ucc_geth_private * ugeth,u8 rxQ)244 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
245 {
246 u8 __iomem *bd;
247 u32 bd_status;
248 struct sk_buff *skb;
249 int i;
250
251 bd = ugeth->p_rx_bd_ring[rxQ];
252 i = 0;
253
254 do {
255 bd_status = in_be32((u32 __iomem *)bd);
256 skb = get_new_skb(ugeth, bd);
257
258 if (!skb) /* If can not allocate data buffer,
259 abort. Cleanup will be elsewhere */
260 return -ENOMEM;
261
262 ugeth->rx_skbuff[rxQ][i] = skb;
263
264 /* advance the BD pointer */
265 bd += sizeof(struct qe_bd);
266 i++;
267 } while (!(bd_status & R_W));
268
269 return 0;
270 }
271
fill_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,u32 thread_size,u32 thread_alignment,unsigned int risc,int skip_page_for_first_entry)272 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
273 u32 *p_start,
274 u8 num_entries,
275 u32 thread_size,
276 u32 thread_alignment,
277 unsigned int risc,
278 int skip_page_for_first_entry)
279 {
280 u32 init_enet_offset;
281 u8 i;
282 int snum;
283
284 for (i = 0; i < num_entries; i++) {
285 if ((snum = qe_get_snum()) < 0) {
286 if (netif_msg_ifup(ugeth))
287 ugeth_err("fill_init_enet_entries: Can not get SNUM.");
288 return snum;
289 }
290 if ((i == 0) && skip_page_for_first_entry)
291 /* First entry of Rx does not have page */
292 init_enet_offset = 0;
293 else {
294 init_enet_offset =
295 qe_muram_alloc(thread_size, thread_alignment);
296 if (IS_ERR_VALUE(init_enet_offset)) {
297 if (netif_msg_ifup(ugeth))
298 ugeth_err("fill_init_enet_entries: Can not allocate DPRAM memory.");
299 qe_put_snum((u8) snum);
300 return -ENOMEM;
301 }
302 }
303 *(p_start++) =
304 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
305 | risc;
306 }
307
308 return 0;
309 }
310
return_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,unsigned int risc,int skip_page_for_first_entry)311 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
312 u32 *p_start,
313 u8 num_entries,
314 unsigned int risc,
315 int skip_page_for_first_entry)
316 {
317 u32 init_enet_offset;
318 u8 i;
319 int snum;
320
321 for (i = 0; i < num_entries; i++) {
322 u32 val = *p_start;
323
324 /* Check that this entry was actually valid --
325 needed in case failed in allocations */
326 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
327 snum =
328 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
329 ENET_INIT_PARAM_SNUM_SHIFT;
330 qe_put_snum((u8) snum);
331 if (!((i == 0) && skip_page_for_first_entry)) {
332 /* First entry of Rx does not have page */
333 init_enet_offset =
334 (val & ENET_INIT_PARAM_PTR_MASK);
335 qe_muram_free(init_enet_offset);
336 }
337 *p_start++ = 0;
338 }
339 }
340
341 return 0;
342 }
343
344 #ifdef DEBUG
dump_init_enet_entries(struct ucc_geth_private * ugeth,u32 __iomem * p_start,u8 num_entries,u32 thread_size,unsigned int risc,int skip_page_for_first_entry)345 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
346 u32 __iomem *p_start,
347 u8 num_entries,
348 u32 thread_size,
349 unsigned int risc,
350 int skip_page_for_first_entry)
351 {
352 u32 init_enet_offset;
353 u8 i;
354 int snum;
355
356 for (i = 0; i < num_entries; i++) {
357 u32 val = in_be32(p_start);
358
359 /* Check that this entry was actually valid --
360 needed in case failed in allocations */
361 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
362 snum =
363 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
364 ENET_INIT_PARAM_SNUM_SHIFT;
365 qe_put_snum((u8) snum);
366 if (!((i == 0) && skip_page_for_first_entry)) {
367 /* First entry of Rx does not have page */
368 init_enet_offset =
369 (in_be32(p_start) &
370 ENET_INIT_PARAM_PTR_MASK);
371 ugeth_info("Init enet entry %d:", i);
372 ugeth_info("Base address: 0x%08x",
373 (u32)
374 qe_muram_addr(init_enet_offset));
375 mem_disp(qe_muram_addr(init_enet_offset),
376 thread_size);
377 }
378 p_start++;
379 }
380 }
381
382 return 0;
383 }
384 #endif
385
put_enet_addr_container(struct enet_addr_container * enet_addr_cont)386 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
387 {
388 kfree(enet_addr_cont);
389 }
390
set_mac_addr(__be16 __iomem * reg,u8 * mac)391 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
392 {
393 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]);
394 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]);
395 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]);
396 }
397
hw_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)398 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
399 {
400 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
401
402 if (!(paddr_num < NUM_OF_PADDRS)) {
403 ugeth_warn("%s: Illagel paddr_num.", __func__);
404 return -EINVAL;
405 }
406
407 p_82xx_addr_filt =
408 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
409 addressfiltering;
410
411 /* Writing address ff.ff.ff.ff.ff.ff disables address
412 recognition for this register */
413 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
414 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
415 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
416
417 return 0;
418 }
419
hw_add_addr_in_hash(struct ucc_geth_private * ugeth,u8 * p_enet_addr)420 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
421 u8 *p_enet_addr)
422 {
423 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
424 u32 cecr_subblock;
425
426 p_82xx_addr_filt =
427 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
428 addressfiltering;
429
430 cecr_subblock =
431 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
432
433 /* Ethernet frames are defined in Little Endian mode,
434 therefore to insert */
435 /* the address to the hash (Big Endian mode), we reverse the bytes.*/
436
437 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
438
439 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
440 QE_CR_PROTOCOL_ETHERNET, 0);
441 }
442
compare_addr(u8 ** addr1,u8 ** addr2)443 static inline int compare_addr(u8 **addr1, u8 **addr2)
444 {
445 return memcmp(addr1, addr2, ETH_ALEN);
446 }
447
448 #ifdef DEBUG
get_statistics(struct ucc_geth_private * ugeth,struct ucc_geth_tx_firmware_statistics * tx_firmware_statistics,struct ucc_geth_rx_firmware_statistics * rx_firmware_statistics,struct ucc_geth_hardware_statistics * hardware_statistics)449 static void get_statistics(struct ucc_geth_private *ugeth,
450 struct ucc_geth_tx_firmware_statistics *
451 tx_firmware_statistics,
452 struct ucc_geth_rx_firmware_statistics *
453 rx_firmware_statistics,
454 struct ucc_geth_hardware_statistics *hardware_statistics)
455 {
456 struct ucc_fast __iomem *uf_regs;
457 struct ucc_geth __iomem *ug_regs;
458 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
459 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
460
461 ug_regs = ugeth->ug_regs;
462 uf_regs = (struct ucc_fast __iomem *) ug_regs;
463 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
464 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
465
466 /* Tx firmware only if user handed pointer and driver actually
467 gathers Tx firmware statistics */
468 if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
469 tx_firmware_statistics->sicoltx =
470 in_be32(&p_tx_fw_statistics_pram->sicoltx);
471 tx_firmware_statistics->mulcoltx =
472 in_be32(&p_tx_fw_statistics_pram->mulcoltx);
473 tx_firmware_statistics->latecoltxfr =
474 in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
475 tx_firmware_statistics->frabortduecol =
476 in_be32(&p_tx_fw_statistics_pram->frabortduecol);
477 tx_firmware_statistics->frlostinmactxer =
478 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
479 tx_firmware_statistics->carriersenseertx =
480 in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
481 tx_firmware_statistics->frtxok =
482 in_be32(&p_tx_fw_statistics_pram->frtxok);
483 tx_firmware_statistics->txfrexcessivedefer =
484 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
485 tx_firmware_statistics->txpkts256 =
486 in_be32(&p_tx_fw_statistics_pram->txpkts256);
487 tx_firmware_statistics->txpkts512 =
488 in_be32(&p_tx_fw_statistics_pram->txpkts512);
489 tx_firmware_statistics->txpkts1024 =
490 in_be32(&p_tx_fw_statistics_pram->txpkts1024);
491 tx_firmware_statistics->txpktsjumbo =
492 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
493 }
494
495 /* Rx firmware only if user handed pointer and driver actually
496 * gathers Rx firmware statistics */
497 if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
498 int i;
499 rx_firmware_statistics->frrxfcser =
500 in_be32(&p_rx_fw_statistics_pram->frrxfcser);
501 rx_firmware_statistics->fraligner =
502 in_be32(&p_rx_fw_statistics_pram->fraligner);
503 rx_firmware_statistics->inrangelenrxer =
504 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
505 rx_firmware_statistics->outrangelenrxer =
506 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
507 rx_firmware_statistics->frtoolong =
508 in_be32(&p_rx_fw_statistics_pram->frtoolong);
509 rx_firmware_statistics->runt =
510 in_be32(&p_rx_fw_statistics_pram->runt);
511 rx_firmware_statistics->verylongevent =
512 in_be32(&p_rx_fw_statistics_pram->verylongevent);
513 rx_firmware_statistics->symbolerror =
514 in_be32(&p_rx_fw_statistics_pram->symbolerror);
515 rx_firmware_statistics->dropbsy =
516 in_be32(&p_rx_fw_statistics_pram->dropbsy);
517 for (i = 0; i < 0x8; i++)
518 rx_firmware_statistics->res0[i] =
519 p_rx_fw_statistics_pram->res0[i];
520 rx_firmware_statistics->mismatchdrop =
521 in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
522 rx_firmware_statistics->underpkts =
523 in_be32(&p_rx_fw_statistics_pram->underpkts);
524 rx_firmware_statistics->pkts256 =
525 in_be32(&p_rx_fw_statistics_pram->pkts256);
526 rx_firmware_statistics->pkts512 =
527 in_be32(&p_rx_fw_statistics_pram->pkts512);
528 rx_firmware_statistics->pkts1024 =
529 in_be32(&p_rx_fw_statistics_pram->pkts1024);
530 rx_firmware_statistics->pktsjumbo =
531 in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
532 rx_firmware_statistics->frlossinmacer =
533 in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
534 rx_firmware_statistics->pausefr =
535 in_be32(&p_rx_fw_statistics_pram->pausefr);
536 for (i = 0; i < 0x4; i++)
537 rx_firmware_statistics->res1[i] =
538 p_rx_fw_statistics_pram->res1[i];
539 rx_firmware_statistics->removevlan =
540 in_be32(&p_rx_fw_statistics_pram->removevlan);
541 rx_firmware_statistics->replacevlan =
542 in_be32(&p_rx_fw_statistics_pram->replacevlan);
543 rx_firmware_statistics->insertvlan =
544 in_be32(&p_rx_fw_statistics_pram->insertvlan);
545 }
546
547 /* Hardware only if user handed pointer and driver actually
548 gathers hardware statistics */
549 if (hardware_statistics &&
550 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
551 hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
552 hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
553 hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
554 hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
555 hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
556 hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
557 hardware_statistics->txok = in_be32(&ug_regs->txok);
558 hardware_statistics->txcf = in_be16(&ug_regs->txcf);
559 hardware_statistics->tmca = in_be32(&ug_regs->tmca);
560 hardware_statistics->tbca = in_be32(&ug_regs->tbca);
561 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
562 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
563 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
564 hardware_statistics->rmca = in_be32(&ug_regs->rmca);
565 hardware_statistics->rbca = in_be32(&ug_regs->rbca);
566 }
567 }
568
dump_bds(struct ucc_geth_private * ugeth)569 static void dump_bds(struct ucc_geth_private *ugeth)
570 {
571 int i;
572 int length;
573
574 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
575 if (ugeth->p_tx_bd_ring[i]) {
576 length =
577 (ugeth->ug_info->bdRingLenTx[i] *
578 sizeof(struct qe_bd));
579 ugeth_info("TX BDs[%d]", i);
580 mem_disp(ugeth->p_tx_bd_ring[i], length);
581 }
582 }
583 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
584 if (ugeth->p_rx_bd_ring[i]) {
585 length =
586 (ugeth->ug_info->bdRingLenRx[i] *
587 sizeof(struct qe_bd));
588 ugeth_info("RX BDs[%d]", i);
589 mem_disp(ugeth->p_rx_bd_ring[i], length);
590 }
591 }
592 }
593
dump_regs(struct ucc_geth_private * ugeth)594 static void dump_regs(struct ucc_geth_private *ugeth)
595 {
596 int i;
597
598 ugeth_info("UCC%d Geth registers:", ugeth->ug_info->uf_info.ucc_num + 1);
599 ugeth_info("Base address: 0x%08x", (u32) ugeth->ug_regs);
600
601 ugeth_info("maccfg1 : addr - 0x%08x, val - 0x%08x",
602 (u32) & ugeth->ug_regs->maccfg1,
603 in_be32(&ugeth->ug_regs->maccfg1));
604 ugeth_info("maccfg2 : addr - 0x%08x, val - 0x%08x",
605 (u32) & ugeth->ug_regs->maccfg2,
606 in_be32(&ugeth->ug_regs->maccfg2));
607 ugeth_info("ipgifg : addr - 0x%08x, val - 0x%08x",
608 (u32) & ugeth->ug_regs->ipgifg,
609 in_be32(&ugeth->ug_regs->ipgifg));
610 ugeth_info("hafdup : addr - 0x%08x, val - 0x%08x",
611 (u32) & ugeth->ug_regs->hafdup,
612 in_be32(&ugeth->ug_regs->hafdup));
613 ugeth_info("ifctl : addr - 0x%08x, val - 0x%08x",
614 (u32) & ugeth->ug_regs->ifctl,
615 in_be32(&ugeth->ug_regs->ifctl));
616 ugeth_info("ifstat : addr - 0x%08x, val - 0x%08x",
617 (u32) & ugeth->ug_regs->ifstat,
618 in_be32(&ugeth->ug_regs->ifstat));
619 ugeth_info("macstnaddr1: addr - 0x%08x, val - 0x%08x",
620 (u32) & ugeth->ug_regs->macstnaddr1,
621 in_be32(&ugeth->ug_regs->macstnaddr1));
622 ugeth_info("macstnaddr2: addr - 0x%08x, val - 0x%08x",
623 (u32) & ugeth->ug_regs->macstnaddr2,
624 in_be32(&ugeth->ug_regs->macstnaddr2));
625 ugeth_info("uempr : addr - 0x%08x, val - 0x%08x",
626 (u32) & ugeth->ug_regs->uempr,
627 in_be32(&ugeth->ug_regs->uempr));
628 ugeth_info("utbipar : addr - 0x%08x, val - 0x%08x",
629 (u32) & ugeth->ug_regs->utbipar,
630 in_be32(&ugeth->ug_regs->utbipar));
631 ugeth_info("uescr : addr - 0x%08x, val - 0x%04x",
632 (u32) & ugeth->ug_regs->uescr,
633 in_be16(&ugeth->ug_regs->uescr));
634 ugeth_info("tx64 : addr - 0x%08x, val - 0x%08x",
635 (u32) & ugeth->ug_regs->tx64,
636 in_be32(&ugeth->ug_regs->tx64));
637 ugeth_info("tx127 : addr - 0x%08x, val - 0x%08x",
638 (u32) & ugeth->ug_regs->tx127,
639 in_be32(&ugeth->ug_regs->tx127));
640 ugeth_info("tx255 : addr - 0x%08x, val - 0x%08x",
641 (u32) & ugeth->ug_regs->tx255,
642 in_be32(&ugeth->ug_regs->tx255));
643 ugeth_info("rx64 : addr - 0x%08x, val - 0x%08x",
644 (u32) & ugeth->ug_regs->rx64,
645 in_be32(&ugeth->ug_regs->rx64));
646 ugeth_info("rx127 : addr - 0x%08x, val - 0x%08x",
647 (u32) & ugeth->ug_regs->rx127,
648 in_be32(&ugeth->ug_regs->rx127));
649 ugeth_info("rx255 : addr - 0x%08x, val - 0x%08x",
650 (u32) & ugeth->ug_regs->rx255,
651 in_be32(&ugeth->ug_regs->rx255));
652 ugeth_info("txok : addr - 0x%08x, val - 0x%08x",
653 (u32) & ugeth->ug_regs->txok,
654 in_be32(&ugeth->ug_regs->txok));
655 ugeth_info("txcf : addr - 0x%08x, val - 0x%04x",
656 (u32) & ugeth->ug_regs->txcf,
657 in_be16(&ugeth->ug_regs->txcf));
658 ugeth_info("tmca : addr - 0x%08x, val - 0x%08x",
659 (u32) & ugeth->ug_regs->tmca,
660 in_be32(&ugeth->ug_regs->tmca));
661 ugeth_info("tbca : addr - 0x%08x, val - 0x%08x",
662 (u32) & ugeth->ug_regs->tbca,
663 in_be32(&ugeth->ug_regs->tbca));
664 ugeth_info("rxfok : addr - 0x%08x, val - 0x%08x",
665 (u32) & ugeth->ug_regs->rxfok,
666 in_be32(&ugeth->ug_regs->rxfok));
667 ugeth_info("rxbok : addr - 0x%08x, val - 0x%08x",
668 (u32) & ugeth->ug_regs->rxbok,
669 in_be32(&ugeth->ug_regs->rxbok));
670 ugeth_info("rbyt : addr - 0x%08x, val - 0x%08x",
671 (u32) & ugeth->ug_regs->rbyt,
672 in_be32(&ugeth->ug_regs->rbyt));
673 ugeth_info("rmca : addr - 0x%08x, val - 0x%08x",
674 (u32) & ugeth->ug_regs->rmca,
675 in_be32(&ugeth->ug_regs->rmca));
676 ugeth_info("rbca : addr - 0x%08x, val - 0x%08x",
677 (u32) & ugeth->ug_regs->rbca,
678 in_be32(&ugeth->ug_regs->rbca));
679 ugeth_info("scar : addr - 0x%08x, val - 0x%08x",
680 (u32) & ugeth->ug_regs->scar,
681 in_be32(&ugeth->ug_regs->scar));
682 ugeth_info("scam : addr - 0x%08x, val - 0x%08x",
683 (u32) & ugeth->ug_regs->scam,
684 in_be32(&ugeth->ug_regs->scam));
685
686 if (ugeth->p_thread_data_tx) {
687 int numThreadsTxNumerical;
688 switch (ugeth->ug_info->numThreadsTx) {
689 case UCC_GETH_NUM_OF_THREADS_1:
690 numThreadsTxNumerical = 1;
691 break;
692 case UCC_GETH_NUM_OF_THREADS_2:
693 numThreadsTxNumerical = 2;
694 break;
695 case UCC_GETH_NUM_OF_THREADS_4:
696 numThreadsTxNumerical = 4;
697 break;
698 case UCC_GETH_NUM_OF_THREADS_6:
699 numThreadsTxNumerical = 6;
700 break;
701 case UCC_GETH_NUM_OF_THREADS_8:
702 numThreadsTxNumerical = 8;
703 break;
704 default:
705 numThreadsTxNumerical = 0;
706 break;
707 }
708
709 ugeth_info("Thread data TXs:");
710 ugeth_info("Base address: 0x%08x",
711 (u32) ugeth->p_thread_data_tx);
712 for (i = 0; i < numThreadsTxNumerical; i++) {
713 ugeth_info("Thread data TX[%d]:", i);
714 ugeth_info("Base address: 0x%08x",
715 (u32) & ugeth->p_thread_data_tx[i]);
716 mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
717 sizeof(struct ucc_geth_thread_data_tx));
718 }
719 }
720 if (ugeth->p_thread_data_rx) {
721 int numThreadsRxNumerical;
722 switch (ugeth->ug_info->numThreadsRx) {
723 case UCC_GETH_NUM_OF_THREADS_1:
724 numThreadsRxNumerical = 1;
725 break;
726 case UCC_GETH_NUM_OF_THREADS_2:
727 numThreadsRxNumerical = 2;
728 break;
729 case UCC_GETH_NUM_OF_THREADS_4:
730 numThreadsRxNumerical = 4;
731 break;
732 case UCC_GETH_NUM_OF_THREADS_6:
733 numThreadsRxNumerical = 6;
734 break;
735 case UCC_GETH_NUM_OF_THREADS_8:
736 numThreadsRxNumerical = 8;
737 break;
738 default:
739 numThreadsRxNumerical = 0;
740 break;
741 }
742
743 ugeth_info("Thread data RX:");
744 ugeth_info("Base address: 0x%08x",
745 (u32) ugeth->p_thread_data_rx);
746 for (i = 0; i < numThreadsRxNumerical; i++) {
747 ugeth_info("Thread data RX[%d]:", i);
748 ugeth_info("Base address: 0x%08x",
749 (u32) & ugeth->p_thread_data_rx[i]);
750 mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
751 sizeof(struct ucc_geth_thread_data_rx));
752 }
753 }
754 if (ugeth->p_exf_glbl_param) {
755 ugeth_info("EXF global param:");
756 ugeth_info("Base address: 0x%08x",
757 (u32) ugeth->p_exf_glbl_param);
758 mem_disp((u8 *) ugeth->p_exf_glbl_param,
759 sizeof(*ugeth->p_exf_glbl_param));
760 }
761 if (ugeth->p_tx_glbl_pram) {
762 ugeth_info("TX global param:");
763 ugeth_info("Base address: 0x%08x", (u32) ugeth->p_tx_glbl_pram);
764 ugeth_info("temoder : addr - 0x%08x, val - 0x%04x",
765 (u32) & ugeth->p_tx_glbl_pram->temoder,
766 in_be16(&ugeth->p_tx_glbl_pram->temoder));
767 ugeth_info("sqptr : addr - 0x%08x, val - 0x%08x",
768 (u32) & ugeth->p_tx_glbl_pram->sqptr,
769 in_be32(&ugeth->p_tx_glbl_pram->sqptr));
770 ugeth_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x",
771 (u32) & ugeth->p_tx_glbl_pram->schedulerbasepointer,
772 in_be32(&ugeth->p_tx_glbl_pram->
773 schedulerbasepointer));
774 ugeth_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x",
775 (u32) & ugeth->p_tx_glbl_pram->txrmonbaseptr,
776 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
777 ugeth_info("tstate : addr - 0x%08x, val - 0x%08x",
778 (u32) & ugeth->p_tx_glbl_pram->tstate,
779 in_be32(&ugeth->p_tx_glbl_pram->tstate));
780 ugeth_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x",
781 (u32) & ugeth->p_tx_glbl_pram->iphoffset[0],
782 ugeth->p_tx_glbl_pram->iphoffset[0]);
783 ugeth_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x",
784 (u32) & ugeth->p_tx_glbl_pram->iphoffset[1],
785 ugeth->p_tx_glbl_pram->iphoffset[1]);
786 ugeth_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x",
787 (u32) & ugeth->p_tx_glbl_pram->iphoffset[2],
788 ugeth->p_tx_glbl_pram->iphoffset[2]);
789 ugeth_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x",
790 (u32) & ugeth->p_tx_glbl_pram->iphoffset[3],
791 ugeth->p_tx_glbl_pram->iphoffset[3]);
792 ugeth_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x",
793 (u32) & ugeth->p_tx_glbl_pram->iphoffset[4],
794 ugeth->p_tx_glbl_pram->iphoffset[4]);
795 ugeth_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x",
796 (u32) & ugeth->p_tx_glbl_pram->iphoffset[5],
797 ugeth->p_tx_glbl_pram->iphoffset[5]);
798 ugeth_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x",
799 (u32) & ugeth->p_tx_glbl_pram->iphoffset[6],
800 ugeth->p_tx_glbl_pram->iphoffset[6]);
801 ugeth_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x",
802 (u32) & ugeth->p_tx_glbl_pram->iphoffset[7],
803 ugeth->p_tx_glbl_pram->iphoffset[7]);
804 ugeth_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x",
805 (u32) & ugeth->p_tx_glbl_pram->vtagtable[0],
806 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
807 ugeth_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x",
808 (u32) & ugeth->p_tx_glbl_pram->vtagtable[1],
809 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
810 ugeth_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x",
811 (u32) & ugeth->p_tx_glbl_pram->vtagtable[2],
812 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
813 ugeth_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x",
814 (u32) & ugeth->p_tx_glbl_pram->vtagtable[3],
815 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
816 ugeth_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x",
817 (u32) & ugeth->p_tx_glbl_pram->vtagtable[4],
818 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
819 ugeth_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x",
820 (u32) & ugeth->p_tx_glbl_pram->vtagtable[5],
821 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
822 ugeth_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x",
823 (u32) & ugeth->p_tx_glbl_pram->vtagtable[6],
824 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
825 ugeth_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x",
826 (u32) & ugeth->p_tx_glbl_pram->vtagtable[7],
827 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
828 ugeth_info("tqptr : addr - 0x%08x, val - 0x%08x",
829 (u32) & ugeth->p_tx_glbl_pram->tqptr,
830 in_be32(&ugeth->p_tx_glbl_pram->tqptr));
831 }
832 if (ugeth->p_rx_glbl_pram) {
833 ugeth_info("RX global param:");
834 ugeth_info("Base address: 0x%08x", (u32) ugeth->p_rx_glbl_pram);
835 ugeth_info("remoder : addr - 0x%08x, val - 0x%08x",
836 (u32) & ugeth->p_rx_glbl_pram->remoder,
837 in_be32(&ugeth->p_rx_glbl_pram->remoder));
838 ugeth_info("rqptr : addr - 0x%08x, val - 0x%08x",
839 (u32) & ugeth->p_rx_glbl_pram->rqptr,
840 in_be32(&ugeth->p_rx_glbl_pram->rqptr));
841 ugeth_info("typeorlen : addr - 0x%08x, val - 0x%04x",
842 (u32) & ugeth->p_rx_glbl_pram->typeorlen,
843 in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
844 ugeth_info("rxgstpack : addr - 0x%08x, val - 0x%02x",
845 (u32) & ugeth->p_rx_glbl_pram->rxgstpack,
846 ugeth->p_rx_glbl_pram->rxgstpack);
847 ugeth_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x",
848 (u32) & ugeth->p_rx_glbl_pram->rxrmonbaseptr,
849 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
850 ugeth_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x",
851 (u32) & ugeth->p_rx_glbl_pram->intcoalescingptr,
852 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
853 ugeth_info("rstate : addr - 0x%08x, val - 0x%02x",
854 (u32) & ugeth->p_rx_glbl_pram->rstate,
855 ugeth->p_rx_glbl_pram->rstate);
856 ugeth_info("mrblr : addr - 0x%08x, val - 0x%04x",
857 (u32) & ugeth->p_rx_glbl_pram->mrblr,
858 in_be16(&ugeth->p_rx_glbl_pram->mrblr));
859 ugeth_info("rbdqptr : addr - 0x%08x, val - 0x%08x",
860 (u32) & ugeth->p_rx_glbl_pram->rbdqptr,
861 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
862 ugeth_info("mflr : addr - 0x%08x, val - 0x%04x",
863 (u32) & ugeth->p_rx_glbl_pram->mflr,
864 in_be16(&ugeth->p_rx_glbl_pram->mflr));
865 ugeth_info("minflr : addr - 0x%08x, val - 0x%04x",
866 (u32) & ugeth->p_rx_glbl_pram->minflr,
867 in_be16(&ugeth->p_rx_glbl_pram->minflr));
868 ugeth_info("maxd1 : addr - 0x%08x, val - 0x%04x",
869 (u32) & ugeth->p_rx_glbl_pram->maxd1,
870 in_be16(&ugeth->p_rx_glbl_pram->maxd1));
871 ugeth_info("maxd2 : addr - 0x%08x, val - 0x%04x",
872 (u32) & ugeth->p_rx_glbl_pram->maxd2,
873 in_be16(&ugeth->p_rx_glbl_pram->maxd2));
874 ugeth_info("ecamptr : addr - 0x%08x, val - 0x%08x",
875 (u32) & ugeth->p_rx_glbl_pram->ecamptr,
876 in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
877 ugeth_info("l2qt : addr - 0x%08x, val - 0x%08x",
878 (u32) & ugeth->p_rx_glbl_pram->l2qt,
879 in_be32(&ugeth->p_rx_glbl_pram->l2qt));
880 ugeth_info("l3qt[0] : addr - 0x%08x, val - 0x%08x",
881 (u32) & ugeth->p_rx_glbl_pram->l3qt[0],
882 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
883 ugeth_info("l3qt[1] : addr - 0x%08x, val - 0x%08x",
884 (u32) & ugeth->p_rx_glbl_pram->l3qt[1],
885 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
886 ugeth_info("l3qt[2] : addr - 0x%08x, val - 0x%08x",
887 (u32) & ugeth->p_rx_glbl_pram->l3qt[2],
888 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
889 ugeth_info("l3qt[3] : addr - 0x%08x, val - 0x%08x",
890 (u32) & ugeth->p_rx_glbl_pram->l3qt[3],
891 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
892 ugeth_info("l3qt[4] : addr - 0x%08x, val - 0x%08x",
893 (u32) & ugeth->p_rx_glbl_pram->l3qt[4],
894 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
895 ugeth_info("l3qt[5] : addr - 0x%08x, val - 0x%08x",
896 (u32) & ugeth->p_rx_glbl_pram->l3qt[5],
897 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
898 ugeth_info("l3qt[6] : addr - 0x%08x, val - 0x%08x",
899 (u32) & ugeth->p_rx_glbl_pram->l3qt[6],
900 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
901 ugeth_info("l3qt[7] : addr - 0x%08x, val - 0x%08x",
902 (u32) & ugeth->p_rx_glbl_pram->l3qt[7],
903 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
904 ugeth_info("vlantype : addr - 0x%08x, val - 0x%04x",
905 (u32) & ugeth->p_rx_glbl_pram->vlantype,
906 in_be16(&ugeth->p_rx_glbl_pram->vlantype));
907 ugeth_info("vlantci : addr - 0x%08x, val - 0x%04x",
908 (u32) & ugeth->p_rx_glbl_pram->vlantci,
909 in_be16(&ugeth->p_rx_glbl_pram->vlantci));
910 for (i = 0; i < 64; i++)
911 ugeth_info
912 ("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x",
913 i,
914 (u32) & ugeth->p_rx_glbl_pram->addressfiltering[i],
915 ugeth->p_rx_glbl_pram->addressfiltering[i]);
916 ugeth_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x",
917 (u32) & ugeth->p_rx_glbl_pram->exfGlobalParam,
918 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
919 }
920 if (ugeth->p_send_q_mem_reg) {
921 ugeth_info("Send Q memory registers:");
922 ugeth_info("Base address: 0x%08x",
923 (u32) ugeth->p_send_q_mem_reg);
924 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
925 ugeth_info("SQQD[%d]:", i);
926 ugeth_info("Base address: 0x%08x",
927 (u32) & ugeth->p_send_q_mem_reg->sqqd[i]);
928 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
929 sizeof(struct ucc_geth_send_queue_qd));
930 }
931 }
932 if (ugeth->p_scheduler) {
933 ugeth_info("Scheduler:");
934 ugeth_info("Base address: 0x%08x", (u32) ugeth->p_scheduler);
935 mem_disp((u8 *) ugeth->p_scheduler,
936 sizeof(*ugeth->p_scheduler));
937 }
938 if (ugeth->p_tx_fw_statistics_pram) {
939 ugeth_info("TX FW statistics pram:");
940 ugeth_info("Base address: 0x%08x",
941 (u32) ugeth->p_tx_fw_statistics_pram);
942 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
943 sizeof(*ugeth->p_tx_fw_statistics_pram));
944 }
945 if (ugeth->p_rx_fw_statistics_pram) {
946 ugeth_info("RX FW statistics pram:");
947 ugeth_info("Base address: 0x%08x",
948 (u32) ugeth->p_rx_fw_statistics_pram);
949 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
950 sizeof(*ugeth->p_rx_fw_statistics_pram));
951 }
952 if (ugeth->p_rx_irq_coalescing_tbl) {
953 ugeth_info("RX IRQ coalescing tables:");
954 ugeth_info("Base address: 0x%08x",
955 (u32) ugeth->p_rx_irq_coalescing_tbl);
956 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
957 ugeth_info("RX IRQ coalescing table entry[%d]:", i);
958 ugeth_info("Base address: 0x%08x",
959 (u32) & ugeth->p_rx_irq_coalescing_tbl->
960 coalescingentry[i]);
961 ugeth_info
962 ("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x",
963 (u32) & ugeth->p_rx_irq_coalescing_tbl->
964 coalescingentry[i].interruptcoalescingmaxvalue,
965 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
966 coalescingentry[i].
967 interruptcoalescingmaxvalue));
968 ugeth_info
969 ("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x",
970 (u32) & ugeth->p_rx_irq_coalescing_tbl->
971 coalescingentry[i].interruptcoalescingcounter,
972 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
973 coalescingentry[i].
974 interruptcoalescingcounter));
975 }
976 }
977 if (ugeth->p_rx_bd_qs_tbl) {
978 ugeth_info("RX BD QS tables:");
979 ugeth_info("Base address: 0x%08x", (u32) ugeth->p_rx_bd_qs_tbl);
980 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
981 ugeth_info("RX BD QS table[%d]:", i);
982 ugeth_info("Base address: 0x%08x",
983 (u32) & ugeth->p_rx_bd_qs_tbl[i]);
984 ugeth_info
985 ("bdbaseptr : addr - 0x%08x, val - 0x%08x",
986 (u32) & ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
987 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
988 ugeth_info
989 ("bdptr : addr - 0x%08x, val - 0x%08x",
990 (u32) & ugeth->p_rx_bd_qs_tbl[i].bdptr,
991 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
992 ugeth_info
993 ("externalbdbaseptr: addr - 0x%08x, val - 0x%08x",
994 (u32) & ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
995 in_be32(&ugeth->p_rx_bd_qs_tbl[i].
996 externalbdbaseptr));
997 ugeth_info
998 ("externalbdptr : addr - 0x%08x, val - 0x%08x",
999 (u32) & ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
1000 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
1001 ugeth_info("ucode RX Prefetched BDs:");
1002 ugeth_info("Base address: 0x%08x",
1003 (u32)
1004 qe_muram_addr(in_be32
1005 (&ugeth->p_rx_bd_qs_tbl[i].
1006 bdbaseptr)));
1007 mem_disp((u8 *)
1008 qe_muram_addr(in_be32
1009 (&ugeth->p_rx_bd_qs_tbl[i].
1010 bdbaseptr)),
1011 sizeof(struct ucc_geth_rx_prefetched_bds));
1012 }
1013 }
1014 if (ugeth->p_init_enet_param_shadow) {
1015 int size;
1016 ugeth_info("Init enet param shadow:");
1017 ugeth_info("Base address: 0x%08x",
1018 (u32) ugeth->p_init_enet_param_shadow);
1019 mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1020 sizeof(*ugeth->p_init_enet_param_shadow));
1021
1022 size = sizeof(struct ucc_geth_thread_rx_pram);
1023 if (ugeth->ug_info->rxExtendedFiltering) {
1024 size +=
1025 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1026 if (ugeth->ug_info->largestexternallookupkeysize ==
1027 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1028 size +=
1029 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1030 if (ugeth->ug_info->largestexternallookupkeysize ==
1031 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1032 size +=
1033 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1034 }
1035
1036 dump_init_enet_entries(ugeth,
1037 &(ugeth->p_init_enet_param_shadow->
1038 txthread[0]),
1039 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1040 sizeof(struct ucc_geth_thread_tx_pram),
1041 ugeth->ug_info->riscTx, 0);
1042 dump_init_enet_entries(ugeth,
1043 &(ugeth->p_init_enet_param_shadow->
1044 rxthread[0]),
1045 ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1046 ugeth->ug_info->riscRx, 1);
1047 }
1048 }
1049 #endif /* DEBUG */
1050
init_default_reg_vals(u32 __iomem * upsmr_register,u32 __iomem * maccfg1_register,u32 __iomem * maccfg2_register)1051 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1052 u32 __iomem *maccfg1_register,
1053 u32 __iomem *maccfg2_register)
1054 {
1055 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1056 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1057 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1058 }
1059
init_half_duplex_params(int alt_beb,int back_pressure_no_backoff,int no_backoff,int excess_defer,u8 alt_beb_truncation,u8 max_retransmissions,u8 collision_window,u32 __iomem * hafdup_register)1060 static int init_half_duplex_params(int alt_beb,
1061 int back_pressure_no_backoff,
1062 int no_backoff,
1063 int excess_defer,
1064 u8 alt_beb_truncation,
1065 u8 max_retransmissions,
1066 u8 collision_window,
1067 u32 __iomem *hafdup_register)
1068 {
1069 u32 value = 0;
1070
1071 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1072 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1073 (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1074 return -EINVAL;
1075
1076 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1077
1078 if (alt_beb)
1079 value |= HALFDUP_ALT_BEB;
1080 if (back_pressure_no_backoff)
1081 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1082 if (no_backoff)
1083 value |= HALFDUP_NO_BACKOFF;
1084 if (excess_defer)
1085 value |= HALFDUP_EXCESSIVE_DEFER;
1086
1087 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1088
1089 value |= collision_window;
1090
1091 out_be32(hafdup_register, value);
1092 return 0;
1093 }
1094
init_inter_frame_gap_params(u8 non_btb_cs_ipg,u8 non_btb_ipg,u8 min_ifg,u8 btb_ipg,u32 __iomem * ipgifg_register)1095 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1096 u8 non_btb_ipg,
1097 u8 min_ifg,
1098 u8 btb_ipg,
1099 u32 __iomem *ipgifg_register)
1100 {
1101 u32 value = 0;
1102
1103 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1104 IPG part 2 */
1105 if (non_btb_cs_ipg > non_btb_ipg)
1106 return -EINVAL;
1107
1108 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1109 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1110 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1111 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1112 return -EINVAL;
1113
1114 value |=
1115 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1116 IPGIFG_NBTB_CS_IPG_MASK);
1117 value |=
1118 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1119 IPGIFG_NBTB_IPG_MASK);
1120 value |=
1121 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1122 IPGIFG_MIN_IFG_MASK);
1123 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1124
1125 out_be32(ipgifg_register, value);
1126 return 0;
1127 }
1128
init_flow_control_params(u32 automatic_flow_control_mode,int rx_flow_control_enable,int tx_flow_control_enable,u16 pause_period,u16 extension_field,u32 __iomem * upsmr_register,u32 __iomem * uempr_register,u32 __iomem * maccfg1_register)1129 int init_flow_control_params(u32 automatic_flow_control_mode,
1130 int rx_flow_control_enable,
1131 int tx_flow_control_enable,
1132 u16 pause_period,
1133 u16 extension_field,
1134 u32 __iomem *upsmr_register,
1135 u32 __iomem *uempr_register,
1136 u32 __iomem *maccfg1_register)
1137 {
1138 u32 value = 0;
1139
1140 /* Set UEMPR register */
1141 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1142 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1143 out_be32(uempr_register, value);
1144
1145 /* Set UPSMR register */
1146 setbits32(upsmr_register, automatic_flow_control_mode);
1147
1148 value = in_be32(maccfg1_register);
1149 if (rx_flow_control_enable)
1150 value |= MACCFG1_FLOW_RX;
1151 if (tx_flow_control_enable)
1152 value |= MACCFG1_FLOW_TX;
1153 out_be32(maccfg1_register, value);
1154
1155 return 0;
1156 }
1157
init_hw_statistics_gathering_mode(int enable_hardware_statistics,int auto_zero_hardware_statistics,u32 __iomem * upsmr_register,u16 __iomem * uescr_register)1158 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1159 int auto_zero_hardware_statistics,
1160 u32 __iomem *upsmr_register,
1161 u16 __iomem *uescr_register)
1162 {
1163 u16 uescr_value = 0;
1164
1165 /* Enable hardware statistics gathering if requested */
1166 if (enable_hardware_statistics)
1167 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1168
1169 /* Clear hardware statistics counters */
1170 uescr_value = in_be16(uescr_register);
1171 uescr_value |= UESCR_CLRCNT;
1172 /* Automatically zero hardware statistics counters on read,
1173 if requested */
1174 if (auto_zero_hardware_statistics)
1175 uescr_value |= UESCR_AUTOZ;
1176 out_be16(uescr_register, uescr_value);
1177
1178 return 0;
1179 }
1180
init_firmware_statistics_gathering_mode(int enable_tx_firmware_statistics,int enable_rx_firmware_statistics,u32 __iomem * tx_rmon_base_ptr,u32 tx_firmware_statistics_structure_address,u32 __iomem * rx_rmon_base_ptr,u32 rx_firmware_statistics_structure_address,u16 __iomem * temoder_register,u32 __iomem * remoder_register)1181 static int init_firmware_statistics_gathering_mode(int
1182 enable_tx_firmware_statistics,
1183 int enable_rx_firmware_statistics,
1184 u32 __iomem *tx_rmon_base_ptr,
1185 u32 tx_firmware_statistics_structure_address,
1186 u32 __iomem *rx_rmon_base_ptr,
1187 u32 rx_firmware_statistics_structure_address,
1188 u16 __iomem *temoder_register,
1189 u32 __iomem *remoder_register)
1190 {
1191 /* Note: this function does not check if */
1192 /* the parameters it receives are NULL */
1193
1194 if (enable_tx_firmware_statistics) {
1195 out_be32(tx_rmon_base_ptr,
1196 tx_firmware_statistics_structure_address);
1197 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1198 }
1199
1200 if (enable_rx_firmware_statistics) {
1201 out_be32(rx_rmon_base_ptr,
1202 rx_firmware_statistics_structure_address);
1203 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1204 }
1205
1206 return 0;
1207 }
1208
init_mac_station_addr_regs(u8 address_byte_0,u8 address_byte_1,u8 address_byte_2,u8 address_byte_3,u8 address_byte_4,u8 address_byte_5,u32 __iomem * macstnaddr1_register,u32 __iomem * macstnaddr2_register)1209 static int init_mac_station_addr_regs(u8 address_byte_0,
1210 u8 address_byte_1,
1211 u8 address_byte_2,
1212 u8 address_byte_3,
1213 u8 address_byte_4,
1214 u8 address_byte_5,
1215 u32 __iomem *macstnaddr1_register,
1216 u32 __iomem *macstnaddr2_register)
1217 {
1218 u32 value = 0;
1219
1220 /* Example: for a station address of 0x12345678ABCD, */
1221 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1222
1223 /* MACSTNADDR1 Register: */
1224
1225 /* 0 7 8 15 */
1226 /* station address byte 5 station address byte 4 */
1227 /* 16 23 24 31 */
1228 /* station address byte 3 station address byte 2 */
1229 value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1230 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1231 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1232 value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1233
1234 out_be32(macstnaddr1_register, value);
1235
1236 /* MACSTNADDR2 Register: */
1237
1238 /* 0 7 8 15 */
1239 /* station address byte 1 station address byte 0 */
1240 /* 16 23 24 31 */
1241 /* reserved reserved */
1242 value = 0;
1243 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1244 value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1245
1246 out_be32(macstnaddr2_register, value);
1247
1248 return 0;
1249 }
1250
init_check_frame_length_mode(int length_check,u32 __iomem * maccfg2_register)1251 static int init_check_frame_length_mode(int length_check,
1252 u32 __iomem *maccfg2_register)
1253 {
1254 u32 value = 0;
1255
1256 value = in_be32(maccfg2_register);
1257
1258 if (length_check)
1259 value |= MACCFG2_LC;
1260 else
1261 value &= ~MACCFG2_LC;
1262
1263 out_be32(maccfg2_register, value);
1264 return 0;
1265 }
1266
init_preamble_length(u8 preamble_length,u32 __iomem * maccfg2_register)1267 static int init_preamble_length(u8 preamble_length,
1268 u32 __iomem *maccfg2_register)
1269 {
1270 if ((preamble_length < 3) || (preamble_length > 7))
1271 return -EINVAL;
1272
1273 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1274 preamble_length << MACCFG2_PREL_SHIFT);
1275
1276 return 0;
1277 }
1278
init_rx_parameters(int reject_broadcast,int receive_short_frames,int promiscuous,u32 __iomem * upsmr_register)1279 static int init_rx_parameters(int reject_broadcast,
1280 int receive_short_frames,
1281 int promiscuous, u32 __iomem *upsmr_register)
1282 {
1283 u32 value = 0;
1284
1285 value = in_be32(upsmr_register);
1286
1287 if (reject_broadcast)
1288 value |= UCC_GETH_UPSMR_BRO;
1289 else
1290 value &= ~UCC_GETH_UPSMR_BRO;
1291
1292 if (receive_short_frames)
1293 value |= UCC_GETH_UPSMR_RSH;
1294 else
1295 value &= ~UCC_GETH_UPSMR_RSH;
1296
1297 if (promiscuous)
1298 value |= UCC_GETH_UPSMR_PRO;
1299 else
1300 value &= ~UCC_GETH_UPSMR_PRO;
1301
1302 out_be32(upsmr_register, value);
1303
1304 return 0;
1305 }
1306
init_max_rx_buff_len(u16 max_rx_buf_len,u16 __iomem * mrblr_register)1307 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1308 u16 __iomem *mrblr_register)
1309 {
1310 /* max_rx_buf_len value must be a multiple of 128 */
1311 if ((max_rx_buf_len == 0) ||
1312 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1313 return -EINVAL;
1314
1315 out_be16(mrblr_register, max_rx_buf_len);
1316 return 0;
1317 }
1318
init_min_frame_len(u16 min_frame_length,u16 __iomem * minflr_register,u16 __iomem * mrblr_register)1319 static int init_min_frame_len(u16 min_frame_length,
1320 u16 __iomem *minflr_register,
1321 u16 __iomem *mrblr_register)
1322 {
1323 u16 mrblr_value = 0;
1324
1325 mrblr_value = in_be16(mrblr_register);
1326 if (min_frame_length >= (mrblr_value - 4))
1327 return -EINVAL;
1328
1329 out_be16(minflr_register, min_frame_length);
1330 return 0;
1331 }
1332
adjust_enet_interface(struct ucc_geth_private * ugeth)1333 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1334 {
1335 struct ucc_geth_info *ug_info;
1336 struct ucc_geth __iomem *ug_regs;
1337 struct ucc_fast __iomem *uf_regs;
1338 int ret_val;
1339 u32 upsmr, maccfg2;
1340 u16 value;
1341
1342 ugeth_vdbg("%s: IN", __func__);
1343
1344 ug_info = ugeth->ug_info;
1345 ug_regs = ugeth->ug_regs;
1346 uf_regs = ugeth->uccf->uf_regs;
1347
1348 /* Set MACCFG2 */
1349 maccfg2 = in_be32(&ug_regs->maccfg2);
1350 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1351 if ((ugeth->max_speed == SPEED_10) ||
1352 (ugeth->max_speed == SPEED_100))
1353 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1354 else if (ugeth->max_speed == SPEED_1000)
1355 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1356 maccfg2 |= ug_info->padAndCrc;
1357 out_be32(&ug_regs->maccfg2, maccfg2);
1358
1359 /* Set UPSMR */
1360 upsmr = in_be32(&uf_regs->upsmr);
1361 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1362 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1363 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1364 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1365 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1366 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1367 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1368 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1369 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1370 upsmr |= UCC_GETH_UPSMR_RPM;
1371 switch (ugeth->max_speed) {
1372 case SPEED_10:
1373 upsmr |= UCC_GETH_UPSMR_R10M;
1374 /* FALLTHROUGH */
1375 case SPEED_100:
1376 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1377 upsmr |= UCC_GETH_UPSMR_RMM;
1378 }
1379 }
1380 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1381 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1382 upsmr |= UCC_GETH_UPSMR_TBIM;
1383 }
1384 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1385 upsmr |= UCC_GETH_UPSMR_SGMM;
1386
1387 out_be32(&uf_regs->upsmr, upsmr);
1388
1389 /* Disable autonegotiation in tbi mode, because by default it
1390 comes up in autonegotiation mode. */
1391 /* Note that this depends on proper setting in utbipar register. */
1392 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1393 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1394 struct ucc_geth_info *ug_info = ugeth->ug_info;
1395 struct phy_device *tbiphy;
1396
1397 if (!ug_info->tbi_node)
1398 ugeth_warn("TBI mode requires that the device "
1399 "tree specify a tbi-handle\n");
1400
1401 tbiphy = of_phy_find_device(ug_info->tbi_node);
1402 if (!tbiphy)
1403 ugeth_warn("Could not get TBI device\n");
1404
1405 value = phy_read(tbiphy, ENET_TBI_MII_CR);
1406 value &= ~0x1000; /* Turn off autonegotiation */
1407 phy_write(tbiphy, ENET_TBI_MII_CR, value);
1408 }
1409
1410 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1411
1412 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1413 if (ret_val != 0) {
1414 if (netif_msg_probe(ugeth))
1415 ugeth_err("%s: Preamble length must be between 3 and 7 inclusive.",
1416 __func__);
1417 return ret_val;
1418 }
1419
1420 return 0;
1421 }
1422
ugeth_graceful_stop_tx(struct ucc_geth_private * ugeth)1423 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1424 {
1425 struct ucc_fast_private *uccf;
1426 u32 cecr_subblock;
1427 u32 temp;
1428 int i = 10;
1429
1430 uccf = ugeth->uccf;
1431
1432 /* Mask GRACEFUL STOP TX interrupt bit and clear it */
1433 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1434 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */
1435
1436 /* Issue host command */
1437 cecr_subblock =
1438 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1439 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1440 QE_CR_PROTOCOL_ETHERNET, 0);
1441
1442 /* Wait for command to complete */
1443 do {
1444 msleep(10);
1445 temp = in_be32(uccf->p_ucce);
1446 } while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1447
1448 uccf->stopped_tx = 1;
1449
1450 return 0;
1451 }
1452
ugeth_graceful_stop_rx(struct ucc_geth_private * ugeth)1453 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1454 {
1455 struct ucc_fast_private *uccf;
1456 u32 cecr_subblock;
1457 u8 temp;
1458 int i = 10;
1459
1460 uccf = ugeth->uccf;
1461
1462 /* Clear acknowledge bit */
1463 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1464 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1465 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1466
1467 /* Keep issuing command and checking acknowledge bit until
1468 it is asserted, according to spec */
1469 do {
1470 /* Issue host command */
1471 cecr_subblock =
1472 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1473 ucc_num);
1474 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1475 QE_CR_PROTOCOL_ETHERNET, 0);
1476 msleep(10);
1477 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1478 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1479
1480 uccf->stopped_rx = 1;
1481
1482 return 0;
1483 }
1484
ugeth_restart_tx(struct ucc_geth_private * ugeth)1485 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1486 {
1487 struct ucc_fast_private *uccf;
1488 u32 cecr_subblock;
1489
1490 uccf = ugeth->uccf;
1491
1492 cecr_subblock =
1493 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1494 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1495 uccf->stopped_tx = 0;
1496
1497 return 0;
1498 }
1499
ugeth_restart_rx(struct ucc_geth_private * ugeth)1500 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1501 {
1502 struct ucc_fast_private *uccf;
1503 u32 cecr_subblock;
1504
1505 uccf = ugeth->uccf;
1506
1507 cecr_subblock =
1508 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1509 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1510 0);
1511 uccf->stopped_rx = 0;
1512
1513 return 0;
1514 }
1515
ugeth_enable(struct ucc_geth_private * ugeth,enum comm_dir mode)1516 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1517 {
1518 struct ucc_fast_private *uccf;
1519 int enabled_tx, enabled_rx;
1520
1521 uccf = ugeth->uccf;
1522
1523 /* check if the UCC number is in range. */
1524 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1525 if (netif_msg_probe(ugeth))
1526 ugeth_err("%s: ucc_num out of range.", __func__);
1527 return -EINVAL;
1528 }
1529
1530 enabled_tx = uccf->enabled_tx;
1531 enabled_rx = uccf->enabled_rx;
1532
1533 /* Get Tx and Rx going again, in case this channel was actively
1534 disabled. */
1535 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1536 ugeth_restart_tx(ugeth);
1537 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1538 ugeth_restart_rx(ugeth);
1539
1540 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */
1541
1542 return 0;
1543
1544 }
1545
ugeth_disable(struct ucc_geth_private * ugeth,enum comm_dir mode)1546 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1547 {
1548 struct ucc_fast_private *uccf;
1549
1550 uccf = ugeth->uccf;
1551
1552 /* check if the UCC number is in range. */
1553 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1554 if (netif_msg_probe(ugeth))
1555 ugeth_err("%s: ucc_num out of range.", __func__);
1556 return -EINVAL;
1557 }
1558
1559 /* Stop any transmissions */
1560 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1561 ugeth_graceful_stop_tx(ugeth);
1562
1563 /* Stop any receptions */
1564 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1565 ugeth_graceful_stop_rx(ugeth);
1566
1567 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1568
1569 return 0;
1570 }
1571
ugeth_quiesce(struct ucc_geth_private * ugeth)1572 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1573 {
1574 /* Prevent any further xmits, plus detach the device. */
1575 netif_device_detach(ugeth->ndev);
1576
1577 /* Wait for any current xmits to finish. */
1578 netif_tx_disable(ugeth->ndev);
1579
1580 /* Disable the interrupt to avoid NAPI rescheduling. */
1581 disable_irq(ugeth->ug_info->uf_info.irq);
1582
1583 /* Stop NAPI, and possibly wait for its completion. */
1584 napi_disable(&ugeth->napi);
1585 }
1586
ugeth_activate(struct ucc_geth_private * ugeth)1587 static void ugeth_activate(struct ucc_geth_private *ugeth)
1588 {
1589 napi_enable(&ugeth->napi);
1590 enable_irq(ugeth->ug_info->uf_info.irq);
1591 netif_device_attach(ugeth->ndev);
1592 }
1593
1594 /* Called every time the controller might need to be made
1595 * aware of new link state. The PHY code conveys this
1596 * information through variables in the ugeth structure, and this
1597 * function converts those variables into the appropriate
1598 * register values, and can bring down the device if needed.
1599 */
1600
adjust_link(struct net_device * dev)1601 static void adjust_link(struct net_device *dev)
1602 {
1603 struct ucc_geth_private *ugeth = netdev_priv(dev);
1604 struct ucc_geth __iomem *ug_regs;
1605 struct ucc_fast __iomem *uf_regs;
1606 struct phy_device *phydev = ugeth->phydev;
1607 int new_state = 0;
1608
1609 ug_regs = ugeth->ug_regs;
1610 uf_regs = ugeth->uccf->uf_regs;
1611
1612 if (phydev->link) {
1613 u32 tempval = in_be32(&ug_regs->maccfg2);
1614 u32 upsmr = in_be32(&uf_regs->upsmr);
1615 /* Now we make sure that we can be in full duplex mode.
1616 * If not, we operate in half-duplex mode. */
1617 if (phydev->duplex != ugeth->oldduplex) {
1618 new_state = 1;
1619 if (!(phydev->duplex))
1620 tempval &= ~(MACCFG2_FDX);
1621 else
1622 tempval |= MACCFG2_FDX;
1623 ugeth->oldduplex = phydev->duplex;
1624 }
1625
1626 if (phydev->speed != ugeth->oldspeed) {
1627 new_state = 1;
1628 switch (phydev->speed) {
1629 case SPEED_1000:
1630 tempval = ((tempval &
1631 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1632 MACCFG2_INTERFACE_MODE_BYTE);
1633 break;
1634 case SPEED_100:
1635 case SPEED_10:
1636 tempval = ((tempval &
1637 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1638 MACCFG2_INTERFACE_MODE_NIBBLE);
1639 /* if reduced mode, re-set UPSMR.R10M */
1640 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1641 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1642 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1643 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1644 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1645 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1646 if (phydev->speed == SPEED_10)
1647 upsmr |= UCC_GETH_UPSMR_R10M;
1648 else
1649 upsmr &= ~UCC_GETH_UPSMR_R10M;
1650 }
1651 break;
1652 default:
1653 if (netif_msg_link(ugeth))
1654 ugeth_warn(
1655 "%s: Ack! Speed (%d) is not 10/100/1000!",
1656 dev->name, phydev->speed);
1657 break;
1658 }
1659 ugeth->oldspeed = phydev->speed;
1660 }
1661
1662 if (!ugeth->oldlink) {
1663 new_state = 1;
1664 ugeth->oldlink = 1;
1665 }
1666
1667 if (new_state) {
1668 /*
1669 * To change the MAC configuration we need to disable
1670 * the controller. To do so, we have to either grab
1671 * ugeth->lock, which is a bad idea since 'graceful
1672 * stop' commands might take quite a while, or we can
1673 * quiesce driver's activity.
1674 */
1675 ugeth_quiesce(ugeth);
1676 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1677
1678 out_be32(&ug_regs->maccfg2, tempval);
1679 out_be32(&uf_regs->upsmr, upsmr);
1680
1681 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1682 ugeth_activate(ugeth);
1683 }
1684 } else if (ugeth->oldlink) {
1685 new_state = 1;
1686 ugeth->oldlink = 0;
1687 ugeth->oldspeed = 0;
1688 ugeth->oldduplex = -1;
1689 }
1690
1691 if (new_state && netif_msg_link(ugeth))
1692 phy_print_status(phydev);
1693 }
1694
1695 /* Initialize TBI PHY interface for communicating with the
1696 * SERDES lynx PHY on the chip. We communicate with this PHY
1697 * through the MDIO bus on each controller, treating it as a
1698 * "normal" PHY at the address found in the UTBIPA register. We assume
1699 * that the UTBIPA register is valid. Either the MDIO bus code will set
1700 * it to a value that doesn't conflict with other PHYs on the bus, or the
1701 * value doesn't matter, as there are no other PHYs on the bus.
1702 */
uec_configure_serdes(struct net_device * dev)1703 static void uec_configure_serdes(struct net_device *dev)
1704 {
1705 struct ucc_geth_private *ugeth = netdev_priv(dev);
1706 struct ucc_geth_info *ug_info = ugeth->ug_info;
1707 struct phy_device *tbiphy;
1708
1709 if (!ug_info->tbi_node) {
1710 dev_warn(&dev->dev, "SGMII mode requires that the device "
1711 "tree specify a tbi-handle\n");
1712 return;
1713 }
1714
1715 tbiphy = of_phy_find_device(ug_info->tbi_node);
1716 if (!tbiphy) {
1717 dev_err(&dev->dev, "error: Could not get TBI device\n");
1718 return;
1719 }
1720
1721 /*
1722 * If the link is already up, we must already be ok, and don't need to
1723 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1724 * everything for us? Resetting it takes the link down and requires
1725 * several seconds for it to come back.
1726 */
1727 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS)
1728 return;
1729
1730 /* Single clk mode, mii mode off(for serdes communication) */
1731 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1732
1733 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1734
1735 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1736 }
1737
1738 /* Configure the PHY for dev.
1739 * returns 0 if success. -1 if failure
1740 */
init_phy(struct net_device * dev)1741 static int init_phy(struct net_device *dev)
1742 {
1743 struct ucc_geth_private *priv = netdev_priv(dev);
1744 struct ucc_geth_info *ug_info = priv->ug_info;
1745 struct phy_device *phydev;
1746
1747 priv->oldlink = 0;
1748 priv->oldspeed = 0;
1749 priv->oldduplex = -1;
1750
1751 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1752 priv->phy_interface);
1753 if (!phydev)
1754 phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1755 priv->phy_interface);
1756 if (!phydev) {
1757 dev_err(&dev->dev, "Could not attach to PHY\n");
1758 return -ENODEV;
1759 }
1760
1761 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1762 uec_configure_serdes(dev);
1763
1764 phydev->supported &= (SUPPORTED_MII |
1765 SUPPORTED_Autoneg |
1766 ADVERTISED_10baseT_Half |
1767 ADVERTISED_10baseT_Full |
1768 ADVERTISED_100baseT_Half |
1769 ADVERTISED_100baseT_Full);
1770
1771 if (priv->max_speed == SPEED_1000)
1772 phydev->supported |= ADVERTISED_1000baseT_Full;
1773
1774 phydev->advertising = phydev->supported;
1775
1776 priv->phydev = phydev;
1777
1778 return 0;
1779 }
1780
ugeth_dump_regs(struct ucc_geth_private * ugeth)1781 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1782 {
1783 #ifdef DEBUG
1784 ucc_fast_dump_regs(ugeth->uccf);
1785 dump_regs(ugeth);
1786 dump_bds(ugeth);
1787 #endif
1788 }
1789
ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * ugeth,enum enet_addr_type enet_addr_type)1790 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1791 ugeth,
1792 enum enet_addr_type
1793 enet_addr_type)
1794 {
1795 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1796 struct ucc_fast_private *uccf;
1797 enum comm_dir comm_dir;
1798 struct list_head *p_lh;
1799 u16 i, num;
1800 u32 __iomem *addr_h;
1801 u32 __iomem *addr_l;
1802 u8 *p_counter;
1803
1804 uccf = ugeth->uccf;
1805
1806 p_82xx_addr_filt =
1807 (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1808 ugeth->p_rx_glbl_pram->addressfiltering;
1809
1810 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1811 addr_h = &(p_82xx_addr_filt->gaddr_h);
1812 addr_l = &(p_82xx_addr_filt->gaddr_l);
1813 p_lh = &ugeth->group_hash_q;
1814 p_counter = &(ugeth->numGroupAddrInHash);
1815 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1816 addr_h = &(p_82xx_addr_filt->iaddr_h);
1817 addr_l = &(p_82xx_addr_filt->iaddr_l);
1818 p_lh = &ugeth->ind_hash_q;
1819 p_counter = &(ugeth->numIndAddrInHash);
1820 } else
1821 return -EINVAL;
1822
1823 comm_dir = 0;
1824 if (uccf->enabled_tx)
1825 comm_dir |= COMM_DIR_TX;
1826 if (uccf->enabled_rx)
1827 comm_dir |= COMM_DIR_RX;
1828 if (comm_dir)
1829 ugeth_disable(ugeth, comm_dir);
1830
1831 /* Clear the hash table. */
1832 out_be32(addr_h, 0x00000000);
1833 out_be32(addr_l, 0x00000000);
1834
1835 if (!p_lh)
1836 return 0;
1837
1838 num = *p_counter;
1839
1840 /* Delete all remaining CQ elements */
1841 for (i = 0; i < num; i++)
1842 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1843
1844 *p_counter = 0;
1845
1846 if (comm_dir)
1847 ugeth_enable(ugeth, comm_dir);
1848
1849 return 0;
1850 }
1851
ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)1852 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1853 u8 paddr_num)
1854 {
1855 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1856 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1857 }
1858
ucc_geth_free_rx(struct ucc_geth_private * ugeth)1859 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1860 {
1861 struct ucc_geth_info *ug_info;
1862 struct ucc_fast_info *uf_info;
1863 u16 i, j;
1864 u8 __iomem *bd;
1865
1866
1867 ug_info = ugeth->ug_info;
1868 uf_info = &ug_info->uf_info;
1869
1870 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1871 if (ugeth->p_rx_bd_ring[i]) {
1872 /* Return existing data buffers in ring */
1873 bd = ugeth->p_rx_bd_ring[i];
1874 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1875 if (ugeth->rx_skbuff[i][j]) {
1876 dma_unmap_single(ugeth->dev,
1877 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1878 ugeth->ug_info->
1879 uf_info.max_rx_buf_length +
1880 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1881 DMA_FROM_DEVICE);
1882 dev_kfree_skb_any(
1883 ugeth->rx_skbuff[i][j]);
1884 ugeth->rx_skbuff[i][j] = NULL;
1885 }
1886 bd += sizeof(struct qe_bd);
1887 }
1888
1889 kfree(ugeth->rx_skbuff[i]);
1890
1891 if (ugeth->ug_info->uf_info.bd_mem_part ==
1892 MEM_PART_SYSTEM)
1893 kfree((void *)ugeth->rx_bd_ring_offset[i]);
1894 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1895 MEM_PART_MURAM)
1896 qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1897 ugeth->p_rx_bd_ring[i] = NULL;
1898 }
1899 }
1900
1901 }
1902
ucc_geth_free_tx(struct ucc_geth_private * ugeth)1903 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1904 {
1905 struct ucc_geth_info *ug_info;
1906 struct ucc_fast_info *uf_info;
1907 u16 i, j;
1908 u8 __iomem *bd;
1909
1910 ug_info = ugeth->ug_info;
1911 uf_info = &ug_info->uf_info;
1912
1913 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1914 bd = ugeth->p_tx_bd_ring[i];
1915 if (!bd)
1916 continue;
1917 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1918 if (ugeth->tx_skbuff[i][j]) {
1919 dma_unmap_single(ugeth->dev,
1920 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1921 (in_be32((u32 __iomem *)bd) &
1922 BD_LENGTH_MASK),
1923 DMA_TO_DEVICE);
1924 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1925 ugeth->tx_skbuff[i][j] = NULL;
1926 }
1927 }
1928
1929 kfree(ugeth->tx_skbuff[i]);
1930
1931 if (ugeth->p_tx_bd_ring[i]) {
1932 if (ugeth->ug_info->uf_info.bd_mem_part ==
1933 MEM_PART_SYSTEM)
1934 kfree((void *)ugeth->tx_bd_ring_offset[i]);
1935 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1936 MEM_PART_MURAM)
1937 qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1938 ugeth->p_tx_bd_ring[i] = NULL;
1939 }
1940 }
1941
1942 }
1943
ucc_geth_memclean(struct ucc_geth_private * ugeth)1944 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1945 {
1946 if (!ugeth)
1947 return;
1948
1949 if (ugeth->uccf) {
1950 ucc_fast_free(ugeth->uccf);
1951 ugeth->uccf = NULL;
1952 }
1953
1954 if (ugeth->p_thread_data_tx) {
1955 qe_muram_free(ugeth->thread_dat_tx_offset);
1956 ugeth->p_thread_data_tx = NULL;
1957 }
1958 if (ugeth->p_thread_data_rx) {
1959 qe_muram_free(ugeth->thread_dat_rx_offset);
1960 ugeth->p_thread_data_rx = NULL;
1961 }
1962 if (ugeth->p_exf_glbl_param) {
1963 qe_muram_free(ugeth->exf_glbl_param_offset);
1964 ugeth->p_exf_glbl_param = NULL;
1965 }
1966 if (ugeth->p_rx_glbl_pram) {
1967 qe_muram_free(ugeth->rx_glbl_pram_offset);
1968 ugeth->p_rx_glbl_pram = NULL;
1969 }
1970 if (ugeth->p_tx_glbl_pram) {
1971 qe_muram_free(ugeth->tx_glbl_pram_offset);
1972 ugeth->p_tx_glbl_pram = NULL;
1973 }
1974 if (ugeth->p_send_q_mem_reg) {
1975 qe_muram_free(ugeth->send_q_mem_reg_offset);
1976 ugeth->p_send_q_mem_reg = NULL;
1977 }
1978 if (ugeth->p_scheduler) {
1979 qe_muram_free(ugeth->scheduler_offset);
1980 ugeth->p_scheduler = NULL;
1981 }
1982 if (ugeth->p_tx_fw_statistics_pram) {
1983 qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1984 ugeth->p_tx_fw_statistics_pram = NULL;
1985 }
1986 if (ugeth->p_rx_fw_statistics_pram) {
1987 qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1988 ugeth->p_rx_fw_statistics_pram = NULL;
1989 }
1990 if (ugeth->p_rx_irq_coalescing_tbl) {
1991 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1992 ugeth->p_rx_irq_coalescing_tbl = NULL;
1993 }
1994 if (ugeth->p_rx_bd_qs_tbl) {
1995 qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1996 ugeth->p_rx_bd_qs_tbl = NULL;
1997 }
1998 if (ugeth->p_init_enet_param_shadow) {
1999 return_init_enet_entries(ugeth,
2000 &(ugeth->p_init_enet_param_shadow->
2001 rxthread[0]),
2002 ENET_INIT_PARAM_MAX_ENTRIES_RX,
2003 ugeth->ug_info->riscRx, 1);
2004 return_init_enet_entries(ugeth,
2005 &(ugeth->p_init_enet_param_shadow->
2006 txthread[0]),
2007 ENET_INIT_PARAM_MAX_ENTRIES_TX,
2008 ugeth->ug_info->riscTx, 0);
2009 kfree(ugeth->p_init_enet_param_shadow);
2010 ugeth->p_init_enet_param_shadow = NULL;
2011 }
2012 ucc_geth_free_tx(ugeth);
2013 ucc_geth_free_rx(ugeth);
2014 while (!list_empty(&ugeth->group_hash_q))
2015 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2016 (dequeue(&ugeth->group_hash_q)));
2017 while (!list_empty(&ugeth->ind_hash_q))
2018 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2019 (dequeue(&ugeth->ind_hash_q)));
2020 if (ugeth->ug_regs) {
2021 iounmap(ugeth->ug_regs);
2022 ugeth->ug_regs = NULL;
2023 }
2024
2025 skb_queue_purge(&ugeth->rx_recycle);
2026 }
2027
ucc_geth_set_multi(struct net_device * dev)2028 static void ucc_geth_set_multi(struct net_device *dev)
2029 {
2030 struct ucc_geth_private *ugeth;
2031 struct netdev_hw_addr *ha;
2032 struct ucc_fast __iomem *uf_regs;
2033 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2034
2035 ugeth = netdev_priv(dev);
2036
2037 uf_regs = ugeth->uccf->uf_regs;
2038
2039 if (dev->flags & IFF_PROMISC) {
2040 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2041 } else {
2042 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2043
2044 p_82xx_addr_filt =
2045 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2046 p_rx_glbl_pram->addressfiltering;
2047
2048 if (dev->flags & IFF_ALLMULTI) {
2049 /* Catch all multicast addresses, so set the
2050 * filter to all 1's.
2051 */
2052 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2053 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2054 } else {
2055 /* Clear filter and add the addresses in the list.
2056 */
2057 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2058 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2059
2060 netdev_for_each_mc_addr(ha, dev) {
2061 /* Ask CPM to run CRC and set bit in
2062 * filter mask.
2063 */
2064 hw_add_addr_in_hash(ugeth, ha->addr);
2065 }
2066 }
2067 }
2068 }
2069
ucc_geth_stop(struct ucc_geth_private * ugeth)2070 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2071 {
2072 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2073 struct phy_device *phydev = ugeth->phydev;
2074
2075 ugeth_vdbg("%s: IN", __func__);
2076
2077 /*
2078 * Tell the kernel the link is down.
2079 * Must be done before disabling the controller
2080 * or deadlock may happen.
2081 */
2082 phy_stop(phydev);
2083
2084 /* Disable the controller */
2085 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2086
2087 /* Mask all interrupts */
2088 out_be32(ugeth->uccf->p_uccm, 0x00000000);
2089
2090 /* Clear all interrupts */
2091 out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2092
2093 /* Disable Rx and Tx */
2094 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2095
2096 ucc_geth_memclean(ugeth);
2097 }
2098
ucc_struct_init(struct ucc_geth_private * ugeth)2099 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2100 {
2101 struct ucc_geth_info *ug_info;
2102 struct ucc_fast_info *uf_info;
2103 int i;
2104
2105 ug_info = ugeth->ug_info;
2106 uf_info = &ug_info->uf_info;
2107
2108 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2109 (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2110 if (netif_msg_probe(ugeth))
2111 ugeth_err("%s: Bad memory partition value.",
2112 __func__);
2113 return -EINVAL;
2114 }
2115
2116 /* Rx BD lengths */
2117 for (i = 0; i < ug_info->numQueuesRx; i++) {
2118 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2119 (ug_info->bdRingLenRx[i] %
2120 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2121 if (netif_msg_probe(ugeth))
2122 ugeth_err
2123 ("%s: Rx BD ring length must be multiple of 4, no smaller than 8.",
2124 __func__);
2125 return -EINVAL;
2126 }
2127 }
2128
2129 /* Tx BD lengths */
2130 for (i = 0; i < ug_info->numQueuesTx; i++) {
2131 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2132 if (netif_msg_probe(ugeth))
2133 ugeth_err
2134 ("%s: Tx BD ring length must be no smaller than 2.",
2135 __func__);
2136 return -EINVAL;
2137 }
2138 }
2139
2140 /* mrblr */
2141 if ((uf_info->max_rx_buf_length == 0) ||
2142 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2143 if (netif_msg_probe(ugeth))
2144 ugeth_err
2145 ("%s: max_rx_buf_length must be non-zero multiple of 128.",
2146 __func__);
2147 return -EINVAL;
2148 }
2149
2150 /* num Tx queues */
2151 if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2152 if (netif_msg_probe(ugeth))
2153 ugeth_err("%s: number of tx queues too large.", __func__);
2154 return -EINVAL;
2155 }
2156
2157 /* num Rx queues */
2158 if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2159 if (netif_msg_probe(ugeth))
2160 ugeth_err("%s: number of rx queues too large.", __func__);
2161 return -EINVAL;
2162 }
2163
2164 /* l2qt */
2165 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2166 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2167 if (netif_msg_probe(ugeth))
2168 ugeth_err
2169 ("%s: VLAN priority table entry must not be"
2170 " larger than number of Rx queues.",
2171 __func__);
2172 return -EINVAL;
2173 }
2174 }
2175
2176 /* l3qt */
2177 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2178 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2179 if (netif_msg_probe(ugeth))
2180 ugeth_err
2181 ("%s: IP priority table entry must not be"
2182 " larger than number of Rx queues.",
2183 __func__);
2184 return -EINVAL;
2185 }
2186 }
2187
2188 if (ug_info->cam && !ug_info->ecamptr) {
2189 if (netif_msg_probe(ugeth))
2190 ugeth_err("%s: If cam mode is chosen, must supply cam ptr.",
2191 __func__);
2192 return -EINVAL;
2193 }
2194
2195 if ((ug_info->numStationAddresses !=
2196 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2197 ug_info->rxExtendedFiltering) {
2198 if (netif_msg_probe(ugeth))
2199 ugeth_err("%s: Number of station addresses greater than 1 "
2200 "not allowed in extended parsing mode.",
2201 __func__);
2202 return -EINVAL;
2203 }
2204
2205 /* Generate uccm_mask for receive */
2206 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2207 for (i = 0; i < ug_info->numQueuesRx; i++)
2208 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2209
2210 for (i = 0; i < ug_info->numQueuesTx; i++)
2211 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2212 /* Initialize the general fast UCC block. */
2213 if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2214 if (netif_msg_probe(ugeth))
2215 ugeth_err("%s: Failed to init uccf.", __func__);
2216 return -ENOMEM;
2217 }
2218
2219 /* read the number of risc engines, update the riscTx and riscRx
2220 * if there are 4 riscs in QE
2221 */
2222 if (qe_get_num_of_risc() == 4) {
2223 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2224 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2225 }
2226
2227 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2228 if (!ugeth->ug_regs) {
2229 if (netif_msg_probe(ugeth))
2230 ugeth_err("%s: Failed to ioremap regs.", __func__);
2231 return -ENOMEM;
2232 }
2233
2234 skb_queue_head_init(&ugeth->rx_recycle);
2235
2236 return 0;
2237 }
2238
ucc_geth_alloc_tx(struct ucc_geth_private * ugeth)2239 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2240 {
2241 struct ucc_geth_info *ug_info;
2242 struct ucc_fast_info *uf_info;
2243 int length;
2244 u16 i, j;
2245 u8 __iomem *bd;
2246
2247 ug_info = ugeth->ug_info;
2248 uf_info = &ug_info->uf_info;
2249
2250 /* Allocate Tx bds */
2251 for (j = 0; j < ug_info->numQueuesTx; j++) {
2252 /* Allocate in multiple of
2253 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2254 according to spec */
2255 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2256 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2257 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2258 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2259 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2260 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2261 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2262 u32 align = 4;
2263 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2264 align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2265 ugeth->tx_bd_ring_offset[j] =
2266 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2267
2268 if (ugeth->tx_bd_ring_offset[j] != 0)
2269 ugeth->p_tx_bd_ring[j] =
2270 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2271 align) & ~(align - 1));
2272 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2273 ugeth->tx_bd_ring_offset[j] =
2274 qe_muram_alloc(length,
2275 UCC_GETH_TX_BD_RING_ALIGNMENT);
2276 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2277 ugeth->p_tx_bd_ring[j] =
2278 (u8 __iomem *) qe_muram_addr(ugeth->
2279 tx_bd_ring_offset[j]);
2280 }
2281 if (!ugeth->p_tx_bd_ring[j]) {
2282 if (netif_msg_ifup(ugeth))
2283 ugeth_err
2284 ("%s: Can not allocate memory for Tx bd rings.",
2285 __func__);
2286 return -ENOMEM;
2287 }
2288 /* Zero unused end of bd ring, according to spec */
2289 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2290 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2291 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2292 }
2293
2294 /* Init Tx bds */
2295 for (j = 0; j < ug_info->numQueuesTx; j++) {
2296 /* Setup the skbuff rings */
2297 ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2298 ugeth->ug_info->bdRingLenTx[j],
2299 GFP_KERNEL);
2300
2301 if (ugeth->tx_skbuff[j] == NULL) {
2302 if (netif_msg_ifup(ugeth))
2303 ugeth_err("%s: Could not allocate tx_skbuff",
2304 __func__);
2305 return -ENOMEM;
2306 }
2307
2308 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2309 ugeth->tx_skbuff[j][i] = NULL;
2310
2311 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2312 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2313 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2314 /* clear bd buffer */
2315 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2316 /* set bd status and length */
2317 out_be32((u32 __iomem *)bd, 0);
2318 bd += sizeof(struct qe_bd);
2319 }
2320 bd -= sizeof(struct qe_bd);
2321 /* set bd status and length */
2322 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2323 }
2324
2325 return 0;
2326 }
2327
ucc_geth_alloc_rx(struct ucc_geth_private * ugeth)2328 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2329 {
2330 struct ucc_geth_info *ug_info;
2331 struct ucc_fast_info *uf_info;
2332 int length;
2333 u16 i, j;
2334 u8 __iomem *bd;
2335
2336 ug_info = ugeth->ug_info;
2337 uf_info = &ug_info->uf_info;
2338
2339 /* Allocate Rx bds */
2340 for (j = 0; j < ug_info->numQueuesRx; j++) {
2341 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2342 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2343 u32 align = 4;
2344 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2345 align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2346 ugeth->rx_bd_ring_offset[j] =
2347 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2348 if (ugeth->rx_bd_ring_offset[j] != 0)
2349 ugeth->p_rx_bd_ring[j] =
2350 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2351 align) & ~(align - 1));
2352 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2353 ugeth->rx_bd_ring_offset[j] =
2354 qe_muram_alloc(length,
2355 UCC_GETH_RX_BD_RING_ALIGNMENT);
2356 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2357 ugeth->p_rx_bd_ring[j] =
2358 (u8 __iomem *) qe_muram_addr(ugeth->
2359 rx_bd_ring_offset[j]);
2360 }
2361 if (!ugeth->p_rx_bd_ring[j]) {
2362 if (netif_msg_ifup(ugeth))
2363 ugeth_err
2364 ("%s: Can not allocate memory for Rx bd rings.",
2365 __func__);
2366 return -ENOMEM;
2367 }
2368 }
2369
2370 /* Init Rx bds */
2371 for (j = 0; j < ug_info->numQueuesRx; j++) {
2372 /* Setup the skbuff rings */
2373 ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2374 ugeth->ug_info->bdRingLenRx[j],
2375 GFP_KERNEL);
2376
2377 if (ugeth->rx_skbuff[j] == NULL) {
2378 if (netif_msg_ifup(ugeth))
2379 ugeth_err("%s: Could not allocate rx_skbuff",
2380 __func__);
2381 return -ENOMEM;
2382 }
2383
2384 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2385 ugeth->rx_skbuff[j][i] = NULL;
2386
2387 ugeth->skb_currx[j] = 0;
2388 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2389 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2390 /* set bd status and length */
2391 out_be32((u32 __iomem *)bd, R_I);
2392 /* clear bd buffer */
2393 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2394 bd += sizeof(struct qe_bd);
2395 }
2396 bd -= sizeof(struct qe_bd);
2397 /* set bd status and length */
2398 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2399 }
2400
2401 return 0;
2402 }
2403
ucc_geth_startup(struct ucc_geth_private * ugeth)2404 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2405 {
2406 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2407 struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2408 struct ucc_fast_private *uccf;
2409 struct ucc_geth_info *ug_info;
2410 struct ucc_fast_info *uf_info;
2411 struct ucc_fast __iomem *uf_regs;
2412 struct ucc_geth __iomem *ug_regs;
2413 int ret_val = -EINVAL;
2414 u32 remoder = UCC_GETH_REMODER_INIT;
2415 u32 init_enet_pram_offset, cecr_subblock, command;
2416 u32 ifstat, i, j, size, l2qt, l3qt;
2417 u16 temoder = UCC_GETH_TEMODER_INIT;
2418 u16 test;
2419 u8 function_code = 0;
2420 u8 __iomem *endOfRing;
2421 u8 numThreadsRxNumerical, numThreadsTxNumerical;
2422
2423 ugeth_vdbg("%s: IN", __func__);
2424 uccf = ugeth->uccf;
2425 ug_info = ugeth->ug_info;
2426 uf_info = &ug_info->uf_info;
2427 uf_regs = uccf->uf_regs;
2428 ug_regs = ugeth->ug_regs;
2429
2430 switch (ug_info->numThreadsRx) {
2431 case UCC_GETH_NUM_OF_THREADS_1:
2432 numThreadsRxNumerical = 1;
2433 break;
2434 case UCC_GETH_NUM_OF_THREADS_2:
2435 numThreadsRxNumerical = 2;
2436 break;
2437 case UCC_GETH_NUM_OF_THREADS_4:
2438 numThreadsRxNumerical = 4;
2439 break;
2440 case UCC_GETH_NUM_OF_THREADS_6:
2441 numThreadsRxNumerical = 6;
2442 break;
2443 case UCC_GETH_NUM_OF_THREADS_8:
2444 numThreadsRxNumerical = 8;
2445 break;
2446 default:
2447 if (netif_msg_ifup(ugeth))
2448 ugeth_err("%s: Bad number of Rx threads value.",
2449 __func__);
2450 return -EINVAL;
2451 break;
2452 }
2453
2454 switch (ug_info->numThreadsTx) {
2455 case UCC_GETH_NUM_OF_THREADS_1:
2456 numThreadsTxNumerical = 1;
2457 break;
2458 case UCC_GETH_NUM_OF_THREADS_2:
2459 numThreadsTxNumerical = 2;
2460 break;
2461 case UCC_GETH_NUM_OF_THREADS_4:
2462 numThreadsTxNumerical = 4;
2463 break;
2464 case UCC_GETH_NUM_OF_THREADS_6:
2465 numThreadsTxNumerical = 6;
2466 break;
2467 case UCC_GETH_NUM_OF_THREADS_8:
2468 numThreadsTxNumerical = 8;
2469 break;
2470 default:
2471 if (netif_msg_ifup(ugeth))
2472 ugeth_err("%s: Bad number of Tx threads value.",
2473 __func__);
2474 return -EINVAL;
2475 break;
2476 }
2477
2478 /* Calculate rx_extended_features */
2479 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2480 ug_info->ipAddressAlignment ||
2481 (ug_info->numStationAddresses !=
2482 UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2483
2484 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2485 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2486 (ug_info->vlanOperationNonTagged !=
2487 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2488
2489 init_default_reg_vals(&uf_regs->upsmr,
2490 &ug_regs->maccfg1, &ug_regs->maccfg2);
2491
2492 /* Set UPSMR */
2493 /* For more details see the hardware spec. */
2494 init_rx_parameters(ug_info->bro,
2495 ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2496
2497 /* We're going to ignore other registers for now, */
2498 /* except as needed to get up and running */
2499
2500 /* Set MACCFG1 */
2501 /* For more details see the hardware spec. */
2502 init_flow_control_params(ug_info->aufc,
2503 ug_info->receiveFlowControl,
2504 ug_info->transmitFlowControl,
2505 ug_info->pausePeriod,
2506 ug_info->extensionField,
2507 &uf_regs->upsmr,
2508 &ug_regs->uempr, &ug_regs->maccfg1);
2509
2510 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2511
2512 /* Set IPGIFG */
2513 /* For more details see the hardware spec. */
2514 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2515 ug_info->nonBackToBackIfgPart2,
2516 ug_info->
2517 miminumInterFrameGapEnforcement,
2518 ug_info->backToBackInterFrameGap,
2519 &ug_regs->ipgifg);
2520 if (ret_val != 0) {
2521 if (netif_msg_ifup(ugeth))
2522 ugeth_err("%s: IPGIFG initialization parameter too large.",
2523 __func__);
2524 return ret_val;
2525 }
2526
2527 /* Set HAFDUP */
2528 /* For more details see the hardware spec. */
2529 ret_val = init_half_duplex_params(ug_info->altBeb,
2530 ug_info->backPressureNoBackoff,
2531 ug_info->noBackoff,
2532 ug_info->excessDefer,
2533 ug_info->altBebTruncation,
2534 ug_info->maxRetransmission,
2535 ug_info->collisionWindow,
2536 &ug_regs->hafdup);
2537 if (ret_val != 0) {
2538 if (netif_msg_ifup(ugeth))
2539 ugeth_err("%s: Half Duplex initialization parameter too large.",
2540 __func__);
2541 return ret_val;
2542 }
2543
2544 /* Set IFSTAT */
2545 /* For more details see the hardware spec. */
2546 /* Read only - resets upon read */
2547 ifstat = in_be32(&ug_regs->ifstat);
2548
2549 /* Clear UEMPR */
2550 /* For more details see the hardware spec. */
2551 out_be32(&ug_regs->uempr, 0);
2552
2553 /* Set UESCR */
2554 /* For more details see the hardware spec. */
2555 init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2556 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2557 0, &uf_regs->upsmr, &ug_regs->uescr);
2558
2559 ret_val = ucc_geth_alloc_tx(ugeth);
2560 if (ret_val != 0)
2561 return ret_val;
2562
2563 ret_val = ucc_geth_alloc_rx(ugeth);
2564 if (ret_val != 0)
2565 return ret_val;
2566
2567 /*
2568 * Global PRAM
2569 */
2570 /* Tx global PRAM */
2571 /* Allocate global tx parameter RAM page */
2572 ugeth->tx_glbl_pram_offset =
2573 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2574 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2575 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2576 if (netif_msg_ifup(ugeth))
2577 ugeth_err
2578 ("%s: Can not allocate DPRAM memory for p_tx_glbl_pram.",
2579 __func__);
2580 return -ENOMEM;
2581 }
2582 ugeth->p_tx_glbl_pram =
2583 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2584 tx_glbl_pram_offset);
2585 /* Zero out p_tx_glbl_pram */
2586 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2587
2588 /* Fill global PRAM */
2589
2590 /* TQPTR */
2591 /* Size varies with number of Tx threads */
2592 ugeth->thread_dat_tx_offset =
2593 qe_muram_alloc(numThreadsTxNumerical *
2594 sizeof(struct ucc_geth_thread_data_tx) +
2595 32 * (numThreadsTxNumerical == 1),
2596 UCC_GETH_THREAD_DATA_ALIGNMENT);
2597 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2598 if (netif_msg_ifup(ugeth))
2599 ugeth_err
2600 ("%s: Can not allocate DPRAM memory for p_thread_data_tx.",
2601 __func__);
2602 return -ENOMEM;
2603 }
2604
2605 ugeth->p_thread_data_tx =
2606 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2607 thread_dat_tx_offset);
2608 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2609
2610 /* vtagtable */
2611 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2612 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2613 ug_info->vtagtable[i]);
2614
2615 /* iphoffset */
2616 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2617 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2618 ug_info->iphoffset[i]);
2619
2620 /* SQPTR */
2621 /* Size varies with number of Tx queues */
2622 ugeth->send_q_mem_reg_offset =
2623 qe_muram_alloc(ug_info->numQueuesTx *
2624 sizeof(struct ucc_geth_send_queue_qd),
2625 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2626 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2627 if (netif_msg_ifup(ugeth))
2628 ugeth_err
2629 ("%s: Can not allocate DPRAM memory for p_send_q_mem_reg.",
2630 __func__);
2631 return -ENOMEM;
2632 }
2633
2634 ugeth->p_send_q_mem_reg =
2635 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2636 send_q_mem_reg_offset);
2637 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2638
2639 /* Setup the table */
2640 /* Assume BD rings are already established */
2641 for (i = 0; i < ug_info->numQueuesTx; i++) {
2642 endOfRing =
2643 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2644 1) * sizeof(struct qe_bd);
2645 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2646 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2647 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2648 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2649 last_bd_completed_address,
2650 (u32) virt_to_phys(endOfRing));
2651 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2652 MEM_PART_MURAM) {
2653 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2654 (u32) immrbar_virt_to_phys(ugeth->
2655 p_tx_bd_ring[i]));
2656 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2657 last_bd_completed_address,
2658 (u32) immrbar_virt_to_phys(endOfRing));
2659 }
2660 }
2661
2662 /* schedulerbasepointer */
2663
2664 if (ug_info->numQueuesTx > 1) {
2665 /* scheduler exists only if more than 1 tx queue */
2666 ugeth->scheduler_offset =
2667 qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2668 UCC_GETH_SCHEDULER_ALIGNMENT);
2669 if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2670 if (netif_msg_ifup(ugeth))
2671 ugeth_err
2672 ("%s: Can not allocate DPRAM memory for p_scheduler.",
2673 __func__);
2674 return -ENOMEM;
2675 }
2676
2677 ugeth->p_scheduler =
2678 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2679 scheduler_offset);
2680 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2681 ugeth->scheduler_offset);
2682 /* Zero out p_scheduler */
2683 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2684
2685 /* Set values in scheduler */
2686 out_be32(&ugeth->p_scheduler->mblinterval,
2687 ug_info->mblinterval);
2688 out_be16(&ugeth->p_scheduler->nortsrbytetime,
2689 ug_info->nortsrbytetime);
2690 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2691 out_8(&ugeth->p_scheduler->strictpriorityq,
2692 ug_info->strictpriorityq);
2693 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2694 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2695 for (i = 0; i < NUM_TX_QUEUES; i++)
2696 out_8(&ugeth->p_scheduler->weightfactor[i],
2697 ug_info->weightfactor[i]);
2698
2699 /* Set pointers to cpucount registers in scheduler */
2700 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2701 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2702 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2703 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2704 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2705 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2706 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2707 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2708 }
2709
2710 /* schedulerbasepointer */
2711 /* TxRMON_PTR (statistics) */
2712 if (ug_info->
2713 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2714 ugeth->tx_fw_statistics_pram_offset =
2715 qe_muram_alloc(sizeof
2716 (struct ucc_geth_tx_firmware_statistics_pram),
2717 UCC_GETH_TX_STATISTICS_ALIGNMENT);
2718 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2719 if (netif_msg_ifup(ugeth))
2720 ugeth_err
2721 ("%s: Can not allocate DPRAM memory for"
2722 " p_tx_fw_statistics_pram.",
2723 __func__);
2724 return -ENOMEM;
2725 }
2726 ugeth->p_tx_fw_statistics_pram =
2727 (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2728 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2729 /* Zero out p_tx_fw_statistics_pram */
2730 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2731 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2732 }
2733
2734 /* temoder */
2735 /* Already has speed set */
2736
2737 if (ug_info->numQueuesTx > 1)
2738 temoder |= TEMODER_SCHEDULER_ENABLE;
2739 if (ug_info->ipCheckSumGenerate)
2740 temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2741 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2742 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2743
2744 test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2745
2746 /* Function code register value to be used later */
2747 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2748 /* Required for QE */
2749
2750 /* function code register */
2751 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2752
2753 /* Rx global PRAM */
2754 /* Allocate global rx parameter RAM page */
2755 ugeth->rx_glbl_pram_offset =
2756 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2757 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2758 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2759 if (netif_msg_ifup(ugeth))
2760 ugeth_err
2761 ("%s: Can not allocate DPRAM memory for p_rx_glbl_pram.",
2762 __func__);
2763 return -ENOMEM;
2764 }
2765 ugeth->p_rx_glbl_pram =
2766 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2767 rx_glbl_pram_offset);
2768 /* Zero out p_rx_glbl_pram */
2769 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2770
2771 /* Fill global PRAM */
2772
2773 /* RQPTR */
2774 /* Size varies with number of Rx threads */
2775 ugeth->thread_dat_rx_offset =
2776 qe_muram_alloc(numThreadsRxNumerical *
2777 sizeof(struct ucc_geth_thread_data_rx),
2778 UCC_GETH_THREAD_DATA_ALIGNMENT);
2779 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2780 if (netif_msg_ifup(ugeth))
2781 ugeth_err
2782 ("%s: Can not allocate DPRAM memory for p_thread_data_rx.",
2783 __func__);
2784 return -ENOMEM;
2785 }
2786
2787 ugeth->p_thread_data_rx =
2788 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2789 thread_dat_rx_offset);
2790 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2791
2792 /* typeorlen */
2793 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2794
2795 /* rxrmonbaseptr (statistics) */
2796 if (ug_info->
2797 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2798 ugeth->rx_fw_statistics_pram_offset =
2799 qe_muram_alloc(sizeof
2800 (struct ucc_geth_rx_firmware_statistics_pram),
2801 UCC_GETH_RX_STATISTICS_ALIGNMENT);
2802 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2803 if (netif_msg_ifup(ugeth))
2804 ugeth_err
2805 ("%s: Can not allocate DPRAM memory for"
2806 " p_rx_fw_statistics_pram.", __func__);
2807 return -ENOMEM;
2808 }
2809 ugeth->p_rx_fw_statistics_pram =
2810 (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2811 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2812 /* Zero out p_rx_fw_statistics_pram */
2813 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2814 sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2815 }
2816
2817 /* intCoalescingPtr */
2818
2819 /* Size varies with number of Rx queues */
2820 ugeth->rx_irq_coalescing_tbl_offset =
2821 qe_muram_alloc(ug_info->numQueuesRx *
2822 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2823 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2824 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2825 if (netif_msg_ifup(ugeth))
2826 ugeth_err
2827 ("%s: Can not allocate DPRAM memory for"
2828 " p_rx_irq_coalescing_tbl.", __func__);
2829 return -ENOMEM;
2830 }
2831
2832 ugeth->p_rx_irq_coalescing_tbl =
2833 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2834 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2835 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2836 ugeth->rx_irq_coalescing_tbl_offset);
2837
2838 /* Fill interrupt coalescing table */
2839 for (i = 0; i < ug_info->numQueuesRx; i++) {
2840 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2841 interruptcoalescingmaxvalue,
2842 ug_info->interruptcoalescingmaxvalue[i]);
2843 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2844 interruptcoalescingcounter,
2845 ug_info->interruptcoalescingmaxvalue[i]);
2846 }
2847
2848 /* MRBLR */
2849 init_max_rx_buff_len(uf_info->max_rx_buf_length,
2850 &ugeth->p_rx_glbl_pram->mrblr);
2851 /* MFLR */
2852 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2853 /* MINFLR */
2854 init_min_frame_len(ug_info->minFrameLength,
2855 &ugeth->p_rx_glbl_pram->minflr,
2856 &ugeth->p_rx_glbl_pram->mrblr);
2857 /* MAXD1 */
2858 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2859 /* MAXD2 */
2860 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2861
2862 /* l2qt */
2863 l2qt = 0;
2864 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2865 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2866 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2867
2868 /* l3qt */
2869 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2870 l3qt = 0;
2871 for (i = 0; i < 8; i++)
2872 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2873 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2874 }
2875
2876 /* vlantype */
2877 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2878
2879 /* vlantci */
2880 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2881
2882 /* ecamptr */
2883 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2884
2885 /* RBDQPTR */
2886 /* Size varies with number of Rx queues */
2887 ugeth->rx_bd_qs_tbl_offset =
2888 qe_muram_alloc(ug_info->numQueuesRx *
2889 (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2890 sizeof(struct ucc_geth_rx_prefetched_bds)),
2891 UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2892 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2893 if (netif_msg_ifup(ugeth))
2894 ugeth_err
2895 ("%s: Can not allocate DPRAM memory for p_rx_bd_qs_tbl.",
2896 __func__);
2897 return -ENOMEM;
2898 }
2899
2900 ugeth->p_rx_bd_qs_tbl =
2901 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2902 rx_bd_qs_tbl_offset);
2903 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2904 /* Zero out p_rx_bd_qs_tbl */
2905 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2906 0,
2907 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2908 sizeof(struct ucc_geth_rx_prefetched_bds)));
2909
2910 /* Setup the table */
2911 /* Assume BD rings are already established */
2912 for (i = 0; i < ug_info->numQueuesRx; i++) {
2913 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2914 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2915 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2916 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2917 MEM_PART_MURAM) {
2918 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2919 (u32) immrbar_virt_to_phys(ugeth->
2920 p_rx_bd_ring[i]));
2921 }
2922 /* rest of fields handled by QE */
2923 }
2924
2925 /* remoder */
2926 /* Already has speed set */
2927
2928 if (ugeth->rx_extended_features)
2929 remoder |= REMODER_RX_EXTENDED_FEATURES;
2930 if (ug_info->rxExtendedFiltering)
2931 remoder |= REMODER_RX_EXTENDED_FILTERING;
2932 if (ug_info->dynamicMaxFrameLength)
2933 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2934 if (ug_info->dynamicMinFrameLength)
2935 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2936 remoder |=
2937 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2938 remoder |=
2939 ug_info->
2940 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2941 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2942 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2943 if (ug_info->ipCheckSumCheck)
2944 remoder |= REMODER_IP_CHECKSUM_CHECK;
2945 if (ug_info->ipAddressAlignment)
2946 remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2947 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2948
2949 /* Note that this function must be called */
2950 /* ONLY AFTER p_tx_fw_statistics_pram */
2951 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2952 init_firmware_statistics_gathering_mode((ug_info->
2953 statisticsMode &
2954 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2955 (ug_info->statisticsMode &
2956 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2957 &ugeth->p_tx_glbl_pram->txrmonbaseptr,
2958 ugeth->tx_fw_statistics_pram_offset,
2959 &ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2960 ugeth->rx_fw_statistics_pram_offset,
2961 &ugeth->p_tx_glbl_pram->temoder,
2962 &ugeth->p_rx_glbl_pram->remoder);
2963
2964 /* function code register */
2965 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2966
2967 /* initialize extended filtering */
2968 if (ug_info->rxExtendedFiltering) {
2969 if (!ug_info->extendedFilteringChainPointer) {
2970 if (netif_msg_ifup(ugeth))
2971 ugeth_err("%s: Null Extended Filtering Chain Pointer.",
2972 __func__);
2973 return -EINVAL;
2974 }
2975
2976 /* Allocate memory for extended filtering Mode Global
2977 Parameters */
2978 ugeth->exf_glbl_param_offset =
2979 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2980 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2981 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2982 if (netif_msg_ifup(ugeth))
2983 ugeth_err
2984 ("%s: Can not allocate DPRAM memory for"
2985 " p_exf_glbl_param.", __func__);
2986 return -ENOMEM;
2987 }
2988
2989 ugeth->p_exf_glbl_param =
2990 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2991 exf_glbl_param_offset);
2992 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2993 ugeth->exf_glbl_param_offset);
2994 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2995 (u32) ug_info->extendedFilteringChainPointer);
2996
2997 } else { /* initialize 82xx style address filtering */
2998
2999 /* Init individual address recognition registers to disabled */
3000
3001 for (j = 0; j < NUM_OF_PADDRS; j++)
3002 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
3003
3004 p_82xx_addr_filt =
3005 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
3006 p_rx_glbl_pram->addressfiltering;
3007
3008 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
3009 ENET_ADDR_TYPE_GROUP);
3010 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
3011 ENET_ADDR_TYPE_INDIVIDUAL);
3012 }
3013
3014 /*
3015 * Initialize UCC at QE level
3016 */
3017
3018 command = QE_INIT_TX_RX;
3019
3020 /* Allocate shadow InitEnet command parameter structure.
3021 * This is needed because after the InitEnet command is executed,
3022 * the structure in DPRAM is released, because DPRAM is a premium
3023 * resource.
3024 * This shadow structure keeps a copy of what was done so that the
3025 * allocated resources can be released when the channel is freed.
3026 */
3027 if (!(ugeth->p_init_enet_param_shadow =
3028 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
3029 if (netif_msg_ifup(ugeth))
3030 ugeth_err
3031 ("%s: Can not allocate memory for"
3032 " p_UccInitEnetParamShadows.", __func__);
3033 return -ENOMEM;
3034 }
3035 /* Zero out *p_init_enet_param_shadow */
3036 memset((char *)ugeth->p_init_enet_param_shadow,
3037 0, sizeof(struct ucc_geth_init_pram));
3038
3039 /* Fill shadow InitEnet command parameter structure */
3040
3041 ugeth->p_init_enet_param_shadow->resinit1 =
3042 ENET_INIT_PARAM_MAGIC_RES_INIT1;
3043 ugeth->p_init_enet_param_shadow->resinit2 =
3044 ENET_INIT_PARAM_MAGIC_RES_INIT2;
3045 ugeth->p_init_enet_param_shadow->resinit3 =
3046 ENET_INIT_PARAM_MAGIC_RES_INIT3;
3047 ugeth->p_init_enet_param_shadow->resinit4 =
3048 ENET_INIT_PARAM_MAGIC_RES_INIT4;
3049 ugeth->p_init_enet_param_shadow->resinit5 =
3050 ENET_INIT_PARAM_MAGIC_RES_INIT5;
3051 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
3052 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
3053 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
3054 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
3055
3056 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
3057 ugeth->rx_glbl_pram_offset | ug_info->riscRx;
3058 if ((ug_info->largestexternallookupkeysize !=
3059 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
3060 (ug_info->largestexternallookupkeysize !=
3061 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
3062 (ug_info->largestexternallookupkeysize !=
3063 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
3064 if (netif_msg_ifup(ugeth))
3065 ugeth_err("%s: Invalid largest External Lookup Key Size.",
3066 __func__);
3067 return -EINVAL;
3068 }
3069 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
3070 ug_info->largestexternallookupkeysize;
3071 size = sizeof(struct ucc_geth_thread_rx_pram);
3072 if (ug_info->rxExtendedFiltering) {
3073 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
3074 if (ug_info->largestexternallookupkeysize ==
3075 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
3076 size +=
3077 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
3078 if (ug_info->largestexternallookupkeysize ==
3079 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3080 size +=
3081 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3082 }
3083
3084 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3085 p_init_enet_param_shadow->rxthread[0]),
3086 (u8) (numThreadsRxNumerical + 1)
3087 /* Rx needs one extra for terminator */
3088 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3089 ug_info->riscRx, 1)) != 0) {
3090 if (netif_msg_ifup(ugeth))
3091 ugeth_err("%s: Can not fill p_init_enet_param_shadow.",
3092 __func__);
3093 return ret_val;
3094 }
3095
3096 ugeth->p_init_enet_param_shadow->txglobal =
3097 ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3098 if ((ret_val =
3099 fill_init_enet_entries(ugeth,
3100 &(ugeth->p_init_enet_param_shadow->
3101 txthread[0]), numThreadsTxNumerical,
3102 sizeof(struct ucc_geth_thread_tx_pram),
3103 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3104 ug_info->riscTx, 0)) != 0) {
3105 if (netif_msg_ifup(ugeth))
3106 ugeth_err("%s: Can not fill p_init_enet_param_shadow.",
3107 __func__);
3108 return ret_val;
3109 }
3110
3111 /* Load Rx bds with buffers */
3112 for (i = 0; i < ug_info->numQueuesRx; i++) {
3113 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3114 if (netif_msg_ifup(ugeth))
3115 ugeth_err("%s: Can not fill Rx bds with buffers.",
3116 __func__);
3117 return ret_val;
3118 }
3119 }
3120
3121 /* Allocate InitEnet command parameter structure */
3122 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3123 if (IS_ERR_VALUE(init_enet_pram_offset)) {
3124 if (netif_msg_ifup(ugeth))
3125 ugeth_err
3126 ("%s: Can not allocate DPRAM memory for p_init_enet_pram.",
3127 __func__);
3128 return -ENOMEM;
3129 }
3130 p_init_enet_pram =
3131 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3132
3133 /* Copy shadow InitEnet command parameter structure into PRAM */
3134 out_8(&p_init_enet_pram->resinit1,
3135 ugeth->p_init_enet_param_shadow->resinit1);
3136 out_8(&p_init_enet_pram->resinit2,
3137 ugeth->p_init_enet_param_shadow->resinit2);
3138 out_8(&p_init_enet_pram->resinit3,
3139 ugeth->p_init_enet_param_shadow->resinit3);
3140 out_8(&p_init_enet_pram->resinit4,
3141 ugeth->p_init_enet_param_shadow->resinit4);
3142 out_be16(&p_init_enet_pram->resinit5,
3143 ugeth->p_init_enet_param_shadow->resinit5);
3144 out_8(&p_init_enet_pram->largestexternallookupkeysize,
3145 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3146 out_be32(&p_init_enet_pram->rgftgfrxglobal,
3147 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3148 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3149 out_be32(&p_init_enet_pram->rxthread[i],
3150 ugeth->p_init_enet_param_shadow->rxthread[i]);
3151 out_be32(&p_init_enet_pram->txglobal,
3152 ugeth->p_init_enet_param_shadow->txglobal);
3153 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3154 out_be32(&p_init_enet_pram->txthread[i],
3155 ugeth->p_init_enet_param_shadow->txthread[i]);
3156
3157 /* Issue QE command */
3158 cecr_subblock =
3159 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3160 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3161 init_enet_pram_offset);
3162
3163 /* Free InitEnet command parameter */
3164 qe_muram_free(init_enet_pram_offset);
3165
3166 return 0;
3167 }
3168
3169 /* This is called by the kernel when a frame is ready for transmission. */
3170 /* It is pointed to by the dev->hard_start_xmit function pointer */
ucc_geth_start_xmit(struct sk_buff * skb,struct net_device * dev)3171 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3172 {
3173 struct ucc_geth_private *ugeth = netdev_priv(dev);
3174 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3175 struct ucc_fast_private *uccf;
3176 #endif
3177 u8 __iomem *bd; /* BD pointer */
3178 u32 bd_status;
3179 u8 txQ = 0;
3180 unsigned long flags;
3181
3182 ugeth_vdbg("%s: IN", __func__);
3183
3184 spin_lock_irqsave(&ugeth->lock, flags);
3185
3186 dev->stats.tx_bytes += skb->len;
3187
3188 /* Start from the next BD that should be filled */
3189 bd = ugeth->txBd[txQ];
3190 bd_status = in_be32((u32 __iomem *)bd);
3191 /* Save the skb pointer so we can free it later */
3192 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3193
3194 /* Update the current skb pointer (wrapping if this was the last) */
3195 ugeth->skb_curtx[txQ] =
3196 (ugeth->skb_curtx[txQ] +
3197 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3198
3199 /* set up the buffer descriptor */
3200 out_be32(&((struct qe_bd __iomem *)bd)->buf,
3201 dma_map_single(ugeth->dev, skb->data,
3202 skb->len, DMA_TO_DEVICE));
3203
3204 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3205
3206 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3207
3208 /* set bd status and length */
3209 out_be32((u32 __iomem *)bd, bd_status);
3210
3211 /* Move to next BD in the ring */
3212 if (!(bd_status & T_W))
3213 bd += sizeof(struct qe_bd);
3214 else
3215 bd = ugeth->p_tx_bd_ring[txQ];
3216
3217 /* If the next BD still needs to be cleaned up, then the bds
3218 are full. We need to tell the kernel to stop sending us stuff. */
3219 if (bd == ugeth->confBd[txQ]) {
3220 if (!netif_queue_stopped(dev))
3221 netif_stop_queue(dev);
3222 }
3223
3224 ugeth->txBd[txQ] = bd;
3225
3226 skb_tx_timestamp(skb);
3227
3228 if (ugeth->p_scheduler) {
3229 ugeth->cpucount[txQ]++;
3230 /* Indicate to QE that there are more Tx bds ready for
3231 transmission */
3232 /* This is done by writing a running counter of the bd
3233 count to the scheduler PRAM. */
3234 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3235 }
3236
3237 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3238 uccf = ugeth->uccf;
3239 out_be16(uccf->p_utodr, UCC_FAST_TOD);
3240 #endif
3241 spin_unlock_irqrestore(&ugeth->lock, flags);
3242
3243 return NETDEV_TX_OK;
3244 }
3245
ucc_geth_rx(struct ucc_geth_private * ugeth,u8 rxQ,int rx_work_limit)3246 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3247 {
3248 struct sk_buff *skb;
3249 u8 __iomem *bd;
3250 u16 length, howmany = 0;
3251 u32 bd_status;
3252 u8 *bdBuffer;
3253 struct net_device *dev;
3254
3255 ugeth_vdbg("%s: IN", __func__);
3256
3257 dev = ugeth->ndev;
3258
3259 /* collect received buffers */
3260 bd = ugeth->rxBd[rxQ];
3261
3262 bd_status = in_be32((u32 __iomem *)bd);
3263
3264 /* while there are received buffers and BD is full (~R_E) */
3265 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3266 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3267 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3268 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3269
3270 /* determine whether buffer is first, last, first and last
3271 (single buffer frame) or middle (not first and not last) */
3272 if (!skb ||
3273 (!(bd_status & (R_F | R_L))) ||
3274 (bd_status & R_ERRORS_FATAL)) {
3275 if (netif_msg_rx_err(ugeth))
3276 ugeth_err("%s, %d: ERROR!!! skb - 0x%08x",
3277 __func__, __LINE__, (u32) skb);
3278 if (skb) {
3279 skb->data = skb->head + NET_SKB_PAD;
3280 skb->len = 0;
3281 skb_reset_tail_pointer(skb);
3282 __skb_queue_head(&ugeth->rx_recycle, skb);
3283 }
3284
3285 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3286 dev->stats.rx_dropped++;
3287 } else {
3288 dev->stats.rx_packets++;
3289 howmany++;
3290
3291 /* Prep the skb for the packet */
3292 skb_put(skb, length);
3293
3294 /* Tell the skb what kind of packet this is */
3295 skb->protocol = eth_type_trans(skb, ugeth->ndev);
3296
3297 dev->stats.rx_bytes += length;
3298 /* Send the packet up the stack */
3299 netif_receive_skb(skb);
3300 }
3301
3302 skb = get_new_skb(ugeth, bd);
3303 if (!skb) {
3304 if (netif_msg_rx_err(ugeth))
3305 ugeth_warn("%s: No Rx Data Buffer", __func__);
3306 dev->stats.rx_dropped++;
3307 break;
3308 }
3309
3310 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3311
3312 /* update to point at the next skb */
3313 ugeth->skb_currx[rxQ] =
3314 (ugeth->skb_currx[rxQ] +
3315 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3316
3317 if (bd_status & R_W)
3318 bd = ugeth->p_rx_bd_ring[rxQ];
3319 else
3320 bd += sizeof(struct qe_bd);
3321
3322 bd_status = in_be32((u32 __iomem *)bd);
3323 }
3324
3325 ugeth->rxBd[rxQ] = bd;
3326 return howmany;
3327 }
3328
ucc_geth_tx(struct net_device * dev,u8 txQ)3329 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3330 {
3331 /* Start from the next BD that should be filled */
3332 struct ucc_geth_private *ugeth = netdev_priv(dev);
3333 u8 __iomem *bd; /* BD pointer */
3334 u32 bd_status;
3335
3336 bd = ugeth->confBd[txQ];
3337 bd_status = in_be32((u32 __iomem *)bd);
3338
3339 /* Normal processing. */
3340 while ((bd_status & T_R) == 0) {
3341 struct sk_buff *skb;
3342
3343 /* BD contains already transmitted buffer. */
3344 /* Handle the transmitted buffer and release */
3345 /* the BD to be used with the current frame */
3346
3347 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3348 if (!skb)
3349 break;
3350
3351 dev->stats.tx_packets++;
3352
3353 if (skb_queue_len(&ugeth->rx_recycle) < RX_BD_RING_LEN &&
3354 skb_recycle_check(skb,
3355 ugeth->ug_info->uf_info.max_rx_buf_length +
3356 UCC_GETH_RX_DATA_BUF_ALIGNMENT))
3357 __skb_queue_head(&ugeth->rx_recycle, skb);
3358 else
3359 dev_kfree_skb(skb);
3360
3361 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3362 ugeth->skb_dirtytx[txQ] =
3363 (ugeth->skb_dirtytx[txQ] +
3364 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3365
3366 /* We freed a buffer, so now we can restart transmission */
3367 if (netif_queue_stopped(dev))
3368 netif_wake_queue(dev);
3369
3370 /* Advance the confirmation BD pointer */
3371 if (!(bd_status & T_W))
3372 bd += sizeof(struct qe_bd);
3373 else
3374 bd = ugeth->p_tx_bd_ring[txQ];
3375 bd_status = in_be32((u32 __iomem *)bd);
3376 }
3377 ugeth->confBd[txQ] = bd;
3378 return 0;
3379 }
3380
ucc_geth_poll(struct napi_struct * napi,int budget)3381 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3382 {
3383 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3384 struct ucc_geth_info *ug_info;
3385 int howmany, i;
3386
3387 ug_info = ugeth->ug_info;
3388
3389 /* Tx event processing */
3390 spin_lock(&ugeth->lock);
3391 for (i = 0; i < ug_info->numQueuesTx; i++)
3392 ucc_geth_tx(ugeth->ndev, i);
3393 spin_unlock(&ugeth->lock);
3394
3395 howmany = 0;
3396 for (i = 0; i < ug_info->numQueuesRx; i++)
3397 howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3398
3399 if (howmany < budget) {
3400 napi_complete(napi);
3401 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3402 }
3403
3404 return howmany;
3405 }
3406
ucc_geth_irq_handler(int irq,void * info)3407 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3408 {
3409 struct net_device *dev = info;
3410 struct ucc_geth_private *ugeth = netdev_priv(dev);
3411 struct ucc_fast_private *uccf;
3412 struct ucc_geth_info *ug_info;
3413 register u32 ucce;
3414 register u32 uccm;
3415
3416 ugeth_vdbg("%s: IN", __func__);
3417
3418 uccf = ugeth->uccf;
3419 ug_info = ugeth->ug_info;
3420
3421 /* read and clear events */
3422 ucce = (u32) in_be32(uccf->p_ucce);
3423 uccm = (u32) in_be32(uccf->p_uccm);
3424 ucce &= uccm;
3425 out_be32(uccf->p_ucce, ucce);
3426
3427 /* check for receive events that require processing */
3428 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3429 if (napi_schedule_prep(&ugeth->napi)) {
3430 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3431 out_be32(uccf->p_uccm, uccm);
3432 __napi_schedule(&ugeth->napi);
3433 }
3434 }
3435
3436 /* Errors and other events */
3437 if (ucce & UCCE_OTHER) {
3438 if (ucce & UCC_GETH_UCCE_BSY)
3439 dev->stats.rx_errors++;
3440 if (ucce & UCC_GETH_UCCE_TXE)
3441 dev->stats.tx_errors++;
3442 }
3443
3444 return IRQ_HANDLED;
3445 }
3446
3447 #ifdef CONFIG_NET_POLL_CONTROLLER
3448 /*
3449 * Polling 'interrupt' - used by things like netconsole to send skbs
3450 * without having to re-enable interrupts. It's not called while
3451 * the interrupt routine is executing.
3452 */
ucc_netpoll(struct net_device * dev)3453 static void ucc_netpoll(struct net_device *dev)
3454 {
3455 struct ucc_geth_private *ugeth = netdev_priv(dev);
3456 int irq = ugeth->ug_info->uf_info.irq;
3457
3458 disable_irq(irq);
3459 ucc_geth_irq_handler(irq, dev);
3460 enable_irq(irq);
3461 }
3462 #endif /* CONFIG_NET_POLL_CONTROLLER */
3463
ucc_geth_set_mac_addr(struct net_device * dev,void * p)3464 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3465 {
3466 struct ucc_geth_private *ugeth = netdev_priv(dev);
3467 struct sockaddr *addr = p;
3468
3469 if (!is_valid_ether_addr(addr->sa_data))
3470 return -EADDRNOTAVAIL;
3471
3472 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3473
3474 /*
3475 * If device is not running, we will set mac addr register
3476 * when opening the device.
3477 */
3478 if (!netif_running(dev))
3479 return 0;
3480
3481 spin_lock_irq(&ugeth->lock);
3482 init_mac_station_addr_regs(dev->dev_addr[0],
3483 dev->dev_addr[1],
3484 dev->dev_addr[2],
3485 dev->dev_addr[3],
3486 dev->dev_addr[4],
3487 dev->dev_addr[5],
3488 &ugeth->ug_regs->macstnaddr1,
3489 &ugeth->ug_regs->macstnaddr2);
3490 spin_unlock_irq(&ugeth->lock);
3491
3492 return 0;
3493 }
3494
ucc_geth_init_mac(struct ucc_geth_private * ugeth)3495 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3496 {
3497 struct net_device *dev = ugeth->ndev;
3498 int err;
3499
3500 err = ucc_struct_init(ugeth);
3501 if (err) {
3502 if (netif_msg_ifup(ugeth))
3503 ugeth_err("%s: Cannot configure internal struct, "
3504 "aborting.", dev->name);
3505 goto err;
3506 }
3507
3508 err = ucc_geth_startup(ugeth);
3509 if (err) {
3510 if (netif_msg_ifup(ugeth))
3511 ugeth_err("%s: Cannot configure net device, aborting.",
3512 dev->name);
3513 goto err;
3514 }
3515
3516 err = adjust_enet_interface(ugeth);
3517 if (err) {
3518 if (netif_msg_ifup(ugeth))
3519 ugeth_err("%s: Cannot configure net device, aborting.",
3520 dev->name);
3521 goto err;
3522 }
3523
3524 /* Set MACSTNADDR1, MACSTNADDR2 */
3525 /* For more details see the hardware spec. */
3526 init_mac_station_addr_regs(dev->dev_addr[0],
3527 dev->dev_addr[1],
3528 dev->dev_addr[2],
3529 dev->dev_addr[3],
3530 dev->dev_addr[4],
3531 dev->dev_addr[5],
3532 &ugeth->ug_regs->macstnaddr1,
3533 &ugeth->ug_regs->macstnaddr2);
3534
3535 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3536 if (err) {
3537 if (netif_msg_ifup(ugeth))
3538 ugeth_err("%s: Cannot enable net device, aborting.", dev->name);
3539 goto err;
3540 }
3541
3542 return 0;
3543 err:
3544 ucc_geth_stop(ugeth);
3545 return err;
3546 }
3547
3548 /* Called when something needs to use the ethernet device */
3549 /* Returns 0 for success. */
ucc_geth_open(struct net_device * dev)3550 static int ucc_geth_open(struct net_device *dev)
3551 {
3552 struct ucc_geth_private *ugeth = netdev_priv(dev);
3553 int err;
3554
3555 ugeth_vdbg("%s: IN", __func__);
3556
3557 /* Test station address */
3558 if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3559 if (netif_msg_ifup(ugeth))
3560 ugeth_err("%s: Multicast address used for station "
3561 "address - is this what you wanted?",
3562 __func__);
3563 return -EINVAL;
3564 }
3565
3566 err = init_phy(dev);
3567 if (err) {
3568 if (netif_msg_ifup(ugeth))
3569 ugeth_err("%s: Cannot initialize PHY, aborting.",
3570 dev->name);
3571 return err;
3572 }
3573
3574 err = ucc_geth_init_mac(ugeth);
3575 if (err) {
3576 if (netif_msg_ifup(ugeth))
3577 ugeth_err("%s: Cannot initialize MAC, aborting.",
3578 dev->name);
3579 goto err;
3580 }
3581
3582 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3583 0, "UCC Geth", dev);
3584 if (err) {
3585 if (netif_msg_ifup(ugeth))
3586 ugeth_err("%s: Cannot get IRQ for net device, aborting.",
3587 dev->name);
3588 goto err;
3589 }
3590
3591 phy_start(ugeth->phydev);
3592 napi_enable(&ugeth->napi);
3593 netif_start_queue(dev);
3594
3595 device_set_wakeup_capable(&dev->dev,
3596 qe_alive_during_sleep() || ugeth->phydev->irq);
3597 device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3598
3599 return err;
3600
3601 err:
3602 ucc_geth_stop(ugeth);
3603 return err;
3604 }
3605
3606 /* Stops the kernel queue, and halts the controller */
ucc_geth_close(struct net_device * dev)3607 static int ucc_geth_close(struct net_device *dev)
3608 {
3609 struct ucc_geth_private *ugeth = netdev_priv(dev);
3610
3611 ugeth_vdbg("%s: IN", __func__);
3612
3613 napi_disable(&ugeth->napi);
3614
3615 cancel_work_sync(&ugeth->timeout_work);
3616 ucc_geth_stop(ugeth);
3617 phy_disconnect(ugeth->phydev);
3618 ugeth->phydev = NULL;
3619
3620 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3621
3622 netif_stop_queue(dev);
3623
3624 return 0;
3625 }
3626
3627 /* Reopen device. This will reset the MAC and PHY. */
ucc_geth_timeout_work(struct work_struct * work)3628 static void ucc_geth_timeout_work(struct work_struct *work)
3629 {
3630 struct ucc_geth_private *ugeth;
3631 struct net_device *dev;
3632
3633 ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3634 dev = ugeth->ndev;
3635
3636 ugeth_vdbg("%s: IN", __func__);
3637
3638 dev->stats.tx_errors++;
3639
3640 ugeth_dump_regs(ugeth);
3641
3642 if (dev->flags & IFF_UP) {
3643 /*
3644 * Must reset MAC *and* PHY. This is done by reopening
3645 * the device.
3646 */
3647 netif_tx_stop_all_queues(dev);
3648 ucc_geth_stop(ugeth);
3649 ucc_geth_init_mac(ugeth);
3650 /* Must start PHY here */
3651 phy_start(ugeth->phydev);
3652 netif_tx_start_all_queues(dev);
3653 }
3654
3655 netif_tx_schedule_all(dev);
3656 }
3657
3658 /*
3659 * ucc_geth_timeout gets called when a packet has not been
3660 * transmitted after a set amount of time.
3661 */
ucc_geth_timeout(struct net_device * dev)3662 static void ucc_geth_timeout(struct net_device *dev)
3663 {
3664 struct ucc_geth_private *ugeth = netdev_priv(dev);
3665
3666 schedule_work(&ugeth->timeout_work);
3667 }
3668
3669
3670 #ifdef CONFIG_PM
3671
ucc_geth_suspend(struct platform_device * ofdev,pm_message_t state)3672 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3673 {
3674 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
3675 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3676
3677 if (!netif_running(ndev))
3678 return 0;
3679
3680 netif_device_detach(ndev);
3681 napi_disable(&ugeth->napi);
3682
3683 /*
3684 * Disable the controller, otherwise we'll wakeup on any network
3685 * activity.
3686 */
3687 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3688
3689 if (ugeth->wol_en & WAKE_MAGIC) {
3690 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3691 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3692 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3693 } else if (!(ugeth->wol_en & WAKE_PHY)) {
3694 phy_stop(ugeth->phydev);
3695 }
3696
3697 return 0;
3698 }
3699
ucc_geth_resume(struct platform_device * ofdev)3700 static int ucc_geth_resume(struct platform_device *ofdev)
3701 {
3702 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
3703 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3704 int err;
3705
3706 if (!netif_running(ndev))
3707 return 0;
3708
3709 if (qe_alive_during_sleep()) {
3710 if (ugeth->wol_en & WAKE_MAGIC) {
3711 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3712 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3713 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3714 }
3715 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3716 } else {
3717 /*
3718 * Full reinitialization is required if QE shuts down
3719 * during sleep.
3720 */
3721 ucc_geth_memclean(ugeth);
3722
3723 err = ucc_geth_init_mac(ugeth);
3724 if (err) {
3725 ugeth_err("%s: Cannot initialize MAC, aborting.",
3726 ndev->name);
3727 return err;
3728 }
3729 }
3730
3731 ugeth->oldlink = 0;
3732 ugeth->oldspeed = 0;
3733 ugeth->oldduplex = -1;
3734
3735 phy_stop(ugeth->phydev);
3736 phy_start(ugeth->phydev);
3737
3738 napi_enable(&ugeth->napi);
3739 netif_device_attach(ndev);
3740
3741 return 0;
3742 }
3743
3744 #else
3745 #define ucc_geth_suspend NULL
3746 #define ucc_geth_resume NULL
3747 #endif
3748
to_phy_interface(const char * phy_connection_type)3749 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3750 {
3751 if (strcasecmp(phy_connection_type, "mii") == 0)
3752 return PHY_INTERFACE_MODE_MII;
3753 if (strcasecmp(phy_connection_type, "gmii") == 0)
3754 return PHY_INTERFACE_MODE_GMII;
3755 if (strcasecmp(phy_connection_type, "tbi") == 0)
3756 return PHY_INTERFACE_MODE_TBI;
3757 if (strcasecmp(phy_connection_type, "rmii") == 0)
3758 return PHY_INTERFACE_MODE_RMII;
3759 if (strcasecmp(phy_connection_type, "rgmii") == 0)
3760 return PHY_INTERFACE_MODE_RGMII;
3761 if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3762 return PHY_INTERFACE_MODE_RGMII_ID;
3763 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3764 return PHY_INTERFACE_MODE_RGMII_TXID;
3765 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3766 return PHY_INTERFACE_MODE_RGMII_RXID;
3767 if (strcasecmp(phy_connection_type, "rtbi") == 0)
3768 return PHY_INTERFACE_MODE_RTBI;
3769 if (strcasecmp(phy_connection_type, "sgmii") == 0)
3770 return PHY_INTERFACE_MODE_SGMII;
3771
3772 return PHY_INTERFACE_MODE_MII;
3773 }
3774
ucc_geth_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3775 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3776 {
3777 struct ucc_geth_private *ugeth = netdev_priv(dev);
3778
3779 if (!netif_running(dev))
3780 return -EINVAL;
3781
3782 if (!ugeth->phydev)
3783 return -ENODEV;
3784
3785 return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3786 }
3787
3788 static const struct net_device_ops ucc_geth_netdev_ops = {
3789 .ndo_open = ucc_geth_open,
3790 .ndo_stop = ucc_geth_close,
3791 .ndo_start_xmit = ucc_geth_start_xmit,
3792 .ndo_validate_addr = eth_validate_addr,
3793 .ndo_set_mac_address = ucc_geth_set_mac_addr,
3794 .ndo_change_mtu = eth_change_mtu,
3795 .ndo_set_rx_mode = ucc_geth_set_multi,
3796 .ndo_tx_timeout = ucc_geth_timeout,
3797 .ndo_do_ioctl = ucc_geth_ioctl,
3798 #ifdef CONFIG_NET_POLL_CONTROLLER
3799 .ndo_poll_controller = ucc_netpoll,
3800 #endif
3801 };
3802
ucc_geth_probe(struct platform_device * ofdev)3803 static int ucc_geth_probe(struct platform_device* ofdev)
3804 {
3805 struct device *device = &ofdev->dev;
3806 struct device_node *np = ofdev->dev.of_node;
3807 struct net_device *dev = NULL;
3808 struct ucc_geth_private *ugeth = NULL;
3809 struct ucc_geth_info *ug_info;
3810 struct resource res;
3811 int err, ucc_num, max_speed = 0;
3812 const unsigned int *prop;
3813 const char *sprop;
3814 const void *mac_addr;
3815 phy_interface_t phy_interface;
3816 static const int enet_to_speed[] = {
3817 SPEED_10, SPEED_10, SPEED_10,
3818 SPEED_100, SPEED_100, SPEED_100,
3819 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3820 };
3821 static const phy_interface_t enet_to_phy_interface[] = {
3822 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3823 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3824 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3825 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3826 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3827 PHY_INTERFACE_MODE_SGMII,
3828 };
3829
3830 ugeth_vdbg("%s: IN", __func__);
3831
3832 prop = of_get_property(np, "cell-index", NULL);
3833 if (!prop) {
3834 prop = of_get_property(np, "device-id", NULL);
3835 if (!prop)
3836 return -ENODEV;
3837 }
3838
3839 ucc_num = *prop - 1;
3840 if ((ucc_num < 0) || (ucc_num > 7))
3841 return -ENODEV;
3842
3843 ug_info = &ugeth_info[ucc_num];
3844 if (ug_info == NULL) {
3845 if (netif_msg_probe(&debug))
3846 ugeth_err("%s: [%d] Missing additional data!",
3847 __func__, ucc_num);
3848 return -ENODEV;
3849 }
3850
3851 ug_info->uf_info.ucc_num = ucc_num;
3852
3853 sprop = of_get_property(np, "rx-clock-name", NULL);
3854 if (sprop) {
3855 ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3856 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3857 (ug_info->uf_info.rx_clock > QE_CLK24)) {
3858 printk(KERN_ERR
3859 "ucc_geth: invalid rx-clock-name property\n");
3860 return -EINVAL;
3861 }
3862 } else {
3863 prop = of_get_property(np, "rx-clock", NULL);
3864 if (!prop) {
3865 /* If both rx-clock-name and rx-clock are missing,
3866 we want to tell people to use rx-clock-name. */
3867 printk(KERN_ERR
3868 "ucc_geth: missing rx-clock-name property\n");
3869 return -EINVAL;
3870 }
3871 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3872 printk(KERN_ERR
3873 "ucc_geth: invalid rx-clock propperty\n");
3874 return -EINVAL;
3875 }
3876 ug_info->uf_info.rx_clock = *prop;
3877 }
3878
3879 sprop = of_get_property(np, "tx-clock-name", NULL);
3880 if (sprop) {
3881 ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3882 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3883 (ug_info->uf_info.tx_clock > QE_CLK24)) {
3884 printk(KERN_ERR
3885 "ucc_geth: invalid tx-clock-name property\n");
3886 return -EINVAL;
3887 }
3888 } else {
3889 prop = of_get_property(np, "tx-clock", NULL);
3890 if (!prop) {
3891 printk(KERN_ERR
3892 "ucc_geth: missing tx-clock-name property\n");
3893 return -EINVAL;
3894 }
3895 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3896 printk(KERN_ERR
3897 "ucc_geth: invalid tx-clock property\n");
3898 return -EINVAL;
3899 }
3900 ug_info->uf_info.tx_clock = *prop;
3901 }
3902
3903 err = of_address_to_resource(np, 0, &res);
3904 if (err)
3905 return -EINVAL;
3906
3907 ug_info->uf_info.regs = res.start;
3908 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3909
3910 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3911
3912 /* Find the TBI PHY node. If it's not there, we don't support SGMII */
3913 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3914
3915 /* get the phy interface type, or default to MII */
3916 prop = of_get_property(np, "phy-connection-type", NULL);
3917 if (!prop) {
3918 /* handle interface property present in old trees */
3919 prop = of_get_property(ug_info->phy_node, "interface", NULL);
3920 if (prop != NULL) {
3921 phy_interface = enet_to_phy_interface[*prop];
3922 max_speed = enet_to_speed[*prop];
3923 } else
3924 phy_interface = PHY_INTERFACE_MODE_MII;
3925 } else {
3926 phy_interface = to_phy_interface((const char *)prop);
3927 }
3928
3929 /* get speed, or derive from PHY interface */
3930 if (max_speed == 0)
3931 switch (phy_interface) {
3932 case PHY_INTERFACE_MODE_GMII:
3933 case PHY_INTERFACE_MODE_RGMII:
3934 case PHY_INTERFACE_MODE_RGMII_ID:
3935 case PHY_INTERFACE_MODE_RGMII_RXID:
3936 case PHY_INTERFACE_MODE_RGMII_TXID:
3937 case PHY_INTERFACE_MODE_TBI:
3938 case PHY_INTERFACE_MODE_RTBI:
3939 case PHY_INTERFACE_MODE_SGMII:
3940 max_speed = SPEED_1000;
3941 break;
3942 default:
3943 max_speed = SPEED_100;
3944 break;
3945 }
3946
3947 if (max_speed == SPEED_1000) {
3948 unsigned int snums = qe_get_num_of_snums();
3949
3950 /* configure muram FIFOs for gigabit operation */
3951 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3952 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3953 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3954 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3955 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3956 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3957 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3958
3959 /* If QE's snum number is 46/76 which means we need to support
3960 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3961 * more Threads to Rx.
3962 */
3963 if ((snums == 76) || (snums == 46))
3964 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3965 else
3966 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3967 }
3968
3969 if (netif_msg_probe(&debug))
3970 printk(KERN_INFO "ucc_geth: UCC%1d at 0x%8x (irq = %d)\n",
3971 ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3972 ug_info->uf_info.irq);
3973
3974 /* Create an ethernet device instance */
3975 dev = alloc_etherdev(sizeof(*ugeth));
3976
3977 if (dev == NULL)
3978 return -ENOMEM;
3979
3980 ugeth = netdev_priv(dev);
3981 spin_lock_init(&ugeth->lock);
3982
3983 /* Create CQs for hash tables */
3984 INIT_LIST_HEAD(&ugeth->group_hash_q);
3985 INIT_LIST_HEAD(&ugeth->ind_hash_q);
3986
3987 dev_set_drvdata(device, dev);
3988
3989 /* Set the dev->base_addr to the gfar reg region */
3990 dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3991
3992 SET_NETDEV_DEV(dev, device);
3993
3994 /* Fill in the dev structure */
3995 uec_set_ethtool_ops(dev);
3996 dev->netdev_ops = &ucc_geth_netdev_ops;
3997 dev->watchdog_timeo = TX_TIMEOUT;
3998 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3999 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
4000 dev->mtu = 1500;
4001
4002 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
4003 ugeth->phy_interface = phy_interface;
4004 ugeth->max_speed = max_speed;
4005
4006 err = register_netdev(dev);
4007 if (err) {
4008 if (netif_msg_probe(ugeth))
4009 ugeth_err("%s: Cannot register net device, aborting.",
4010 dev->name);
4011 free_netdev(dev);
4012 return err;
4013 }
4014
4015 mac_addr = of_get_mac_address(np);
4016 if (mac_addr)
4017 memcpy(dev->dev_addr, mac_addr, 6);
4018
4019 ugeth->ug_info = ug_info;
4020 ugeth->dev = device;
4021 ugeth->ndev = dev;
4022 ugeth->node = np;
4023
4024 return 0;
4025 }
4026
ucc_geth_remove(struct platform_device * ofdev)4027 static int ucc_geth_remove(struct platform_device* ofdev)
4028 {
4029 struct device *device = &ofdev->dev;
4030 struct net_device *dev = dev_get_drvdata(device);
4031 struct ucc_geth_private *ugeth = netdev_priv(dev);
4032
4033 unregister_netdev(dev);
4034 free_netdev(dev);
4035 ucc_geth_memclean(ugeth);
4036 dev_set_drvdata(device, NULL);
4037
4038 return 0;
4039 }
4040
4041 static struct of_device_id ucc_geth_match[] = {
4042 {
4043 .type = "network",
4044 .compatible = "ucc_geth",
4045 },
4046 {},
4047 };
4048
4049 MODULE_DEVICE_TABLE(of, ucc_geth_match);
4050
4051 static struct platform_driver ucc_geth_driver = {
4052 .driver = {
4053 .name = DRV_NAME,
4054 .owner = THIS_MODULE,
4055 .of_match_table = ucc_geth_match,
4056 },
4057 .probe = ucc_geth_probe,
4058 .remove = ucc_geth_remove,
4059 .suspend = ucc_geth_suspend,
4060 .resume = ucc_geth_resume,
4061 };
4062
ucc_geth_init(void)4063 static int __init ucc_geth_init(void)
4064 {
4065 int i, ret;
4066
4067 if (netif_msg_drv(&debug))
4068 printk(KERN_INFO "ucc_geth: " DRV_DESC "\n");
4069 for (i = 0; i < 8; i++)
4070 memcpy(&(ugeth_info[i]), &ugeth_primary_info,
4071 sizeof(ugeth_primary_info));
4072
4073 ret = platform_driver_register(&ucc_geth_driver);
4074
4075 return ret;
4076 }
4077
ucc_geth_exit(void)4078 static void __exit ucc_geth_exit(void)
4079 {
4080 platform_driver_unregister(&ucc_geth_driver);
4081 }
4082
4083 module_init(ucc_geth_init);
4084 module_exit(ucc_geth_exit);
4085
4086 MODULE_AUTHOR("Freescale Semiconductor, Inc");
4087 MODULE_DESCRIPTION(DRV_DESC);
4088 MODULE_VERSION(DRV_VERSION);
4089 MODULE_LICENSE("GPL");
4090