1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *	-- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *	-- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68 
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102 
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106 
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109 
110 #undef TTY_DEBUG_HANGUP
111 
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114 
115 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
116 	.c_iflag = ICRNL | IXON,
117 	.c_oflag = OPOST | ONLCR,
118 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 		   ECHOCTL | ECHOKE | IEXTEN,
121 	.c_cc = INIT_C_CC,
122 	.c_ispeed = 38400,
123 	.c_ospeed = 38400
124 };
125 
126 EXPORT_SYMBOL(tty_std_termios);
127 
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131 
132 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
133 
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138 
139 /* Spinlock to protect the tty->tty_files list */
140 DEFINE_SPINLOCK(tty_files_lock);
141 
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 							size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 				unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 
161 /**
162  *	alloc_tty_struct	-	allocate a tty object
163  *
164  *	Return a new empty tty structure. The data fields have not
165  *	been initialized in any way but has been zeroed
166  *
167  *	Locking: none
168  */
169 
alloc_tty_struct(void)170 struct tty_struct *alloc_tty_struct(void)
171 {
172 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 }
174 
175 /**
176  *	free_tty_struct		-	free a disused tty
177  *	@tty: tty struct to free
178  *
179  *	Free the write buffers, tty queue and tty memory itself.
180  *
181  *	Locking: none. Must be called after tty is definitely unused
182  */
183 
free_tty_struct(struct tty_struct * tty)184 void free_tty_struct(struct tty_struct *tty)
185 {
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty_buffer_free_all(tty);
190 	kfree(tty);
191 }
192 
file_tty(struct file * file)193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
198 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)199 int tty_add_file(struct tty_struct *tty, struct file *file)
200 {
201 	struct tty_file_private *priv;
202 
203 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204 	if (!priv)
205 		return -ENOMEM;
206 
207 	priv->tty = tty;
208 	priv->file = file;
209 	file->private_data = priv;
210 
211 	spin_lock(&tty_files_lock);
212 	list_add(&priv->list, &tty->tty_files);
213 	spin_unlock(&tty_files_lock);
214 
215 	return 0;
216 }
217 
218 /* Delete file from its tty */
tty_del_file(struct file * file)219 void tty_del_file(struct file *file)
220 {
221 	struct tty_file_private *priv = file->private_data;
222 
223 	spin_lock(&tty_files_lock);
224 	list_del(&priv->list);
225 	spin_unlock(&tty_files_lock);
226 	file->private_data = NULL;
227 	kfree(priv);
228 }
229 
230 
231 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
232 
233 /**
234  *	tty_name	-	return tty naming
235  *	@tty: tty structure
236  *	@buf: buffer for output
237  *
238  *	Convert a tty structure into a name. The name reflects the kernel
239  *	naming policy and if udev is in use may not reflect user space
240  *
241  *	Locking: none
242  */
243 
tty_name(struct tty_struct * tty,char * buf)244 char *tty_name(struct tty_struct *tty, char *buf)
245 {
246 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247 		strcpy(buf, "NULL tty");
248 	else
249 		strcpy(buf, tty->name);
250 	return buf;
251 }
252 
253 EXPORT_SYMBOL(tty_name);
254 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)255 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
256 			      const char *routine)
257 {
258 #ifdef TTY_PARANOIA_CHECK
259 	if (!tty) {
260 		printk(KERN_WARNING
261 			"null TTY for (%d:%d) in %s\n",
262 			imajor(inode), iminor(inode), routine);
263 		return 1;
264 	}
265 	if (tty->magic != TTY_MAGIC) {
266 		printk(KERN_WARNING
267 			"bad magic number for tty struct (%d:%d) in %s\n",
268 			imajor(inode), iminor(inode), routine);
269 		return 1;
270 	}
271 #endif
272 	return 0;
273 }
274 
check_tty_count(struct tty_struct * tty,const char * routine)275 static int check_tty_count(struct tty_struct *tty, const char *routine)
276 {
277 #ifdef CHECK_TTY_COUNT
278 	struct list_head *p;
279 	int count = 0;
280 
281 	spin_lock(&tty_files_lock);
282 	list_for_each(p, &tty->tty_files) {
283 		count++;
284 	}
285 	spin_unlock(&tty_files_lock);
286 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
287 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
288 	    tty->link && tty->link->count)
289 		count++;
290 	if (tty->count != count) {
291 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
292 				    "!= #fd's(%d) in %s\n",
293 		       tty->name, tty->count, count, routine);
294 		return count;
295 	}
296 #endif
297 	return 0;
298 }
299 
300 /**
301  *	get_tty_driver		-	find device of a tty
302  *	@dev_t: device identifier
303  *	@index: returns the index of the tty
304  *
305  *	This routine returns a tty driver structure, given a device number
306  *	and also passes back the index number.
307  *
308  *	Locking: caller must hold tty_mutex
309  */
310 
get_tty_driver(dev_t device,int * index)311 static struct tty_driver *get_tty_driver(dev_t device, int *index)
312 {
313 	struct tty_driver *p;
314 
315 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
316 		dev_t base = MKDEV(p->major, p->minor_start);
317 		if (device < base || device >= base + p->num)
318 			continue;
319 		*index = device - base;
320 		return tty_driver_kref_get(p);
321 	}
322 	return NULL;
323 }
324 
325 #ifdef CONFIG_CONSOLE_POLL
326 
327 /**
328  *	tty_find_polling_driver	-	find device of a polled tty
329  *	@name: name string to match
330  *	@line: pointer to resulting tty line nr
331  *
332  *	This routine returns a tty driver structure, given a name
333  *	and the condition that the tty driver is capable of polled
334  *	operation.
335  */
tty_find_polling_driver(char * name,int * line)336 struct tty_driver *tty_find_polling_driver(char *name, int *line)
337 {
338 	struct tty_driver *p, *res = NULL;
339 	int tty_line = 0;
340 	int len;
341 	char *str, *stp;
342 
343 	for (str = name; *str; str++)
344 		if ((*str >= '0' && *str <= '9') || *str == ',')
345 			break;
346 	if (!*str)
347 		return NULL;
348 
349 	len = str - name;
350 	tty_line = simple_strtoul(str, &str, 10);
351 
352 	mutex_lock(&tty_mutex);
353 	/* Search through the tty devices to look for a match */
354 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
355 		if (strncmp(name, p->name, len) != 0)
356 			continue;
357 		stp = str;
358 		if (*stp == ',')
359 			stp++;
360 		if (*stp == '\0')
361 			stp = NULL;
362 
363 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
364 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
365 			res = tty_driver_kref_get(p);
366 			*line = tty_line;
367 			break;
368 		}
369 	}
370 	mutex_unlock(&tty_mutex);
371 
372 	return res;
373 }
374 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
375 #endif
376 
377 /**
378  *	tty_check_change	-	check for POSIX terminal changes
379  *	@tty: tty to check
380  *
381  *	If we try to write to, or set the state of, a terminal and we're
382  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
383  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
384  *
385  *	Locking: ctrl_lock
386  */
387 
tty_check_change(struct tty_struct * tty)388 int tty_check_change(struct tty_struct *tty)
389 {
390 	unsigned long flags;
391 	int ret = 0;
392 
393 	if (current->signal->tty != tty)
394 		return 0;
395 
396 	spin_lock_irqsave(&tty->ctrl_lock, flags);
397 
398 	if (!tty->pgrp) {
399 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
400 		goto out_unlock;
401 	}
402 	if (task_pgrp(current) == tty->pgrp)
403 		goto out_unlock;
404 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
405 	if (is_ignored(SIGTTOU))
406 		goto out;
407 	if (is_current_pgrp_orphaned()) {
408 		ret = -EIO;
409 		goto out;
410 	}
411 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
412 	set_thread_flag(TIF_SIGPENDING);
413 	ret = -ERESTARTSYS;
414 out:
415 	return ret;
416 out_unlock:
417 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
418 	return ret;
419 }
420 
421 EXPORT_SYMBOL(tty_check_change);
422 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
424 				size_t count, loff_t *ppos)
425 {
426 	return 0;
427 }
428 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
430 				 size_t count, loff_t *ppos)
431 {
432 	return -EIO;
433 }
434 
435 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
437 {
438 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
439 }
440 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
442 		unsigned long arg)
443 {
444 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
445 }
446 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)447 static long hung_up_tty_compat_ioctl(struct file *file,
448 				     unsigned int cmd, unsigned long arg)
449 {
450 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
451 }
452 
453 static const struct file_operations tty_fops = {
454 	.llseek		= no_llseek,
455 	.read		= tty_read,
456 	.write		= tty_write,
457 	.poll		= tty_poll,
458 	.unlocked_ioctl	= tty_ioctl,
459 	.compat_ioctl	= tty_compat_ioctl,
460 	.open		= tty_open,
461 	.release	= tty_release,
462 	.fasync		= tty_fasync,
463 };
464 
465 static const struct file_operations console_fops = {
466 	.llseek		= no_llseek,
467 	.read		= tty_read,
468 	.write		= redirected_tty_write,
469 	.poll		= tty_poll,
470 	.unlocked_ioctl	= tty_ioctl,
471 	.compat_ioctl	= tty_compat_ioctl,
472 	.open		= tty_open,
473 	.release	= tty_release,
474 	.fasync		= tty_fasync,
475 };
476 
477 static const struct file_operations hung_up_tty_fops = {
478 	.llseek		= no_llseek,
479 	.read		= hung_up_tty_read,
480 	.write		= hung_up_tty_write,
481 	.poll		= hung_up_tty_poll,
482 	.unlocked_ioctl	= hung_up_tty_ioctl,
483 	.compat_ioctl	= hung_up_tty_compat_ioctl,
484 	.release	= tty_release,
485 };
486 
487 static DEFINE_SPINLOCK(redirect_lock);
488 static struct file *redirect;
489 
490 /**
491  *	tty_wakeup	-	request more data
492  *	@tty: terminal
493  *
494  *	Internal and external helper for wakeups of tty. This function
495  *	informs the line discipline if present that the driver is ready
496  *	to receive more output data.
497  */
498 
tty_wakeup(struct tty_struct * tty)499 void tty_wakeup(struct tty_struct *tty)
500 {
501 	struct tty_ldisc *ld;
502 
503 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
504 		ld = tty_ldisc_ref(tty);
505 		if (ld) {
506 			if (ld->ops->write_wakeup)
507 				ld->ops->write_wakeup(tty);
508 			tty_ldisc_deref(ld);
509 		}
510 	}
511 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
512 }
513 
514 EXPORT_SYMBOL_GPL(tty_wakeup);
515 
516 /**
517  *	__tty_hangup		-	actual handler for hangup events
518  *	@work: tty device
519  *
520  *	This can be called by the "eventd" kernel thread.  That is process
521  *	synchronous but doesn't hold any locks, so we need to make sure we
522  *	have the appropriate locks for what we're doing.
523  *
524  *	The hangup event clears any pending redirections onto the hung up
525  *	device. It ensures future writes will error and it does the needed
526  *	line discipline hangup and signal delivery. The tty object itself
527  *	remains intact.
528  *
529  *	Locking:
530  *		BTM
531  *		  redirect lock for undoing redirection
532  *		  file list lock for manipulating list of ttys
533  *		  tty_ldisc_lock from called functions
534  *		  termios_mutex resetting termios data
535  *		  tasklist_lock to walk task list for hangup event
536  *		    ->siglock to protect ->signal/->sighand
537  */
__tty_hangup(struct tty_struct * tty)538 void __tty_hangup(struct tty_struct *tty)
539 {
540 	struct file *cons_filp = NULL;
541 	struct file *filp, *f = NULL;
542 	struct task_struct *p;
543 	struct tty_file_private *priv;
544 	int    closecount = 0, n;
545 	unsigned long flags;
546 	int refs = 0;
547 
548 	if (!tty)
549 		return;
550 
551 
552 	spin_lock(&redirect_lock);
553 	if (redirect && file_tty(redirect) == tty) {
554 		f = redirect;
555 		redirect = NULL;
556 	}
557 	spin_unlock(&redirect_lock);
558 
559 	tty_lock();
560 
561 	/* some functions below drop BTM, so we need this bit */
562 	set_bit(TTY_HUPPING, &tty->flags);
563 
564 	/* inuse_filps is protected by the single tty lock,
565 	   this really needs to change if we want to flush the
566 	   workqueue with the lock held */
567 	check_tty_count(tty, "tty_hangup");
568 
569 	spin_lock(&tty_files_lock);
570 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
571 	list_for_each_entry(priv, &tty->tty_files, list) {
572 		filp = priv->file;
573 		if (filp->f_op->write == redirected_tty_write)
574 			cons_filp = filp;
575 		if (filp->f_op->write != tty_write)
576 			continue;
577 		closecount++;
578 		__tty_fasync(-1, filp, 0);	/* can't block */
579 		filp->f_op = &hung_up_tty_fops;
580 	}
581 	spin_unlock(&tty_files_lock);
582 
583 	/*
584 	 * it drops BTM and thus races with reopen
585 	 * we protect the race by TTY_HUPPING
586 	 */
587 	tty_ldisc_hangup(tty);
588 
589 	read_lock(&tasklist_lock);
590 	if (tty->session) {
591 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
592 			spin_lock_irq(&p->sighand->siglock);
593 			if (p->signal->tty == tty) {
594 				p->signal->tty = NULL;
595 				/* We defer the dereferences outside fo
596 				   the tasklist lock */
597 				refs++;
598 			}
599 			if (!p->signal->leader) {
600 				spin_unlock_irq(&p->sighand->siglock);
601 				continue;
602 			}
603 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
604 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
605 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
606 			spin_lock_irqsave(&tty->ctrl_lock, flags);
607 			if (tty->pgrp)
608 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
609 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
610 			spin_unlock_irq(&p->sighand->siglock);
611 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
612 	}
613 	read_unlock(&tasklist_lock);
614 
615 	spin_lock_irqsave(&tty->ctrl_lock, flags);
616 	clear_bit(TTY_THROTTLED, &tty->flags);
617 	clear_bit(TTY_PUSH, &tty->flags);
618 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
619 	put_pid(tty->session);
620 	put_pid(tty->pgrp);
621 	tty->session = NULL;
622 	tty->pgrp = NULL;
623 	tty->ctrl_status = 0;
624 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625 
626 	/* Account for the p->signal references we killed */
627 	while (refs--)
628 		tty_kref_put(tty);
629 
630 	/*
631 	 * If one of the devices matches a console pointer, we
632 	 * cannot just call hangup() because that will cause
633 	 * tty->count and state->count to go out of sync.
634 	 * So we just call close() the right number of times.
635 	 */
636 	if (cons_filp) {
637 		if (tty->ops->close)
638 			for (n = 0; n < closecount; n++)
639 				tty->ops->close(tty, cons_filp);
640 	} else if (tty->ops->hangup)
641 		(tty->ops->hangup)(tty);
642 	/*
643 	 * We don't want to have driver/ldisc interactions beyond
644 	 * the ones we did here. The driver layer expects no
645 	 * calls after ->hangup() from the ldisc side. However we
646 	 * can't yet guarantee all that.
647 	 */
648 	set_bit(TTY_HUPPED, &tty->flags);
649 	clear_bit(TTY_HUPPING, &tty->flags);
650 	tty_ldisc_enable(tty);
651 
652 	tty_unlock();
653 
654 	if (f)
655 		fput(f);
656 }
657 
do_tty_hangup(struct work_struct * work)658 static void do_tty_hangup(struct work_struct *work)
659 {
660 	struct tty_struct *tty =
661 		container_of(work, struct tty_struct, hangup_work);
662 
663 	__tty_hangup(tty);
664 }
665 
666 /**
667  *	tty_hangup		-	trigger a hangup event
668  *	@tty: tty to hangup
669  *
670  *	A carrier loss (virtual or otherwise) has occurred on this like
671  *	schedule a hangup sequence to run after this event.
672  */
673 
tty_hangup(struct tty_struct * tty)674 void tty_hangup(struct tty_struct *tty)
675 {
676 #ifdef TTY_DEBUG_HANGUP
677 	char	buf[64];
678 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
679 #endif
680 	schedule_work(&tty->hangup_work);
681 }
682 
683 EXPORT_SYMBOL(tty_hangup);
684 
685 /**
686  *	tty_vhangup		-	process vhangup
687  *	@tty: tty to hangup
688  *
689  *	The user has asked via system call for the terminal to be hung up.
690  *	We do this synchronously so that when the syscall returns the process
691  *	is complete. That guarantee is necessary for security reasons.
692  */
693 
tty_vhangup(struct tty_struct * tty)694 void tty_vhangup(struct tty_struct *tty)
695 {
696 #ifdef TTY_DEBUG_HANGUP
697 	char	buf[64];
698 
699 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
700 #endif
701 	__tty_hangup(tty);
702 }
703 
704 EXPORT_SYMBOL(tty_vhangup);
705 
706 
707 /**
708  *	tty_vhangup_self	-	process vhangup for own ctty
709  *
710  *	Perform a vhangup on the current controlling tty
711  */
712 
tty_vhangup_self(void)713 void tty_vhangup_self(void)
714 {
715 	struct tty_struct *tty;
716 
717 	tty = get_current_tty();
718 	if (tty) {
719 		tty_vhangup(tty);
720 		tty_kref_put(tty);
721 	}
722 }
723 
724 /**
725  *	tty_hung_up_p		-	was tty hung up
726  *	@filp: file pointer of tty
727  *
728  *	Return true if the tty has been subject to a vhangup or a carrier
729  *	loss
730  */
731 
tty_hung_up_p(struct file * filp)732 int tty_hung_up_p(struct file *filp)
733 {
734 	return (filp->f_op == &hung_up_tty_fops);
735 }
736 
737 EXPORT_SYMBOL(tty_hung_up_p);
738 
session_clear_tty(struct pid * session)739 static void session_clear_tty(struct pid *session)
740 {
741 	struct task_struct *p;
742 	do_each_pid_task(session, PIDTYPE_SID, p) {
743 		proc_clear_tty(p);
744 	} while_each_pid_task(session, PIDTYPE_SID, p);
745 }
746 
747 /**
748  *	disassociate_ctty	-	disconnect controlling tty
749  *	@on_exit: true if exiting so need to "hang up" the session
750  *
751  *	This function is typically called only by the session leader, when
752  *	it wants to disassociate itself from its controlling tty.
753  *
754  *	It performs the following functions:
755  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
756  * 	(2)  Clears the tty from being controlling the session
757  * 	(3)  Clears the controlling tty for all processes in the
758  * 		session group.
759  *
760  *	The argument on_exit is set to 1 if called when a process is
761  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
762  *
763  *	Locking:
764  *		BTM is taken for hysterical raisins, and held when
765  *		  called from no_tty().
766  *		  tty_mutex is taken to protect tty
767  *		  ->siglock is taken to protect ->signal/->sighand
768  *		  tasklist_lock is taken to walk process list for sessions
769  *		    ->siglock is taken to protect ->signal/->sighand
770  */
771 
disassociate_ctty(int on_exit)772 void disassociate_ctty(int on_exit)
773 {
774 	struct tty_struct *tty;
775 	struct pid *tty_pgrp = NULL;
776 
777 	if (!current->signal->leader)
778 		return;
779 
780 	tty = get_current_tty();
781 	if (tty) {
782 		tty_pgrp = get_pid(tty->pgrp);
783 		if (on_exit) {
784 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
785 				tty_vhangup(tty);
786 		}
787 		tty_kref_put(tty);
788 	} else if (on_exit) {
789 		struct pid *old_pgrp;
790 		spin_lock_irq(&current->sighand->siglock);
791 		old_pgrp = current->signal->tty_old_pgrp;
792 		current->signal->tty_old_pgrp = NULL;
793 		spin_unlock_irq(&current->sighand->siglock);
794 		if (old_pgrp) {
795 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
796 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
797 			put_pid(old_pgrp);
798 		}
799 		return;
800 	}
801 	if (tty_pgrp) {
802 		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
803 		if (!on_exit)
804 			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
805 		put_pid(tty_pgrp);
806 	}
807 
808 	spin_lock_irq(&current->sighand->siglock);
809 	put_pid(current->signal->tty_old_pgrp);
810 	current->signal->tty_old_pgrp = NULL;
811 	spin_unlock_irq(&current->sighand->siglock);
812 
813 	tty = get_current_tty();
814 	if (tty) {
815 		unsigned long flags;
816 		spin_lock_irqsave(&tty->ctrl_lock, flags);
817 		put_pid(tty->session);
818 		put_pid(tty->pgrp);
819 		tty->session = NULL;
820 		tty->pgrp = NULL;
821 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
822 		tty_kref_put(tty);
823 	} else {
824 #ifdef TTY_DEBUG_HANGUP
825 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
826 		       " = NULL", tty);
827 #endif
828 	}
829 
830 	/* Now clear signal->tty under the lock */
831 	read_lock(&tasklist_lock);
832 	session_clear_tty(task_session(current));
833 	read_unlock(&tasklist_lock);
834 }
835 
836 /**
837  *
838  *	no_tty	- Ensure the current process does not have a controlling tty
839  */
no_tty(void)840 void no_tty(void)
841 {
842 	struct task_struct *tsk = current;
843 	tty_lock();
844 	disassociate_ctty(0);
845 	tty_unlock();
846 	proc_clear_tty(tsk);
847 }
848 
849 
850 /**
851  *	stop_tty	-	propagate flow control
852  *	@tty: tty to stop
853  *
854  *	Perform flow control to the driver. For PTY/TTY pairs we
855  *	must also propagate the TIOCKPKT status. May be called
856  *	on an already stopped device and will not re-call the driver
857  *	method.
858  *
859  *	This functionality is used by both the line disciplines for
860  *	halting incoming flow and by the driver. It may therefore be
861  *	called from any context, may be under the tty atomic_write_lock
862  *	but not always.
863  *
864  *	Locking:
865  *		Uses the tty control lock internally
866  */
867 
stop_tty(struct tty_struct * tty)868 void stop_tty(struct tty_struct *tty)
869 {
870 	unsigned long flags;
871 	spin_lock_irqsave(&tty->ctrl_lock, flags);
872 	if (tty->stopped) {
873 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
874 		return;
875 	}
876 	tty->stopped = 1;
877 	if (tty->link && tty->link->packet) {
878 		tty->ctrl_status &= ~TIOCPKT_START;
879 		tty->ctrl_status |= TIOCPKT_STOP;
880 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
881 	}
882 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
883 	if (tty->ops->stop)
884 		(tty->ops->stop)(tty);
885 }
886 
887 EXPORT_SYMBOL(stop_tty);
888 
889 /**
890  *	start_tty	-	propagate flow control
891  *	@tty: tty to start
892  *
893  *	Start a tty that has been stopped if at all possible. Perform
894  *	any necessary wakeups and propagate the TIOCPKT status. If this
895  *	is the tty was previous stopped and is being started then the
896  *	driver start method is invoked and the line discipline woken.
897  *
898  *	Locking:
899  *		ctrl_lock
900  */
901 
start_tty(struct tty_struct * tty)902 void start_tty(struct tty_struct *tty)
903 {
904 	unsigned long flags;
905 	spin_lock_irqsave(&tty->ctrl_lock, flags);
906 	if (!tty->stopped || tty->flow_stopped) {
907 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
908 		return;
909 	}
910 	tty->stopped = 0;
911 	if (tty->link && tty->link->packet) {
912 		tty->ctrl_status &= ~TIOCPKT_STOP;
913 		tty->ctrl_status |= TIOCPKT_START;
914 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
915 	}
916 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
917 	if (tty->ops->start)
918 		(tty->ops->start)(tty);
919 	/* If we have a running line discipline it may need kicking */
920 	tty_wakeup(tty);
921 }
922 
923 EXPORT_SYMBOL(start_tty);
924 
925 /**
926  *	tty_read	-	read method for tty device files
927  *	@file: pointer to tty file
928  *	@buf: user buffer
929  *	@count: size of user buffer
930  *	@ppos: unused
931  *
932  *	Perform the read system call function on this terminal device. Checks
933  *	for hung up devices before calling the line discipline method.
934  *
935  *	Locking:
936  *		Locks the line discipline internally while needed. Multiple
937  *	read calls may be outstanding in parallel.
938  */
939 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)940 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
941 			loff_t *ppos)
942 {
943 	int i;
944 	struct inode *inode = file->f_path.dentry->d_inode;
945 	struct tty_struct *tty = file_tty(file);
946 	struct tty_ldisc *ld;
947 
948 	if (tty_paranoia_check(tty, inode, "tty_read"))
949 		return -EIO;
950 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
951 		return -EIO;
952 
953 	/* We want to wait for the line discipline to sort out in this
954 	   situation */
955 	ld = tty_ldisc_ref_wait(tty);
956 	if (ld->ops->read)
957 		i = (ld->ops->read)(tty, file, buf, count);
958 	else
959 		i = -EIO;
960 	tty_ldisc_deref(ld);
961 	if (i > 0)
962 		inode->i_atime = current_fs_time(inode->i_sb);
963 	return i;
964 }
965 
tty_write_unlock(struct tty_struct * tty)966 void tty_write_unlock(struct tty_struct *tty)
967 {
968 	mutex_unlock(&tty->atomic_write_lock);
969 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970 }
971 
tty_write_lock(struct tty_struct * tty,int ndelay)972 int tty_write_lock(struct tty_struct *tty, int ndelay)
973 {
974 	if (!mutex_trylock(&tty->atomic_write_lock)) {
975 		if (ndelay)
976 			return -EAGAIN;
977 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
978 			return -ERESTARTSYS;
979 	}
980 	return 0;
981 }
982 
983 /*
984  * Split writes up in sane blocksizes to avoid
985  * denial-of-service type attacks
986  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)987 static inline ssize_t do_tty_write(
988 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
989 	struct tty_struct *tty,
990 	struct file *file,
991 	const char __user *buf,
992 	size_t count)
993 {
994 	ssize_t ret, written = 0;
995 	unsigned int chunk;
996 
997 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
998 	if (ret < 0)
999 		return ret;
1000 
1001 	/*
1002 	 * We chunk up writes into a temporary buffer. This
1003 	 * simplifies low-level drivers immensely, since they
1004 	 * don't have locking issues and user mode accesses.
1005 	 *
1006 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1007 	 * big chunk-size..
1008 	 *
1009 	 * The default chunk-size is 2kB, because the NTTY
1010 	 * layer has problems with bigger chunks. It will
1011 	 * claim to be able to handle more characters than
1012 	 * it actually does.
1013 	 *
1014 	 * FIXME: This can probably go away now except that 64K chunks
1015 	 * are too likely to fail unless switched to vmalloc...
1016 	 */
1017 	chunk = 2048;
1018 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1019 		chunk = 65536;
1020 	if (count < chunk)
1021 		chunk = count;
1022 
1023 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1024 	if (tty->write_cnt < chunk) {
1025 		unsigned char *buf_chunk;
1026 
1027 		if (chunk < 1024)
1028 			chunk = 1024;
1029 
1030 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1031 		if (!buf_chunk) {
1032 			ret = -ENOMEM;
1033 			goto out;
1034 		}
1035 		kfree(tty->write_buf);
1036 		tty->write_cnt = chunk;
1037 		tty->write_buf = buf_chunk;
1038 	}
1039 
1040 	/* Do the write .. */
1041 	for (;;) {
1042 		size_t size = count;
1043 		if (size > chunk)
1044 			size = chunk;
1045 		ret = -EFAULT;
1046 		if (copy_from_user(tty->write_buf, buf, size))
1047 			break;
1048 		ret = write(tty, file, tty->write_buf, size);
1049 		if (ret <= 0)
1050 			break;
1051 		written += ret;
1052 		buf += ret;
1053 		count -= ret;
1054 		if (!count)
1055 			break;
1056 		ret = -ERESTARTSYS;
1057 		if (signal_pending(current))
1058 			break;
1059 		cond_resched();
1060 	}
1061 	if (written) {
1062 		struct inode *inode = file->f_path.dentry->d_inode;
1063 		inode->i_mtime = current_fs_time(inode->i_sb);
1064 		ret = written;
1065 	}
1066 out:
1067 	tty_write_unlock(tty);
1068 	return ret;
1069 }
1070 
1071 /**
1072  * tty_write_message - write a message to a certain tty, not just the console.
1073  * @tty: the destination tty_struct
1074  * @msg: the message to write
1075  *
1076  * This is used for messages that need to be redirected to a specific tty.
1077  * We don't put it into the syslog queue right now maybe in the future if
1078  * really needed.
1079  *
1080  * We must still hold the BTM and test the CLOSING flag for the moment.
1081  */
1082 
tty_write_message(struct tty_struct * tty,char * msg)1083 void tty_write_message(struct tty_struct *tty, char *msg)
1084 {
1085 	if (tty) {
1086 		mutex_lock(&tty->atomic_write_lock);
1087 		tty_lock();
1088 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1089 			tty_unlock();
1090 			tty->ops->write(tty, msg, strlen(msg));
1091 		} else
1092 			tty_unlock();
1093 		tty_write_unlock(tty);
1094 	}
1095 	return;
1096 }
1097 
1098 
1099 /**
1100  *	tty_write		-	write method for tty device file
1101  *	@file: tty file pointer
1102  *	@buf: user data to write
1103  *	@count: bytes to write
1104  *	@ppos: unused
1105  *
1106  *	Write data to a tty device via the line discipline.
1107  *
1108  *	Locking:
1109  *		Locks the line discipline as required
1110  *		Writes to the tty driver are serialized by the atomic_write_lock
1111  *	and are then processed in chunks to the device. The line discipline
1112  *	write method will not be invoked in parallel for each device.
1113  */
1114 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1115 static ssize_t tty_write(struct file *file, const char __user *buf,
1116 						size_t count, loff_t *ppos)
1117 {
1118 	struct inode *inode = file->f_path.dentry->d_inode;
1119 	struct tty_struct *tty = file_tty(file);
1120  	struct tty_ldisc *ld;
1121 	ssize_t ret;
1122 
1123 	if (tty_paranoia_check(tty, inode, "tty_write"))
1124 		return -EIO;
1125 	if (!tty || !tty->ops->write ||
1126 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1127 			return -EIO;
1128 	/* Short term debug to catch buggy drivers */
1129 	if (tty->ops->write_room == NULL)
1130 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1131 			tty->driver->name);
1132 	ld = tty_ldisc_ref_wait(tty);
1133 	if (!ld->ops->write)
1134 		ret = -EIO;
1135 	else
1136 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1137 	tty_ldisc_deref(ld);
1138 	return ret;
1139 }
1140 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1141 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1142 						size_t count, loff_t *ppos)
1143 {
1144 	struct file *p = NULL;
1145 
1146 	spin_lock(&redirect_lock);
1147 	if (redirect) {
1148 		get_file(redirect);
1149 		p = redirect;
1150 	}
1151 	spin_unlock(&redirect_lock);
1152 
1153 	if (p) {
1154 		ssize_t res;
1155 		res = vfs_write(p, buf, count, &p->f_pos);
1156 		fput(p);
1157 		return res;
1158 	}
1159 	return tty_write(file, buf, count, ppos);
1160 }
1161 
1162 static char ptychar[] = "pqrstuvwxyzabcde";
1163 
1164 /**
1165  *	pty_line_name	-	generate name for a pty
1166  *	@driver: the tty driver in use
1167  *	@index: the minor number
1168  *	@p: output buffer of at least 6 bytes
1169  *
1170  *	Generate a name from a driver reference and write it to the output
1171  *	buffer.
1172  *
1173  *	Locking: None
1174  */
pty_line_name(struct tty_driver * driver,int index,char * p)1175 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1176 {
1177 	int i = index + driver->name_base;
1178 	/* ->name is initialized to "ttyp", but "tty" is expected */
1179 	sprintf(p, "%s%c%x",
1180 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1181 		ptychar[i >> 4 & 0xf], i & 0xf);
1182 }
1183 
1184 /**
1185  *	tty_line_name	-	generate name for a tty
1186  *	@driver: the tty driver in use
1187  *	@index: the minor number
1188  *	@p: output buffer of at least 7 bytes
1189  *
1190  *	Generate a name from a driver reference and write it to the output
1191  *	buffer.
1192  *
1193  *	Locking: None
1194  */
tty_line_name(struct tty_driver * driver,int index,char * p)1195 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1198 }
1199 
1200 /**
1201  *	tty_driver_lookup_tty() - find an existing tty, if any
1202  *	@driver: the driver for the tty
1203  *	@idx:	 the minor number
1204  *
1205  *	Return the tty, if found or ERR_PTR() otherwise.
1206  *
1207  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1208  *	be held until the 'fast-open' is also done. Will change once we
1209  *	have refcounting in the driver and per driver locking
1210  */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1211 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1212 		struct inode *inode, int idx)
1213 {
1214 	struct tty_struct *tty;
1215 
1216 	if (driver->ops->lookup)
1217 		return driver->ops->lookup(driver, inode, idx);
1218 
1219 	tty = driver->ttys[idx];
1220 	return tty;
1221 }
1222 
1223 /**
1224  *	tty_init_termios	-  helper for termios setup
1225  *	@tty: the tty to set up
1226  *
1227  *	Initialise the termios structures for this tty. Thus runs under
1228  *	the tty_mutex currently so we can be relaxed about ordering.
1229  */
1230 
tty_init_termios(struct tty_struct * tty)1231 int tty_init_termios(struct tty_struct *tty)
1232 {
1233 	struct ktermios *tp;
1234 	int idx = tty->index;
1235 
1236 	tp = tty->driver->termios[idx];
1237 	if (tp == NULL) {
1238 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1239 		if (tp == NULL)
1240 			return -ENOMEM;
1241 		memcpy(tp, &tty->driver->init_termios,
1242 						sizeof(struct ktermios));
1243 		tty->driver->termios[idx] = tp;
1244 	}
1245 	tty->termios = tp;
1246 	tty->termios_locked = tp + 1;
1247 
1248 	/* Compatibility until drivers always set this */
1249 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1250 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(tty_init_termios);
1254 
1255 /**
1256  *	tty_driver_install_tty() - install a tty entry in the driver
1257  *	@driver: the driver for the tty
1258  *	@tty: the tty
1259  *
1260  *	Install a tty object into the driver tables. The tty->index field
1261  *	will be set by the time this is called. This method is responsible
1262  *	for ensuring any need additional structures are allocated and
1263  *	configured.
1264  *
1265  *	Locking: tty_mutex for now
1266  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1267 static int tty_driver_install_tty(struct tty_driver *driver,
1268 						struct tty_struct *tty)
1269 {
1270 	int idx = tty->index;
1271 	int ret;
1272 
1273 	if (driver->ops->install) {
1274 		ret = driver->ops->install(driver, tty);
1275 		return ret;
1276 	}
1277 
1278 	if (tty_init_termios(tty) == 0) {
1279 		tty_driver_kref_get(driver);
1280 		tty->count++;
1281 		driver->ttys[idx] = tty;
1282 		return 0;
1283 	}
1284 	return -ENOMEM;
1285 }
1286 
1287 /**
1288  *	tty_driver_remove_tty() - remove a tty from the driver tables
1289  *	@driver: the driver for the tty
1290  *	@idx:	 the minor number
1291  *
1292  *	Remvoe a tty object from the driver tables. The tty->index field
1293  *	will be set by the time this is called.
1294  *
1295  *	Locking: tty_mutex for now
1296  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1297 static void tty_driver_remove_tty(struct tty_driver *driver,
1298 						struct tty_struct *tty)
1299 {
1300 	if (driver->ops->remove)
1301 		driver->ops->remove(driver, tty);
1302 	else
1303 		driver->ttys[tty->index] = NULL;
1304 }
1305 
1306 /*
1307  * 	tty_reopen()	- fast re-open of an open tty
1308  * 	@tty	- the tty to open
1309  *
1310  *	Return 0 on success, -errno on error.
1311  *
1312  *	Locking: tty_mutex must be held from the time the tty was found
1313  *		 till this open completes.
1314  */
tty_reopen(struct tty_struct * tty)1315 static int tty_reopen(struct tty_struct *tty)
1316 {
1317 	struct tty_driver *driver = tty->driver;
1318 
1319 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320 			test_bit(TTY_HUPPING, &tty->flags) ||
1321 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322 		return -EIO;
1323 
1324 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325 	    driver->subtype == PTY_TYPE_MASTER) {
1326 		/*
1327 		 * special case for PTY masters: only one open permitted,
1328 		 * and the slave side open count is incremented as well.
1329 		 */
1330 		if (tty->count)
1331 			return -EIO;
1332 
1333 		tty->link->count++;
1334 	}
1335 	tty->count++;
1336 	tty->driver = driver; /* N.B. why do this every time?? */
1337 
1338 	mutex_lock(&tty->ldisc_mutex);
1339 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340 	mutex_unlock(&tty->ldisc_mutex);
1341 
1342 	return 0;
1343 }
1344 
1345 /**
1346  *	tty_init_dev		-	initialise a tty device
1347  *	@driver: tty driver we are opening a device on
1348  *	@idx: device index
1349  *	@ret_tty: returned tty structure
1350  *	@first_ok: ok to open a new device (used by ptmx)
1351  *
1352  *	Prepare a tty device. This may not be a "new" clean device but
1353  *	could also be an active device. The pty drivers require special
1354  *	handling because of this.
1355  *
1356  *	Locking:
1357  *		The function is called under the tty_mutex, which
1358  *	protects us from the tty struct or driver itself going away.
1359  *
1360  *	On exit the tty device has the line discipline attached and
1361  *	a reference count of 1. If a pair was created for pty/tty use
1362  *	and the other was a pty master then it too has a reference count of 1.
1363  *
1364  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365  * failed open.  The new code protects the open with a mutex, so it's
1366  * really quite straightforward.  The mutex locking can probably be
1367  * relaxed for the (most common) case of reopening a tty.
1368  */
1369 
tty_init_dev(struct tty_driver * driver,int idx,int first_ok)1370 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371 								int first_ok)
1372 {
1373 	struct tty_struct *tty;
1374 	int retval;
1375 
1376 	/* Check if pty master is being opened multiple times */
1377 	if (driver->subtype == PTY_TYPE_MASTER &&
1378 		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379 		return ERR_PTR(-EIO);
1380 	}
1381 
1382 	/*
1383 	 * First time open is complex, especially for PTY devices.
1384 	 * This code guarantees that either everything succeeds and the
1385 	 * TTY is ready for operation, or else the table slots are vacated
1386 	 * and the allocated memory released.  (Except that the termios
1387 	 * and locked termios may be retained.)
1388 	 */
1389 
1390 	if (!try_module_get(driver->owner))
1391 		return ERR_PTR(-ENODEV);
1392 
1393 	tty = alloc_tty_struct();
1394 	if (!tty)
1395 		goto fail_no_mem;
1396 	initialize_tty_struct(tty, driver, idx);
1397 
1398 	retval = tty_driver_install_tty(driver, tty);
1399 	if (retval < 0) {
1400 		free_tty_struct(tty);
1401 		module_put(driver->owner);
1402 		return ERR_PTR(retval);
1403 	}
1404 
1405 	/*
1406 	 * Structures all installed ... call the ldisc open routines.
1407 	 * If we fail here just call release_tty to clean up.  No need
1408 	 * to decrement the use counts, as release_tty doesn't care.
1409 	 */
1410 	retval = tty_ldisc_setup(tty, tty->link);
1411 	if (retval)
1412 		goto release_mem_out;
1413 	return tty;
1414 
1415 fail_no_mem:
1416 	module_put(driver->owner);
1417 	return ERR_PTR(-ENOMEM);
1418 
1419 	/* call the tty release_tty routine to clean out this slot */
1420 release_mem_out:
1421 	if (printk_ratelimit())
1422 		printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1423 				 "clearing slot %d\n", idx);
1424 	release_tty(tty, idx);
1425 	return ERR_PTR(retval);
1426 }
1427 
tty_free_termios(struct tty_struct * tty)1428 void tty_free_termios(struct tty_struct *tty)
1429 {
1430 	struct ktermios *tp;
1431 	int idx = tty->index;
1432 	/* Kill this flag and push into drivers for locking etc */
1433 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1434 		/* FIXME: Locking on ->termios array */
1435 		tp = tty->termios;
1436 		tty->driver->termios[idx] = NULL;
1437 		kfree(tp);
1438 	}
1439 }
1440 EXPORT_SYMBOL(tty_free_termios);
1441 
tty_shutdown(struct tty_struct * tty)1442 void tty_shutdown(struct tty_struct *tty)
1443 {
1444 	tty_driver_remove_tty(tty->driver, tty);
1445 	tty_free_termios(tty);
1446 }
1447 EXPORT_SYMBOL(tty_shutdown);
1448 
1449 /**
1450  *	release_one_tty		-	release tty structure memory
1451  *	@kref: kref of tty we are obliterating
1452  *
1453  *	Releases memory associated with a tty structure, and clears out the
1454  *	driver table slots. This function is called when a device is no longer
1455  *	in use. It also gets called when setup of a device fails.
1456  *
1457  *	Locking:
1458  *		tty_mutex - sometimes only
1459  *		takes the file list lock internally when working on the list
1460  *	of ttys that the driver keeps.
1461  *
1462  *	This method gets called from a work queue so that the driver private
1463  *	cleanup ops can sleep (needed for USB at least)
1464  */
release_one_tty(struct work_struct * work)1465 static void release_one_tty(struct work_struct *work)
1466 {
1467 	struct tty_struct *tty =
1468 		container_of(work, struct tty_struct, hangup_work);
1469 	struct tty_driver *driver = tty->driver;
1470 
1471 	if (tty->ops->cleanup)
1472 		tty->ops->cleanup(tty);
1473 
1474 	tty->magic = 0;
1475 	tty_driver_kref_put(driver);
1476 	module_put(driver->owner);
1477 
1478 	spin_lock(&tty_files_lock);
1479 	list_del_init(&tty->tty_files);
1480 	spin_unlock(&tty_files_lock);
1481 
1482 	put_pid(tty->pgrp);
1483 	put_pid(tty->session);
1484 	free_tty_struct(tty);
1485 }
1486 
queue_release_one_tty(struct kref * kref)1487 static void queue_release_one_tty(struct kref *kref)
1488 {
1489 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1490 
1491 	if (tty->ops->shutdown)
1492 		tty->ops->shutdown(tty);
1493 	else
1494 		tty_shutdown(tty);
1495 
1496 	/* The hangup queue is now free so we can reuse it rather than
1497 	   waste a chunk of memory for each port */
1498 	INIT_WORK(&tty->hangup_work, release_one_tty);
1499 	schedule_work(&tty->hangup_work);
1500 }
1501 
1502 /**
1503  *	tty_kref_put		-	release a tty kref
1504  *	@tty: tty device
1505  *
1506  *	Release a reference to a tty device and if need be let the kref
1507  *	layer destruct the object for us
1508  */
1509 
tty_kref_put(struct tty_struct * tty)1510 void tty_kref_put(struct tty_struct *tty)
1511 {
1512 	if (tty)
1513 		kref_put(&tty->kref, queue_release_one_tty);
1514 }
1515 EXPORT_SYMBOL(tty_kref_put);
1516 
1517 /**
1518  *	release_tty		-	release tty structure memory
1519  *
1520  *	Release both @tty and a possible linked partner (think pty pair),
1521  *	and decrement the refcount of the backing module.
1522  *
1523  *	Locking:
1524  *		tty_mutex - sometimes only
1525  *		takes the file list lock internally when working on the list
1526  *	of ttys that the driver keeps.
1527  *		FIXME: should we require tty_mutex is held here ??
1528  *
1529  */
release_tty(struct tty_struct * tty,int idx)1530 static void release_tty(struct tty_struct *tty, int idx)
1531 {
1532 	/* This should always be true but check for the moment */
1533 	WARN_ON(tty->index != idx);
1534 
1535 	if (tty->link)
1536 		tty_kref_put(tty->link);
1537 	tty_kref_put(tty);
1538 }
1539 
1540 /**
1541  *	tty_release		-	vfs callback for close
1542  *	@inode: inode of tty
1543  *	@filp: file pointer for handle to tty
1544  *
1545  *	Called the last time each file handle is closed that references
1546  *	this tty. There may however be several such references.
1547  *
1548  *	Locking:
1549  *		Takes bkl. See tty_release_dev
1550  *
1551  * Even releasing the tty structures is a tricky business.. We have
1552  * to be very careful that the structures are all released at the
1553  * same time, as interrupts might otherwise get the wrong pointers.
1554  *
1555  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1556  * lead to double frees or releasing memory still in use.
1557  */
1558 
tty_release(struct inode * inode,struct file * filp)1559 int tty_release(struct inode *inode, struct file *filp)
1560 {
1561 	struct tty_struct *tty = file_tty(filp);
1562 	struct tty_struct *o_tty;
1563 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1564 	int	devpts;
1565 	int	idx;
1566 	char	buf[64];
1567 
1568 	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1569 		return 0;
1570 
1571 	tty_lock();
1572 	check_tty_count(tty, "tty_release_dev");
1573 
1574 	__tty_fasync(-1, filp, 0);
1575 
1576 	idx = tty->index;
1577 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1578 		      tty->driver->subtype == PTY_TYPE_MASTER);
1579 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1580 	o_tty = tty->link;
1581 
1582 #ifdef TTY_PARANOIA_CHECK
1583 	if (idx < 0 || idx >= tty->driver->num) {
1584 		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1585 				  "free (%s)\n", tty->name);
1586 		tty_unlock();
1587 		return 0;
1588 	}
1589 	if (!devpts) {
1590 		if (tty != tty->driver->ttys[idx]) {
1591 			tty_unlock();
1592 			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1593 			       "for (%s)\n", idx, tty->name);
1594 			return 0;
1595 		}
1596 		if (tty->termios != tty->driver->termios[idx]) {
1597 			tty_unlock();
1598 			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1599 			       "for (%s)\n",
1600 			       idx, tty->name);
1601 			return 0;
1602 		}
1603 	}
1604 #endif
1605 
1606 #ifdef TTY_DEBUG_HANGUP
1607 	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1608 	       tty_name(tty, buf), tty->count);
1609 #endif
1610 
1611 #ifdef TTY_PARANOIA_CHECK
1612 	if (tty->driver->other &&
1613 	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1614 		if (o_tty != tty->driver->other->ttys[idx]) {
1615 			tty_unlock();
1616 			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1617 					  "not o_tty for (%s)\n",
1618 			       idx, tty->name);
1619 			return 0 ;
1620 		}
1621 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1622 			tty_unlock();
1623 			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1624 					  "not o_termios for (%s)\n",
1625 			       idx, tty->name);
1626 			return 0;
1627 		}
1628 		if (o_tty->link != tty) {
1629 			tty_unlock();
1630 			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1631 			return 0;
1632 		}
1633 	}
1634 #endif
1635 	if (tty->ops->close)
1636 		tty->ops->close(tty, filp);
1637 
1638 	tty_unlock();
1639 	/*
1640 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1641 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1642 	 * wait queues and kick everyone out _before_ actually starting to
1643 	 * close.  This ensures that we won't block while releasing the tty
1644 	 * structure.
1645 	 *
1646 	 * The test for the o_tty closing is necessary, since the master and
1647 	 * slave sides may close in any order.  If the slave side closes out
1648 	 * first, its count will be one, since the master side holds an open.
1649 	 * Thus this test wouldn't be triggered at the time the slave closes,
1650 	 * so we do it now.
1651 	 *
1652 	 * Note that it's possible for the tty to be opened again while we're
1653 	 * flushing out waiters.  By recalculating the closing flags before
1654 	 * each iteration we avoid any problems.
1655 	 */
1656 	while (1) {
1657 		/* Guard against races with tty->count changes elsewhere and
1658 		   opens on /dev/tty */
1659 
1660 		mutex_lock(&tty_mutex);
1661 		tty_lock();
1662 		tty_closing = tty->count <= 1;
1663 		o_tty_closing = o_tty &&
1664 			(o_tty->count <= (pty_master ? 1 : 0));
1665 		do_sleep = 0;
1666 
1667 		if (tty_closing) {
1668 			if (waitqueue_active(&tty->read_wait)) {
1669 				wake_up_poll(&tty->read_wait, POLLIN);
1670 				do_sleep++;
1671 			}
1672 			if (waitqueue_active(&tty->write_wait)) {
1673 				wake_up_poll(&tty->write_wait, POLLOUT);
1674 				do_sleep++;
1675 			}
1676 		}
1677 		if (o_tty_closing) {
1678 			if (waitqueue_active(&o_tty->read_wait)) {
1679 				wake_up_poll(&o_tty->read_wait, POLLIN);
1680 				do_sleep++;
1681 			}
1682 			if (waitqueue_active(&o_tty->write_wait)) {
1683 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1684 				do_sleep++;
1685 			}
1686 		}
1687 		if (!do_sleep)
1688 			break;
1689 
1690 		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1691 				    "active!\n", tty_name(tty, buf));
1692 		tty_unlock();
1693 		mutex_unlock(&tty_mutex);
1694 		schedule();
1695 	}
1696 
1697 	/*
1698 	 * The closing flags are now consistent with the open counts on
1699 	 * both sides, and we've completed the last operation that could
1700 	 * block, so it's safe to proceed with closing.
1701 	 */
1702 	if (pty_master) {
1703 		if (--o_tty->count < 0) {
1704 			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1705 					    "(%d) for %s\n",
1706 			       o_tty->count, tty_name(o_tty, buf));
1707 			o_tty->count = 0;
1708 		}
1709 	}
1710 	if (--tty->count < 0) {
1711 		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1712 		       tty->count, tty_name(tty, buf));
1713 		tty->count = 0;
1714 	}
1715 
1716 	/*
1717 	 * We've decremented tty->count, so we need to remove this file
1718 	 * descriptor off the tty->tty_files list; this serves two
1719 	 * purposes:
1720 	 *  - check_tty_count sees the correct number of file descriptors
1721 	 *    associated with this tty.
1722 	 *  - do_tty_hangup no longer sees this file descriptor as
1723 	 *    something that needs to be handled for hangups.
1724 	 */
1725 	tty_del_file(filp);
1726 
1727 	/*
1728 	 * Perform some housekeeping before deciding whether to return.
1729 	 *
1730 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1731 	 * case of a pty we may have to wait around for the other side
1732 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1733 	 */
1734 	if (tty_closing)
1735 		set_bit(TTY_CLOSING, &tty->flags);
1736 	if (o_tty_closing)
1737 		set_bit(TTY_CLOSING, &o_tty->flags);
1738 
1739 	/*
1740 	 * If _either_ side is closing, make sure there aren't any
1741 	 * processes that still think tty or o_tty is their controlling
1742 	 * tty.
1743 	 */
1744 	if (tty_closing || o_tty_closing) {
1745 		read_lock(&tasklist_lock);
1746 		session_clear_tty(tty->session);
1747 		if (o_tty)
1748 			session_clear_tty(o_tty->session);
1749 		read_unlock(&tasklist_lock);
1750 	}
1751 
1752 	mutex_unlock(&tty_mutex);
1753 
1754 	/* check whether both sides are closing ... */
1755 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1756 		tty_unlock();
1757 		return 0;
1758 	}
1759 
1760 #ifdef TTY_DEBUG_HANGUP
1761 	printk(KERN_DEBUG "freeing tty structure...");
1762 #endif
1763 	/*
1764 	 * Ask the line discipline code to release its structures
1765 	 */
1766 	tty_ldisc_release(tty, o_tty);
1767 	/*
1768 	 * The release_tty function takes care of the details of clearing
1769 	 * the slots and preserving the termios structure.
1770 	 */
1771 	release_tty(tty, idx);
1772 
1773 	/* Make this pty number available for reallocation */
1774 	if (devpts)
1775 		devpts_kill_index(inode, idx);
1776 	tty_unlock();
1777 	return 0;
1778 }
1779 
1780 /**
1781  *	tty_open		-	open a tty device
1782  *	@inode: inode of device file
1783  *	@filp: file pointer to tty
1784  *
1785  *	tty_open and tty_release keep up the tty count that contains the
1786  *	number of opens done on a tty. We cannot use the inode-count, as
1787  *	different inodes might point to the same tty.
1788  *
1789  *	Open-counting is needed for pty masters, as well as for keeping
1790  *	track of serial lines: DTR is dropped when the last close happens.
1791  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1792  *
1793  *	The termios state of a pty is reset on first open so that
1794  *	settings don't persist across reuse.
1795  *
1796  *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1797  *		 tty->count should protect the rest.
1798  *		 ->siglock protects ->signal/->sighand
1799  */
1800 
tty_open(struct inode * inode,struct file * filp)1801 static int tty_open(struct inode *inode, struct file *filp)
1802 {
1803 	struct tty_struct *tty = NULL;
1804 	int noctty, retval;
1805 	struct tty_driver *driver;
1806 	int index;
1807 	dev_t device = inode->i_rdev;
1808 	unsigned saved_flags = filp->f_flags;
1809 
1810 	nonseekable_open(inode, filp);
1811 
1812 retry_open:
1813 	noctty = filp->f_flags & O_NOCTTY;
1814 	index  = -1;
1815 	retval = 0;
1816 
1817 	mutex_lock(&tty_mutex);
1818 	tty_lock();
1819 
1820 	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1821 		tty = get_current_tty();
1822 		if (!tty) {
1823 			tty_unlock();
1824 			mutex_unlock(&tty_mutex);
1825 			return -ENXIO;
1826 		}
1827 		driver = tty_driver_kref_get(tty->driver);
1828 		index = tty->index;
1829 		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1830 		/* noctty = 1; */
1831 		/* FIXME: Should we take a driver reference ? */
1832 		tty_kref_put(tty);
1833 		goto got_driver;
1834 	}
1835 #ifdef CONFIG_VT
1836 	if (device == MKDEV(TTY_MAJOR, 0)) {
1837 		extern struct tty_driver *console_driver;
1838 		driver = tty_driver_kref_get(console_driver);
1839 		index = fg_console;
1840 		noctty = 1;
1841 		goto got_driver;
1842 	}
1843 #endif
1844 	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1845 		struct tty_driver *console_driver = console_device(&index);
1846 		if (console_driver) {
1847 			driver = tty_driver_kref_get(console_driver);
1848 			if (driver) {
1849 				/* Don't let /dev/console block */
1850 				filp->f_flags |= O_NONBLOCK;
1851 				noctty = 1;
1852 				goto got_driver;
1853 			}
1854 		}
1855 		tty_unlock();
1856 		mutex_unlock(&tty_mutex);
1857 		return -ENODEV;
1858 	}
1859 
1860 	driver = get_tty_driver(device, &index);
1861 	if (!driver) {
1862 		tty_unlock();
1863 		mutex_unlock(&tty_mutex);
1864 		return -ENODEV;
1865 	}
1866 got_driver:
1867 	if (!tty) {
1868 		/* check whether we're reopening an existing tty */
1869 		tty = tty_driver_lookup_tty(driver, inode, index);
1870 
1871 		if (IS_ERR(tty)) {
1872 			tty_unlock();
1873 			mutex_unlock(&tty_mutex);
1874 			return PTR_ERR(tty);
1875 		}
1876 	}
1877 
1878 	if (tty) {
1879 		retval = tty_reopen(tty);
1880 		if (retval)
1881 			tty = ERR_PTR(retval);
1882 	} else
1883 		tty = tty_init_dev(driver, index, 0);
1884 
1885 	mutex_unlock(&tty_mutex);
1886 	tty_driver_kref_put(driver);
1887 	if (IS_ERR(tty)) {
1888 		tty_unlock();
1889 		return PTR_ERR(tty);
1890 	}
1891 
1892 	retval = tty_add_file(tty, filp);
1893 	if (retval) {
1894 		tty_unlock();
1895 		return retval;
1896 	}
1897 
1898 	check_tty_count(tty, "tty_open");
1899 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1900 	    tty->driver->subtype == PTY_TYPE_MASTER)
1901 		noctty = 1;
1902 #ifdef TTY_DEBUG_HANGUP
1903 	printk(KERN_DEBUG "opening %s...", tty->name);
1904 #endif
1905 	if (!retval) {
1906 		if (tty->ops->open)
1907 			retval = tty->ops->open(tty, filp);
1908 		else
1909 			retval = -ENODEV;
1910 	}
1911 	filp->f_flags = saved_flags;
1912 
1913 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914 						!capable(CAP_SYS_ADMIN))
1915 		retval = -EBUSY;
1916 
1917 	if (retval) {
1918 #ifdef TTY_DEBUG_HANGUP
1919 		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920 		       tty->name);
1921 #endif
1922 		tty_unlock(); /* need to call tty_release without BTM */
1923 		tty_release(inode, filp);
1924 		if (retval != -ERESTARTSYS)
1925 			return retval;
1926 
1927 		if (signal_pending(current))
1928 			return retval;
1929 
1930 		schedule();
1931 		/*
1932 		 * Need to reset f_op in case a hangup happened.
1933 		 */
1934 		tty_lock();
1935 		if (filp->f_op == &hung_up_tty_fops)
1936 			filp->f_op = &tty_fops;
1937 		tty_unlock();
1938 		goto retry_open;
1939 	}
1940 	tty_unlock();
1941 
1942 
1943 	mutex_lock(&tty_mutex);
1944 	tty_lock();
1945 	spin_lock_irq(&current->sighand->siglock);
1946 	if (!noctty &&
1947 	    current->signal->leader &&
1948 	    !current->signal->tty &&
1949 	    tty->session == NULL)
1950 		__proc_set_tty(current, tty);
1951 	spin_unlock_irq(&current->sighand->siglock);
1952 	tty_unlock();
1953 	mutex_unlock(&tty_mutex);
1954 	return 0;
1955 }
1956 
1957 
1958 
1959 /**
1960  *	tty_poll	-	check tty status
1961  *	@filp: file being polled
1962  *	@wait: poll wait structures to update
1963  *
1964  *	Call the line discipline polling method to obtain the poll
1965  *	status of the device.
1966  *
1967  *	Locking: locks called line discipline but ldisc poll method
1968  *	may be re-entered freely by other callers.
1969  */
1970 
tty_poll(struct file * filp,poll_table * wait)1971 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972 {
1973 	struct tty_struct *tty = file_tty(filp);
1974 	struct tty_ldisc *ld;
1975 	int ret = 0;
1976 
1977 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978 		return 0;
1979 
1980 	ld = tty_ldisc_ref_wait(tty);
1981 	if (ld->ops->poll)
1982 		ret = (ld->ops->poll)(tty, filp, wait);
1983 	tty_ldisc_deref(ld);
1984 	return ret;
1985 }
1986 
__tty_fasync(int fd,struct file * filp,int on)1987 static int __tty_fasync(int fd, struct file *filp, int on)
1988 {
1989 	struct tty_struct *tty = file_tty(filp);
1990 	unsigned long flags;
1991 	int retval = 0;
1992 
1993 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994 		goto out;
1995 
1996 	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997 	if (retval <= 0)
1998 		goto out;
1999 
2000 	if (on) {
2001 		enum pid_type type;
2002 		struct pid *pid;
2003 		if (!waitqueue_active(&tty->read_wait))
2004 			tty->minimum_to_wake = 1;
2005 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006 		if (tty->pgrp) {
2007 			pid = tty->pgrp;
2008 			type = PIDTYPE_PGID;
2009 		} else {
2010 			pid = task_pid(current);
2011 			type = PIDTYPE_PID;
2012 		}
2013 		get_pid(pid);
2014 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015 		retval = __f_setown(filp, pid, type, 0);
2016 		put_pid(pid);
2017 		if (retval)
2018 			goto out;
2019 	} else {
2020 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022 	}
2023 	retval = 0;
2024 out:
2025 	return retval;
2026 }
2027 
tty_fasync(int fd,struct file * filp,int on)2028 static int tty_fasync(int fd, struct file *filp, int on)
2029 {
2030 	int retval;
2031 	tty_lock();
2032 	retval = __tty_fasync(fd, filp, on);
2033 	tty_unlock();
2034 	return retval;
2035 }
2036 
2037 /**
2038  *	tiocsti			-	fake input character
2039  *	@tty: tty to fake input into
2040  *	@p: pointer to character
2041  *
2042  *	Fake input to a tty device. Does the necessary locking and
2043  *	input management.
2044  *
2045  *	FIXME: does not honour flow control ??
2046  *
2047  *	Locking:
2048  *		Called functions take tty_ldisc_lock
2049  *		current->signal->tty check is safe without locks
2050  *
2051  *	FIXME: may race normal receive processing
2052  */
2053 
tiocsti(struct tty_struct * tty,char __user * p)2054 static int tiocsti(struct tty_struct *tty, char __user *p)
2055 {
2056 	char ch, mbz = 0;
2057 	struct tty_ldisc *ld;
2058 
2059 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060 		return -EPERM;
2061 	if (get_user(ch, p))
2062 		return -EFAULT;
2063 	tty_audit_tiocsti(tty, ch);
2064 	ld = tty_ldisc_ref_wait(tty);
2065 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066 	tty_ldisc_deref(ld);
2067 	return 0;
2068 }
2069 
2070 /**
2071  *	tiocgwinsz		-	implement window query ioctl
2072  *	@tty; tty
2073  *	@arg: user buffer for result
2074  *
2075  *	Copies the kernel idea of the window size into the user buffer.
2076  *
2077  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078  *		is consistent.
2079  */
2080 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2081 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082 {
2083 	int err;
2084 
2085 	mutex_lock(&tty->termios_mutex);
2086 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087 	mutex_unlock(&tty->termios_mutex);
2088 
2089 	return err ? -EFAULT: 0;
2090 }
2091 
2092 /**
2093  *	tty_do_resize		-	resize event
2094  *	@tty: tty being resized
2095  *	@rows: rows (character)
2096  *	@cols: cols (character)
2097  *
2098  *	Update the termios variables and send the necessary signals to
2099  *	peform a terminal resize correctly
2100  */
2101 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2102 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103 {
2104 	struct pid *pgrp;
2105 	unsigned long flags;
2106 
2107 	/* Lock the tty */
2108 	mutex_lock(&tty->termios_mutex);
2109 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110 		goto done;
2111 	/* Get the PID values and reference them so we can
2112 	   avoid holding the tty ctrl lock while sending signals */
2113 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114 	pgrp = get_pid(tty->pgrp);
2115 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116 
2117 	if (pgrp)
2118 		kill_pgrp(pgrp, SIGWINCH, 1);
2119 	put_pid(pgrp);
2120 
2121 	tty->winsize = *ws;
2122 done:
2123 	mutex_unlock(&tty->termios_mutex);
2124 	return 0;
2125 }
2126 
2127 /**
2128  *	tiocswinsz		-	implement window size set ioctl
2129  *	@tty; tty side of tty
2130  *	@arg: user buffer for result
2131  *
2132  *	Copies the user idea of the window size to the kernel. Traditionally
2133  *	this is just advisory information but for the Linux console it
2134  *	actually has driver level meaning and triggers a VC resize.
2135  *
2136  *	Locking:
2137  *		Driver dependent. The default do_resize method takes the
2138  *	tty termios mutex and ctrl_lock. The console takes its own lock
2139  *	then calls into the default method.
2140  */
2141 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2142 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143 {
2144 	struct winsize tmp_ws;
2145 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146 		return -EFAULT;
2147 
2148 	if (tty->ops->resize)
2149 		return tty->ops->resize(tty, &tmp_ws);
2150 	else
2151 		return tty_do_resize(tty, &tmp_ws);
2152 }
2153 
2154 /**
2155  *	tioccons	-	allow admin to move logical console
2156  *	@file: the file to become console
2157  *
2158  *	Allow the administrator to move the redirected console device
2159  *
2160  *	Locking: uses redirect_lock to guard the redirect information
2161  */
2162 
tioccons(struct file * file)2163 static int tioccons(struct file *file)
2164 {
2165 	if (!capable(CAP_SYS_ADMIN))
2166 		return -EPERM;
2167 	if (file->f_op->write == redirected_tty_write) {
2168 		struct file *f;
2169 		spin_lock(&redirect_lock);
2170 		f = redirect;
2171 		redirect = NULL;
2172 		spin_unlock(&redirect_lock);
2173 		if (f)
2174 			fput(f);
2175 		return 0;
2176 	}
2177 	spin_lock(&redirect_lock);
2178 	if (redirect) {
2179 		spin_unlock(&redirect_lock);
2180 		return -EBUSY;
2181 	}
2182 	get_file(file);
2183 	redirect = file;
2184 	spin_unlock(&redirect_lock);
2185 	return 0;
2186 }
2187 
2188 /**
2189  *	fionbio		-	non blocking ioctl
2190  *	@file: file to set blocking value
2191  *	@p: user parameter
2192  *
2193  *	Historical tty interfaces had a blocking control ioctl before
2194  *	the generic functionality existed. This piece of history is preserved
2195  *	in the expected tty API of posix OS's.
2196  *
2197  *	Locking: none, the open file handle ensures it won't go away.
2198  */
2199 
fionbio(struct file * file,int __user * p)2200 static int fionbio(struct file *file, int __user *p)
2201 {
2202 	int nonblock;
2203 
2204 	if (get_user(nonblock, p))
2205 		return -EFAULT;
2206 
2207 	spin_lock(&file->f_lock);
2208 	if (nonblock)
2209 		file->f_flags |= O_NONBLOCK;
2210 	else
2211 		file->f_flags &= ~O_NONBLOCK;
2212 	spin_unlock(&file->f_lock);
2213 	return 0;
2214 }
2215 
2216 /**
2217  *	tiocsctty	-	set controlling tty
2218  *	@tty: tty structure
2219  *	@arg: user argument
2220  *
2221  *	This ioctl is used to manage job control. It permits a session
2222  *	leader to set this tty as the controlling tty for the session.
2223  *
2224  *	Locking:
2225  *		Takes tty_mutex() to protect tty instance
2226  *		Takes tasklist_lock internally to walk sessions
2227  *		Takes ->siglock() when updating signal->tty
2228  */
2229 
tiocsctty(struct tty_struct * tty,int arg)2230 static int tiocsctty(struct tty_struct *tty, int arg)
2231 {
2232 	int ret = 0;
2233 	if (current->signal->leader && (task_session(current) == tty->session))
2234 		return ret;
2235 
2236 	mutex_lock(&tty_mutex);
2237 	/*
2238 	 * The process must be a session leader and
2239 	 * not have a controlling tty already.
2240 	 */
2241 	if (!current->signal->leader || current->signal->tty) {
2242 		ret = -EPERM;
2243 		goto unlock;
2244 	}
2245 
2246 	if (tty->session) {
2247 		/*
2248 		 * This tty is already the controlling
2249 		 * tty for another session group!
2250 		 */
2251 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252 			/*
2253 			 * Steal it away
2254 			 */
2255 			read_lock(&tasklist_lock);
2256 			session_clear_tty(tty->session);
2257 			read_unlock(&tasklist_lock);
2258 		} else {
2259 			ret = -EPERM;
2260 			goto unlock;
2261 		}
2262 	}
2263 	proc_set_tty(current, tty);
2264 unlock:
2265 	mutex_unlock(&tty_mutex);
2266 	return ret;
2267 }
2268 
2269 /**
2270  *	tty_get_pgrp	-	return a ref counted pgrp pid
2271  *	@tty: tty to read
2272  *
2273  *	Returns a refcounted instance of the pid struct for the process
2274  *	group controlling the tty.
2275  */
2276 
tty_get_pgrp(struct tty_struct * tty)2277 struct pid *tty_get_pgrp(struct tty_struct *tty)
2278 {
2279 	unsigned long flags;
2280 	struct pid *pgrp;
2281 
2282 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283 	pgrp = get_pid(tty->pgrp);
2284 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285 
2286 	return pgrp;
2287 }
2288 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289 
2290 /**
2291  *	tiocgpgrp		-	get process group
2292  *	@tty: tty passed by user
2293  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294  *	@p: returned pid
2295  *
2296  *	Obtain the process group of the tty. If there is no process group
2297  *	return an error.
2298  *
2299  *	Locking: none. Reference to current->signal->tty is safe.
2300  */
2301 
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2302 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303 {
2304 	struct pid *pid;
2305 	int ret;
2306 	/*
2307 	 * (tty == real_tty) is a cheap way of
2308 	 * testing if the tty is NOT a master pty.
2309 	 */
2310 	if (tty == real_tty && current->signal->tty != real_tty)
2311 		return -ENOTTY;
2312 	pid = tty_get_pgrp(real_tty);
2313 	ret =  put_user(pid_vnr(pid), p);
2314 	put_pid(pid);
2315 	return ret;
2316 }
2317 
2318 /**
2319  *	tiocspgrp		-	attempt to set process group
2320  *	@tty: tty passed by user
2321  *	@real_tty: tty side device matching tty passed by user
2322  *	@p: pid pointer
2323  *
2324  *	Set the process group of the tty to the session passed. Only
2325  *	permitted where the tty session is our session.
2326  *
2327  *	Locking: RCU, ctrl lock
2328  */
2329 
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2330 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331 {
2332 	struct pid *pgrp;
2333 	pid_t pgrp_nr;
2334 	int retval = tty_check_change(real_tty);
2335 	unsigned long flags;
2336 
2337 	if (retval == -EIO)
2338 		return -ENOTTY;
2339 	if (retval)
2340 		return retval;
2341 	if (!current->signal->tty ||
2342 	    (current->signal->tty != real_tty) ||
2343 	    (real_tty->session != task_session(current)))
2344 		return -ENOTTY;
2345 	if (get_user(pgrp_nr, p))
2346 		return -EFAULT;
2347 	if (pgrp_nr < 0)
2348 		return -EINVAL;
2349 	rcu_read_lock();
2350 	pgrp = find_vpid(pgrp_nr);
2351 	retval = -ESRCH;
2352 	if (!pgrp)
2353 		goto out_unlock;
2354 	retval = -EPERM;
2355 	if (session_of_pgrp(pgrp) != task_session(current))
2356 		goto out_unlock;
2357 	retval = 0;
2358 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359 	put_pid(real_tty->pgrp);
2360 	real_tty->pgrp = get_pid(pgrp);
2361 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362 out_unlock:
2363 	rcu_read_unlock();
2364 	return retval;
2365 }
2366 
2367 /**
2368  *	tiocgsid		-	get session id
2369  *	@tty: tty passed by user
2370  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371  *	@p: pointer to returned session id
2372  *
2373  *	Obtain the session id of the tty. If there is no session
2374  *	return an error.
2375  *
2376  *	Locking: none. Reference to current->signal->tty is safe.
2377  */
2378 
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2379 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380 {
2381 	/*
2382 	 * (tty == real_tty) is a cheap way of
2383 	 * testing if the tty is NOT a master pty.
2384 	*/
2385 	if (tty == real_tty && current->signal->tty != real_tty)
2386 		return -ENOTTY;
2387 	if (!real_tty->session)
2388 		return -ENOTTY;
2389 	return put_user(pid_vnr(real_tty->session), p);
2390 }
2391 
2392 /**
2393  *	tiocsetd	-	set line discipline
2394  *	@tty: tty device
2395  *	@p: pointer to user data
2396  *
2397  *	Set the line discipline according to user request.
2398  *
2399  *	Locking: see tty_set_ldisc, this function is just a helper
2400  */
2401 
tiocsetd(struct tty_struct * tty,int __user * p)2402 static int tiocsetd(struct tty_struct *tty, int __user *p)
2403 {
2404 	int ldisc;
2405 	int ret;
2406 
2407 	if (get_user(ldisc, p))
2408 		return -EFAULT;
2409 
2410 	ret = tty_set_ldisc(tty, ldisc);
2411 
2412 	return ret;
2413 }
2414 
2415 /**
2416  *	send_break	-	performed time break
2417  *	@tty: device to break on
2418  *	@duration: timeout in mS
2419  *
2420  *	Perform a timed break on hardware that lacks its own driver level
2421  *	timed break functionality.
2422  *
2423  *	Locking:
2424  *		atomic_write_lock serializes
2425  *
2426  */
2427 
send_break(struct tty_struct * tty,unsigned int duration)2428 static int send_break(struct tty_struct *tty, unsigned int duration)
2429 {
2430 	int retval;
2431 
2432 	if (tty->ops->break_ctl == NULL)
2433 		return 0;
2434 
2435 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436 		retval = tty->ops->break_ctl(tty, duration);
2437 	else {
2438 		/* Do the work ourselves */
2439 		if (tty_write_lock(tty, 0) < 0)
2440 			return -EINTR;
2441 		retval = tty->ops->break_ctl(tty, -1);
2442 		if (retval)
2443 			goto out;
2444 		if (!signal_pending(current))
2445 			msleep_interruptible(duration);
2446 		retval = tty->ops->break_ctl(tty, 0);
2447 out:
2448 		tty_write_unlock(tty);
2449 		if (signal_pending(current))
2450 			retval = -EINTR;
2451 	}
2452 	return retval;
2453 }
2454 
2455 /**
2456  *	tty_tiocmget		-	get modem status
2457  *	@tty: tty device
2458  *	@file: user file pointer
2459  *	@p: pointer to result
2460  *
2461  *	Obtain the modem status bits from the tty driver if the feature
2462  *	is supported. Return -EINVAL if it is not available.
2463  *
2464  *	Locking: none (up to the driver)
2465  */
2466 
tty_tiocmget(struct tty_struct * tty,int __user * p)2467 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468 {
2469 	int retval = -EINVAL;
2470 
2471 	if (tty->ops->tiocmget) {
2472 		retval = tty->ops->tiocmget(tty);
2473 
2474 		if (retval >= 0)
2475 			retval = put_user(retval, p);
2476 	}
2477 	return retval;
2478 }
2479 
2480 /**
2481  *	tty_tiocmset		-	set modem status
2482  *	@tty: tty device
2483  *	@cmd: command - clear bits, set bits or set all
2484  *	@p: pointer to desired bits
2485  *
2486  *	Set the modem status bits from the tty driver if the feature
2487  *	is supported. Return -EINVAL if it is not available.
2488  *
2489  *	Locking: none (up to the driver)
2490  */
2491 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2492 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493 	     unsigned __user *p)
2494 {
2495 	int retval;
2496 	unsigned int set, clear, val;
2497 
2498 	if (tty->ops->tiocmset == NULL)
2499 		return -EINVAL;
2500 
2501 	retval = get_user(val, p);
2502 	if (retval)
2503 		return retval;
2504 	set = clear = 0;
2505 	switch (cmd) {
2506 	case TIOCMBIS:
2507 		set = val;
2508 		break;
2509 	case TIOCMBIC:
2510 		clear = val;
2511 		break;
2512 	case TIOCMSET:
2513 		set = val;
2514 		clear = ~val;
2515 		break;
2516 	}
2517 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 	return tty->ops->tiocmset(tty, set, clear);
2520 }
2521 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2522 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523 {
2524 	int retval = -EINVAL;
2525 	struct serial_icounter_struct icount;
2526 	memset(&icount, 0, sizeof(icount));
2527 	if (tty->ops->get_icount)
2528 		retval = tty->ops->get_icount(tty, &icount);
2529 	if (retval != 0)
2530 		return retval;
2531 	if (copy_to_user(arg, &icount, sizeof(icount)))
2532 		return -EFAULT;
2533 	return 0;
2534 }
2535 
tty_pair_get_tty(struct tty_struct * tty)2536 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537 {
2538 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539 	    tty->driver->subtype == PTY_TYPE_MASTER)
2540 		tty = tty->link;
2541 	return tty;
2542 }
2543 EXPORT_SYMBOL(tty_pair_get_tty);
2544 
tty_pair_get_pty(struct tty_struct * tty)2545 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2546 {
2547 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548 	    tty->driver->subtype == PTY_TYPE_MASTER)
2549 	    return tty;
2550 	return tty->link;
2551 }
2552 EXPORT_SYMBOL(tty_pair_get_pty);
2553 
2554 /*
2555  * Split this up, as gcc can choke on it otherwise..
2556  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2557 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558 {
2559 	struct tty_struct *tty = file_tty(file);
2560 	struct tty_struct *real_tty;
2561 	void __user *p = (void __user *)arg;
2562 	int retval;
2563 	struct tty_ldisc *ld;
2564 	struct inode *inode = file->f_dentry->d_inode;
2565 
2566 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567 		return -EINVAL;
2568 
2569 	real_tty = tty_pair_get_tty(tty);
2570 
2571 	/*
2572 	 * Factor out some common prep work
2573 	 */
2574 	switch (cmd) {
2575 	case TIOCSETD:
2576 	case TIOCSBRK:
2577 	case TIOCCBRK:
2578 	case TCSBRK:
2579 	case TCSBRKP:
2580 		retval = tty_check_change(tty);
2581 		if (retval)
2582 			return retval;
2583 		if (cmd != TIOCCBRK) {
2584 			tty_wait_until_sent(tty, 0);
2585 			if (signal_pending(current))
2586 				return -EINTR;
2587 		}
2588 		break;
2589 	}
2590 
2591 	/*
2592 	 *	Now do the stuff.
2593 	 */
2594 	switch (cmd) {
2595 	case TIOCSTI:
2596 		return tiocsti(tty, p);
2597 	case TIOCGWINSZ:
2598 		return tiocgwinsz(real_tty, p);
2599 	case TIOCSWINSZ:
2600 		return tiocswinsz(real_tty, p);
2601 	case TIOCCONS:
2602 		return real_tty != tty ? -EINVAL : tioccons(file);
2603 	case FIONBIO:
2604 		return fionbio(file, p);
2605 	case TIOCEXCL:
2606 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607 		return 0;
2608 	case TIOCNXCL:
2609 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610 		return 0;
2611 	case TIOCNOTTY:
2612 		if (current->signal->tty != tty)
2613 			return -ENOTTY;
2614 		no_tty();
2615 		return 0;
2616 	case TIOCSCTTY:
2617 		return tiocsctty(tty, arg);
2618 	case TIOCGPGRP:
2619 		return tiocgpgrp(tty, real_tty, p);
2620 	case TIOCSPGRP:
2621 		return tiocspgrp(tty, real_tty, p);
2622 	case TIOCGSID:
2623 		return tiocgsid(tty, real_tty, p);
2624 	case TIOCGETD:
2625 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626 	case TIOCSETD:
2627 		return tiocsetd(tty, p);
2628 	case TIOCVHANGUP:
2629 		if (!capable(CAP_SYS_ADMIN))
2630 			return -EPERM;
2631 		tty_vhangup(tty);
2632 		return 0;
2633 	case TIOCGDEV:
2634 	{
2635 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636 		return put_user(ret, (unsigned int __user *)p);
2637 	}
2638 	/*
2639 	 * Break handling
2640 	 */
2641 	case TIOCSBRK:	/* Turn break on, unconditionally */
2642 		if (tty->ops->break_ctl)
2643 			return tty->ops->break_ctl(tty, -1);
2644 		return 0;
2645 	case TIOCCBRK:	/* Turn break off, unconditionally */
2646 		if (tty->ops->break_ctl)
2647 			return tty->ops->break_ctl(tty, 0);
2648 		return 0;
2649 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650 		/* non-zero arg means wait for all output data
2651 		 * to be sent (performed above) but don't send break.
2652 		 * This is used by the tcdrain() termios function.
2653 		 */
2654 		if (!arg)
2655 			return send_break(tty, 250);
2656 		return 0;
2657 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658 		return send_break(tty, arg ? arg*100 : 250);
2659 
2660 	case TIOCMGET:
2661 		return tty_tiocmget(tty, p);
2662 	case TIOCMSET:
2663 	case TIOCMBIC:
2664 	case TIOCMBIS:
2665 		return tty_tiocmset(tty, cmd, p);
2666 	case TIOCGICOUNT:
2667 		retval = tty_tiocgicount(tty, p);
2668 		/* For the moment allow fall through to the old method */
2669         	if (retval != -EINVAL)
2670 			return retval;
2671 		break;
2672 	case TCFLSH:
2673 		switch (arg) {
2674 		case TCIFLUSH:
2675 		case TCIOFLUSH:
2676 		/* flush tty buffer and allow ldisc to process ioctl */
2677 			tty_buffer_flush(tty);
2678 			break;
2679 		}
2680 		break;
2681 	}
2682 	if (tty->ops->ioctl) {
2683 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684 		if (retval != -ENOIOCTLCMD)
2685 			return retval;
2686 	}
2687 	ld = tty_ldisc_ref_wait(tty);
2688 	retval = -EINVAL;
2689 	if (ld->ops->ioctl) {
2690 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691 		if (retval == -ENOIOCTLCMD)
2692 			retval = -EINVAL;
2693 	}
2694 	tty_ldisc_deref(ld);
2695 	return retval;
2696 }
2697 
2698 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2699 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700 				unsigned long arg)
2701 {
2702 	struct inode *inode = file->f_dentry->d_inode;
2703 	struct tty_struct *tty = file_tty(file);
2704 	struct tty_ldisc *ld;
2705 	int retval = -ENOIOCTLCMD;
2706 
2707 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708 		return -EINVAL;
2709 
2710 	if (tty->ops->compat_ioctl) {
2711 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712 		if (retval != -ENOIOCTLCMD)
2713 			return retval;
2714 	}
2715 
2716 	ld = tty_ldisc_ref_wait(tty);
2717 	if (ld->ops->compat_ioctl)
2718 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2719 	tty_ldisc_deref(ld);
2720 
2721 	return retval;
2722 }
2723 #endif
2724 
2725 /*
2726  * This implements the "Secure Attention Key" ---  the idea is to
2727  * prevent trojan horses by killing all processes associated with this
2728  * tty when the user hits the "Secure Attention Key".  Required for
2729  * super-paranoid applications --- see the Orange Book for more details.
2730  *
2731  * This code could be nicer; ideally it should send a HUP, wait a few
2732  * seconds, then send a INT, and then a KILL signal.  But you then
2733  * have to coordinate with the init process, since all processes associated
2734  * with the current tty must be dead before the new getty is allowed
2735  * to spawn.
2736  *
2737  * Now, if it would be correct ;-/ The current code has a nasty hole -
2738  * it doesn't catch files in flight. We may send the descriptor to ourselves
2739  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740  *
2741  * Nasty bug: do_SAK is being called in interrupt context.  This can
2742  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743  */
__do_SAK(struct tty_struct * tty)2744 void __do_SAK(struct tty_struct *tty)
2745 {
2746 #ifdef TTY_SOFT_SAK
2747 	tty_hangup(tty);
2748 #else
2749 	struct task_struct *g, *p;
2750 	struct pid *session;
2751 	int		i;
2752 	struct file	*filp;
2753 	struct fdtable *fdt;
2754 
2755 	if (!tty)
2756 		return;
2757 	session = tty->session;
2758 
2759 	tty_ldisc_flush(tty);
2760 
2761 	tty_driver_flush_buffer(tty);
2762 
2763 	read_lock(&tasklist_lock);
2764 	/* Kill the entire session */
2765 	do_each_pid_task(session, PIDTYPE_SID, p) {
2766 		printk(KERN_NOTICE "SAK: killed process %d"
2767 			" (%s): task_session(p)==tty->session\n",
2768 			task_pid_nr(p), p->comm);
2769 		send_sig(SIGKILL, p, 1);
2770 	} while_each_pid_task(session, PIDTYPE_SID, p);
2771 	/* Now kill any processes that happen to have the
2772 	 * tty open.
2773 	 */
2774 	do_each_thread(g, p) {
2775 		if (p->signal->tty == tty) {
2776 			printk(KERN_NOTICE "SAK: killed process %d"
2777 			    " (%s): task_session(p)==tty->session\n",
2778 			    task_pid_nr(p), p->comm);
2779 			send_sig(SIGKILL, p, 1);
2780 			continue;
2781 		}
2782 		task_lock(p);
2783 		if (p->files) {
2784 			/*
2785 			 * We don't take a ref to the file, so we must
2786 			 * hold ->file_lock instead.
2787 			 */
2788 			spin_lock(&p->files->file_lock);
2789 			fdt = files_fdtable(p->files);
2790 			for (i = 0; i < fdt->max_fds; i++) {
2791 				filp = fcheck_files(p->files, i);
2792 				if (!filp)
2793 					continue;
2794 				if (filp->f_op->read == tty_read &&
2795 				    file_tty(filp) == tty) {
2796 					printk(KERN_NOTICE "SAK: killed process %d"
2797 					    " (%s): fd#%d opened to the tty\n",
2798 					    task_pid_nr(p), p->comm, i);
2799 					force_sig(SIGKILL, p);
2800 					break;
2801 				}
2802 			}
2803 			spin_unlock(&p->files->file_lock);
2804 		}
2805 		task_unlock(p);
2806 	} while_each_thread(g, p);
2807 	read_unlock(&tasklist_lock);
2808 #endif
2809 }
2810 
do_SAK_work(struct work_struct * work)2811 static void do_SAK_work(struct work_struct *work)
2812 {
2813 	struct tty_struct *tty =
2814 		container_of(work, struct tty_struct, SAK_work);
2815 	__do_SAK(tty);
2816 }
2817 
2818 /*
2819  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821  * the values which we write to it will be identical to the values which it
2822  * already has. --akpm
2823  */
do_SAK(struct tty_struct * tty)2824 void do_SAK(struct tty_struct *tty)
2825 {
2826 	if (!tty)
2827 		return;
2828 	schedule_work(&tty->SAK_work);
2829 }
2830 
2831 EXPORT_SYMBOL(do_SAK);
2832 
dev_match_devt(struct device * dev,void * data)2833 static int dev_match_devt(struct device *dev, void *data)
2834 {
2835 	dev_t *devt = data;
2836 	return dev->devt == *devt;
2837 }
2838 
2839 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)2840 static struct device *tty_get_device(struct tty_struct *tty)
2841 {
2842 	dev_t devt = tty_devnum(tty);
2843 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844 }
2845 
2846 
2847 /**
2848  *	initialize_tty_struct
2849  *	@tty: tty to initialize
2850  *
2851  *	This subroutine initializes a tty structure that has been newly
2852  *	allocated.
2853  *
2854  *	Locking: none - tty in question must not be exposed at this point
2855  */
2856 
initialize_tty_struct(struct tty_struct * tty,struct tty_driver * driver,int idx)2857 void initialize_tty_struct(struct tty_struct *tty,
2858 		struct tty_driver *driver, int idx)
2859 {
2860 	memset(tty, 0, sizeof(struct tty_struct));
2861 	kref_init(&tty->kref);
2862 	tty->magic = TTY_MAGIC;
2863 	tty_ldisc_init(tty);
2864 	tty->session = NULL;
2865 	tty->pgrp = NULL;
2866 	tty->overrun_time = jiffies;
2867 	tty->buf.head = tty->buf.tail = NULL;
2868 	tty_buffer_init(tty);
2869 	mutex_init(&tty->termios_mutex);
2870 	mutex_init(&tty->ldisc_mutex);
2871 	init_waitqueue_head(&tty->write_wait);
2872 	init_waitqueue_head(&tty->read_wait);
2873 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874 	mutex_init(&tty->atomic_read_lock);
2875 	mutex_init(&tty->atomic_write_lock);
2876 	mutex_init(&tty->output_lock);
2877 	mutex_init(&tty->echo_lock);
2878 	spin_lock_init(&tty->read_lock);
2879 	spin_lock_init(&tty->ctrl_lock);
2880 	INIT_LIST_HEAD(&tty->tty_files);
2881 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882 
2883 	tty->driver = driver;
2884 	tty->ops = driver->ops;
2885 	tty->index = idx;
2886 	tty_line_name(driver, idx, tty->name);
2887 	tty->dev = tty_get_device(tty);
2888 }
2889 
2890 /**
2891  *	tty_put_char	-	write one character to a tty
2892  *	@tty: tty
2893  *	@ch: character
2894  *
2895  *	Write one byte to the tty using the provided put_char method
2896  *	if present. Returns the number of characters successfully output.
2897  *
2898  *	Note: the specific put_char operation in the driver layer may go
2899  *	away soon. Don't call it directly, use this method
2900  */
2901 
tty_put_char(struct tty_struct * tty,unsigned char ch)2902 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2903 {
2904 	if (tty->ops->put_char)
2905 		return tty->ops->put_char(tty, ch);
2906 	return tty->ops->write(tty, &ch, 1);
2907 }
2908 EXPORT_SYMBOL_GPL(tty_put_char);
2909 
2910 struct class *tty_class;
2911 
2912 /**
2913  *	tty_register_device - register a tty device
2914  *	@driver: the tty driver that describes the tty device
2915  *	@index: the index in the tty driver for this tty device
2916  *	@device: a struct device that is associated with this tty device.
2917  *		This field is optional, if there is no known struct device
2918  *		for this tty device it can be set to NULL safely.
2919  *
2920  *	Returns a pointer to the struct device for this tty device
2921  *	(or ERR_PTR(-EFOO) on error).
2922  *
2923  *	This call is required to be made to register an individual tty device
2924  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2925  *	that bit is not set, this function should not be called by a tty
2926  *	driver.
2927  *
2928  *	Locking: ??
2929  */
2930 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)2931 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2932 				   struct device *device)
2933 {
2934 	char name[64];
2935 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2936 
2937 	if (index >= driver->num) {
2938 		printk(KERN_ERR "Attempt to register invalid tty line number "
2939 		       " (%d).\n", index);
2940 		return ERR_PTR(-EINVAL);
2941 	}
2942 
2943 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2944 		pty_line_name(driver, index, name);
2945 	else
2946 		tty_line_name(driver, index, name);
2947 
2948 	return device_create(tty_class, device, dev, NULL, name);
2949 }
2950 EXPORT_SYMBOL(tty_register_device);
2951 
2952 /**
2953  * 	tty_unregister_device - unregister a tty device
2954  * 	@driver: the tty driver that describes the tty device
2955  * 	@index: the index in the tty driver for this tty device
2956  *
2957  * 	If a tty device is registered with a call to tty_register_device() then
2958  *	this function must be called when the tty device is gone.
2959  *
2960  *	Locking: ??
2961  */
2962 
tty_unregister_device(struct tty_driver * driver,unsigned index)2963 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2964 {
2965 	device_destroy(tty_class,
2966 		MKDEV(driver->major, driver->minor_start) + index);
2967 }
2968 EXPORT_SYMBOL(tty_unregister_device);
2969 
alloc_tty_driver(int lines)2970 struct tty_driver *alloc_tty_driver(int lines)
2971 {
2972 	struct tty_driver *driver;
2973 
2974 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2975 	if (driver) {
2976 		kref_init(&driver->kref);
2977 		driver->magic = TTY_DRIVER_MAGIC;
2978 		driver->num = lines;
2979 		/* later we'll move allocation of tables here */
2980 	}
2981 	return driver;
2982 }
2983 EXPORT_SYMBOL(alloc_tty_driver);
2984 
destruct_tty_driver(struct kref * kref)2985 static void destruct_tty_driver(struct kref *kref)
2986 {
2987 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2988 	int i;
2989 	struct ktermios *tp;
2990 	void *p;
2991 
2992 	if (driver->flags & TTY_DRIVER_INSTALLED) {
2993 		/*
2994 		 * Free the termios and termios_locked structures because
2995 		 * we don't want to get memory leaks when modular tty
2996 		 * drivers are removed from the kernel.
2997 		 */
2998 		for (i = 0; i < driver->num; i++) {
2999 			tp = driver->termios[i];
3000 			if (tp) {
3001 				driver->termios[i] = NULL;
3002 				kfree(tp);
3003 			}
3004 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3005 				tty_unregister_device(driver, i);
3006 		}
3007 		p = driver->ttys;
3008 		proc_tty_unregister_driver(driver);
3009 		driver->ttys = NULL;
3010 		driver->termios = NULL;
3011 		kfree(p);
3012 		cdev_del(&driver->cdev);
3013 	}
3014 	kfree(driver);
3015 }
3016 
tty_driver_kref_put(struct tty_driver * driver)3017 void tty_driver_kref_put(struct tty_driver *driver)
3018 {
3019 	kref_put(&driver->kref, destruct_tty_driver);
3020 }
3021 EXPORT_SYMBOL(tty_driver_kref_put);
3022 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3023 void tty_set_operations(struct tty_driver *driver,
3024 			const struct tty_operations *op)
3025 {
3026 	driver->ops = op;
3027 };
3028 EXPORT_SYMBOL(tty_set_operations);
3029 
put_tty_driver(struct tty_driver * d)3030 void put_tty_driver(struct tty_driver *d)
3031 {
3032 	tty_driver_kref_put(d);
3033 }
3034 EXPORT_SYMBOL(put_tty_driver);
3035 
3036 /*
3037  * Called by a tty driver to register itself.
3038  */
tty_register_driver(struct tty_driver * driver)3039 int tty_register_driver(struct tty_driver *driver)
3040 {
3041 	int error;
3042 	int i;
3043 	dev_t dev;
3044 	void **p = NULL;
3045 	struct device *d;
3046 
3047 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3048 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3049 		if (!p)
3050 			return -ENOMEM;
3051 	}
3052 
3053 	if (!driver->major) {
3054 		error = alloc_chrdev_region(&dev, driver->minor_start,
3055 						driver->num, driver->name);
3056 		if (!error) {
3057 			driver->major = MAJOR(dev);
3058 			driver->minor_start = MINOR(dev);
3059 		}
3060 	} else {
3061 		dev = MKDEV(driver->major, driver->minor_start);
3062 		error = register_chrdev_region(dev, driver->num, driver->name);
3063 	}
3064 	if (error < 0) {
3065 		kfree(p);
3066 		return error;
3067 	}
3068 
3069 	if (p) {
3070 		driver->ttys = (struct tty_struct **)p;
3071 		driver->termios = (struct ktermios **)(p + driver->num);
3072 	} else {
3073 		driver->ttys = NULL;
3074 		driver->termios = NULL;
3075 	}
3076 
3077 	cdev_init(&driver->cdev, &tty_fops);
3078 	driver->cdev.owner = driver->owner;
3079 	error = cdev_add(&driver->cdev, dev, driver->num);
3080 	if (error) {
3081 		unregister_chrdev_region(dev, driver->num);
3082 		driver->ttys = NULL;
3083 		driver->termios = NULL;
3084 		kfree(p);
3085 		return error;
3086 	}
3087 
3088 	mutex_lock(&tty_mutex);
3089 	list_add(&driver->tty_drivers, &tty_drivers);
3090 	mutex_unlock(&tty_mutex);
3091 
3092 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3093 		for (i = 0; i < driver->num; i++) {
3094 			d = tty_register_device(driver, i, NULL);
3095 			if (IS_ERR(d)) {
3096 				error = PTR_ERR(d);
3097 				goto err;
3098 			}
3099 		}
3100 	}
3101 	proc_tty_register_driver(driver);
3102 	driver->flags |= TTY_DRIVER_INSTALLED;
3103 	return 0;
3104 
3105 err:
3106 	for (i--; i >= 0; i--)
3107 		tty_unregister_device(driver, i);
3108 
3109 	mutex_lock(&tty_mutex);
3110 	list_del(&driver->tty_drivers);
3111 	mutex_unlock(&tty_mutex);
3112 
3113 	unregister_chrdev_region(dev, driver->num);
3114 	driver->ttys = NULL;
3115 	driver->termios = NULL;
3116 	kfree(p);
3117 	return error;
3118 }
3119 
3120 EXPORT_SYMBOL(tty_register_driver);
3121 
3122 /*
3123  * Called by a tty driver to unregister itself.
3124  */
tty_unregister_driver(struct tty_driver * driver)3125 int tty_unregister_driver(struct tty_driver *driver)
3126 {
3127 #if 0
3128 	/* FIXME */
3129 	if (driver->refcount)
3130 		return -EBUSY;
3131 #endif
3132 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3133 				driver->num);
3134 	mutex_lock(&tty_mutex);
3135 	list_del(&driver->tty_drivers);
3136 	mutex_unlock(&tty_mutex);
3137 	return 0;
3138 }
3139 
3140 EXPORT_SYMBOL(tty_unregister_driver);
3141 
tty_devnum(struct tty_struct * tty)3142 dev_t tty_devnum(struct tty_struct *tty)
3143 {
3144 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3145 }
3146 EXPORT_SYMBOL(tty_devnum);
3147 
proc_clear_tty(struct task_struct * p)3148 void proc_clear_tty(struct task_struct *p)
3149 {
3150 	unsigned long flags;
3151 	struct tty_struct *tty;
3152 	spin_lock_irqsave(&p->sighand->siglock, flags);
3153 	tty = p->signal->tty;
3154 	p->signal->tty = NULL;
3155 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3156 	tty_kref_put(tty);
3157 }
3158 
3159 /* Called under the sighand lock */
3160 
__proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3161 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3162 {
3163 	if (tty) {
3164 		unsigned long flags;
3165 		/* We should not have a session or pgrp to put here but.... */
3166 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3167 		put_pid(tty->session);
3168 		put_pid(tty->pgrp);
3169 		tty->pgrp = get_pid(task_pgrp(tsk));
3170 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3171 		tty->session = get_pid(task_session(tsk));
3172 		if (tsk->signal->tty) {
3173 			printk(KERN_DEBUG "tty not NULL!!\n");
3174 			tty_kref_put(tsk->signal->tty);
3175 		}
3176 	}
3177 	put_pid(tsk->signal->tty_old_pgrp);
3178 	tsk->signal->tty = tty_kref_get(tty);
3179 	tsk->signal->tty_old_pgrp = NULL;
3180 }
3181 
proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3182 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3183 {
3184 	spin_lock_irq(&tsk->sighand->siglock);
3185 	__proc_set_tty(tsk, tty);
3186 	spin_unlock_irq(&tsk->sighand->siglock);
3187 }
3188 
get_current_tty(void)3189 struct tty_struct *get_current_tty(void)
3190 {
3191 	struct tty_struct *tty;
3192 	unsigned long flags;
3193 
3194 	spin_lock_irqsave(&current->sighand->siglock, flags);
3195 	tty = tty_kref_get(current->signal->tty);
3196 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3197 	return tty;
3198 }
3199 EXPORT_SYMBOL_GPL(get_current_tty);
3200 
tty_default_fops(struct file_operations * fops)3201 void tty_default_fops(struct file_operations *fops)
3202 {
3203 	*fops = tty_fops;
3204 }
3205 
3206 /*
3207  * Initialize the console device. This is called *early*, so
3208  * we can't necessarily depend on lots of kernel help here.
3209  * Just do some early initializations, and do the complex setup
3210  * later.
3211  */
console_init(void)3212 void __init console_init(void)
3213 {
3214 	initcall_t *call;
3215 
3216 	/* Setup the default TTY line discipline. */
3217 	tty_ldisc_begin();
3218 
3219 	/*
3220 	 * set up the console device so that later boot sequences can
3221 	 * inform about problems etc..
3222 	 */
3223 	call = __con_initcall_start;
3224 	while (call < __con_initcall_end) {
3225 		(*call)();
3226 		call++;
3227 	}
3228 }
3229 
tty_devnode(struct device * dev,mode_t * mode)3230 static char *tty_devnode(struct device *dev, mode_t *mode)
3231 {
3232 	if (!mode)
3233 		return NULL;
3234 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3235 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3236 		*mode = 0666;
3237 	return NULL;
3238 }
3239 
tty_class_init(void)3240 static int __init tty_class_init(void)
3241 {
3242 	tty_class = class_create(THIS_MODULE, "tty");
3243 	if (IS_ERR(tty_class))
3244 		return PTR_ERR(tty_class);
3245 	tty_class->devnode = tty_devnode;
3246 	return 0;
3247 }
3248 
3249 postcore_initcall(tty_class_init);
3250 
3251 /* 3/2004 jmc: why do these devices exist? */
3252 static struct cdev tty_cdev, console_cdev;
3253 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3254 static ssize_t show_cons_active(struct device *dev,
3255 				struct device_attribute *attr, char *buf)
3256 {
3257 	struct console *cs[16];
3258 	int i = 0;
3259 	struct console *c;
3260 	ssize_t count = 0;
3261 
3262 	console_lock();
3263 	for_each_console(c) {
3264 		if (!c->device)
3265 			continue;
3266 		if (!c->write)
3267 			continue;
3268 		if ((c->flags & CON_ENABLED) == 0)
3269 			continue;
3270 		cs[i++] = c;
3271 		if (i >= ARRAY_SIZE(cs))
3272 			break;
3273 	}
3274 	while (i--)
3275 		count += sprintf(buf + count, "%s%d%c",
3276 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3277 	console_unlock();
3278 
3279 	return count;
3280 }
3281 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3282 
3283 static struct device *consdev;
3284 
console_sysfs_notify(void)3285 void console_sysfs_notify(void)
3286 {
3287 	if (consdev)
3288 		sysfs_notify(&consdev->kobj, NULL, "active");
3289 }
3290 
3291 /*
3292  * Ok, now we can initialize the rest of the tty devices and can count
3293  * on memory allocations, interrupts etc..
3294  */
tty_init(void)3295 int __init tty_init(void)
3296 {
3297 	cdev_init(&tty_cdev, &tty_fops);
3298 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3299 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3300 		panic("Couldn't register /dev/tty driver\n");
3301 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3302 
3303 	cdev_init(&console_cdev, &console_fops);
3304 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3305 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3306 		panic("Couldn't register /dev/console driver\n");
3307 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3308 			      "console");
3309 	if (IS_ERR(consdev))
3310 		consdev = NULL;
3311 	else
3312 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3313 
3314 #ifdef CONFIG_VT
3315 	vty_init(&console_fops);
3316 #endif
3317 	return 0;
3318 }
3319 
3320