1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 /* Spinlock to protect the tty->tty_files list */
140 DEFINE_SPINLOCK(tty_files_lock);
141
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160
161 /**
162 * alloc_tty_struct - allocate a tty object
163 *
164 * Return a new empty tty structure. The data fields have not
165 * been initialized in any way but has been zeroed
166 *
167 * Locking: none
168 */
169
alloc_tty_struct(void)170 struct tty_struct *alloc_tty_struct(void)
171 {
172 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 }
174
175 /**
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
178 *
179 * Free the write buffers, tty queue and tty memory itself.
180 *
181 * Locking: none. Must be called after tty is definitely unused
182 */
183
free_tty_struct(struct tty_struct * tty)184 void free_tty_struct(struct tty_struct *tty)
185 {
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty_buffer_free_all(tty);
190 kfree(tty);
191 }
192
file_tty(struct file * file)193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)199 int tty_add_file(struct tty_struct *tty, struct file *file)
200 {
201 struct tty_file_private *priv;
202
203 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204 if (!priv)
205 return -ENOMEM;
206
207 priv->tty = tty;
208 priv->file = file;
209 file->private_data = priv;
210
211 spin_lock(&tty_files_lock);
212 list_add(&priv->list, &tty->tty_files);
213 spin_unlock(&tty_files_lock);
214
215 return 0;
216 }
217
218 /* Delete file from its tty */
tty_del_file(struct file * file)219 void tty_del_file(struct file *file)
220 {
221 struct tty_file_private *priv = file->private_data;
222
223 spin_lock(&tty_files_lock);
224 list_del(&priv->list);
225 spin_unlock(&tty_files_lock);
226 file->private_data = NULL;
227 kfree(priv);
228 }
229
230
231 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
232
233 /**
234 * tty_name - return tty naming
235 * @tty: tty structure
236 * @buf: buffer for output
237 *
238 * Convert a tty structure into a name. The name reflects the kernel
239 * naming policy and if udev is in use may not reflect user space
240 *
241 * Locking: none
242 */
243
tty_name(struct tty_struct * tty,char * buf)244 char *tty_name(struct tty_struct *tty, char *buf)
245 {
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 strcpy(buf, "NULL tty");
248 else
249 strcpy(buf, tty->name);
250 return buf;
251 }
252
253 EXPORT_SYMBOL(tty_name);
254
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)255 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
256 const char *routine)
257 {
258 #ifdef TTY_PARANOIA_CHECK
259 if (!tty) {
260 printk(KERN_WARNING
261 "null TTY for (%d:%d) in %s\n",
262 imajor(inode), iminor(inode), routine);
263 return 1;
264 }
265 if (tty->magic != TTY_MAGIC) {
266 printk(KERN_WARNING
267 "bad magic number for tty struct (%d:%d) in %s\n",
268 imajor(inode), iminor(inode), routine);
269 return 1;
270 }
271 #endif
272 return 0;
273 }
274
check_tty_count(struct tty_struct * tty,const char * routine)275 static int check_tty_count(struct tty_struct *tty, const char *routine)
276 {
277 #ifdef CHECK_TTY_COUNT
278 struct list_head *p;
279 int count = 0;
280
281 spin_lock(&tty_files_lock);
282 list_for_each(p, &tty->tty_files) {
283 count++;
284 }
285 spin_unlock(&tty_files_lock);
286 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
287 tty->driver->subtype == PTY_TYPE_SLAVE &&
288 tty->link && tty->link->count)
289 count++;
290 if (tty->count != count) {
291 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
292 "!= #fd's(%d) in %s\n",
293 tty->name, tty->count, count, routine);
294 return count;
295 }
296 #endif
297 return 0;
298 }
299
300 /**
301 * get_tty_driver - find device of a tty
302 * @dev_t: device identifier
303 * @index: returns the index of the tty
304 *
305 * This routine returns a tty driver structure, given a device number
306 * and also passes back the index number.
307 *
308 * Locking: caller must hold tty_mutex
309 */
310
get_tty_driver(dev_t device,int * index)311 static struct tty_driver *get_tty_driver(dev_t device, int *index)
312 {
313 struct tty_driver *p;
314
315 list_for_each_entry(p, &tty_drivers, tty_drivers) {
316 dev_t base = MKDEV(p->major, p->minor_start);
317 if (device < base || device >= base + p->num)
318 continue;
319 *index = device - base;
320 return tty_driver_kref_get(p);
321 }
322 return NULL;
323 }
324
325 #ifdef CONFIG_CONSOLE_POLL
326
327 /**
328 * tty_find_polling_driver - find device of a polled tty
329 * @name: name string to match
330 * @line: pointer to resulting tty line nr
331 *
332 * This routine returns a tty driver structure, given a name
333 * and the condition that the tty driver is capable of polled
334 * operation.
335 */
tty_find_polling_driver(char * name,int * line)336 struct tty_driver *tty_find_polling_driver(char *name, int *line)
337 {
338 struct tty_driver *p, *res = NULL;
339 int tty_line = 0;
340 int len;
341 char *str, *stp;
342
343 for (str = name; *str; str++)
344 if ((*str >= '0' && *str <= '9') || *str == ',')
345 break;
346 if (!*str)
347 return NULL;
348
349 len = str - name;
350 tty_line = simple_strtoul(str, &str, 10);
351
352 mutex_lock(&tty_mutex);
353 /* Search through the tty devices to look for a match */
354 list_for_each_entry(p, &tty_drivers, tty_drivers) {
355 if (strncmp(name, p->name, len) != 0)
356 continue;
357 stp = str;
358 if (*stp == ',')
359 stp++;
360 if (*stp == '\0')
361 stp = NULL;
362
363 if (tty_line >= 0 && tty_line < p->num && p->ops &&
364 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
365 res = tty_driver_kref_get(p);
366 *line = tty_line;
367 break;
368 }
369 }
370 mutex_unlock(&tty_mutex);
371
372 return res;
373 }
374 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
375 #endif
376
377 /**
378 * tty_check_change - check for POSIX terminal changes
379 * @tty: tty to check
380 *
381 * If we try to write to, or set the state of, a terminal and we're
382 * not in the foreground, send a SIGTTOU. If the signal is blocked or
383 * ignored, go ahead and perform the operation. (POSIX 7.2)
384 *
385 * Locking: ctrl_lock
386 */
387
tty_check_change(struct tty_struct * tty)388 int tty_check_change(struct tty_struct *tty)
389 {
390 unsigned long flags;
391 int ret = 0;
392
393 if (current->signal->tty != tty)
394 return 0;
395
396 spin_lock_irqsave(&tty->ctrl_lock, flags);
397
398 if (!tty->pgrp) {
399 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
400 goto out_unlock;
401 }
402 if (task_pgrp(current) == tty->pgrp)
403 goto out_unlock;
404 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
405 if (is_ignored(SIGTTOU))
406 goto out;
407 if (is_current_pgrp_orphaned()) {
408 ret = -EIO;
409 goto out;
410 }
411 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
412 set_thread_flag(TIF_SIGPENDING);
413 ret = -ERESTARTSYS;
414 out:
415 return ret;
416 out_unlock:
417 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
418 return ret;
419 }
420
421 EXPORT_SYMBOL(tty_check_change);
422
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
424 size_t count, loff_t *ppos)
425 {
426 return 0;
427 }
428
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
430 size_t count, loff_t *ppos)
431 {
432 return -EIO;
433 }
434
435 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
437 {
438 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
439 }
440
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
442 unsigned long arg)
443 {
444 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
445 }
446
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)447 static long hung_up_tty_compat_ioctl(struct file *file,
448 unsigned int cmd, unsigned long arg)
449 {
450 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
451 }
452
453 static const struct file_operations tty_fops = {
454 .llseek = no_llseek,
455 .read = tty_read,
456 .write = tty_write,
457 .poll = tty_poll,
458 .unlocked_ioctl = tty_ioctl,
459 .compat_ioctl = tty_compat_ioctl,
460 .open = tty_open,
461 .release = tty_release,
462 .fasync = tty_fasync,
463 };
464
465 static const struct file_operations console_fops = {
466 .llseek = no_llseek,
467 .read = tty_read,
468 .write = redirected_tty_write,
469 .poll = tty_poll,
470 .unlocked_ioctl = tty_ioctl,
471 .compat_ioctl = tty_compat_ioctl,
472 .open = tty_open,
473 .release = tty_release,
474 .fasync = tty_fasync,
475 };
476
477 static const struct file_operations hung_up_tty_fops = {
478 .llseek = no_llseek,
479 .read = hung_up_tty_read,
480 .write = hung_up_tty_write,
481 .poll = hung_up_tty_poll,
482 .unlocked_ioctl = hung_up_tty_ioctl,
483 .compat_ioctl = hung_up_tty_compat_ioctl,
484 .release = tty_release,
485 };
486
487 static DEFINE_SPINLOCK(redirect_lock);
488 static struct file *redirect;
489
490 /**
491 * tty_wakeup - request more data
492 * @tty: terminal
493 *
494 * Internal and external helper for wakeups of tty. This function
495 * informs the line discipline if present that the driver is ready
496 * to receive more output data.
497 */
498
tty_wakeup(struct tty_struct * tty)499 void tty_wakeup(struct tty_struct *tty)
500 {
501 struct tty_ldisc *ld;
502
503 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
504 ld = tty_ldisc_ref(tty);
505 if (ld) {
506 if (ld->ops->write_wakeup)
507 ld->ops->write_wakeup(tty);
508 tty_ldisc_deref(ld);
509 }
510 }
511 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
512 }
513
514 EXPORT_SYMBOL_GPL(tty_wakeup);
515
516 /**
517 * __tty_hangup - actual handler for hangup events
518 * @work: tty device
519 *
520 * This can be called by the "eventd" kernel thread. That is process
521 * synchronous but doesn't hold any locks, so we need to make sure we
522 * have the appropriate locks for what we're doing.
523 *
524 * The hangup event clears any pending redirections onto the hung up
525 * device. It ensures future writes will error and it does the needed
526 * line discipline hangup and signal delivery. The tty object itself
527 * remains intact.
528 *
529 * Locking:
530 * BTM
531 * redirect lock for undoing redirection
532 * file list lock for manipulating list of ttys
533 * tty_ldisc_lock from called functions
534 * termios_mutex resetting termios data
535 * tasklist_lock to walk task list for hangup event
536 * ->siglock to protect ->signal/->sighand
537 */
__tty_hangup(struct tty_struct * tty)538 void __tty_hangup(struct tty_struct *tty)
539 {
540 struct file *cons_filp = NULL;
541 struct file *filp, *f = NULL;
542 struct task_struct *p;
543 struct tty_file_private *priv;
544 int closecount = 0, n;
545 unsigned long flags;
546 int refs = 0;
547
548 if (!tty)
549 return;
550
551
552 spin_lock(&redirect_lock);
553 if (redirect && file_tty(redirect) == tty) {
554 f = redirect;
555 redirect = NULL;
556 }
557 spin_unlock(&redirect_lock);
558
559 tty_lock();
560
561 /* some functions below drop BTM, so we need this bit */
562 set_bit(TTY_HUPPING, &tty->flags);
563
564 /* inuse_filps is protected by the single tty lock,
565 this really needs to change if we want to flush the
566 workqueue with the lock held */
567 check_tty_count(tty, "tty_hangup");
568
569 spin_lock(&tty_files_lock);
570 /* This breaks for file handles being sent over AF_UNIX sockets ? */
571 list_for_each_entry(priv, &tty->tty_files, list) {
572 filp = priv->file;
573 if (filp->f_op->write == redirected_tty_write)
574 cons_filp = filp;
575 if (filp->f_op->write != tty_write)
576 continue;
577 closecount++;
578 __tty_fasync(-1, filp, 0); /* can't block */
579 filp->f_op = &hung_up_tty_fops;
580 }
581 spin_unlock(&tty_files_lock);
582
583 /*
584 * it drops BTM and thus races with reopen
585 * we protect the race by TTY_HUPPING
586 */
587 tty_ldisc_hangup(tty);
588
589 read_lock(&tasklist_lock);
590 if (tty->session) {
591 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
592 spin_lock_irq(&p->sighand->siglock);
593 if (p->signal->tty == tty) {
594 p->signal->tty = NULL;
595 /* We defer the dereferences outside fo
596 the tasklist lock */
597 refs++;
598 }
599 if (!p->signal->leader) {
600 spin_unlock_irq(&p->sighand->siglock);
601 continue;
602 }
603 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
604 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
605 put_pid(p->signal->tty_old_pgrp); /* A noop */
606 spin_lock_irqsave(&tty->ctrl_lock, flags);
607 if (tty->pgrp)
608 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
609 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
610 spin_unlock_irq(&p->sighand->siglock);
611 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
612 }
613 read_unlock(&tasklist_lock);
614
615 spin_lock_irqsave(&tty->ctrl_lock, flags);
616 clear_bit(TTY_THROTTLED, &tty->flags);
617 clear_bit(TTY_PUSH, &tty->flags);
618 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
619 put_pid(tty->session);
620 put_pid(tty->pgrp);
621 tty->session = NULL;
622 tty->pgrp = NULL;
623 tty->ctrl_status = 0;
624 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625
626 /* Account for the p->signal references we killed */
627 while (refs--)
628 tty_kref_put(tty);
629
630 /*
631 * If one of the devices matches a console pointer, we
632 * cannot just call hangup() because that will cause
633 * tty->count and state->count to go out of sync.
634 * So we just call close() the right number of times.
635 */
636 if (cons_filp) {
637 if (tty->ops->close)
638 for (n = 0; n < closecount; n++)
639 tty->ops->close(tty, cons_filp);
640 } else if (tty->ops->hangup)
641 (tty->ops->hangup)(tty);
642 /*
643 * We don't want to have driver/ldisc interactions beyond
644 * the ones we did here. The driver layer expects no
645 * calls after ->hangup() from the ldisc side. However we
646 * can't yet guarantee all that.
647 */
648 set_bit(TTY_HUPPED, &tty->flags);
649 clear_bit(TTY_HUPPING, &tty->flags);
650 tty_ldisc_enable(tty);
651
652 tty_unlock();
653
654 if (f)
655 fput(f);
656 }
657
do_tty_hangup(struct work_struct * work)658 static void do_tty_hangup(struct work_struct *work)
659 {
660 struct tty_struct *tty =
661 container_of(work, struct tty_struct, hangup_work);
662
663 __tty_hangup(tty);
664 }
665
666 /**
667 * tty_hangup - trigger a hangup event
668 * @tty: tty to hangup
669 *
670 * A carrier loss (virtual or otherwise) has occurred on this like
671 * schedule a hangup sequence to run after this event.
672 */
673
tty_hangup(struct tty_struct * tty)674 void tty_hangup(struct tty_struct *tty)
675 {
676 #ifdef TTY_DEBUG_HANGUP
677 char buf[64];
678 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
679 #endif
680 schedule_work(&tty->hangup_work);
681 }
682
683 EXPORT_SYMBOL(tty_hangup);
684
685 /**
686 * tty_vhangup - process vhangup
687 * @tty: tty to hangup
688 *
689 * The user has asked via system call for the terminal to be hung up.
690 * We do this synchronously so that when the syscall returns the process
691 * is complete. That guarantee is necessary for security reasons.
692 */
693
tty_vhangup(struct tty_struct * tty)694 void tty_vhangup(struct tty_struct *tty)
695 {
696 #ifdef TTY_DEBUG_HANGUP
697 char buf[64];
698
699 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
700 #endif
701 __tty_hangup(tty);
702 }
703
704 EXPORT_SYMBOL(tty_vhangup);
705
706
707 /**
708 * tty_vhangup_self - process vhangup for own ctty
709 *
710 * Perform a vhangup on the current controlling tty
711 */
712
tty_vhangup_self(void)713 void tty_vhangup_self(void)
714 {
715 struct tty_struct *tty;
716
717 tty = get_current_tty();
718 if (tty) {
719 tty_vhangup(tty);
720 tty_kref_put(tty);
721 }
722 }
723
724 /**
725 * tty_hung_up_p - was tty hung up
726 * @filp: file pointer of tty
727 *
728 * Return true if the tty has been subject to a vhangup or a carrier
729 * loss
730 */
731
tty_hung_up_p(struct file * filp)732 int tty_hung_up_p(struct file *filp)
733 {
734 return (filp->f_op == &hung_up_tty_fops);
735 }
736
737 EXPORT_SYMBOL(tty_hung_up_p);
738
session_clear_tty(struct pid * session)739 static void session_clear_tty(struct pid *session)
740 {
741 struct task_struct *p;
742 do_each_pid_task(session, PIDTYPE_SID, p) {
743 proc_clear_tty(p);
744 } while_each_pid_task(session, PIDTYPE_SID, p);
745 }
746
747 /**
748 * disassociate_ctty - disconnect controlling tty
749 * @on_exit: true if exiting so need to "hang up" the session
750 *
751 * This function is typically called only by the session leader, when
752 * it wants to disassociate itself from its controlling tty.
753 *
754 * It performs the following functions:
755 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
756 * (2) Clears the tty from being controlling the session
757 * (3) Clears the controlling tty for all processes in the
758 * session group.
759 *
760 * The argument on_exit is set to 1 if called when a process is
761 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
762 *
763 * Locking:
764 * BTM is taken for hysterical raisins, and held when
765 * called from no_tty().
766 * tty_mutex is taken to protect tty
767 * ->siglock is taken to protect ->signal/->sighand
768 * tasklist_lock is taken to walk process list for sessions
769 * ->siglock is taken to protect ->signal/->sighand
770 */
771
disassociate_ctty(int on_exit)772 void disassociate_ctty(int on_exit)
773 {
774 struct tty_struct *tty;
775 struct pid *tty_pgrp = NULL;
776
777 if (!current->signal->leader)
778 return;
779
780 tty = get_current_tty();
781 if (tty) {
782 tty_pgrp = get_pid(tty->pgrp);
783 if (on_exit) {
784 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
785 tty_vhangup(tty);
786 }
787 tty_kref_put(tty);
788 } else if (on_exit) {
789 struct pid *old_pgrp;
790 spin_lock_irq(¤t->sighand->siglock);
791 old_pgrp = current->signal->tty_old_pgrp;
792 current->signal->tty_old_pgrp = NULL;
793 spin_unlock_irq(¤t->sighand->siglock);
794 if (old_pgrp) {
795 kill_pgrp(old_pgrp, SIGHUP, on_exit);
796 kill_pgrp(old_pgrp, SIGCONT, on_exit);
797 put_pid(old_pgrp);
798 }
799 return;
800 }
801 if (tty_pgrp) {
802 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
803 if (!on_exit)
804 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
805 put_pid(tty_pgrp);
806 }
807
808 spin_lock_irq(¤t->sighand->siglock);
809 put_pid(current->signal->tty_old_pgrp);
810 current->signal->tty_old_pgrp = NULL;
811 spin_unlock_irq(¤t->sighand->siglock);
812
813 tty = get_current_tty();
814 if (tty) {
815 unsigned long flags;
816 spin_lock_irqsave(&tty->ctrl_lock, flags);
817 put_pid(tty->session);
818 put_pid(tty->pgrp);
819 tty->session = NULL;
820 tty->pgrp = NULL;
821 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
822 tty_kref_put(tty);
823 } else {
824 #ifdef TTY_DEBUG_HANGUP
825 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
826 " = NULL", tty);
827 #endif
828 }
829
830 /* Now clear signal->tty under the lock */
831 read_lock(&tasklist_lock);
832 session_clear_tty(task_session(current));
833 read_unlock(&tasklist_lock);
834 }
835
836 /**
837 *
838 * no_tty - Ensure the current process does not have a controlling tty
839 */
no_tty(void)840 void no_tty(void)
841 {
842 struct task_struct *tsk = current;
843 tty_lock();
844 disassociate_ctty(0);
845 tty_unlock();
846 proc_clear_tty(tsk);
847 }
848
849
850 /**
851 * stop_tty - propagate flow control
852 * @tty: tty to stop
853 *
854 * Perform flow control to the driver. For PTY/TTY pairs we
855 * must also propagate the TIOCKPKT status. May be called
856 * on an already stopped device and will not re-call the driver
857 * method.
858 *
859 * This functionality is used by both the line disciplines for
860 * halting incoming flow and by the driver. It may therefore be
861 * called from any context, may be under the tty atomic_write_lock
862 * but not always.
863 *
864 * Locking:
865 * Uses the tty control lock internally
866 */
867
stop_tty(struct tty_struct * tty)868 void stop_tty(struct tty_struct *tty)
869 {
870 unsigned long flags;
871 spin_lock_irqsave(&tty->ctrl_lock, flags);
872 if (tty->stopped) {
873 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
874 return;
875 }
876 tty->stopped = 1;
877 if (tty->link && tty->link->packet) {
878 tty->ctrl_status &= ~TIOCPKT_START;
879 tty->ctrl_status |= TIOCPKT_STOP;
880 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
881 }
882 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
883 if (tty->ops->stop)
884 (tty->ops->stop)(tty);
885 }
886
887 EXPORT_SYMBOL(stop_tty);
888
889 /**
890 * start_tty - propagate flow control
891 * @tty: tty to start
892 *
893 * Start a tty that has been stopped if at all possible. Perform
894 * any necessary wakeups and propagate the TIOCPKT status. If this
895 * is the tty was previous stopped and is being started then the
896 * driver start method is invoked and the line discipline woken.
897 *
898 * Locking:
899 * ctrl_lock
900 */
901
start_tty(struct tty_struct * tty)902 void start_tty(struct tty_struct *tty)
903 {
904 unsigned long flags;
905 spin_lock_irqsave(&tty->ctrl_lock, flags);
906 if (!tty->stopped || tty->flow_stopped) {
907 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
908 return;
909 }
910 tty->stopped = 0;
911 if (tty->link && tty->link->packet) {
912 tty->ctrl_status &= ~TIOCPKT_STOP;
913 tty->ctrl_status |= TIOCPKT_START;
914 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
915 }
916 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
917 if (tty->ops->start)
918 (tty->ops->start)(tty);
919 /* If we have a running line discipline it may need kicking */
920 tty_wakeup(tty);
921 }
922
923 EXPORT_SYMBOL(start_tty);
924
925 /**
926 * tty_read - read method for tty device files
927 * @file: pointer to tty file
928 * @buf: user buffer
929 * @count: size of user buffer
930 * @ppos: unused
931 *
932 * Perform the read system call function on this terminal device. Checks
933 * for hung up devices before calling the line discipline method.
934 *
935 * Locking:
936 * Locks the line discipline internally while needed. Multiple
937 * read calls may be outstanding in parallel.
938 */
939
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)940 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
941 loff_t *ppos)
942 {
943 int i;
944 struct inode *inode = file->f_path.dentry->d_inode;
945 struct tty_struct *tty = file_tty(file);
946 struct tty_ldisc *ld;
947
948 if (tty_paranoia_check(tty, inode, "tty_read"))
949 return -EIO;
950 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
951 return -EIO;
952
953 /* We want to wait for the line discipline to sort out in this
954 situation */
955 ld = tty_ldisc_ref_wait(tty);
956 if (ld->ops->read)
957 i = (ld->ops->read)(tty, file, buf, count);
958 else
959 i = -EIO;
960 tty_ldisc_deref(ld);
961 if (i > 0)
962 inode->i_atime = current_fs_time(inode->i_sb);
963 return i;
964 }
965
tty_write_unlock(struct tty_struct * tty)966 void tty_write_unlock(struct tty_struct *tty)
967 {
968 mutex_unlock(&tty->atomic_write_lock);
969 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970 }
971
tty_write_lock(struct tty_struct * tty,int ndelay)972 int tty_write_lock(struct tty_struct *tty, int ndelay)
973 {
974 if (!mutex_trylock(&tty->atomic_write_lock)) {
975 if (ndelay)
976 return -EAGAIN;
977 if (mutex_lock_interruptible(&tty->atomic_write_lock))
978 return -ERESTARTSYS;
979 }
980 return 0;
981 }
982
983 /*
984 * Split writes up in sane blocksizes to avoid
985 * denial-of-service type attacks
986 */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)987 static inline ssize_t do_tty_write(
988 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
989 struct tty_struct *tty,
990 struct file *file,
991 const char __user *buf,
992 size_t count)
993 {
994 ssize_t ret, written = 0;
995 unsigned int chunk;
996
997 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
998 if (ret < 0)
999 return ret;
1000
1001 /*
1002 * We chunk up writes into a temporary buffer. This
1003 * simplifies low-level drivers immensely, since they
1004 * don't have locking issues and user mode accesses.
1005 *
1006 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1007 * big chunk-size..
1008 *
1009 * The default chunk-size is 2kB, because the NTTY
1010 * layer has problems with bigger chunks. It will
1011 * claim to be able to handle more characters than
1012 * it actually does.
1013 *
1014 * FIXME: This can probably go away now except that 64K chunks
1015 * are too likely to fail unless switched to vmalloc...
1016 */
1017 chunk = 2048;
1018 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1019 chunk = 65536;
1020 if (count < chunk)
1021 chunk = count;
1022
1023 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1024 if (tty->write_cnt < chunk) {
1025 unsigned char *buf_chunk;
1026
1027 if (chunk < 1024)
1028 chunk = 1024;
1029
1030 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1031 if (!buf_chunk) {
1032 ret = -ENOMEM;
1033 goto out;
1034 }
1035 kfree(tty->write_buf);
1036 tty->write_cnt = chunk;
1037 tty->write_buf = buf_chunk;
1038 }
1039
1040 /* Do the write .. */
1041 for (;;) {
1042 size_t size = count;
1043 if (size > chunk)
1044 size = chunk;
1045 ret = -EFAULT;
1046 if (copy_from_user(tty->write_buf, buf, size))
1047 break;
1048 ret = write(tty, file, tty->write_buf, size);
1049 if (ret <= 0)
1050 break;
1051 written += ret;
1052 buf += ret;
1053 count -= ret;
1054 if (!count)
1055 break;
1056 ret = -ERESTARTSYS;
1057 if (signal_pending(current))
1058 break;
1059 cond_resched();
1060 }
1061 if (written) {
1062 struct inode *inode = file->f_path.dentry->d_inode;
1063 inode->i_mtime = current_fs_time(inode->i_sb);
1064 ret = written;
1065 }
1066 out:
1067 tty_write_unlock(tty);
1068 return ret;
1069 }
1070
1071 /**
1072 * tty_write_message - write a message to a certain tty, not just the console.
1073 * @tty: the destination tty_struct
1074 * @msg: the message to write
1075 *
1076 * This is used for messages that need to be redirected to a specific tty.
1077 * We don't put it into the syslog queue right now maybe in the future if
1078 * really needed.
1079 *
1080 * We must still hold the BTM and test the CLOSING flag for the moment.
1081 */
1082
tty_write_message(struct tty_struct * tty,char * msg)1083 void tty_write_message(struct tty_struct *tty, char *msg)
1084 {
1085 if (tty) {
1086 mutex_lock(&tty->atomic_write_lock);
1087 tty_lock();
1088 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1089 tty_unlock();
1090 tty->ops->write(tty, msg, strlen(msg));
1091 } else
1092 tty_unlock();
1093 tty_write_unlock(tty);
1094 }
1095 return;
1096 }
1097
1098
1099 /**
1100 * tty_write - write method for tty device file
1101 * @file: tty file pointer
1102 * @buf: user data to write
1103 * @count: bytes to write
1104 * @ppos: unused
1105 *
1106 * Write data to a tty device via the line discipline.
1107 *
1108 * Locking:
1109 * Locks the line discipline as required
1110 * Writes to the tty driver are serialized by the atomic_write_lock
1111 * and are then processed in chunks to the device. The line discipline
1112 * write method will not be invoked in parallel for each device.
1113 */
1114
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1115 static ssize_t tty_write(struct file *file, const char __user *buf,
1116 size_t count, loff_t *ppos)
1117 {
1118 struct inode *inode = file->f_path.dentry->d_inode;
1119 struct tty_struct *tty = file_tty(file);
1120 struct tty_ldisc *ld;
1121 ssize_t ret;
1122
1123 if (tty_paranoia_check(tty, inode, "tty_write"))
1124 return -EIO;
1125 if (!tty || !tty->ops->write ||
1126 (test_bit(TTY_IO_ERROR, &tty->flags)))
1127 return -EIO;
1128 /* Short term debug to catch buggy drivers */
1129 if (tty->ops->write_room == NULL)
1130 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1131 tty->driver->name);
1132 ld = tty_ldisc_ref_wait(tty);
1133 if (!ld->ops->write)
1134 ret = -EIO;
1135 else
1136 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1137 tty_ldisc_deref(ld);
1138 return ret;
1139 }
1140
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1141 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1142 size_t count, loff_t *ppos)
1143 {
1144 struct file *p = NULL;
1145
1146 spin_lock(&redirect_lock);
1147 if (redirect) {
1148 get_file(redirect);
1149 p = redirect;
1150 }
1151 spin_unlock(&redirect_lock);
1152
1153 if (p) {
1154 ssize_t res;
1155 res = vfs_write(p, buf, count, &p->f_pos);
1156 fput(p);
1157 return res;
1158 }
1159 return tty_write(file, buf, count, ppos);
1160 }
1161
1162 static char ptychar[] = "pqrstuvwxyzabcde";
1163
1164 /**
1165 * pty_line_name - generate name for a pty
1166 * @driver: the tty driver in use
1167 * @index: the minor number
1168 * @p: output buffer of at least 6 bytes
1169 *
1170 * Generate a name from a driver reference and write it to the output
1171 * buffer.
1172 *
1173 * Locking: None
1174 */
pty_line_name(struct tty_driver * driver,int index,char * p)1175 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1176 {
1177 int i = index + driver->name_base;
1178 /* ->name is initialized to "ttyp", but "tty" is expected */
1179 sprintf(p, "%s%c%x",
1180 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1181 ptychar[i >> 4 & 0xf], i & 0xf);
1182 }
1183
1184 /**
1185 * tty_line_name - generate name for a tty
1186 * @driver: the tty driver in use
1187 * @index: the minor number
1188 * @p: output buffer of at least 7 bytes
1189 *
1190 * Generate a name from a driver reference and write it to the output
1191 * buffer.
1192 *
1193 * Locking: None
1194 */
tty_line_name(struct tty_driver * driver,int index,char * p)1195 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1198 }
1199
1200 /**
1201 * tty_driver_lookup_tty() - find an existing tty, if any
1202 * @driver: the driver for the tty
1203 * @idx: the minor number
1204 *
1205 * Return the tty, if found or ERR_PTR() otherwise.
1206 *
1207 * Locking: tty_mutex must be held. If tty is found, the mutex must
1208 * be held until the 'fast-open' is also done. Will change once we
1209 * have refcounting in the driver and per driver locking
1210 */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1211 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1212 struct inode *inode, int idx)
1213 {
1214 struct tty_struct *tty;
1215
1216 if (driver->ops->lookup)
1217 return driver->ops->lookup(driver, inode, idx);
1218
1219 tty = driver->ttys[idx];
1220 return tty;
1221 }
1222
1223 /**
1224 * tty_init_termios - helper for termios setup
1225 * @tty: the tty to set up
1226 *
1227 * Initialise the termios structures for this tty. Thus runs under
1228 * the tty_mutex currently so we can be relaxed about ordering.
1229 */
1230
tty_init_termios(struct tty_struct * tty)1231 int tty_init_termios(struct tty_struct *tty)
1232 {
1233 struct ktermios *tp;
1234 int idx = tty->index;
1235
1236 tp = tty->driver->termios[idx];
1237 if (tp == NULL) {
1238 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1239 if (tp == NULL)
1240 return -ENOMEM;
1241 memcpy(tp, &tty->driver->init_termios,
1242 sizeof(struct ktermios));
1243 tty->driver->termios[idx] = tp;
1244 }
1245 tty->termios = tp;
1246 tty->termios_locked = tp + 1;
1247
1248 /* Compatibility until drivers always set this */
1249 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1250 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(tty_init_termios);
1254
1255 /**
1256 * tty_driver_install_tty() - install a tty entry in the driver
1257 * @driver: the driver for the tty
1258 * @tty: the tty
1259 *
1260 * Install a tty object into the driver tables. The tty->index field
1261 * will be set by the time this is called. This method is responsible
1262 * for ensuring any need additional structures are allocated and
1263 * configured.
1264 *
1265 * Locking: tty_mutex for now
1266 */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1267 static int tty_driver_install_tty(struct tty_driver *driver,
1268 struct tty_struct *tty)
1269 {
1270 int idx = tty->index;
1271 int ret;
1272
1273 if (driver->ops->install) {
1274 ret = driver->ops->install(driver, tty);
1275 return ret;
1276 }
1277
1278 if (tty_init_termios(tty) == 0) {
1279 tty_driver_kref_get(driver);
1280 tty->count++;
1281 driver->ttys[idx] = tty;
1282 return 0;
1283 }
1284 return -ENOMEM;
1285 }
1286
1287 /**
1288 * tty_driver_remove_tty() - remove a tty from the driver tables
1289 * @driver: the driver for the tty
1290 * @idx: the minor number
1291 *
1292 * Remvoe a tty object from the driver tables. The tty->index field
1293 * will be set by the time this is called.
1294 *
1295 * Locking: tty_mutex for now
1296 */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1297 static void tty_driver_remove_tty(struct tty_driver *driver,
1298 struct tty_struct *tty)
1299 {
1300 if (driver->ops->remove)
1301 driver->ops->remove(driver, tty);
1302 else
1303 driver->ttys[tty->index] = NULL;
1304 }
1305
1306 /*
1307 * tty_reopen() - fast re-open of an open tty
1308 * @tty - the tty to open
1309 *
1310 * Return 0 on success, -errno on error.
1311 *
1312 * Locking: tty_mutex must be held from the time the tty was found
1313 * till this open completes.
1314 */
tty_reopen(struct tty_struct * tty)1315 static int tty_reopen(struct tty_struct *tty)
1316 {
1317 struct tty_driver *driver = tty->driver;
1318
1319 if (test_bit(TTY_CLOSING, &tty->flags) ||
1320 test_bit(TTY_HUPPING, &tty->flags) ||
1321 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322 return -EIO;
1323
1324 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325 driver->subtype == PTY_TYPE_MASTER) {
1326 /*
1327 * special case for PTY masters: only one open permitted,
1328 * and the slave side open count is incremented as well.
1329 */
1330 if (tty->count)
1331 return -EIO;
1332
1333 tty->link->count++;
1334 }
1335 tty->count++;
1336 tty->driver = driver; /* N.B. why do this every time?? */
1337
1338 mutex_lock(&tty->ldisc_mutex);
1339 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340 mutex_unlock(&tty->ldisc_mutex);
1341
1342 return 0;
1343 }
1344
1345 /**
1346 * tty_init_dev - initialise a tty device
1347 * @driver: tty driver we are opening a device on
1348 * @idx: device index
1349 * @ret_tty: returned tty structure
1350 * @first_ok: ok to open a new device (used by ptmx)
1351 *
1352 * Prepare a tty device. This may not be a "new" clean device but
1353 * could also be an active device. The pty drivers require special
1354 * handling because of this.
1355 *
1356 * Locking:
1357 * The function is called under the tty_mutex, which
1358 * protects us from the tty struct or driver itself going away.
1359 *
1360 * On exit the tty device has the line discipline attached and
1361 * a reference count of 1. If a pair was created for pty/tty use
1362 * and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open. The new code protects the open with a mutex, so it's
1366 * really quite straightforward. The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
tty_init_dev(struct tty_driver * driver,int idx,int first_ok)1370 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371 int first_ok)
1372 {
1373 struct tty_struct *tty;
1374 int retval;
1375
1376 /* Check if pty master is being opened multiple times */
1377 if (driver->subtype == PTY_TYPE_MASTER &&
1378 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379 return ERR_PTR(-EIO);
1380 }
1381
1382 /*
1383 * First time open is complex, especially for PTY devices.
1384 * This code guarantees that either everything succeeds and the
1385 * TTY is ready for operation, or else the table slots are vacated
1386 * and the allocated memory released. (Except that the termios
1387 * and locked termios may be retained.)
1388 */
1389
1390 if (!try_module_get(driver->owner))
1391 return ERR_PTR(-ENODEV);
1392
1393 tty = alloc_tty_struct();
1394 if (!tty)
1395 goto fail_no_mem;
1396 initialize_tty_struct(tty, driver, idx);
1397
1398 retval = tty_driver_install_tty(driver, tty);
1399 if (retval < 0) {
1400 free_tty_struct(tty);
1401 module_put(driver->owner);
1402 return ERR_PTR(retval);
1403 }
1404
1405 /*
1406 * Structures all installed ... call the ldisc open routines.
1407 * If we fail here just call release_tty to clean up. No need
1408 * to decrement the use counts, as release_tty doesn't care.
1409 */
1410 retval = tty_ldisc_setup(tty, tty->link);
1411 if (retval)
1412 goto release_mem_out;
1413 return tty;
1414
1415 fail_no_mem:
1416 module_put(driver->owner);
1417 return ERR_PTR(-ENOMEM);
1418
1419 /* call the tty release_tty routine to clean out this slot */
1420 release_mem_out:
1421 if (printk_ratelimit())
1422 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1423 "clearing slot %d\n", idx);
1424 release_tty(tty, idx);
1425 return ERR_PTR(retval);
1426 }
1427
tty_free_termios(struct tty_struct * tty)1428 void tty_free_termios(struct tty_struct *tty)
1429 {
1430 struct ktermios *tp;
1431 int idx = tty->index;
1432 /* Kill this flag and push into drivers for locking etc */
1433 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1434 /* FIXME: Locking on ->termios array */
1435 tp = tty->termios;
1436 tty->driver->termios[idx] = NULL;
1437 kfree(tp);
1438 }
1439 }
1440 EXPORT_SYMBOL(tty_free_termios);
1441
tty_shutdown(struct tty_struct * tty)1442 void tty_shutdown(struct tty_struct *tty)
1443 {
1444 tty_driver_remove_tty(tty->driver, tty);
1445 tty_free_termios(tty);
1446 }
1447 EXPORT_SYMBOL(tty_shutdown);
1448
1449 /**
1450 * release_one_tty - release tty structure memory
1451 * @kref: kref of tty we are obliterating
1452 *
1453 * Releases memory associated with a tty structure, and clears out the
1454 * driver table slots. This function is called when a device is no longer
1455 * in use. It also gets called when setup of a device fails.
1456 *
1457 * Locking:
1458 * tty_mutex - sometimes only
1459 * takes the file list lock internally when working on the list
1460 * of ttys that the driver keeps.
1461 *
1462 * This method gets called from a work queue so that the driver private
1463 * cleanup ops can sleep (needed for USB at least)
1464 */
release_one_tty(struct work_struct * work)1465 static void release_one_tty(struct work_struct *work)
1466 {
1467 struct tty_struct *tty =
1468 container_of(work, struct tty_struct, hangup_work);
1469 struct tty_driver *driver = tty->driver;
1470
1471 if (tty->ops->cleanup)
1472 tty->ops->cleanup(tty);
1473
1474 tty->magic = 0;
1475 tty_driver_kref_put(driver);
1476 module_put(driver->owner);
1477
1478 spin_lock(&tty_files_lock);
1479 list_del_init(&tty->tty_files);
1480 spin_unlock(&tty_files_lock);
1481
1482 put_pid(tty->pgrp);
1483 put_pid(tty->session);
1484 free_tty_struct(tty);
1485 }
1486
queue_release_one_tty(struct kref * kref)1487 static void queue_release_one_tty(struct kref *kref)
1488 {
1489 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1490
1491 if (tty->ops->shutdown)
1492 tty->ops->shutdown(tty);
1493 else
1494 tty_shutdown(tty);
1495
1496 /* The hangup queue is now free so we can reuse it rather than
1497 waste a chunk of memory for each port */
1498 INIT_WORK(&tty->hangup_work, release_one_tty);
1499 schedule_work(&tty->hangup_work);
1500 }
1501
1502 /**
1503 * tty_kref_put - release a tty kref
1504 * @tty: tty device
1505 *
1506 * Release a reference to a tty device and if need be let the kref
1507 * layer destruct the object for us
1508 */
1509
tty_kref_put(struct tty_struct * tty)1510 void tty_kref_put(struct tty_struct *tty)
1511 {
1512 if (tty)
1513 kref_put(&tty->kref, queue_release_one_tty);
1514 }
1515 EXPORT_SYMBOL(tty_kref_put);
1516
1517 /**
1518 * release_tty - release tty structure memory
1519 *
1520 * Release both @tty and a possible linked partner (think pty pair),
1521 * and decrement the refcount of the backing module.
1522 *
1523 * Locking:
1524 * tty_mutex - sometimes only
1525 * takes the file list lock internally when working on the list
1526 * of ttys that the driver keeps.
1527 * FIXME: should we require tty_mutex is held here ??
1528 *
1529 */
release_tty(struct tty_struct * tty,int idx)1530 static void release_tty(struct tty_struct *tty, int idx)
1531 {
1532 /* This should always be true but check for the moment */
1533 WARN_ON(tty->index != idx);
1534
1535 if (tty->link)
1536 tty_kref_put(tty->link);
1537 tty_kref_put(tty);
1538 }
1539
1540 /**
1541 * tty_release - vfs callback for close
1542 * @inode: inode of tty
1543 * @filp: file pointer for handle to tty
1544 *
1545 * Called the last time each file handle is closed that references
1546 * this tty. There may however be several such references.
1547 *
1548 * Locking:
1549 * Takes bkl. See tty_release_dev
1550 *
1551 * Even releasing the tty structures is a tricky business.. We have
1552 * to be very careful that the structures are all released at the
1553 * same time, as interrupts might otherwise get the wrong pointers.
1554 *
1555 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1556 * lead to double frees or releasing memory still in use.
1557 */
1558
tty_release(struct inode * inode,struct file * filp)1559 int tty_release(struct inode *inode, struct file *filp)
1560 {
1561 struct tty_struct *tty = file_tty(filp);
1562 struct tty_struct *o_tty;
1563 int pty_master, tty_closing, o_tty_closing, do_sleep;
1564 int devpts;
1565 int idx;
1566 char buf[64];
1567
1568 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1569 return 0;
1570
1571 tty_lock();
1572 check_tty_count(tty, "tty_release_dev");
1573
1574 __tty_fasync(-1, filp, 0);
1575
1576 idx = tty->index;
1577 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1578 tty->driver->subtype == PTY_TYPE_MASTER);
1579 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1580 o_tty = tty->link;
1581
1582 #ifdef TTY_PARANOIA_CHECK
1583 if (idx < 0 || idx >= tty->driver->num) {
1584 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1585 "free (%s)\n", tty->name);
1586 tty_unlock();
1587 return 0;
1588 }
1589 if (!devpts) {
1590 if (tty != tty->driver->ttys[idx]) {
1591 tty_unlock();
1592 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1593 "for (%s)\n", idx, tty->name);
1594 return 0;
1595 }
1596 if (tty->termios != tty->driver->termios[idx]) {
1597 tty_unlock();
1598 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1599 "for (%s)\n",
1600 idx, tty->name);
1601 return 0;
1602 }
1603 }
1604 #endif
1605
1606 #ifdef TTY_DEBUG_HANGUP
1607 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1608 tty_name(tty, buf), tty->count);
1609 #endif
1610
1611 #ifdef TTY_PARANOIA_CHECK
1612 if (tty->driver->other &&
1613 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1614 if (o_tty != tty->driver->other->ttys[idx]) {
1615 tty_unlock();
1616 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1617 "not o_tty for (%s)\n",
1618 idx, tty->name);
1619 return 0 ;
1620 }
1621 if (o_tty->termios != tty->driver->other->termios[idx]) {
1622 tty_unlock();
1623 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1624 "not o_termios for (%s)\n",
1625 idx, tty->name);
1626 return 0;
1627 }
1628 if (o_tty->link != tty) {
1629 tty_unlock();
1630 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1631 return 0;
1632 }
1633 }
1634 #endif
1635 if (tty->ops->close)
1636 tty->ops->close(tty, filp);
1637
1638 tty_unlock();
1639 /*
1640 * Sanity check: if tty->count is going to zero, there shouldn't be
1641 * any waiters on tty->read_wait or tty->write_wait. We test the
1642 * wait queues and kick everyone out _before_ actually starting to
1643 * close. This ensures that we won't block while releasing the tty
1644 * structure.
1645 *
1646 * The test for the o_tty closing is necessary, since the master and
1647 * slave sides may close in any order. If the slave side closes out
1648 * first, its count will be one, since the master side holds an open.
1649 * Thus this test wouldn't be triggered at the time the slave closes,
1650 * so we do it now.
1651 *
1652 * Note that it's possible for the tty to be opened again while we're
1653 * flushing out waiters. By recalculating the closing flags before
1654 * each iteration we avoid any problems.
1655 */
1656 while (1) {
1657 /* Guard against races with tty->count changes elsewhere and
1658 opens on /dev/tty */
1659
1660 mutex_lock(&tty_mutex);
1661 tty_lock();
1662 tty_closing = tty->count <= 1;
1663 o_tty_closing = o_tty &&
1664 (o_tty->count <= (pty_master ? 1 : 0));
1665 do_sleep = 0;
1666
1667 if (tty_closing) {
1668 if (waitqueue_active(&tty->read_wait)) {
1669 wake_up_poll(&tty->read_wait, POLLIN);
1670 do_sleep++;
1671 }
1672 if (waitqueue_active(&tty->write_wait)) {
1673 wake_up_poll(&tty->write_wait, POLLOUT);
1674 do_sleep++;
1675 }
1676 }
1677 if (o_tty_closing) {
1678 if (waitqueue_active(&o_tty->read_wait)) {
1679 wake_up_poll(&o_tty->read_wait, POLLIN);
1680 do_sleep++;
1681 }
1682 if (waitqueue_active(&o_tty->write_wait)) {
1683 wake_up_poll(&o_tty->write_wait, POLLOUT);
1684 do_sleep++;
1685 }
1686 }
1687 if (!do_sleep)
1688 break;
1689
1690 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1691 "active!\n", tty_name(tty, buf));
1692 tty_unlock();
1693 mutex_unlock(&tty_mutex);
1694 schedule();
1695 }
1696
1697 /*
1698 * The closing flags are now consistent with the open counts on
1699 * both sides, and we've completed the last operation that could
1700 * block, so it's safe to proceed with closing.
1701 */
1702 if (pty_master) {
1703 if (--o_tty->count < 0) {
1704 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1705 "(%d) for %s\n",
1706 o_tty->count, tty_name(o_tty, buf));
1707 o_tty->count = 0;
1708 }
1709 }
1710 if (--tty->count < 0) {
1711 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1712 tty->count, tty_name(tty, buf));
1713 tty->count = 0;
1714 }
1715
1716 /*
1717 * We've decremented tty->count, so we need to remove this file
1718 * descriptor off the tty->tty_files list; this serves two
1719 * purposes:
1720 * - check_tty_count sees the correct number of file descriptors
1721 * associated with this tty.
1722 * - do_tty_hangup no longer sees this file descriptor as
1723 * something that needs to be handled for hangups.
1724 */
1725 tty_del_file(filp);
1726
1727 /*
1728 * Perform some housekeeping before deciding whether to return.
1729 *
1730 * Set the TTY_CLOSING flag if this was the last open. In the
1731 * case of a pty we may have to wait around for the other side
1732 * to close, and TTY_CLOSING makes sure we can't be reopened.
1733 */
1734 if (tty_closing)
1735 set_bit(TTY_CLOSING, &tty->flags);
1736 if (o_tty_closing)
1737 set_bit(TTY_CLOSING, &o_tty->flags);
1738
1739 /*
1740 * If _either_ side is closing, make sure there aren't any
1741 * processes that still think tty or o_tty is their controlling
1742 * tty.
1743 */
1744 if (tty_closing || o_tty_closing) {
1745 read_lock(&tasklist_lock);
1746 session_clear_tty(tty->session);
1747 if (o_tty)
1748 session_clear_tty(o_tty->session);
1749 read_unlock(&tasklist_lock);
1750 }
1751
1752 mutex_unlock(&tty_mutex);
1753
1754 /* check whether both sides are closing ... */
1755 if (!tty_closing || (o_tty && !o_tty_closing)) {
1756 tty_unlock();
1757 return 0;
1758 }
1759
1760 #ifdef TTY_DEBUG_HANGUP
1761 printk(KERN_DEBUG "freeing tty structure...");
1762 #endif
1763 /*
1764 * Ask the line discipline code to release its structures
1765 */
1766 tty_ldisc_release(tty, o_tty);
1767 /*
1768 * The release_tty function takes care of the details of clearing
1769 * the slots and preserving the termios structure.
1770 */
1771 release_tty(tty, idx);
1772
1773 /* Make this pty number available for reallocation */
1774 if (devpts)
1775 devpts_kill_index(inode, idx);
1776 tty_unlock();
1777 return 0;
1778 }
1779
1780 /**
1781 * tty_open - open a tty device
1782 * @inode: inode of device file
1783 * @filp: file pointer to tty
1784 *
1785 * tty_open and tty_release keep up the tty count that contains the
1786 * number of opens done on a tty. We cannot use the inode-count, as
1787 * different inodes might point to the same tty.
1788 *
1789 * Open-counting is needed for pty masters, as well as for keeping
1790 * track of serial lines: DTR is dropped when the last close happens.
1791 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1792 *
1793 * The termios state of a pty is reset on first open so that
1794 * settings don't persist across reuse.
1795 *
1796 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1797 * tty->count should protect the rest.
1798 * ->siglock protects ->signal/->sighand
1799 */
1800
tty_open(struct inode * inode,struct file * filp)1801 static int tty_open(struct inode *inode, struct file *filp)
1802 {
1803 struct tty_struct *tty = NULL;
1804 int noctty, retval;
1805 struct tty_driver *driver;
1806 int index;
1807 dev_t device = inode->i_rdev;
1808 unsigned saved_flags = filp->f_flags;
1809
1810 nonseekable_open(inode, filp);
1811
1812 retry_open:
1813 noctty = filp->f_flags & O_NOCTTY;
1814 index = -1;
1815 retval = 0;
1816
1817 mutex_lock(&tty_mutex);
1818 tty_lock();
1819
1820 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1821 tty = get_current_tty();
1822 if (!tty) {
1823 tty_unlock();
1824 mutex_unlock(&tty_mutex);
1825 return -ENXIO;
1826 }
1827 driver = tty_driver_kref_get(tty->driver);
1828 index = tty->index;
1829 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1830 /* noctty = 1; */
1831 /* FIXME: Should we take a driver reference ? */
1832 tty_kref_put(tty);
1833 goto got_driver;
1834 }
1835 #ifdef CONFIG_VT
1836 if (device == MKDEV(TTY_MAJOR, 0)) {
1837 extern struct tty_driver *console_driver;
1838 driver = tty_driver_kref_get(console_driver);
1839 index = fg_console;
1840 noctty = 1;
1841 goto got_driver;
1842 }
1843 #endif
1844 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1845 struct tty_driver *console_driver = console_device(&index);
1846 if (console_driver) {
1847 driver = tty_driver_kref_get(console_driver);
1848 if (driver) {
1849 /* Don't let /dev/console block */
1850 filp->f_flags |= O_NONBLOCK;
1851 noctty = 1;
1852 goto got_driver;
1853 }
1854 }
1855 tty_unlock();
1856 mutex_unlock(&tty_mutex);
1857 return -ENODEV;
1858 }
1859
1860 driver = get_tty_driver(device, &index);
1861 if (!driver) {
1862 tty_unlock();
1863 mutex_unlock(&tty_mutex);
1864 return -ENODEV;
1865 }
1866 got_driver:
1867 if (!tty) {
1868 /* check whether we're reopening an existing tty */
1869 tty = tty_driver_lookup_tty(driver, inode, index);
1870
1871 if (IS_ERR(tty)) {
1872 tty_unlock();
1873 mutex_unlock(&tty_mutex);
1874 return PTR_ERR(tty);
1875 }
1876 }
1877
1878 if (tty) {
1879 retval = tty_reopen(tty);
1880 if (retval)
1881 tty = ERR_PTR(retval);
1882 } else
1883 tty = tty_init_dev(driver, index, 0);
1884
1885 mutex_unlock(&tty_mutex);
1886 tty_driver_kref_put(driver);
1887 if (IS_ERR(tty)) {
1888 tty_unlock();
1889 return PTR_ERR(tty);
1890 }
1891
1892 retval = tty_add_file(tty, filp);
1893 if (retval) {
1894 tty_unlock();
1895 return retval;
1896 }
1897
1898 check_tty_count(tty, "tty_open");
1899 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1900 tty->driver->subtype == PTY_TYPE_MASTER)
1901 noctty = 1;
1902 #ifdef TTY_DEBUG_HANGUP
1903 printk(KERN_DEBUG "opening %s...", tty->name);
1904 #endif
1905 if (!retval) {
1906 if (tty->ops->open)
1907 retval = tty->ops->open(tty, filp);
1908 else
1909 retval = -ENODEV;
1910 }
1911 filp->f_flags = saved_flags;
1912
1913 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914 !capable(CAP_SYS_ADMIN))
1915 retval = -EBUSY;
1916
1917 if (retval) {
1918 #ifdef TTY_DEBUG_HANGUP
1919 printk(KERN_DEBUG "error %d in opening %s...", retval,
1920 tty->name);
1921 #endif
1922 tty_unlock(); /* need to call tty_release without BTM */
1923 tty_release(inode, filp);
1924 if (retval != -ERESTARTSYS)
1925 return retval;
1926
1927 if (signal_pending(current))
1928 return retval;
1929
1930 schedule();
1931 /*
1932 * Need to reset f_op in case a hangup happened.
1933 */
1934 tty_lock();
1935 if (filp->f_op == &hung_up_tty_fops)
1936 filp->f_op = &tty_fops;
1937 tty_unlock();
1938 goto retry_open;
1939 }
1940 tty_unlock();
1941
1942
1943 mutex_lock(&tty_mutex);
1944 tty_lock();
1945 spin_lock_irq(¤t->sighand->siglock);
1946 if (!noctty &&
1947 current->signal->leader &&
1948 !current->signal->tty &&
1949 tty->session == NULL)
1950 __proc_set_tty(current, tty);
1951 spin_unlock_irq(¤t->sighand->siglock);
1952 tty_unlock();
1953 mutex_unlock(&tty_mutex);
1954 return 0;
1955 }
1956
1957
1958
1959 /**
1960 * tty_poll - check tty status
1961 * @filp: file being polled
1962 * @wait: poll wait structures to update
1963 *
1964 * Call the line discipline polling method to obtain the poll
1965 * status of the device.
1966 *
1967 * Locking: locks called line discipline but ldisc poll method
1968 * may be re-entered freely by other callers.
1969 */
1970
tty_poll(struct file * filp,poll_table * wait)1971 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972 {
1973 struct tty_struct *tty = file_tty(filp);
1974 struct tty_ldisc *ld;
1975 int ret = 0;
1976
1977 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978 return 0;
1979
1980 ld = tty_ldisc_ref_wait(tty);
1981 if (ld->ops->poll)
1982 ret = (ld->ops->poll)(tty, filp, wait);
1983 tty_ldisc_deref(ld);
1984 return ret;
1985 }
1986
__tty_fasync(int fd,struct file * filp,int on)1987 static int __tty_fasync(int fd, struct file *filp, int on)
1988 {
1989 struct tty_struct *tty = file_tty(filp);
1990 unsigned long flags;
1991 int retval = 0;
1992
1993 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994 goto out;
1995
1996 retval = fasync_helper(fd, filp, on, &tty->fasync);
1997 if (retval <= 0)
1998 goto out;
1999
2000 if (on) {
2001 enum pid_type type;
2002 struct pid *pid;
2003 if (!waitqueue_active(&tty->read_wait))
2004 tty->minimum_to_wake = 1;
2005 spin_lock_irqsave(&tty->ctrl_lock, flags);
2006 if (tty->pgrp) {
2007 pid = tty->pgrp;
2008 type = PIDTYPE_PGID;
2009 } else {
2010 pid = task_pid(current);
2011 type = PIDTYPE_PID;
2012 }
2013 get_pid(pid);
2014 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015 retval = __f_setown(filp, pid, type, 0);
2016 put_pid(pid);
2017 if (retval)
2018 goto out;
2019 } else {
2020 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022 }
2023 retval = 0;
2024 out:
2025 return retval;
2026 }
2027
tty_fasync(int fd,struct file * filp,int on)2028 static int tty_fasync(int fd, struct file *filp, int on)
2029 {
2030 int retval;
2031 tty_lock();
2032 retval = __tty_fasync(fd, filp, on);
2033 tty_unlock();
2034 return retval;
2035 }
2036
2037 /**
2038 * tiocsti - fake input character
2039 * @tty: tty to fake input into
2040 * @p: pointer to character
2041 *
2042 * Fake input to a tty device. Does the necessary locking and
2043 * input management.
2044 *
2045 * FIXME: does not honour flow control ??
2046 *
2047 * Locking:
2048 * Called functions take tty_ldisc_lock
2049 * current->signal->tty check is safe without locks
2050 *
2051 * FIXME: may race normal receive processing
2052 */
2053
tiocsti(struct tty_struct * tty,char __user * p)2054 static int tiocsti(struct tty_struct *tty, char __user *p)
2055 {
2056 char ch, mbz = 0;
2057 struct tty_ldisc *ld;
2058
2059 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060 return -EPERM;
2061 if (get_user(ch, p))
2062 return -EFAULT;
2063 tty_audit_tiocsti(tty, ch);
2064 ld = tty_ldisc_ref_wait(tty);
2065 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066 tty_ldisc_deref(ld);
2067 return 0;
2068 }
2069
2070 /**
2071 * tiocgwinsz - implement window query ioctl
2072 * @tty; tty
2073 * @arg: user buffer for result
2074 *
2075 * Copies the kernel idea of the window size into the user buffer.
2076 *
2077 * Locking: tty->termios_mutex is taken to ensure the winsize data
2078 * is consistent.
2079 */
2080
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2081 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082 {
2083 int err;
2084
2085 mutex_lock(&tty->termios_mutex);
2086 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087 mutex_unlock(&tty->termios_mutex);
2088
2089 return err ? -EFAULT: 0;
2090 }
2091
2092 /**
2093 * tty_do_resize - resize event
2094 * @tty: tty being resized
2095 * @rows: rows (character)
2096 * @cols: cols (character)
2097 *
2098 * Update the termios variables and send the necessary signals to
2099 * peform a terminal resize correctly
2100 */
2101
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2102 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103 {
2104 struct pid *pgrp;
2105 unsigned long flags;
2106
2107 /* Lock the tty */
2108 mutex_lock(&tty->termios_mutex);
2109 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110 goto done;
2111 /* Get the PID values and reference them so we can
2112 avoid holding the tty ctrl lock while sending signals */
2113 spin_lock_irqsave(&tty->ctrl_lock, flags);
2114 pgrp = get_pid(tty->pgrp);
2115 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
2117 if (pgrp)
2118 kill_pgrp(pgrp, SIGWINCH, 1);
2119 put_pid(pgrp);
2120
2121 tty->winsize = *ws;
2122 done:
2123 mutex_unlock(&tty->termios_mutex);
2124 return 0;
2125 }
2126
2127 /**
2128 * tiocswinsz - implement window size set ioctl
2129 * @tty; tty side of tty
2130 * @arg: user buffer for result
2131 *
2132 * Copies the user idea of the window size to the kernel. Traditionally
2133 * this is just advisory information but for the Linux console it
2134 * actually has driver level meaning and triggers a VC resize.
2135 *
2136 * Locking:
2137 * Driver dependent. The default do_resize method takes the
2138 * tty termios mutex and ctrl_lock. The console takes its own lock
2139 * then calls into the default method.
2140 */
2141
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2142 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143 {
2144 struct winsize tmp_ws;
2145 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146 return -EFAULT;
2147
2148 if (tty->ops->resize)
2149 return tty->ops->resize(tty, &tmp_ws);
2150 else
2151 return tty_do_resize(tty, &tmp_ws);
2152 }
2153
2154 /**
2155 * tioccons - allow admin to move logical console
2156 * @file: the file to become console
2157 *
2158 * Allow the administrator to move the redirected console device
2159 *
2160 * Locking: uses redirect_lock to guard the redirect information
2161 */
2162
tioccons(struct file * file)2163 static int tioccons(struct file *file)
2164 {
2165 if (!capable(CAP_SYS_ADMIN))
2166 return -EPERM;
2167 if (file->f_op->write == redirected_tty_write) {
2168 struct file *f;
2169 spin_lock(&redirect_lock);
2170 f = redirect;
2171 redirect = NULL;
2172 spin_unlock(&redirect_lock);
2173 if (f)
2174 fput(f);
2175 return 0;
2176 }
2177 spin_lock(&redirect_lock);
2178 if (redirect) {
2179 spin_unlock(&redirect_lock);
2180 return -EBUSY;
2181 }
2182 get_file(file);
2183 redirect = file;
2184 spin_unlock(&redirect_lock);
2185 return 0;
2186 }
2187
2188 /**
2189 * fionbio - non blocking ioctl
2190 * @file: file to set blocking value
2191 * @p: user parameter
2192 *
2193 * Historical tty interfaces had a blocking control ioctl before
2194 * the generic functionality existed. This piece of history is preserved
2195 * in the expected tty API of posix OS's.
2196 *
2197 * Locking: none, the open file handle ensures it won't go away.
2198 */
2199
fionbio(struct file * file,int __user * p)2200 static int fionbio(struct file *file, int __user *p)
2201 {
2202 int nonblock;
2203
2204 if (get_user(nonblock, p))
2205 return -EFAULT;
2206
2207 spin_lock(&file->f_lock);
2208 if (nonblock)
2209 file->f_flags |= O_NONBLOCK;
2210 else
2211 file->f_flags &= ~O_NONBLOCK;
2212 spin_unlock(&file->f_lock);
2213 return 0;
2214 }
2215
2216 /**
2217 * tiocsctty - set controlling tty
2218 * @tty: tty structure
2219 * @arg: user argument
2220 *
2221 * This ioctl is used to manage job control. It permits a session
2222 * leader to set this tty as the controlling tty for the session.
2223 *
2224 * Locking:
2225 * Takes tty_mutex() to protect tty instance
2226 * Takes tasklist_lock internally to walk sessions
2227 * Takes ->siglock() when updating signal->tty
2228 */
2229
tiocsctty(struct tty_struct * tty,int arg)2230 static int tiocsctty(struct tty_struct *tty, int arg)
2231 {
2232 int ret = 0;
2233 if (current->signal->leader && (task_session(current) == tty->session))
2234 return ret;
2235
2236 mutex_lock(&tty_mutex);
2237 /*
2238 * The process must be a session leader and
2239 * not have a controlling tty already.
2240 */
2241 if (!current->signal->leader || current->signal->tty) {
2242 ret = -EPERM;
2243 goto unlock;
2244 }
2245
2246 if (tty->session) {
2247 /*
2248 * This tty is already the controlling
2249 * tty for another session group!
2250 */
2251 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252 /*
2253 * Steal it away
2254 */
2255 read_lock(&tasklist_lock);
2256 session_clear_tty(tty->session);
2257 read_unlock(&tasklist_lock);
2258 } else {
2259 ret = -EPERM;
2260 goto unlock;
2261 }
2262 }
2263 proc_set_tty(current, tty);
2264 unlock:
2265 mutex_unlock(&tty_mutex);
2266 return ret;
2267 }
2268
2269 /**
2270 * tty_get_pgrp - return a ref counted pgrp pid
2271 * @tty: tty to read
2272 *
2273 * Returns a refcounted instance of the pid struct for the process
2274 * group controlling the tty.
2275 */
2276
tty_get_pgrp(struct tty_struct * tty)2277 struct pid *tty_get_pgrp(struct tty_struct *tty)
2278 {
2279 unsigned long flags;
2280 struct pid *pgrp;
2281
2282 spin_lock_irqsave(&tty->ctrl_lock, flags);
2283 pgrp = get_pid(tty->pgrp);
2284 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286 return pgrp;
2287 }
2288 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290 /**
2291 * tiocgpgrp - get process group
2292 * @tty: tty passed by user
2293 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2294 * @p: returned pid
2295 *
2296 * Obtain the process group of the tty. If there is no process group
2297 * return an error.
2298 *
2299 * Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2302 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303 {
2304 struct pid *pid;
2305 int ret;
2306 /*
2307 * (tty == real_tty) is a cheap way of
2308 * testing if the tty is NOT a master pty.
2309 */
2310 if (tty == real_tty && current->signal->tty != real_tty)
2311 return -ENOTTY;
2312 pid = tty_get_pgrp(real_tty);
2313 ret = put_user(pid_vnr(pid), p);
2314 put_pid(pid);
2315 return ret;
2316 }
2317
2318 /**
2319 * tiocspgrp - attempt to set process group
2320 * @tty: tty passed by user
2321 * @real_tty: tty side device matching tty passed by user
2322 * @p: pid pointer
2323 *
2324 * Set the process group of the tty to the session passed. Only
2325 * permitted where the tty session is our session.
2326 *
2327 * Locking: RCU, ctrl lock
2328 */
2329
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2330 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331 {
2332 struct pid *pgrp;
2333 pid_t pgrp_nr;
2334 int retval = tty_check_change(real_tty);
2335 unsigned long flags;
2336
2337 if (retval == -EIO)
2338 return -ENOTTY;
2339 if (retval)
2340 return retval;
2341 if (!current->signal->tty ||
2342 (current->signal->tty != real_tty) ||
2343 (real_tty->session != task_session(current)))
2344 return -ENOTTY;
2345 if (get_user(pgrp_nr, p))
2346 return -EFAULT;
2347 if (pgrp_nr < 0)
2348 return -EINVAL;
2349 rcu_read_lock();
2350 pgrp = find_vpid(pgrp_nr);
2351 retval = -ESRCH;
2352 if (!pgrp)
2353 goto out_unlock;
2354 retval = -EPERM;
2355 if (session_of_pgrp(pgrp) != task_session(current))
2356 goto out_unlock;
2357 retval = 0;
2358 spin_lock_irqsave(&tty->ctrl_lock, flags);
2359 put_pid(real_tty->pgrp);
2360 real_tty->pgrp = get_pid(pgrp);
2361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362 out_unlock:
2363 rcu_read_unlock();
2364 return retval;
2365 }
2366
2367 /**
2368 * tiocgsid - get session id
2369 * @tty: tty passed by user
2370 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2371 * @p: pointer to returned session id
2372 *
2373 * Obtain the session id of the tty. If there is no session
2374 * return an error.
2375 *
2376 * Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2379 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380 {
2381 /*
2382 * (tty == real_tty) is a cheap way of
2383 * testing if the tty is NOT a master pty.
2384 */
2385 if (tty == real_tty && current->signal->tty != real_tty)
2386 return -ENOTTY;
2387 if (!real_tty->session)
2388 return -ENOTTY;
2389 return put_user(pid_vnr(real_tty->session), p);
2390 }
2391
2392 /**
2393 * tiocsetd - set line discipline
2394 * @tty: tty device
2395 * @p: pointer to user data
2396 *
2397 * Set the line discipline according to user request.
2398 *
2399 * Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
tiocsetd(struct tty_struct * tty,int __user * p)2402 static int tiocsetd(struct tty_struct *tty, int __user *p)
2403 {
2404 int ldisc;
2405 int ret;
2406
2407 if (get_user(ldisc, p))
2408 return -EFAULT;
2409
2410 ret = tty_set_ldisc(tty, ldisc);
2411
2412 return ret;
2413 }
2414
2415 /**
2416 * send_break - performed time break
2417 * @tty: device to break on
2418 * @duration: timeout in mS
2419 *
2420 * Perform a timed break on hardware that lacks its own driver level
2421 * timed break functionality.
2422 *
2423 * Locking:
2424 * atomic_write_lock serializes
2425 *
2426 */
2427
send_break(struct tty_struct * tty,unsigned int duration)2428 static int send_break(struct tty_struct *tty, unsigned int duration)
2429 {
2430 int retval;
2431
2432 if (tty->ops->break_ctl == NULL)
2433 return 0;
2434
2435 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436 retval = tty->ops->break_ctl(tty, duration);
2437 else {
2438 /* Do the work ourselves */
2439 if (tty_write_lock(tty, 0) < 0)
2440 return -EINTR;
2441 retval = tty->ops->break_ctl(tty, -1);
2442 if (retval)
2443 goto out;
2444 if (!signal_pending(current))
2445 msleep_interruptible(duration);
2446 retval = tty->ops->break_ctl(tty, 0);
2447 out:
2448 tty_write_unlock(tty);
2449 if (signal_pending(current))
2450 retval = -EINTR;
2451 }
2452 return retval;
2453 }
2454
2455 /**
2456 * tty_tiocmget - get modem status
2457 * @tty: tty device
2458 * @file: user file pointer
2459 * @p: pointer to result
2460 *
2461 * Obtain the modem status bits from the tty driver if the feature
2462 * is supported. Return -EINVAL if it is not available.
2463 *
2464 * Locking: none (up to the driver)
2465 */
2466
tty_tiocmget(struct tty_struct * tty,int __user * p)2467 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468 {
2469 int retval = -EINVAL;
2470
2471 if (tty->ops->tiocmget) {
2472 retval = tty->ops->tiocmget(tty);
2473
2474 if (retval >= 0)
2475 retval = put_user(retval, p);
2476 }
2477 return retval;
2478 }
2479
2480 /**
2481 * tty_tiocmset - set modem status
2482 * @tty: tty device
2483 * @cmd: command - clear bits, set bits or set all
2484 * @p: pointer to desired bits
2485 *
2486 * Set the modem status bits from the tty driver if the feature
2487 * is supported. Return -EINVAL if it is not available.
2488 *
2489 * Locking: none (up to the driver)
2490 */
2491
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2492 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493 unsigned __user *p)
2494 {
2495 int retval;
2496 unsigned int set, clear, val;
2497
2498 if (tty->ops->tiocmset == NULL)
2499 return -EINVAL;
2500
2501 retval = get_user(val, p);
2502 if (retval)
2503 return retval;
2504 set = clear = 0;
2505 switch (cmd) {
2506 case TIOCMBIS:
2507 set = val;
2508 break;
2509 case TIOCMBIC:
2510 clear = val;
2511 break;
2512 case TIOCMSET:
2513 set = val;
2514 clear = ~val;
2515 break;
2516 }
2517 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 return tty->ops->tiocmset(tty, set, clear);
2520 }
2521
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2522 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523 {
2524 int retval = -EINVAL;
2525 struct serial_icounter_struct icount;
2526 memset(&icount, 0, sizeof(icount));
2527 if (tty->ops->get_icount)
2528 retval = tty->ops->get_icount(tty, &icount);
2529 if (retval != 0)
2530 return retval;
2531 if (copy_to_user(arg, &icount, sizeof(icount)))
2532 return -EFAULT;
2533 return 0;
2534 }
2535
tty_pair_get_tty(struct tty_struct * tty)2536 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537 {
2538 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539 tty->driver->subtype == PTY_TYPE_MASTER)
2540 tty = tty->link;
2541 return tty;
2542 }
2543 EXPORT_SYMBOL(tty_pair_get_tty);
2544
tty_pair_get_pty(struct tty_struct * tty)2545 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2546 {
2547 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548 tty->driver->subtype == PTY_TYPE_MASTER)
2549 return tty;
2550 return tty->link;
2551 }
2552 EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554 /*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2557 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558 {
2559 struct tty_struct *tty = file_tty(file);
2560 struct tty_struct *real_tty;
2561 void __user *p = (void __user *)arg;
2562 int retval;
2563 struct tty_ldisc *ld;
2564 struct inode *inode = file->f_dentry->d_inode;
2565
2566 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567 return -EINVAL;
2568
2569 real_tty = tty_pair_get_tty(tty);
2570
2571 /*
2572 * Factor out some common prep work
2573 */
2574 switch (cmd) {
2575 case TIOCSETD:
2576 case TIOCSBRK:
2577 case TIOCCBRK:
2578 case TCSBRK:
2579 case TCSBRKP:
2580 retval = tty_check_change(tty);
2581 if (retval)
2582 return retval;
2583 if (cmd != TIOCCBRK) {
2584 tty_wait_until_sent(tty, 0);
2585 if (signal_pending(current))
2586 return -EINTR;
2587 }
2588 break;
2589 }
2590
2591 /*
2592 * Now do the stuff.
2593 */
2594 switch (cmd) {
2595 case TIOCSTI:
2596 return tiocsti(tty, p);
2597 case TIOCGWINSZ:
2598 return tiocgwinsz(real_tty, p);
2599 case TIOCSWINSZ:
2600 return tiocswinsz(real_tty, p);
2601 case TIOCCONS:
2602 return real_tty != tty ? -EINVAL : tioccons(file);
2603 case FIONBIO:
2604 return fionbio(file, p);
2605 case TIOCEXCL:
2606 set_bit(TTY_EXCLUSIVE, &tty->flags);
2607 return 0;
2608 case TIOCNXCL:
2609 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610 return 0;
2611 case TIOCNOTTY:
2612 if (current->signal->tty != tty)
2613 return -ENOTTY;
2614 no_tty();
2615 return 0;
2616 case TIOCSCTTY:
2617 return tiocsctty(tty, arg);
2618 case TIOCGPGRP:
2619 return tiocgpgrp(tty, real_tty, p);
2620 case TIOCSPGRP:
2621 return tiocspgrp(tty, real_tty, p);
2622 case TIOCGSID:
2623 return tiocgsid(tty, real_tty, p);
2624 case TIOCGETD:
2625 return put_user(tty->ldisc->ops->num, (int __user *)p);
2626 case TIOCSETD:
2627 return tiocsetd(tty, p);
2628 case TIOCVHANGUP:
2629 if (!capable(CAP_SYS_ADMIN))
2630 return -EPERM;
2631 tty_vhangup(tty);
2632 return 0;
2633 case TIOCGDEV:
2634 {
2635 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636 return put_user(ret, (unsigned int __user *)p);
2637 }
2638 /*
2639 * Break handling
2640 */
2641 case TIOCSBRK: /* Turn break on, unconditionally */
2642 if (tty->ops->break_ctl)
2643 return tty->ops->break_ctl(tty, -1);
2644 return 0;
2645 case TIOCCBRK: /* Turn break off, unconditionally */
2646 if (tty->ops->break_ctl)
2647 return tty->ops->break_ctl(tty, 0);
2648 return 0;
2649 case TCSBRK: /* SVID version: non-zero arg --> no break */
2650 /* non-zero arg means wait for all output data
2651 * to be sent (performed above) but don't send break.
2652 * This is used by the tcdrain() termios function.
2653 */
2654 if (!arg)
2655 return send_break(tty, 250);
2656 return 0;
2657 case TCSBRKP: /* support for POSIX tcsendbreak() */
2658 return send_break(tty, arg ? arg*100 : 250);
2659
2660 case TIOCMGET:
2661 return tty_tiocmget(tty, p);
2662 case TIOCMSET:
2663 case TIOCMBIC:
2664 case TIOCMBIS:
2665 return tty_tiocmset(tty, cmd, p);
2666 case TIOCGICOUNT:
2667 retval = tty_tiocgicount(tty, p);
2668 /* For the moment allow fall through to the old method */
2669 if (retval != -EINVAL)
2670 return retval;
2671 break;
2672 case TCFLSH:
2673 switch (arg) {
2674 case TCIFLUSH:
2675 case TCIOFLUSH:
2676 /* flush tty buffer and allow ldisc to process ioctl */
2677 tty_buffer_flush(tty);
2678 break;
2679 }
2680 break;
2681 }
2682 if (tty->ops->ioctl) {
2683 retval = (tty->ops->ioctl)(tty, cmd, arg);
2684 if (retval != -ENOIOCTLCMD)
2685 return retval;
2686 }
2687 ld = tty_ldisc_ref_wait(tty);
2688 retval = -EINVAL;
2689 if (ld->ops->ioctl) {
2690 retval = ld->ops->ioctl(tty, file, cmd, arg);
2691 if (retval == -ENOIOCTLCMD)
2692 retval = -EINVAL;
2693 }
2694 tty_ldisc_deref(ld);
2695 return retval;
2696 }
2697
2698 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2699 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700 unsigned long arg)
2701 {
2702 struct inode *inode = file->f_dentry->d_inode;
2703 struct tty_struct *tty = file_tty(file);
2704 struct tty_ldisc *ld;
2705 int retval = -ENOIOCTLCMD;
2706
2707 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708 return -EINVAL;
2709
2710 if (tty->ops->compat_ioctl) {
2711 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712 if (retval != -ENOIOCTLCMD)
2713 return retval;
2714 }
2715
2716 ld = tty_ldisc_ref_wait(tty);
2717 if (ld->ops->compat_ioctl)
2718 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2719 tty_ldisc_deref(ld);
2720
2721 return retval;
2722 }
2723 #endif
2724
2725 /*
2726 * This implements the "Secure Attention Key" --- the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key". Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal. But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context. This can
2742 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2743 */
__do_SAK(struct tty_struct * tty)2744 void __do_SAK(struct tty_struct *tty)
2745 {
2746 #ifdef TTY_SOFT_SAK
2747 tty_hangup(tty);
2748 #else
2749 struct task_struct *g, *p;
2750 struct pid *session;
2751 int i;
2752 struct file *filp;
2753 struct fdtable *fdt;
2754
2755 if (!tty)
2756 return;
2757 session = tty->session;
2758
2759 tty_ldisc_flush(tty);
2760
2761 tty_driver_flush_buffer(tty);
2762
2763 read_lock(&tasklist_lock);
2764 /* Kill the entire session */
2765 do_each_pid_task(session, PIDTYPE_SID, p) {
2766 printk(KERN_NOTICE "SAK: killed process %d"
2767 " (%s): task_session(p)==tty->session\n",
2768 task_pid_nr(p), p->comm);
2769 send_sig(SIGKILL, p, 1);
2770 } while_each_pid_task(session, PIDTYPE_SID, p);
2771 /* Now kill any processes that happen to have the
2772 * tty open.
2773 */
2774 do_each_thread(g, p) {
2775 if (p->signal->tty == tty) {
2776 printk(KERN_NOTICE "SAK: killed process %d"
2777 " (%s): task_session(p)==tty->session\n",
2778 task_pid_nr(p), p->comm);
2779 send_sig(SIGKILL, p, 1);
2780 continue;
2781 }
2782 task_lock(p);
2783 if (p->files) {
2784 /*
2785 * We don't take a ref to the file, so we must
2786 * hold ->file_lock instead.
2787 */
2788 spin_lock(&p->files->file_lock);
2789 fdt = files_fdtable(p->files);
2790 for (i = 0; i < fdt->max_fds; i++) {
2791 filp = fcheck_files(p->files, i);
2792 if (!filp)
2793 continue;
2794 if (filp->f_op->read == tty_read &&
2795 file_tty(filp) == tty) {
2796 printk(KERN_NOTICE "SAK: killed process %d"
2797 " (%s): fd#%d opened to the tty\n",
2798 task_pid_nr(p), p->comm, i);
2799 force_sig(SIGKILL, p);
2800 break;
2801 }
2802 }
2803 spin_unlock(&p->files->file_lock);
2804 }
2805 task_unlock(p);
2806 } while_each_thread(g, p);
2807 read_unlock(&tasklist_lock);
2808 #endif
2809 }
2810
do_SAK_work(struct work_struct * work)2811 static void do_SAK_work(struct work_struct *work)
2812 {
2813 struct tty_struct *tty =
2814 container_of(work, struct tty_struct, SAK_work);
2815 __do_SAK(tty);
2816 }
2817
2818 /*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
do_SAK(struct tty_struct * tty)2824 void do_SAK(struct tty_struct *tty)
2825 {
2826 if (!tty)
2827 return;
2828 schedule_work(&tty->SAK_work);
2829 }
2830
2831 EXPORT_SYMBOL(do_SAK);
2832
dev_match_devt(struct device * dev,void * data)2833 static int dev_match_devt(struct device *dev, void *data)
2834 {
2835 dev_t *devt = data;
2836 return dev->devt == *devt;
2837 }
2838
2839 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)2840 static struct device *tty_get_device(struct tty_struct *tty)
2841 {
2842 dev_t devt = tty_devnum(tty);
2843 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844 }
2845
2846
2847 /**
2848 * initialize_tty_struct
2849 * @tty: tty to initialize
2850 *
2851 * This subroutine initializes a tty structure that has been newly
2852 * allocated.
2853 *
2854 * Locking: none - tty in question must not be exposed at this point
2855 */
2856
initialize_tty_struct(struct tty_struct * tty,struct tty_driver * driver,int idx)2857 void initialize_tty_struct(struct tty_struct *tty,
2858 struct tty_driver *driver, int idx)
2859 {
2860 memset(tty, 0, sizeof(struct tty_struct));
2861 kref_init(&tty->kref);
2862 tty->magic = TTY_MAGIC;
2863 tty_ldisc_init(tty);
2864 tty->session = NULL;
2865 tty->pgrp = NULL;
2866 tty->overrun_time = jiffies;
2867 tty->buf.head = tty->buf.tail = NULL;
2868 tty_buffer_init(tty);
2869 mutex_init(&tty->termios_mutex);
2870 mutex_init(&tty->ldisc_mutex);
2871 init_waitqueue_head(&tty->write_wait);
2872 init_waitqueue_head(&tty->read_wait);
2873 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874 mutex_init(&tty->atomic_read_lock);
2875 mutex_init(&tty->atomic_write_lock);
2876 mutex_init(&tty->output_lock);
2877 mutex_init(&tty->echo_lock);
2878 spin_lock_init(&tty->read_lock);
2879 spin_lock_init(&tty->ctrl_lock);
2880 INIT_LIST_HEAD(&tty->tty_files);
2881 INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883 tty->driver = driver;
2884 tty->ops = driver->ops;
2885 tty->index = idx;
2886 tty_line_name(driver, idx, tty->name);
2887 tty->dev = tty_get_device(tty);
2888 }
2889
2890 /**
2891 * tty_put_char - write one character to a tty
2892 * @tty: tty
2893 * @ch: character
2894 *
2895 * Write one byte to the tty using the provided put_char method
2896 * if present. Returns the number of characters successfully output.
2897 *
2898 * Note: the specific put_char operation in the driver layer may go
2899 * away soon. Don't call it directly, use this method
2900 */
2901
tty_put_char(struct tty_struct * tty,unsigned char ch)2902 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2903 {
2904 if (tty->ops->put_char)
2905 return tty->ops->put_char(tty, ch);
2906 return tty->ops->write(tty, &ch, 1);
2907 }
2908 EXPORT_SYMBOL_GPL(tty_put_char);
2909
2910 struct class *tty_class;
2911
2912 /**
2913 * tty_register_device - register a tty device
2914 * @driver: the tty driver that describes the tty device
2915 * @index: the index in the tty driver for this tty device
2916 * @device: a struct device that is associated with this tty device.
2917 * This field is optional, if there is no known struct device
2918 * for this tty device it can be set to NULL safely.
2919 *
2920 * Returns a pointer to the struct device for this tty device
2921 * (or ERR_PTR(-EFOO) on error).
2922 *
2923 * This call is required to be made to register an individual tty device
2924 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2925 * that bit is not set, this function should not be called by a tty
2926 * driver.
2927 *
2928 * Locking: ??
2929 */
2930
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)2931 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2932 struct device *device)
2933 {
2934 char name[64];
2935 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2936
2937 if (index >= driver->num) {
2938 printk(KERN_ERR "Attempt to register invalid tty line number "
2939 " (%d).\n", index);
2940 return ERR_PTR(-EINVAL);
2941 }
2942
2943 if (driver->type == TTY_DRIVER_TYPE_PTY)
2944 pty_line_name(driver, index, name);
2945 else
2946 tty_line_name(driver, index, name);
2947
2948 return device_create(tty_class, device, dev, NULL, name);
2949 }
2950 EXPORT_SYMBOL(tty_register_device);
2951
2952 /**
2953 * tty_unregister_device - unregister a tty device
2954 * @driver: the tty driver that describes the tty device
2955 * @index: the index in the tty driver for this tty device
2956 *
2957 * If a tty device is registered with a call to tty_register_device() then
2958 * this function must be called when the tty device is gone.
2959 *
2960 * Locking: ??
2961 */
2962
tty_unregister_device(struct tty_driver * driver,unsigned index)2963 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2964 {
2965 device_destroy(tty_class,
2966 MKDEV(driver->major, driver->minor_start) + index);
2967 }
2968 EXPORT_SYMBOL(tty_unregister_device);
2969
alloc_tty_driver(int lines)2970 struct tty_driver *alloc_tty_driver(int lines)
2971 {
2972 struct tty_driver *driver;
2973
2974 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2975 if (driver) {
2976 kref_init(&driver->kref);
2977 driver->magic = TTY_DRIVER_MAGIC;
2978 driver->num = lines;
2979 /* later we'll move allocation of tables here */
2980 }
2981 return driver;
2982 }
2983 EXPORT_SYMBOL(alloc_tty_driver);
2984
destruct_tty_driver(struct kref * kref)2985 static void destruct_tty_driver(struct kref *kref)
2986 {
2987 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2988 int i;
2989 struct ktermios *tp;
2990 void *p;
2991
2992 if (driver->flags & TTY_DRIVER_INSTALLED) {
2993 /*
2994 * Free the termios and termios_locked structures because
2995 * we don't want to get memory leaks when modular tty
2996 * drivers are removed from the kernel.
2997 */
2998 for (i = 0; i < driver->num; i++) {
2999 tp = driver->termios[i];
3000 if (tp) {
3001 driver->termios[i] = NULL;
3002 kfree(tp);
3003 }
3004 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3005 tty_unregister_device(driver, i);
3006 }
3007 p = driver->ttys;
3008 proc_tty_unregister_driver(driver);
3009 driver->ttys = NULL;
3010 driver->termios = NULL;
3011 kfree(p);
3012 cdev_del(&driver->cdev);
3013 }
3014 kfree(driver);
3015 }
3016
tty_driver_kref_put(struct tty_driver * driver)3017 void tty_driver_kref_put(struct tty_driver *driver)
3018 {
3019 kref_put(&driver->kref, destruct_tty_driver);
3020 }
3021 EXPORT_SYMBOL(tty_driver_kref_put);
3022
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3023 void tty_set_operations(struct tty_driver *driver,
3024 const struct tty_operations *op)
3025 {
3026 driver->ops = op;
3027 };
3028 EXPORT_SYMBOL(tty_set_operations);
3029
put_tty_driver(struct tty_driver * d)3030 void put_tty_driver(struct tty_driver *d)
3031 {
3032 tty_driver_kref_put(d);
3033 }
3034 EXPORT_SYMBOL(put_tty_driver);
3035
3036 /*
3037 * Called by a tty driver to register itself.
3038 */
tty_register_driver(struct tty_driver * driver)3039 int tty_register_driver(struct tty_driver *driver)
3040 {
3041 int error;
3042 int i;
3043 dev_t dev;
3044 void **p = NULL;
3045 struct device *d;
3046
3047 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3048 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3049 if (!p)
3050 return -ENOMEM;
3051 }
3052
3053 if (!driver->major) {
3054 error = alloc_chrdev_region(&dev, driver->minor_start,
3055 driver->num, driver->name);
3056 if (!error) {
3057 driver->major = MAJOR(dev);
3058 driver->minor_start = MINOR(dev);
3059 }
3060 } else {
3061 dev = MKDEV(driver->major, driver->minor_start);
3062 error = register_chrdev_region(dev, driver->num, driver->name);
3063 }
3064 if (error < 0) {
3065 kfree(p);
3066 return error;
3067 }
3068
3069 if (p) {
3070 driver->ttys = (struct tty_struct **)p;
3071 driver->termios = (struct ktermios **)(p + driver->num);
3072 } else {
3073 driver->ttys = NULL;
3074 driver->termios = NULL;
3075 }
3076
3077 cdev_init(&driver->cdev, &tty_fops);
3078 driver->cdev.owner = driver->owner;
3079 error = cdev_add(&driver->cdev, dev, driver->num);
3080 if (error) {
3081 unregister_chrdev_region(dev, driver->num);
3082 driver->ttys = NULL;
3083 driver->termios = NULL;
3084 kfree(p);
3085 return error;
3086 }
3087
3088 mutex_lock(&tty_mutex);
3089 list_add(&driver->tty_drivers, &tty_drivers);
3090 mutex_unlock(&tty_mutex);
3091
3092 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3093 for (i = 0; i < driver->num; i++) {
3094 d = tty_register_device(driver, i, NULL);
3095 if (IS_ERR(d)) {
3096 error = PTR_ERR(d);
3097 goto err;
3098 }
3099 }
3100 }
3101 proc_tty_register_driver(driver);
3102 driver->flags |= TTY_DRIVER_INSTALLED;
3103 return 0;
3104
3105 err:
3106 for (i--; i >= 0; i--)
3107 tty_unregister_device(driver, i);
3108
3109 mutex_lock(&tty_mutex);
3110 list_del(&driver->tty_drivers);
3111 mutex_unlock(&tty_mutex);
3112
3113 unregister_chrdev_region(dev, driver->num);
3114 driver->ttys = NULL;
3115 driver->termios = NULL;
3116 kfree(p);
3117 return error;
3118 }
3119
3120 EXPORT_SYMBOL(tty_register_driver);
3121
3122 /*
3123 * Called by a tty driver to unregister itself.
3124 */
tty_unregister_driver(struct tty_driver * driver)3125 int tty_unregister_driver(struct tty_driver *driver)
3126 {
3127 #if 0
3128 /* FIXME */
3129 if (driver->refcount)
3130 return -EBUSY;
3131 #endif
3132 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3133 driver->num);
3134 mutex_lock(&tty_mutex);
3135 list_del(&driver->tty_drivers);
3136 mutex_unlock(&tty_mutex);
3137 return 0;
3138 }
3139
3140 EXPORT_SYMBOL(tty_unregister_driver);
3141
tty_devnum(struct tty_struct * tty)3142 dev_t tty_devnum(struct tty_struct *tty)
3143 {
3144 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3145 }
3146 EXPORT_SYMBOL(tty_devnum);
3147
proc_clear_tty(struct task_struct * p)3148 void proc_clear_tty(struct task_struct *p)
3149 {
3150 unsigned long flags;
3151 struct tty_struct *tty;
3152 spin_lock_irqsave(&p->sighand->siglock, flags);
3153 tty = p->signal->tty;
3154 p->signal->tty = NULL;
3155 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3156 tty_kref_put(tty);
3157 }
3158
3159 /* Called under the sighand lock */
3160
__proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3161 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3162 {
3163 if (tty) {
3164 unsigned long flags;
3165 /* We should not have a session or pgrp to put here but.... */
3166 spin_lock_irqsave(&tty->ctrl_lock, flags);
3167 put_pid(tty->session);
3168 put_pid(tty->pgrp);
3169 tty->pgrp = get_pid(task_pgrp(tsk));
3170 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3171 tty->session = get_pid(task_session(tsk));
3172 if (tsk->signal->tty) {
3173 printk(KERN_DEBUG "tty not NULL!!\n");
3174 tty_kref_put(tsk->signal->tty);
3175 }
3176 }
3177 put_pid(tsk->signal->tty_old_pgrp);
3178 tsk->signal->tty = tty_kref_get(tty);
3179 tsk->signal->tty_old_pgrp = NULL;
3180 }
3181
proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3182 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3183 {
3184 spin_lock_irq(&tsk->sighand->siglock);
3185 __proc_set_tty(tsk, tty);
3186 spin_unlock_irq(&tsk->sighand->siglock);
3187 }
3188
get_current_tty(void)3189 struct tty_struct *get_current_tty(void)
3190 {
3191 struct tty_struct *tty;
3192 unsigned long flags;
3193
3194 spin_lock_irqsave(¤t->sighand->siglock, flags);
3195 tty = tty_kref_get(current->signal->tty);
3196 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3197 return tty;
3198 }
3199 EXPORT_SYMBOL_GPL(get_current_tty);
3200
tty_default_fops(struct file_operations * fops)3201 void tty_default_fops(struct file_operations *fops)
3202 {
3203 *fops = tty_fops;
3204 }
3205
3206 /*
3207 * Initialize the console device. This is called *early*, so
3208 * we can't necessarily depend on lots of kernel help here.
3209 * Just do some early initializations, and do the complex setup
3210 * later.
3211 */
console_init(void)3212 void __init console_init(void)
3213 {
3214 initcall_t *call;
3215
3216 /* Setup the default TTY line discipline. */
3217 tty_ldisc_begin();
3218
3219 /*
3220 * set up the console device so that later boot sequences can
3221 * inform about problems etc..
3222 */
3223 call = __con_initcall_start;
3224 while (call < __con_initcall_end) {
3225 (*call)();
3226 call++;
3227 }
3228 }
3229
tty_devnode(struct device * dev,mode_t * mode)3230 static char *tty_devnode(struct device *dev, mode_t *mode)
3231 {
3232 if (!mode)
3233 return NULL;
3234 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3235 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3236 *mode = 0666;
3237 return NULL;
3238 }
3239
tty_class_init(void)3240 static int __init tty_class_init(void)
3241 {
3242 tty_class = class_create(THIS_MODULE, "tty");
3243 if (IS_ERR(tty_class))
3244 return PTR_ERR(tty_class);
3245 tty_class->devnode = tty_devnode;
3246 return 0;
3247 }
3248
3249 postcore_initcall(tty_class_init);
3250
3251 /* 3/2004 jmc: why do these devices exist? */
3252 static struct cdev tty_cdev, console_cdev;
3253
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3254 static ssize_t show_cons_active(struct device *dev,
3255 struct device_attribute *attr, char *buf)
3256 {
3257 struct console *cs[16];
3258 int i = 0;
3259 struct console *c;
3260 ssize_t count = 0;
3261
3262 console_lock();
3263 for_each_console(c) {
3264 if (!c->device)
3265 continue;
3266 if (!c->write)
3267 continue;
3268 if ((c->flags & CON_ENABLED) == 0)
3269 continue;
3270 cs[i++] = c;
3271 if (i >= ARRAY_SIZE(cs))
3272 break;
3273 }
3274 while (i--)
3275 count += sprintf(buf + count, "%s%d%c",
3276 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3277 console_unlock();
3278
3279 return count;
3280 }
3281 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3282
3283 static struct device *consdev;
3284
console_sysfs_notify(void)3285 void console_sysfs_notify(void)
3286 {
3287 if (consdev)
3288 sysfs_notify(&consdev->kobj, NULL, "active");
3289 }
3290
3291 /*
3292 * Ok, now we can initialize the rest of the tty devices and can count
3293 * on memory allocations, interrupts etc..
3294 */
tty_init(void)3295 int __init tty_init(void)
3296 {
3297 cdev_init(&tty_cdev, &tty_fops);
3298 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3299 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3300 panic("Couldn't register /dev/tty driver\n");
3301 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3302
3303 cdev_init(&console_cdev, &console_fops);
3304 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3305 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3306 panic("Couldn't register /dev/console driver\n");
3307 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3308 "console");
3309 if (IS_ERR(consdev))
3310 consdev = NULL;
3311 else
3312 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3313
3314 #ifdef CONFIG_VT
3315 vty_init(&console_fops);
3316 #endif
3317 return 0;
3318 }
3319
3320