1 /*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
26 */
27
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
32 */
33 #include <linux/list.h>
34 #include <linux/spinlock.h>
35 #include <linux/highmem.h>
36 #include <linux/mm_types.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/seq_file.h> /* for seq_printf */
40 #include <linux/slab.h>
41 #include <linux/dma-mapping.h>
42
43 #include <asm/atomic.h>
44
45 #include "ttm/ttm_bo_driver.h"
46 #include "ttm/ttm_page_alloc.h"
47
48 #ifdef TTM_HAS_AGP
49 #include <asm/agp.h>
50 #endif
51
52 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
53 #define SMALL_ALLOCATION 16
54 #define FREE_ALL_PAGES (~0U)
55 /* times are in msecs */
56 #define PAGE_FREE_INTERVAL 1000
57
58 /**
59 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
60 *
61 * @lock: Protects the shared pool from concurrnet access. Must be used with
62 * irqsave/irqrestore variants because pool allocator maybe called from
63 * delayed work.
64 * @fill_lock: Prevent concurrent calls to fill.
65 * @list: Pool of free uc/wc pages for fast reuse.
66 * @gfp_flags: Flags to pass for alloc_page.
67 * @npages: Number of pages in pool.
68 */
69 struct ttm_page_pool {
70 spinlock_t lock;
71 bool fill_lock;
72 struct list_head list;
73 gfp_t gfp_flags;
74 unsigned npages;
75 char *name;
76 unsigned long nfrees;
77 unsigned long nrefills;
78 };
79
80 /**
81 * Limits for the pool. They are handled without locks because only place where
82 * they may change is in sysfs store. They won't have immediate effect anyway
83 * so forcing serialization to access them is pointless.
84 */
85
86 struct ttm_pool_opts {
87 unsigned alloc_size;
88 unsigned max_size;
89 unsigned small;
90 };
91
92 #define NUM_POOLS 4
93
94 /**
95 * struct ttm_pool_manager - Holds memory pools for fst allocation
96 *
97 * Manager is read only object for pool code so it doesn't need locking.
98 *
99 * @free_interval: minimum number of jiffies between freeing pages from pool.
100 * @page_alloc_inited: reference counting for pool allocation.
101 * @work: Work that is used to shrink the pool. Work is only run when there is
102 * some pages to free.
103 * @small_allocation: Limit in number of pages what is small allocation.
104 *
105 * @pools: All pool objects in use.
106 **/
107 struct ttm_pool_manager {
108 struct kobject kobj;
109 struct shrinker mm_shrink;
110 struct ttm_pool_opts options;
111
112 union {
113 struct ttm_page_pool pools[NUM_POOLS];
114 struct {
115 struct ttm_page_pool wc_pool;
116 struct ttm_page_pool uc_pool;
117 struct ttm_page_pool wc_pool_dma32;
118 struct ttm_page_pool uc_pool_dma32;
119 } ;
120 };
121 };
122
123 static struct attribute ttm_page_pool_max = {
124 .name = "pool_max_size",
125 .mode = S_IRUGO | S_IWUSR
126 };
127 static struct attribute ttm_page_pool_small = {
128 .name = "pool_small_allocation",
129 .mode = S_IRUGO | S_IWUSR
130 };
131 static struct attribute ttm_page_pool_alloc_size = {
132 .name = "pool_allocation_size",
133 .mode = S_IRUGO | S_IWUSR
134 };
135
136 static struct attribute *ttm_pool_attrs[] = {
137 &ttm_page_pool_max,
138 &ttm_page_pool_small,
139 &ttm_page_pool_alloc_size,
140 NULL
141 };
142
ttm_pool_kobj_release(struct kobject * kobj)143 static void ttm_pool_kobj_release(struct kobject *kobj)
144 {
145 struct ttm_pool_manager *m =
146 container_of(kobj, struct ttm_pool_manager, kobj);
147 kfree(m);
148 }
149
ttm_pool_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)150 static ssize_t ttm_pool_store(struct kobject *kobj,
151 struct attribute *attr, const char *buffer, size_t size)
152 {
153 struct ttm_pool_manager *m =
154 container_of(kobj, struct ttm_pool_manager, kobj);
155 int chars;
156 unsigned val;
157 chars = sscanf(buffer, "%u", &val);
158 if (chars == 0)
159 return size;
160
161 /* Convert kb to number of pages */
162 val = val / (PAGE_SIZE >> 10);
163
164 if (attr == &ttm_page_pool_max)
165 m->options.max_size = val;
166 else if (attr == &ttm_page_pool_small)
167 m->options.small = val;
168 else if (attr == &ttm_page_pool_alloc_size) {
169 if (val > NUM_PAGES_TO_ALLOC*8) {
170 printk(KERN_ERR TTM_PFX
171 "Setting allocation size to %lu "
172 "is not allowed. Recommended size is "
173 "%lu\n",
174 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
175 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
176 return size;
177 } else if (val > NUM_PAGES_TO_ALLOC) {
178 printk(KERN_WARNING TTM_PFX
179 "Setting allocation size to "
180 "larger than %lu is not recommended.\n",
181 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
182 }
183 m->options.alloc_size = val;
184 }
185
186 return size;
187 }
188
ttm_pool_show(struct kobject * kobj,struct attribute * attr,char * buffer)189 static ssize_t ttm_pool_show(struct kobject *kobj,
190 struct attribute *attr, char *buffer)
191 {
192 struct ttm_pool_manager *m =
193 container_of(kobj, struct ttm_pool_manager, kobj);
194 unsigned val = 0;
195
196 if (attr == &ttm_page_pool_max)
197 val = m->options.max_size;
198 else if (attr == &ttm_page_pool_small)
199 val = m->options.small;
200 else if (attr == &ttm_page_pool_alloc_size)
201 val = m->options.alloc_size;
202
203 val = val * (PAGE_SIZE >> 10);
204
205 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
206 }
207
208 static const struct sysfs_ops ttm_pool_sysfs_ops = {
209 .show = &ttm_pool_show,
210 .store = &ttm_pool_store,
211 };
212
213 static struct kobj_type ttm_pool_kobj_type = {
214 .release = &ttm_pool_kobj_release,
215 .sysfs_ops = &ttm_pool_sysfs_ops,
216 .default_attrs = ttm_pool_attrs,
217 };
218
219 static struct ttm_pool_manager *_manager;
220
221 #ifndef CONFIG_X86
set_pages_array_wb(struct page ** pages,int addrinarray)222 static int set_pages_array_wb(struct page **pages, int addrinarray)
223 {
224 #ifdef TTM_HAS_AGP
225 int i;
226
227 for (i = 0; i < addrinarray; i++)
228 unmap_page_from_agp(pages[i]);
229 #endif
230 return 0;
231 }
232
set_pages_array_wc(struct page ** pages,int addrinarray)233 static int set_pages_array_wc(struct page **pages, int addrinarray)
234 {
235 #ifdef TTM_HAS_AGP
236 int i;
237
238 for (i = 0; i < addrinarray; i++)
239 map_page_into_agp(pages[i]);
240 #endif
241 return 0;
242 }
243
set_pages_array_uc(struct page ** pages,int addrinarray)244 static int set_pages_array_uc(struct page **pages, int addrinarray)
245 {
246 #ifdef TTM_HAS_AGP
247 int i;
248
249 for (i = 0; i < addrinarray; i++)
250 map_page_into_agp(pages[i]);
251 #endif
252 return 0;
253 }
254 #endif
255
256 /**
257 * Select the right pool or requested caching state and ttm flags. */
ttm_get_pool(int flags,enum ttm_caching_state cstate)258 static struct ttm_page_pool *ttm_get_pool(int flags,
259 enum ttm_caching_state cstate)
260 {
261 int pool_index;
262
263 if (cstate == tt_cached)
264 return NULL;
265
266 if (cstate == tt_wc)
267 pool_index = 0x0;
268 else
269 pool_index = 0x1;
270
271 if (flags & TTM_PAGE_FLAG_DMA32)
272 pool_index |= 0x2;
273
274 return &_manager->pools[pool_index];
275 }
276
277 /* set memory back to wb and free the pages. */
ttm_pages_put(struct page * pages[],unsigned npages)278 static void ttm_pages_put(struct page *pages[], unsigned npages)
279 {
280 unsigned i;
281 if (set_pages_array_wb(pages, npages))
282 printk(KERN_ERR TTM_PFX "Failed to set %d pages to wb!\n",
283 npages);
284 for (i = 0; i < npages; ++i)
285 __free_page(pages[i]);
286 }
287
ttm_pool_update_free_locked(struct ttm_page_pool * pool,unsigned freed_pages)288 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
289 unsigned freed_pages)
290 {
291 pool->npages -= freed_pages;
292 pool->nfrees += freed_pages;
293 }
294
295 /**
296 * Free pages from pool.
297 *
298 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
299 * number of pages in one go.
300 *
301 * @pool: to free the pages from
302 * @free_all: If set to true will free all pages in pool
303 **/
ttm_page_pool_free(struct ttm_page_pool * pool,unsigned nr_free)304 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
305 {
306 unsigned long irq_flags;
307 struct page *p;
308 struct page **pages_to_free;
309 unsigned freed_pages = 0,
310 npages_to_free = nr_free;
311
312 if (NUM_PAGES_TO_ALLOC < nr_free)
313 npages_to_free = NUM_PAGES_TO_ALLOC;
314
315 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
316 GFP_KERNEL);
317 if (!pages_to_free) {
318 printk(KERN_ERR TTM_PFX
319 "Failed to allocate memory for pool free operation.\n");
320 return 0;
321 }
322
323 restart:
324 spin_lock_irqsave(&pool->lock, irq_flags);
325
326 list_for_each_entry_reverse(p, &pool->list, lru) {
327 if (freed_pages >= npages_to_free)
328 break;
329
330 pages_to_free[freed_pages++] = p;
331 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
332 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
333 /* remove range of pages from the pool */
334 __list_del(p->lru.prev, &pool->list);
335
336 ttm_pool_update_free_locked(pool, freed_pages);
337 /**
338 * Because changing page caching is costly
339 * we unlock the pool to prevent stalling.
340 */
341 spin_unlock_irqrestore(&pool->lock, irq_flags);
342
343 ttm_pages_put(pages_to_free, freed_pages);
344 if (likely(nr_free != FREE_ALL_PAGES))
345 nr_free -= freed_pages;
346
347 if (NUM_PAGES_TO_ALLOC >= nr_free)
348 npages_to_free = nr_free;
349 else
350 npages_to_free = NUM_PAGES_TO_ALLOC;
351
352 freed_pages = 0;
353
354 /* free all so restart the processing */
355 if (nr_free)
356 goto restart;
357
358 /* Not allowed to fall tough or break because
359 * following context is inside spinlock while we are
360 * outside here.
361 */
362 goto out;
363
364 }
365 }
366
367 /* remove range of pages from the pool */
368 if (freed_pages) {
369 __list_del(&p->lru, &pool->list);
370
371 ttm_pool_update_free_locked(pool, freed_pages);
372 nr_free -= freed_pages;
373 }
374
375 spin_unlock_irqrestore(&pool->lock, irq_flags);
376
377 if (freed_pages)
378 ttm_pages_put(pages_to_free, freed_pages);
379 out:
380 kfree(pages_to_free);
381 return nr_free;
382 }
383
384 /* Get good estimation how many pages are free in pools */
ttm_pool_get_num_unused_pages(void)385 static int ttm_pool_get_num_unused_pages(void)
386 {
387 unsigned i;
388 int total = 0;
389 for (i = 0; i < NUM_POOLS; ++i)
390 total += _manager->pools[i].npages;
391
392 return total;
393 }
394
395 /**
396 * Callback for mm to request pool to reduce number of page held.
397 */
ttm_pool_mm_shrink(struct shrinker * shrink,int shrink_pages,gfp_t gfp_mask)398 static int ttm_pool_mm_shrink(struct shrinker *shrink, int shrink_pages, gfp_t gfp_mask)
399 {
400 static atomic_t start_pool = ATOMIC_INIT(0);
401 unsigned i;
402 unsigned pool_offset = atomic_add_return(1, &start_pool);
403 struct ttm_page_pool *pool;
404
405 pool_offset = pool_offset % NUM_POOLS;
406 /* select start pool in round robin fashion */
407 for (i = 0; i < NUM_POOLS; ++i) {
408 unsigned nr_free = shrink_pages;
409 if (shrink_pages == 0)
410 break;
411 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
412 shrink_pages = ttm_page_pool_free(pool, nr_free);
413 }
414 /* return estimated number of unused pages in pool */
415 return ttm_pool_get_num_unused_pages();
416 }
417
ttm_pool_mm_shrink_init(struct ttm_pool_manager * manager)418 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
419 {
420 manager->mm_shrink.shrink = &ttm_pool_mm_shrink;
421 manager->mm_shrink.seeks = 1;
422 register_shrinker(&manager->mm_shrink);
423 }
424
ttm_pool_mm_shrink_fini(struct ttm_pool_manager * manager)425 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
426 {
427 unregister_shrinker(&manager->mm_shrink);
428 }
429
ttm_set_pages_caching(struct page ** pages,enum ttm_caching_state cstate,unsigned cpages)430 static int ttm_set_pages_caching(struct page **pages,
431 enum ttm_caching_state cstate, unsigned cpages)
432 {
433 int r = 0;
434 /* Set page caching */
435 switch (cstate) {
436 case tt_uncached:
437 r = set_pages_array_uc(pages, cpages);
438 if (r)
439 printk(KERN_ERR TTM_PFX
440 "Failed to set %d pages to uc!\n",
441 cpages);
442 break;
443 case tt_wc:
444 r = set_pages_array_wc(pages, cpages);
445 if (r)
446 printk(KERN_ERR TTM_PFX
447 "Failed to set %d pages to wc!\n",
448 cpages);
449 break;
450 default:
451 break;
452 }
453 return r;
454 }
455
456 /**
457 * Free pages the pages that failed to change the caching state. If there is
458 * any pages that have changed their caching state already put them to the
459 * pool.
460 */
ttm_handle_caching_state_failure(struct list_head * pages,int ttm_flags,enum ttm_caching_state cstate,struct page ** failed_pages,unsigned cpages)461 static void ttm_handle_caching_state_failure(struct list_head *pages,
462 int ttm_flags, enum ttm_caching_state cstate,
463 struct page **failed_pages, unsigned cpages)
464 {
465 unsigned i;
466 /* Failed pages have to be freed */
467 for (i = 0; i < cpages; ++i) {
468 list_del(&failed_pages[i]->lru);
469 __free_page(failed_pages[i]);
470 }
471 }
472
473 /**
474 * Allocate new pages with correct caching.
475 *
476 * This function is reentrant if caller updates count depending on number of
477 * pages returned in pages array.
478 */
ttm_alloc_new_pages(struct list_head * pages,gfp_t gfp_flags,int ttm_flags,enum ttm_caching_state cstate,unsigned count)479 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
480 int ttm_flags, enum ttm_caching_state cstate, unsigned count)
481 {
482 struct page **caching_array;
483 struct page *p;
484 int r = 0;
485 unsigned i, cpages;
486 unsigned max_cpages = min(count,
487 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
488
489 /* allocate array for page caching change */
490 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
491
492 if (!caching_array) {
493 printk(KERN_ERR TTM_PFX
494 "Unable to allocate table for new pages.");
495 return -ENOMEM;
496 }
497
498 for (i = 0, cpages = 0; i < count; ++i) {
499 p = alloc_page(gfp_flags);
500
501 if (!p) {
502 printk(KERN_ERR TTM_PFX "Unable to get page %u.\n", i);
503
504 /* store already allocated pages in the pool after
505 * setting the caching state */
506 if (cpages) {
507 r = ttm_set_pages_caching(caching_array,
508 cstate, cpages);
509 if (r)
510 ttm_handle_caching_state_failure(pages,
511 ttm_flags, cstate,
512 caching_array, cpages);
513 }
514 r = -ENOMEM;
515 goto out;
516 }
517
518 #ifdef CONFIG_HIGHMEM
519 /* gfp flags of highmem page should never be dma32 so we
520 * we should be fine in such case
521 */
522 if (!PageHighMem(p))
523 #endif
524 {
525 caching_array[cpages++] = p;
526 if (cpages == max_cpages) {
527
528 r = ttm_set_pages_caching(caching_array,
529 cstate, cpages);
530 if (r) {
531 ttm_handle_caching_state_failure(pages,
532 ttm_flags, cstate,
533 caching_array, cpages);
534 goto out;
535 }
536 cpages = 0;
537 }
538 }
539
540 list_add(&p->lru, pages);
541 }
542
543 if (cpages) {
544 r = ttm_set_pages_caching(caching_array, cstate, cpages);
545 if (r)
546 ttm_handle_caching_state_failure(pages,
547 ttm_flags, cstate,
548 caching_array, cpages);
549 }
550 out:
551 kfree(caching_array);
552
553 return r;
554 }
555
556 /**
557 * Fill the given pool if there isn't enough pages and requested number of
558 * pages is small.
559 */
ttm_page_pool_fill_locked(struct ttm_page_pool * pool,int ttm_flags,enum ttm_caching_state cstate,unsigned count,unsigned long * irq_flags)560 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
561 int ttm_flags, enum ttm_caching_state cstate, unsigned count,
562 unsigned long *irq_flags)
563 {
564 struct page *p;
565 int r;
566 unsigned cpages = 0;
567 /**
568 * Only allow one pool fill operation at a time.
569 * If pool doesn't have enough pages for the allocation new pages are
570 * allocated from outside of pool.
571 */
572 if (pool->fill_lock)
573 return;
574
575 pool->fill_lock = true;
576
577 /* If allocation request is small and there is not enough
578 * pages in pool we fill the pool first */
579 if (count < _manager->options.small
580 && count > pool->npages) {
581 struct list_head new_pages;
582 unsigned alloc_size = _manager->options.alloc_size;
583
584 /**
585 * Can't change page caching if in irqsave context. We have to
586 * drop the pool->lock.
587 */
588 spin_unlock_irqrestore(&pool->lock, *irq_flags);
589
590 INIT_LIST_HEAD(&new_pages);
591 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
592 cstate, alloc_size);
593 spin_lock_irqsave(&pool->lock, *irq_flags);
594
595 if (!r) {
596 list_splice(&new_pages, &pool->list);
597 ++pool->nrefills;
598 pool->npages += alloc_size;
599 } else {
600 printk(KERN_ERR TTM_PFX
601 "Failed to fill pool (%p).", pool);
602 /* If we have any pages left put them to the pool. */
603 list_for_each_entry(p, &pool->list, lru) {
604 ++cpages;
605 }
606 list_splice(&new_pages, &pool->list);
607 pool->npages += cpages;
608 }
609
610 }
611 pool->fill_lock = false;
612 }
613
614 /**
615 * Cut count nubmer of pages from the pool and put them to return list
616 *
617 * @return count of pages still to allocate to fill the request.
618 */
ttm_page_pool_get_pages(struct ttm_page_pool * pool,struct list_head * pages,int ttm_flags,enum ttm_caching_state cstate,unsigned count)619 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
620 struct list_head *pages, int ttm_flags,
621 enum ttm_caching_state cstate, unsigned count)
622 {
623 unsigned long irq_flags;
624 struct list_head *p;
625 unsigned i;
626
627 spin_lock_irqsave(&pool->lock, irq_flags);
628 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags);
629
630 if (count >= pool->npages) {
631 /* take all pages from the pool */
632 list_splice_init(&pool->list, pages);
633 count -= pool->npages;
634 pool->npages = 0;
635 goto out;
636 }
637 /* find the last pages to include for requested number of pages. Split
638 * pool to begin and halves to reduce search space. */
639 if (count <= pool->npages/2) {
640 i = 0;
641 list_for_each(p, &pool->list) {
642 if (++i == count)
643 break;
644 }
645 } else {
646 i = pool->npages + 1;
647 list_for_each_prev(p, &pool->list) {
648 if (--i == count)
649 break;
650 }
651 }
652 /* Cut count number of pages from pool */
653 list_cut_position(pages, &pool->list, p);
654 pool->npages -= count;
655 count = 0;
656 out:
657 spin_unlock_irqrestore(&pool->lock, irq_flags);
658 return count;
659 }
660
661 /*
662 * On success pages list will hold count number of correctly
663 * cached pages.
664 */
ttm_get_pages(struct list_head * pages,int flags,enum ttm_caching_state cstate,unsigned count,dma_addr_t * dma_address)665 int ttm_get_pages(struct list_head *pages, int flags,
666 enum ttm_caching_state cstate, unsigned count,
667 dma_addr_t *dma_address)
668 {
669 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
670 struct page *p = NULL;
671 gfp_t gfp_flags = GFP_USER;
672 int r;
673
674 /* set zero flag for page allocation if required */
675 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
676 gfp_flags |= __GFP_ZERO;
677
678 /* No pool for cached pages */
679 if (pool == NULL) {
680 if (flags & TTM_PAGE_FLAG_DMA32)
681 gfp_flags |= GFP_DMA32;
682 else
683 gfp_flags |= GFP_HIGHUSER;
684
685 for (r = 0; r < count; ++r) {
686 p = alloc_page(gfp_flags);
687 if (!p) {
688
689 printk(KERN_ERR TTM_PFX
690 "Unable to allocate page.");
691 return -ENOMEM;
692 }
693
694 list_add(&p->lru, pages);
695 }
696 return 0;
697 }
698
699
700 /* combine zero flag to pool flags */
701 gfp_flags |= pool->gfp_flags;
702
703 /* First we take pages from the pool */
704 count = ttm_page_pool_get_pages(pool, pages, flags, cstate, count);
705
706 /* clear the pages coming from the pool if requested */
707 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
708 list_for_each_entry(p, pages, lru) {
709 clear_page(page_address(p));
710 }
711 }
712
713 /* If pool didn't have enough pages allocate new one. */
714 if (count > 0) {
715 /* ttm_alloc_new_pages doesn't reference pool so we can run
716 * multiple requests in parallel.
717 **/
718 r = ttm_alloc_new_pages(pages, gfp_flags, flags, cstate, count);
719 if (r) {
720 /* If there is any pages in the list put them back to
721 * the pool. */
722 printk(KERN_ERR TTM_PFX
723 "Failed to allocate extra pages "
724 "for large request.");
725 ttm_put_pages(pages, 0, flags, cstate, NULL);
726 return r;
727 }
728 }
729
730
731 return 0;
732 }
733
734 /* Put all pages in pages list to correct pool to wait for reuse */
ttm_put_pages(struct list_head * pages,unsigned page_count,int flags,enum ttm_caching_state cstate,dma_addr_t * dma_address)735 void ttm_put_pages(struct list_head *pages, unsigned page_count, int flags,
736 enum ttm_caching_state cstate, dma_addr_t *dma_address)
737 {
738 unsigned long irq_flags;
739 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
740 struct page *p, *tmp;
741
742 if (pool == NULL) {
743 /* No pool for this memory type so free the pages */
744
745 list_for_each_entry_safe(p, tmp, pages, lru) {
746 __free_page(p);
747 }
748 /* Make the pages list empty */
749 INIT_LIST_HEAD(pages);
750 return;
751 }
752 if (page_count == 0) {
753 list_for_each_entry_safe(p, tmp, pages, lru) {
754 ++page_count;
755 }
756 }
757
758 spin_lock_irqsave(&pool->lock, irq_flags);
759 list_splice_init(pages, &pool->list);
760 pool->npages += page_count;
761 /* Check that we don't go over the pool limit */
762 page_count = 0;
763 if (pool->npages > _manager->options.max_size) {
764 page_count = pool->npages - _manager->options.max_size;
765 /* free at least NUM_PAGES_TO_ALLOC number of pages
766 * to reduce calls to set_memory_wb */
767 if (page_count < NUM_PAGES_TO_ALLOC)
768 page_count = NUM_PAGES_TO_ALLOC;
769 }
770 spin_unlock_irqrestore(&pool->lock, irq_flags);
771 if (page_count)
772 ttm_page_pool_free(pool, page_count);
773 }
774
ttm_page_pool_init_locked(struct ttm_page_pool * pool,int flags,char * name)775 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags,
776 char *name)
777 {
778 spin_lock_init(&pool->lock);
779 pool->fill_lock = false;
780 INIT_LIST_HEAD(&pool->list);
781 pool->npages = pool->nfrees = 0;
782 pool->gfp_flags = flags;
783 pool->name = name;
784 }
785
ttm_page_alloc_init(struct ttm_mem_global * glob,unsigned max_pages)786 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
787 {
788 int ret;
789
790 WARN_ON(_manager);
791
792 printk(KERN_INFO TTM_PFX "Initializing pool allocator.\n");
793
794 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
795
796 ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc");
797
798 ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc");
799
800 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
801 GFP_USER | GFP_DMA32, "wc dma");
802
803 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
804 GFP_USER | GFP_DMA32, "uc dma");
805
806 _manager->options.max_size = max_pages;
807 _manager->options.small = SMALL_ALLOCATION;
808 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
809
810 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
811 &glob->kobj, "pool");
812 if (unlikely(ret != 0)) {
813 kobject_put(&_manager->kobj);
814 _manager = NULL;
815 return ret;
816 }
817
818 ttm_pool_mm_shrink_init(_manager);
819
820 return 0;
821 }
822
ttm_page_alloc_fini(void)823 void ttm_page_alloc_fini(void)
824 {
825 int i;
826
827 printk(KERN_INFO TTM_PFX "Finalizing pool allocator.\n");
828 ttm_pool_mm_shrink_fini(_manager);
829
830 for (i = 0; i < NUM_POOLS; ++i)
831 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
832
833 kobject_put(&_manager->kobj);
834 _manager = NULL;
835 }
836
ttm_page_alloc_debugfs(struct seq_file * m,void * data)837 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
838 {
839 struct ttm_page_pool *p;
840 unsigned i;
841 char *h[] = {"pool", "refills", "pages freed", "size"};
842 if (!_manager) {
843 seq_printf(m, "No pool allocator running.\n");
844 return 0;
845 }
846 seq_printf(m, "%6s %12s %13s %8s\n",
847 h[0], h[1], h[2], h[3]);
848 for (i = 0; i < NUM_POOLS; ++i) {
849 p = &_manager->pools[i];
850
851 seq_printf(m, "%6s %12ld %13ld %8d\n",
852 p->name, p->nrefills,
853 p->nfrees, p->npages);
854 }
855 return 0;
856 }
857 EXPORT_SYMBOL(ttm_page_alloc_debugfs);
858