1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #define pr_fmt(fmt) "[TTM] " fmt
29 
30 #include "ttm/ttm_memory.h"
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_page_alloc.h"
33 #include <linux/spinlock.h>
34 #include <linux/sched.h>
35 #include <linux/wait.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/slab.h>
39 
40 #define TTM_MEMORY_ALLOC_RETRIES 4
41 
42 struct ttm_mem_zone {
43 	struct kobject kobj;
44 	struct ttm_mem_global *glob;
45 	const char *name;
46 	uint64_t zone_mem;
47 	uint64_t emer_mem;
48 	uint64_t max_mem;
49 	uint64_t swap_limit;
50 	uint64_t used_mem;
51 };
52 
53 static struct attribute ttm_mem_sys = {
54 	.name = "zone_memory",
55 	.mode = S_IRUGO
56 };
57 static struct attribute ttm_mem_emer = {
58 	.name = "emergency_memory",
59 	.mode = S_IRUGO | S_IWUSR
60 };
61 static struct attribute ttm_mem_max = {
62 	.name = "available_memory",
63 	.mode = S_IRUGO | S_IWUSR
64 };
65 static struct attribute ttm_mem_swap = {
66 	.name = "swap_limit",
67 	.mode = S_IRUGO | S_IWUSR
68 };
69 static struct attribute ttm_mem_used = {
70 	.name = "used_memory",
71 	.mode = S_IRUGO
72 };
73 
ttm_mem_zone_kobj_release(struct kobject * kobj)74 static void ttm_mem_zone_kobj_release(struct kobject *kobj)
75 {
76 	struct ttm_mem_zone *zone =
77 		container_of(kobj, struct ttm_mem_zone, kobj);
78 
79 	pr_info("Zone %7s: Used memory at exit: %llu kiB\n",
80 		zone->name, (unsigned long long)zone->used_mem >> 10);
81 	kfree(zone);
82 }
83 
ttm_mem_zone_show(struct kobject * kobj,struct attribute * attr,char * buffer)84 static ssize_t ttm_mem_zone_show(struct kobject *kobj,
85 				 struct attribute *attr,
86 				 char *buffer)
87 {
88 	struct ttm_mem_zone *zone =
89 		container_of(kobj, struct ttm_mem_zone, kobj);
90 	uint64_t val = 0;
91 
92 	spin_lock(&zone->glob->lock);
93 	if (attr == &ttm_mem_sys)
94 		val = zone->zone_mem;
95 	else if (attr == &ttm_mem_emer)
96 		val = zone->emer_mem;
97 	else if (attr == &ttm_mem_max)
98 		val = zone->max_mem;
99 	else if (attr == &ttm_mem_swap)
100 		val = zone->swap_limit;
101 	else if (attr == &ttm_mem_used)
102 		val = zone->used_mem;
103 	spin_unlock(&zone->glob->lock);
104 
105 	return snprintf(buffer, PAGE_SIZE, "%llu\n",
106 			(unsigned long long) val >> 10);
107 }
108 
109 static void ttm_check_swapping(struct ttm_mem_global *glob);
110 
ttm_mem_zone_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)111 static ssize_t ttm_mem_zone_store(struct kobject *kobj,
112 				  struct attribute *attr,
113 				  const char *buffer,
114 				  size_t size)
115 {
116 	struct ttm_mem_zone *zone =
117 		container_of(kobj, struct ttm_mem_zone, kobj);
118 	int chars;
119 	unsigned long val;
120 	uint64_t val64;
121 
122 	chars = sscanf(buffer, "%lu", &val);
123 	if (chars == 0)
124 		return size;
125 
126 	val64 = val;
127 	val64 <<= 10;
128 
129 	spin_lock(&zone->glob->lock);
130 	if (val64 > zone->zone_mem)
131 		val64 = zone->zone_mem;
132 	if (attr == &ttm_mem_emer) {
133 		zone->emer_mem = val64;
134 		if (zone->max_mem > val64)
135 			zone->max_mem = val64;
136 	} else if (attr == &ttm_mem_max) {
137 		zone->max_mem = val64;
138 		if (zone->emer_mem < val64)
139 			zone->emer_mem = val64;
140 	} else if (attr == &ttm_mem_swap)
141 		zone->swap_limit = val64;
142 	spin_unlock(&zone->glob->lock);
143 
144 	ttm_check_swapping(zone->glob);
145 
146 	return size;
147 }
148 
149 static struct attribute *ttm_mem_zone_attrs[] = {
150 	&ttm_mem_sys,
151 	&ttm_mem_emer,
152 	&ttm_mem_max,
153 	&ttm_mem_swap,
154 	&ttm_mem_used,
155 	NULL
156 };
157 
158 static const struct sysfs_ops ttm_mem_zone_ops = {
159 	.show = &ttm_mem_zone_show,
160 	.store = &ttm_mem_zone_store
161 };
162 
163 static struct kobj_type ttm_mem_zone_kobj_type = {
164 	.release = &ttm_mem_zone_kobj_release,
165 	.sysfs_ops = &ttm_mem_zone_ops,
166 	.default_attrs = ttm_mem_zone_attrs,
167 };
168 
ttm_mem_global_kobj_release(struct kobject * kobj)169 static void ttm_mem_global_kobj_release(struct kobject *kobj)
170 {
171 	struct ttm_mem_global *glob =
172 		container_of(kobj, struct ttm_mem_global, kobj);
173 
174 	kfree(glob);
175 }
176 
177 static struct kobj_type ttm_mem_glob_kobj_type = {
178 	.release = &ttm_mem_global_kobj_release,
179 };
180 
ttm_zones_above_swap_target(struct ttm_mem_global * glob,bool from_wq,uint64_t extra)181 static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob,
182 					bool from_wq, uint64_t extra)
183 {
184 	unsigned int i;
185 	struct ttm_mem_zone *zone;
186 	uint64_t target;
187 
188 	for (i = 0; i < glob->num_zones; ++i) {
189 		zone = glob->zones[i];
190 
191 		if (from_wq)
192 			target = zone->swap_limit;
193 		else if (capable(CAP_SYS_ADMIN))
194 			target = zone->emer_mem;
195 		else
196 			target = zone->max_mem;
197 
198 		target = (extra > target) ? 0ULL : target;
199 
200 		if (zone->used_mem > target)
201 			return true;
202 	}
203 	return false;
204 }
205 
206 /**
207  * At this point we only support a single shrink callback.
208  * Extend this if needed, perhaps using a linked list of callbacks.
209  * Note that this function is reentrant:
210  * many threads may try to swap out at any given time.
211  */
212 
ttm_shrink(struct ttm_mem_global * glob,bool from_wq,uint64_t extra)213 static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq,
214 		       uint64_t extra)
215 {
216 	int ret;
217 	struct ttm_mem_shrink *shrink;
218 
219 	spin_lock(&glob->lock);
220 	if (glob->shrink == NULL)
221 		goto out;
222 
223 	while (ttm_zones_above_swap_target(glob, from_wq, extra)) {
224 		shrink = glob->shrink;
225 		spin_unlock(&glob->lock);
226 		ret = shrink->do_shrink(shrink);
227 		spin_lock(&glob->lock);
228 		if (unlikely(ret != 0))
229 			goto out;
230 	}
231 out:
232 	spin_unlock(&glob->lock);
233 }
234 
235 
236 
ttm_shrink_work(struct work_struct * work)237 static void ttm_shrink_work(struct work_struct *work)
238 {
239 	struct ttm_mem_global *glob =
240 	    container_of(work, struct ttm_mem_global, work);
241 
242 	ttm_shrink(glob, true, 0ULL);
243 }
244 
ttm_mem_init_kernel_zone(struct ttm_mem_global * glob,const struct sysinfo * si)245 static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob,
246 				    const struct sysinfo *si)
247 {
248 	struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
249 	uint64_t mem;
250 	int ret;
251 
252 	if (unlikely(!zone))
253 		return -ENOMEM;
254 
255 	mem = si->totalram - si->totalhigh;
256 	mem *= si->mem_unit;
257 
258 	zone->name = "kernel";
259 	zone->zone_mem = mem;
260 	zone->max_mem = mem >> 1;
261 	zone->emer_mem = (mem >> 1) + (mem >> 2);
262 	zone->swap_limit = zone->max_mem - (mem >> 3);
263 	zone->used_mem = 0;
264 	zone->glob = glob;
265 	glob->zone_kernel = zone;
266 	ret = kobject_init_and_add(
267 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
268 	if (unlikely(ret != 0)) {
269 		kobject_put(&zone->kobj);
270 		return ret;
271 	}
272 	glob->zones[glob->num_zones++] = zone;
273 	return 0;
274 }
275 
276 #ifdef CONFIG_HIGHMEM
ttm_mem_init_highmem_zone(struct ttm_mem_global * glob,const struct sysinfo * si)277 static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob,
278 				     const struct sysinfo *si)
279 {
280 	struct ttm_mem_zone *zone;
281 	uint64_t mem;
282 	int ret;
283 
284 	if (si->totalhigh == 0)
285 		return 0;
286 
287 	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
288 	if (unlikely(!zone))
289 		return -ENOMEM;
290 
291 	mem = si->totalram;
292 	mem *= si->mem_unit;
293 
294 	zone->name = "highmem";
295 	zone->zone_mem = mem;
296 	zone->max_mem = mem >> 1;
297 	zone->emer_mem = (mem >> 1) + (mem >> 2);
298 	zone->swap_limit = zone->max_mem - (mem >> 3);
299 	zone->used_mem = 0;
300 	zone->glob = glob;
301 	glob->zone_highmem = zone;
302 	ret = kobject_init_and_add(
303 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
304 	if (unlikely(ret != 0)) {
305 		kobject_put(&zone->kobj);
306 		return ret;
307 	}
308 	glob->zones[glob->num_zones++] = zone;
309 	return 0;
310 }
311 #else
ttm_mem_init_dma32_zone(struct ttm_mem_global * glob,const struct sysinfo * si)312 static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob,
313 				   const struct sysinfo *si)
314 {
315 	struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
316 	uint64_t mem;
317 	int ret;
318 
319 	if (unlikely(!zone))
320 		return -ENOMEM;
321 
322 	mem = si->totalram;
323 	mem *= si->mem_unit;
324 
325 	/**
326 	 * No special dma32 zone needed.
327 	 */
328 
329 	if (mem <= ((uint64_t) 1ULL << 32)) {
330 		kfree(zone);
331 		return 0;
332 	}
333 
334 	/*
335 	 * Limit max dma32 memory to 4GB for now
336 	 * until we can figure out how big this
337 	 * zone really is.
338 	 */
339 
340 	mem = ((uint64_t) 1ULL << 32);
341 	zone->name = "dma32";
342 	zone->zone_mem = mem;
343 	zone->max_mem = mem >> 1;
344 	zone->emer_mem = (mem >> 1) + (mem >> 2);
345 	zone->swap_limit = zone->max_mem - (mem >> 3);
346 	zone->used_mem = 0;
347 	zone->glob = glob;
348 	glob->zone_dma32 = zone;
349 	ret = kobject_init_and_add(
350 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
351 	if (unlikely(ret != 0)) {
352 		kobject_put(&zone->kobj);
353 		return ret;
354 	}
355 	glob->zones[glob->num_zones++] = zone;
356 	return 0;
357 }
358 #endif
359 
ttm_mem_global_init(struct ttm_mem_global * glob)360 int ttm_mem_global_init(struct ttm_mem_global *glob)
361 {
362 	struct sysinfo si;
363 	int ret;
364 	int i;
365 	struct ttm_mem_zone *zone;
366 
367 	spin_lock_init(&glob->lock);
368 	glob->swap_queue = create_singlethread_workqueue("ttm_swap");
369 	INIT_WORK(&glob->work, ttm_shrink_work);
370 	init_waitqueue_head(&glob->queue);
371 	ret = kobject_init_and_add(
372 		&glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting");
373 	if (unlikely(ret != 0)) {
374 		kobject_put(&glob->kobj);
375 		return ret;
376 	}
377 
378 	si_meminfo(&si);
379 
380 	ret = ttm_mem_init_kernel_zone(glob, &si);
381 	if (unlikely(ret != 0))
382 		goto out_no_zone;
383 #ifdef CONFIG_HIGHMEM
384 	ret = ttm_mem_init_highmem_zone(glob, &si);
385 	if (unlikely(ret != 0))
386 		goto out_no_zone;
387 #else
388 	ret = ttm_mem_init_dma32_zone(glob, &si);
389 	if (unlikely(ret != 0))
390 		goto out_no_zone;
391 #endif
392 	for (i = 0; i < glob->num_zones; ++i) {
393 		zone = glob->zones[i];
394 		pr_info("Zone %7s: Available graphics memory: %llu kiB\n",
395 			zone->name, (unsigned long long)zone->max_mem >> 10);
396 	}
397 	ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
398 	ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
399 	return 0;
400 out_no_zone:
401 	ttm_mem_global_release(glob);
402 	return ret;
403 }
404 EXPORT_SYMBOL(ttm_mem_global_init);
405 
ttm_mem_global_release(struct ttm_mem_global * glob)406 void ttm_mem_global_release(struct ttm_mem_global *glob)
407 {
408 	unsigned int i;
409 	struct ttm_mem_zone *zone;
410 
411 	/* let the page allocator first stop the shrink work. */
412 	ttm_page_alloc_fini();
413 	ttm_dma_page_alloc_fini();
414 
415 	flush_workqueue(glob->swap_queue);
416 	destroy_workqueue(glob->swap_queue);
417 	glob->swap_queue = NULL;
418 	for (i = 0; i < glob->num_zones; ++i) {
419 		zone = glob->zones[i];
420 		kobject_del(&zone->kobj);
421 		kobject_put(&zone->kobj);
422 			}
423 	kobject_del(&glob->kobj);
424 	kobject_put(&glob->kobj);
425 }
426 EXPORT_SYMBOL(ttm_mem_global_release);
427 
ttm_check_swapping(struct ttm_mem_global * glob)428 static void ttm_check_swapping(struct ttm_mem_global *glob)
429 {
430 	bool needs_swapping = false;
431 	unsigned int i;
432 	struct ttm_mem_zone *zone;
433 
434 	spin_lock(&glob->lock);
435 	for (i = 0; i < glob->num_zones; ++i) {
436 		zone = glob->zones[i];
437 		if (zone->used_mem > zone->swap_limit) {
438 			needs_swapping = true;
439 			break;
440 		}
441 	}
442 
443 	spin_unlock(&glob->lock);
444 
445 	if (unlikely(needs_swapping))
446 		(void)queue_work(glob->swap_queue, &glob->work);
447 
448 }
449 
ttm_mem_global_free_zone(struct ttm_mem_global * glob,struct ttm_mem_zone * single_zone,uint64_t amount)450 static void ttm_mem_global_free_zone(struct ttm_mem_global *glob,
451 				     struct ttm_mem_zone *single_zone,
452 				     uint64_t amount)
453 {
454 	unsigned int i;
455 	struct ttm_mem_zone *zone;
456 
457 	spin_lock(&glob->lock);
458 	for (i = 0; i < glob->num_zones; ++i) {
459 		zone = glob->zones[i];
460 		if (single_zone && zone != single_zone)
461 			continue;
462 		zone->used_mem -= amount;
463 	}
464 	spin_unlock(&glob->lock);
465 }
466 
ttm_mem_global_free(struct ttm_mem_global * glob,uint64_t amount)467 void ttm_mem_global_free(struct ttm_mem_global *glob,
468 			 uint64_t amount)
469 {
470 	return ttm_mem_global_free_zone(glob, NULL, amount);
471 }
472 EXPORT_SYMBOL(ttm_mem_global_free);
473 
ttm_mem_global_reserve(struct ttm_mem_global * glob,struct ttm_mem_zone * single_zone,uint64_t amount,bool reserve)474 static int ttm_mem_global_reserve(struct ttm_mem_global *glob,
475 				  struct ttm_mem_zone *single_zone,
476 				  uint64_t amount, bool reserve)
477 {
478 	uint64_t limit;
479 	int ret = -ENOMEM;
480 	unsigned int i;
481 	struct ttm_mem_zone *zone;
482 
483 	spin_lock(&glob->lock);
484 	for (i = 0; i < glob->num_zones; ++i) {
485 		zone = glob->zones[i];
486 		if (single_zone && zone != single_zone)
487 			continue;
488 
489 		limit = (capable(CAP_SYS_ADMIN)) ?
490 			zone->emer_mem : zone->max_mem;
491 
492 		if (zone->used_mem > limit)
493 			goto out_unlock;
494 	}
495 
496 	if (reserve) {
497 		for (i = 0; i < glob->num_zones; ++i) {
498 			zone = glob->zones[i];
499 			if (single_zone && zone != single_zone)
500 				continue;
501 			zone->used_mem += amount;
502 		}
503 	}
504 
505 	ret = 0;
506 out_unlock:
507 	spin_unlock(&glob->lock);
508 	ttm_check_swapping(glob);
509 
510 	return ret;
511 }
512 
513 
ttm_mem_global_alloc_zone(struct ttm_mem_global * glob,struct ttm_mem_zone * single_zone,uint64_t memory,bool no_wait,bool interruptible)514 static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob,
515 				     struct ttm_mem_zone *single_zone,
516 				     uint64_t memory,
517 				     bool no_wait, bool interruptible)
518 {
519 	int count = TTM_MEMORY_ALLOC_RETRIES;
520 
521 	while (unlikely(ttm_mem_global_reserve(glob,
522 					       single_zone,
523 					       memory, true)
524 			!= 0)) {
525 		if (no_wait)
526 			return -ENOMEM;
527 		if (unlikely(count-- == 0))
528 			return -ENOMEM;
529 		ttm_shrink(glob, false, memory + (memory >> 2) + 16);
530 	}
531 
532 	return 0;
533 }
534 
ttm_mem_global_alloc(struct ttm_mem_global * glob,uint64_t memory,bool no_wait,bool interruptible)535 int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
536 			 bool no_wait, bool interruptible)
537 {
538 	/**
539 	 * Normal allocations of kernel memory are registered in
540 	 * all zones.
541 	 */
542 
543 	return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait,
544 					 interruptible);
545 }
546 EXPORT_SYMBOL(ttm_mem_global_alloc);
547 
ttm_mem_global_alloc_page(struct ttm_mem_global * glob,struct page * page,bool no_wait,bool interruptible)548 int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
549 			      struct page *page,
550 			      bool no_wait, bool interruptible)
551 {
552 
553 	struct ttm_mem_zone *zone = NULL;
554 
555 	/**
556 	 * Page allocations may be registed in a single zone
557 	 * only if highmem or !dma32.
558 	 */
559 
560 #ifdef CONFIG_HIGHMEM
561 	if (PageHighMem(page) && glob->zone_highmem != NULL)
562 		zone = glob->zone_highmem;
563 #else
564 	if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
565 		zone = glob->zone_kernel;
566 #endif
567 	return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait,
568 					 interruptible);
569 }
570 
ttm_mem_global_free_page(struct ttm_mem_global * glob,struct page * page)571 void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page)
572 {
573 	struct ttm_mem_zone *zone = NULL;
574 
575 #ifdef CONFIG_HIGHMEM
576 	if (PageHighMem(page) && glob->zone_highmem != NULL)
577 		zone = glob->zone_highmem;
578 #else
579 	if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
580 		zone = glob->zone_kernel;
581 #endif
582 	ttm_mem_global_free_zone(glob, zone, PAGE_SIZE);
583 }
584 
585 
ttm_round_pot(size_t size)586 size_t ttm_round_pot(size_t size)
587 {
588 	if ((size & (size - 1)) == 0)
589 		return size;
590 	else if (size > PAGE_SIZE)
591 		return PAGE_ALIGN(size);
592 	else {
593 		size_t tmp_size = 4;
594 
595 		while (tmp_size < size)
596 			tmp_size <<= 1;
597 
598 		return tmp_size;
599 	}
600 	return 0;
601 }
602 EXPORT_SYMBOL(ttm_round_pot);
603