1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "ttm/ttm_memory.h"
29 #include "ttm/ttm_module.h"
30 #include "ttm/ttm_page_alloc.h"
31 #include <linux/spinlock.h>
32 #include <linux/sched.h>
33 #include <linux/wait.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 
38 #define TTM_MEMORY_ALLOC_RETRIES 4
39 
40 struct ttm_mem_zone {
41 	struct kobject kobj;
42 	struct ttm_mem_global *glob;
43 	const char *name;
44 	uint64_t zone_mem;
45 	uint64_t emer_mem;
46 	uint64_t max_mem;
47 	uint64_t swap_limit;
48 	uint64_t used_mem;
49 };
50 
51 static struct attribute ttm_mem_sys = {
52 	.name = "zone_memory",
53 	.mode = S_IRUGO
54 };
55 static struct attribute ttm_mem_emer = {
56 	.name = "emergency_memory",
57 	.mode = S_IRUGO | S_IWUSR
58 };
59 static struct attribute ttm_mem_max = {
60 	.name = "available_memory",
61 	.mode = S_IRUGO | S_IWUSR
62 };
63 static struct attribute ttm_mem_swap = {
64 	.name = "swap_limit",
65 	.mode = S_IRUGO | S_IWUSR
66 };
67 static struct attribute ttm_mem_used = {
68 	.name = "used_memory",
69 	.mode = S_IRUGO
70 };
71 
ttm_mem_zone_kobj_release(struct kobject * kobj)72 static void ttm_mem_zone_kobj_release(struct kobject *kobj)
73 {
74 	struct ttm_mem_zone *zone =
75 		container_of(kobj, struct ttm_mem_zone, kobj);
76 
77 	printk(KERN_INFO TTM_PFX
78 	       "Zone %7s: Used memory at exit: %llu kiB.\n",
79 	       zone->name, (unsigned long long) zone->used_mem >> 10);
80 	kfree(zone);
81 }
82 
ttm_mem_zone_show(struct kobject * kobj,struct attribute * attr,char * buffer)83 static ssize_t ttm_mem_zone_show(struct kobject *kobj,
84 				 struct attribute *attr,
85 				 char *buffer)
86 {
87 	struct ttm_mem_zone *zone =
88 		container_of(kobj, struct ttm_mem_zone, kobj);
89 	uint64_t val = 0;
90 
91 	spin_lock(&zone->glob->lock);
92 	if (attr == &ttm_mem_sys)
93 		val = zone->zone_mem;
94 	else if (attr == &ttm_mem_emer)
95 		val = zone->emer_mem;
96 	else if (attr == &ttm_mem_max)
97 		val = zone->max_mem;
98 	else if (attr == &ttm_mem_swap)
99 		val = zone->swap_limit;
100 	else if (attr == &ttm_mem_used)
101 		val = zone->used_mem;
102 	spin_unlock(&zone->glob->lock);
103 
104 	return snprintf(buffer, PAGE_SIZE, "%llu\n",
105 			(unsigned long long) val >> 10);
106 }
107 
108 static void ttm_check_swapping(struct ttm_mem_global *glob);
109 
ttm_mem_zone_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)110 static ssize_t ttm_mem_zone_store(struct kobject *kobj,
111 				  struct attribute *attr,
112 				  const char *buffer,
113 				  size_t size)
114 {
115 	struct ttm_mem_zone *zone =
116 		container_of(kobj, struct ttm_mem_zone, kobj);
117 	int chars;
118 	unsigned long val;
119 	uint64_t val64;
120 
121 	chars = sscanf(buffer, "%lu", &val);
122 	if (chars == 0)
123 		return size;
124 
125 	val64 = val;
126 	val64 <<= 10;
127 
128 	spin_lock(&zone->glob->lock);
129 	if (val64 > zone->zone_mem)
130 		val64 = zone->zone_mem;
131 	if (attr == &ttm_mem_emer) {
132 		zone->emer_mem = val64;
133 		if (zone->max_mem > val64)
134 			zone->max_mem = val64;
135 	} else if (attr == &ttm_mem_max) {
136 		zone->max_mem = val64;
137 		if (zone->emer_mem < val64)
138 			zone->emer_mem = val64;
139 	} else if (attr == &ttm_mem_swap)
140 		zone->swap_limit = val64;
141 	spin_unlock(&zone->glob->lock);
142 
143 	ttm_check_swapping(zone->glob);
144 
145 	return size;
146 }
147 
148 static struct attribute *ttm_mem_zone_attrs[] = {
149 	&ttm_mem_sys,
150 	&ttm_mem_emer,
151 	&ttm_mem_max,
152 	&ttm_mem_swap,
153 	&ttm_mem_used,
154 	NULL
155 };
156 
157 static const struct sysfs_ops ttm_mem_zone_ops = {
158 	.show = &ttm_mem_zone_show,
159 	.store = &ttm_mem_zone_store
160 };
161 
162 static struct kobj_type ttm_mem_zone_kobj_type = {
163 	.release = &ttm_mem_zone_kobj_release,
164 	.sysfs_ops = &ttm_mem_zone_ops,
165 	.default_attrs = ttm_mem_zone_attrs,
166 };
167 
ttm_mem_global_kobj_release(struct kobject * kobj)168 static void ttm_mem_global_kobj_release(struct kobject *kobj)
169 {
170 	struct ttm_mem_global *glob =
171 		container_of(kobj, struct ttm_mem_global, kobj);
172 
173 	kfree(glob);
174 }
175 
176 static struct kobj_type ttm_mem_glob_kobj_type = {
177 	.release = &ttm_mem_global_kobj_release,
178 };
179 
ttm_zones_above_swap_target(struct ttm_mem_global * glob,bool from_wq,uint64_t extra)180 static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob,
181 					bool from_wq, uint64_t extra)
182 {
183 	unsigned int i;
184 	struct ttm_mem_zone *zone;
185 	uint64_t target;
186 
187 	for (i = 0; i < glob->num_zones; ++i) {
188 		zone = glob->zones[i];
189 
190 		if (from_wq)
191 			target = zone->swap_limit;
192 		else if (capable(CAP_SYS_ADMIN))
193 			target = zone->emer_mem;
194 		else
195 			target = zone->max_mem;
196 
197 		target = (extra > target) ? 0ULL : target;
198 
199 		if (zone->used_mem > target)
200 			return true;
201 	}
202 	return false;
203 }
204 
205 /**
206  * At this point we only support a single shrink callback.
207  * Extend this if needed, perhaps using a linked list of callbacks.
208  * Note that this function is reentrant:
209  * many threads may try to swap out at any given time.
210  */
211 
ttm_shrink(struct ttm_mem_global * glob,bool from_wq,uint64_t extra)212 static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq,
213 		       uint64_t extra)
214 {
215 	int ret;
216 	struct ttm_mem_shrink *shrink;
217 
218 	spin_lock(&glob->lock);
219 	if (glob->shrink == NULL)
220 		goto out;
221 
222 	while (ttm_zones_above_swap_target(glob, from_wq, extra)) {
223 		shrink = glob->shrink;
224 		spin_unlock(&glob->lock);
225 		ret = shrink->do_shrink(shrink);
226 		spin_lock(&glob->lock);
227 		if (unlikely(ret != 0))
228 			goto out;
229 	}
230 out:
231 	spin_unlock(&glob->lock);
232 }
233 
234 
235 
ttm_shrink_work(struct work_struct * work)236 static void ttm_shrink_work(struct work_struct *work)
237 {
238 	struct ttm_mem_global *glob =
239 	    container_of(work, struct ttm_mem_global, work);
240 
241 	ttm_shrink(glob, true, 0ULL);
242 }
243 
ttm_mem_init_kernel_zone(struct ttm_mem_global * glob,const struct sysinfo * si)244 static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob,
245 				    const struct sysinfo *si)
246 {
247 	struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
248 	uint64_t mem;
249 	int ret;
250 
251 	if (unlikely(!zone))
252 		return -ENOMEM;
253 
254 	mem = si->totalram - si->totalhigh;
255 	mem *= si->mem_unit;
256 
257 	zone->name = "kernel";
258 	zone->zone_mem = mem;
259 	zone->max_mem = mem >> 1;
260 	zone->emer_mem = (mem >> 1) + (mem >> 2);
261 	zone->swap_limit = zone->max_mem - (mem >> 3);
262 	zone->used_mem = 0;
263 	zone->glob = glob;
264 	glob->zone_kernel = zone;
265 	ret = kobject_init_and_add(
266 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
267 	if (unlikely(ret != 0)) {
268 		kobject_put(&zone->kobj);
269 		return ret;
270 	}
271 	glob->zones[glob->num_zones++] = zone;
272 	return 0;
273 }
274 
275 #ifdef CONFIG_HIGHMEM
ttm_mem_init_highmem_zone(struct ttm_mem_global * glob,const struct sysinfo * si)276 static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob,
277 				     const struct sysinfo *si)
278 {
279 	struct ttm_mem_zone *zone;
280 	uint64_t mem;
281 	int ret;
282 
283 	if (si->totalhigh == 0)
284 		return 0;
285 
286 	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
287 	if (unlikely(!zone))
288 		return -ENOMEM;
289 
290 	mem = si->totalram;
291 	mem *= si->mem_unit;
292 
293 	zone->name = "highmem";
294 	zone->zone_mem = mem;
295 	zone->max_mem = mem >> 1;
296 	zone->emer_mem = (mem >> 1) + (mem >> 2);
297 	zone->swap_limit = zone->max_mem - (mem >> 3);
298 	zone->used_mem = 0;
299 	zone->glob = glob;
300 	glob->zone_highmem = zone;
301 	ret = kobject_init_and_add(
302 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
303 	if (unlikely(ret != 0)) {
304 		kobject_put(&zone->kobj);
305 		return ret;
306 	}
307 	glob->zones[glob->num_zones++] = zone;
308 	return 0;
309 }
310 #else
ttm_mem_init_dma32_zone(struct ttm_mem_global * glob,const struct sysinfo * si)311 static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob,
312 				   const struct sysinfo *si)
313 {
314 	struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
315 	uint64_t mem;
316 	int ret;
317 
318 	if (unlikely(!zone))
319 		return -ENOMEM;
320 
321 	mem = si->totalram;
322 	mem *= si->mem_unit;
323 
324 	/**
325 	 * No special dma32 zone needed.
326 	 */
327 
328 	if (mem <= ((uint64_t) 1ULL << 32)) {
329 		kfree(zone);
330 		return 0;
331 	}
332 
333 	/*
334 	 * Limit max dma32 memory to 4GB for now
335 	 * until we can figure out how big this
336 	 * zone really is.
337 	 */
338 
339 	mem = ((uint64_t) 1ULL << 32);
340 	zone->name = "dma32";
341 	zone->zone_mem = mem;
342 	zone->max_mem = mem >> 1;
343 	zone->emer_mem = (mem >> 1) + (mem >> 2);
344 	zone->swap_limit = zone->max_mem - (mem >> 3);
345 	zone->used_mem = 0;
346 	zone->glob = glob;
347 	glob->zone_dma32 = zone;
348 	ret = kobject_init_and_add(
349 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
350 	if (unlikely(ret != 0)) {
351 		kobject_put(&zone->kobj);
352 		return ret;
353 	}
354 	glob->zones[glob->num_zones++] = zone;
355 	return 0;
356 }
357 #endif
358 
ttm_mem_global_init(struct ttm_mem_global * glob)359 int ttm_mem_global_init(struct ttm_mem_global *glob)
360 {
361 	struct sysinfo si;
362 	int ret;
363 	int i;
364 	struct ttm_mem_zone *zone;
365 
366 	spin_lock_init(&glob->lock);
367 	glob->swap_queue = create_singlethread_workqueue("ttm_swap");
368 	INIT_WORK(&glob->work, ttm_shrink_work);
369 	init_waitqueue_head(&glob->queue);
370 	ret = kobject_init_and_add(
371 		&glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting");
372 	if (unlikely(ret != 0)) {
373 		kobject_put(&glob->kobj);
374 		return ret;
375 	}
376 
377 	si_meminfo(&si);
378 
379 	ret = ttm_mem_init_kernel_zone(glob, &si);
380 	if (unlikely(ret != 0))
381 		goto out_no_zone;
382 #ifdef CONFIG_HIGHMEM
383 	ret = ttm_mem_init_highmem_zone(glob, &si);
384 	if (unlikely(ret != 0))
385 		goto out_no_zone;
386 #else
387 	ret = ttm_mem_init_dma32_zone(glob, &si);
388 	if (unlikely(ret != 0))
389 		goto out_no_zone;
390 #endif
391 	for (i = 0; i < glob->num_zones; ++i) {
392 		zone = glob->zones[i];
393 		printk(KERN_INFO TTM_PFX
394 		       "Zone %7s: Available graphics memory: %llu kiB.\n",
395 		       zone->name, (unsigned long long) zone->max_mem >> 10);
396 	}
397 	ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
398 	return 0;
399 out_no_zone:
400 	ttm_mem_global_release(glob);
401 	return ret;
402 }
403 EXPORT_SYMBOL(ttm_mem_global_init);
404 
ttm_mem_global_release(struct ttm_mem_global * glob)405 void ttm_mem_global_release(struct ttm_mem_global *glob)
406 {
407 	unsigned int i;
408 	struct ttm_mem_zone *zone;
409 
410 	/* let the page allocator first stop the shrink work. */
411 	ttm_page_alloc_fini();
412 
413 	flush_workqueue(glob->swap_queue);
414 	destroy_workqueue(glob->swap_queue);
415 	glob->swap_queue = NULL;
416 	for (i = 0; i < glob->num_zones; ++i) {
417 		zone = glob->zones[i];
418 		kobject_del(&zone->kobj);
419 		kobject_put(&zone->kobj);
420 			}
421 	kobject_del(&glob->kobj);
422 	kobject_put(&glob->kobj);
423 }
424 EXPORT_SYMBOL(ttm_mem_global_release);
425 
ttm_check_swapping(struct ttm_mem_global * glob)426 static void ttm_check_swapping(struct ttm_mem_global *glob)
427 {
428 	bool needs_swapping = false;
429 	unsigned int i;
430 	struct ttm_mem_zone *zone;
431 
432 	spin_lock(&glob->lock);
433 	for (i = 0; i < glob->num_zones; ++i) {
434 		zone = glob->zones[i];
435 		if (zone->used_mem > zone->swap_limit) {
436 			needs_swapping = true;
437 			break;
438 		}
439 	}
440 
441 	spin_unlock(&glob->lock);
442 
443 	if (unlikely(needs_swapping))
444 		(void)queue_work(glob->swap_queue, &glob->work);
445 
446 }
447 
ttm_mem_global_free_zone(struct ttm_mem_global * glob,struct ttm_mem_zone * single_zone,uint64_t amount)448 static void ttm_mem_global_free_zone(struct ttm_mem_global *glob,
449 				     struct ttm_mem_zone *single_zone,
450 				     uint64_t amount)
451 {
452 	unsigned int i;
453 	struct ttm_mem_zone *zone;
454 
455 	spin_lock(&glob->lock);
456 	for (i = 0; i < glob->num_zones; ++i) {
457 		zone = glob->zones[i];
458 		if (single_zone && zone != single_zone)
459 			continue;
460 		zone->used_mem -= amount;
461 	}
462 	spin_unlock(&glob->lock);
463 }
464 
ttm_mem_global_free(struct ttm_mem_global * glob,uint64_t amount)465 void ttm_mem_global_free(struct ttm_mem_global *glob,
466 			 uint64_t amount)
467 {
468 	return ttm_mem_global_free_zone(glob, NULL, amount);
469 }
470 EXPORT_SYMBOL(ttm_mem_global_free);
471 
ttm_mem_global_reserve(struct ttm_mem_global * glob,struct ttm_mem_zone * single_zone,uint64_t amount,bool reserve)472 static int ttm_mem_global_reserve(struct ttm_mem_global *glob,
473 				  struct ttm_mem_zone *single_zone,
474 				  uint64_t amount, bool reserve)
475 {
476 	uint64_t limit;
477 	int ret = -ENOMEM;
478 	unsigned int i;
479 	struct ttm_mem_zone *zone;
480 
481 	spin_lock(&glob->lock);
482 	for (i = 0; i < glob->num_zones; ++i) {
483 		zone = glob->zones[i];
484 		if (single_zone && zone != single_zone)
485 			continue;
486 
487 		limit = (capable(CAP_SYS_ADMIN)) ?
488 			zone->emer_mem : zone->max_mem;
489 
490 		if (zone->used_mem > limit)
491 			goto out_unlock;
492 	}
493 
494 	if (reserve) {
495 		for (i = 0; i < glob->num_zones; ++i) {
496 			zone = glob->zones[i];
497 			if (single_zone && zone != single_zone)
498 				continue;
499 			zone->used_mem += amount;
500 		}
501 	}
502 
503 	ret = 0;
504 out_unlock:
505 	spin_unlock(&glob->lock);
506 	ttm_check_swapping(glob);
507 
508 	return ret;
509 }
510 
511 
ttm_mem_global_alloc_zone(struct ttm_mem_global * glob,struct ttm_mem_zone * single_zone,uint64_t memory,bool no_wait,bool interruptible)512 static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob,
513 				     struct ttm_mem_zone *single_zone,
514 				     uint64_t memory,
515 				     bool no_wait, bool interruptible)
516 {
517 	int count = TTM_MEMORY_ALLOC_RETRIES;
518 
519 	while (unlikely(ttm_mem_global_reserve(glob,
520 					       single_zone,
521 					       memory, true)
522 			!= 0)) {
523 		if (no_wait)
524 			return -ENOMEM;
525 		if (unlikely(count-- == 0))
526 			return -ENOMEM;
527 		ttm_shrink(glob, false, memory + (memory >> 2) + 16);
528 	}
529 
530 	return 0;
531 }
532 
ttm_mem_global_alloc(struct ttm_mem_global * glob,uint64_t memory,bool no_wait,bool interruptible)533 int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
534 			 bool no_wait, bool interruptible)
535 {
536 	/**
537 	 * Normal allocations of kernel memory are registered in
538 	 * all zones.
539 	 */
540 
541 	return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait,
542 					 interruptible);
543 }
544 EXPORT_SYMBOL(ttm_mem_global_alloc);
545 
ttm_mem_global_alloc_page(struct ttm_mem_global * glob,struct page * page,bool no_wait,bool interruptible)546 int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
547 			      struct page *page,
548 			      bool no_wait, bool interruptible)
549 {
550 
551 	struct ttm_mem_zone *zone = NULL;
552 
553 	/**
554 	 * Page allocations may be registed in a single zone
555 	 * only if highmem or !dma32.
556 	 */
557 
558 #ifdef CONFIG_HIGHMEM
559 	if (PageHighMem(page) && glob->zone_highmem != NULL)
560 		zone = glob->zone_highmem;
561 #else
562 	if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
563 		zone = glob->zone_kernel;
564 #endif
565 	return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait,
566 					 interruptible);
567 }
568 
ttm_mem_global_free_page(struct ttm_mem_global * glob,struct page * page)569 void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page)
570 {
571 	struct ttm_mem_zone *zone = NULL;
572 
573 #ifdef CONFIG_HIGHMEM
574 	if (PageHighMem(page) && glob->zone_highmem != NULL)
575 		zone = glob->zone_highmem;
576 #else
577 	if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
578 		zone = glob->zone_kernel;
579 #endif
580 	ttm_mem_global_free_zone(glob, zone, PAGE_SIZE);
581 }
582 
583 
ttm_round_pot(size_t size)584 size_t ttm_round_pot(size_t size)
585 {
586 	if ((size & (size - 1)) == 0)
587 		return size;
588 	else if (size > PAGE_SIZE)
589 		return PAGE_ALIGN(size);
590 	else {
591 		size_t tmp_size = 4;
592 
593 		while (tmp_size < size)
594 			tmp_size <<= 1;
595 
596 		return tmp_size;
597 	}
598 	return 0;
599 }
600 EXPORT_SYMBOL(ttm_round_pot);
601