1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include "ttm/ttm_module.h"
34 #include "ttm/ttm_bo_driver.h"
35 #include "ttm/ttm_placement.h"
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55 };
56
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 int i;
60
61 for (i = 0; i <= TTM_PL_PRIV5; i++)
62 if (flags & (1 << i)) {
63 *mem_type = i;
64 return 0;
65 }
66 return -EINVAL;
67 }
68
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73 pr_err(" has_type: %d\n", man->has_type);
74 pr_err(" use_type: %d\n", man->use_type);
75 pr_err(" flags: 0x%08X\n", man->flags);
76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset);
77 pr_err(" size: %llu\n", man->size);
78 pr_err(" available_caching: 0x%08X\n", man->available_caching);
79 pr_err(" default_caching: 0x%08X\n", man->default_caching);
80 if (mem_type != TTM_PL_SYSTEM)
81 (*man->func->debug)(man, TTM_PFX);
82 }
83
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 struct ttm_placement *placement)
86 {
87 int i, ret, mem_type;
88
89 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 bo, bo->mem.num_pages, bo->mem.size >> 10,
91 bo->mem.size >> 20);
92 for (i = 0; i < placement->num_placement; i++) {
93 ret = ttm_mem_type_from_flags(placement->placement[i],
94 &mem_type);
95 if (ret)
96 return;
97 pr_err(" placement[%d]=0x%08X (%d)\n",
98 i, placement->placement[i], mem_type);
99 ttm_mem_type_debug(bo->bdev, mem_type);
100 }
101 }
102
ttm_bo_global_show(struct kobject * kobj,struct attribute * attr,char * buffer)103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 struct attribute *attr,
105 char *buffer)
106 {
107 struct ttm_bo_global *glob =
108 container_of(kobj, struct ttm_bo_global, kobj);
109
110 return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115 &ttm_bo_count,
116 NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type = {
124 .release = &ttm_bo_global_kobj_release,
125 .sysfs_ops = &ttm_bo_global_ops,
126 .default_attrs = ttm_bo_global_attrs
127 };
128
129
ttm_bo_type_flags(unsigned type)130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 return 1 << (type);
133 }
134
ttm_bo_release_list(struct kref * list_kref)135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 struct ttm_buffer_object *bo =
138 container_of(list_kref, struct ttm_buffer_object, list_kref);
139 struct ttm_bo_device *bdev = bo->bdev;
140 size_t acc_size = bo->acc_size;
141
142 BUG_ON(atomic_read(&bo->list_kref.refcount));
143 BUG_ON(atomic_read(&bo->kref.refcount));
144 BUG_ON(atomic_read(&bo->cpu_writers));
145 BUG_ON(bo->sync_obj != NULL);
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149
150 if (bo->ttm)
151 ttm_tt_destroy(bo->ttm);
152 atomic_dec(&bo->glob->bo_count);
153 if (bo->destroy)
154 bo->destroy(bo);
155 else {
156 kfree(bo);
157 }
158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
ttm_bo_wait_unreserved(struct ttm_buffer_object * bo,bool interruptible)161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 if (interruptible) {
164 return wait_event_interruptible(bo->event_queue,
165 atomic_read(&bo->reserved) == 0);
166 } else {
167 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 return 0;
169 }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 struct ttm_bo_device *bdev = bo->bdev;
176 struct ttm_mem_type_manager *man;
177
178 BUG_ON(!atomic_read(&bo->reserved));
179
180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182 BUG_ON(!list_empty(&bo->lru));
183
184 man = &bdev->man[bo->mem.mem_type];
185 list_add_tail(&bo->lru, &man->lru);
186 kref_get(&bo->list_kref);
187
188 if (bo->ttm != NULL) {
189 list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 kref_get(&bo->list_kref);
191 }
192 }
193 }
194
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 int put_count = 0;
198
199 if (!list_empty(&bo->swap)) {
200 list_del_init(&bo->swap);
201 ++put_count;
202 }
203 if (!list_empty(&bo->lru)) {
204 list_del_init(&bo->lru);
205 ++put_count;
206 }
207
208 /*
209 * TODO: Add a driver hook to delete from
210 * driver-specific LRU's here.
211 */
212
213 return put_count;
214 }
215
ttm_bo_reserve_locked(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 bool interruptible,
218 bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 struct ttm_bo_global *glob = bo->glob;
221 int ret;
222
223 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 /**
225 * Deadlock avoidance for multi-bo reserving.
226 */
227 if (use_sequence && bo->seq_valid) {
228 /**
229 * We've already reserved this one.
230 */
231 if (unlikely(sequence == bo->val_seq))
232 return -EDEADLK;
233 /**
234 * Already reserved by a thread that will not back
235 * off for us. We need to back off.
236 */
237 if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 return -EAGAIN;
239 }
240
241 if (no_wait)
242 return -EBUSY;
243
244 spin_unlock(&glob->lru_lock);
245 ret = ttm_bo_wait_unreserved(bo, interruptible);
246 spin_lock(&glob->lru_lock);
247
248 if (unlikely(ret))
249 return ret;
250 }
251
252 if (use_sequence) {
253 /**
254 * Wake up waiters that may need to recheck for deadlock,
255 * if we decreased the sequence number.
256 */
257 if (unlikely((bo->val_seq - sequence < (1 << 31))
258 || !bo->seq_valid))
259 wake_up_all(&bo->event_queue);
260
261 bo->val_seq = sequence;
262 bo->seq_valid = true;
263 } else {
264 bo->seq_valid = false;
265 }
266
267 return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270
ttm_bo_ref_bug(struct kref * list_kref)271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273 BUG();
274 }
275
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 bool never_free)
278 {
279 kref_sub(&bo->list_kref, count,
280 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282
ttm_bo_reserve(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 bool interruptible,
285 bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287 struct ttm_bo_global *glob = bo->glob;
288 int put_count = 0;
289 int ret;
290
291 spin_lock(&glob->lru_lock);
292 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 sequence);
294 if (likely(ret == 0))
295 put_count = ttm_bo_del_from_lru(bo);
296 spin_unlock(&glob->lru_lock);
297
298 ttm_bo_list_ref_sub(bo, put_count, true);
299
300 return ret;
301 }
302
ttm_bo_unreserve_locked(struct ttm_buffer_object * bo)303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305 ttm_bo_add_to_lru(bo);
306 atomic_set(&bo->reserved, 0);
307 wake_up_all(&bo->event_queue);
308 }
309
ttm_bo_unreserve(struct ttm_buffer_object * bo)310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312 struct ttm_bo_global *glob = bo->glob;
313
314 spin_lock(&glob->lru_lock);
315 ttm_bo_unreserve_locked(bo);
316 spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319
320 /*
321 * Call bo->mutex locked.
322 */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325 struct ttm_bo_device *bdev = bo->bdev;
326 struct ttm_bo_global *glob = bo->glob;
327 int ret = 0;
328 uint32_t page_flags = 0;
329
330 TTM_ASSERT_LOCKED(&bo->mutex);
331 bo->ttm = NULL;
332
333 if (bdev->need_dma32)
334 page_flags |= TTM_PAGE_FLAG_DMA32;
335
336 switch (bo->type) {
337 case ttm_bo_type_device:
338 if (zero_alloc)
339 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 case ttm_bo_type_kernel:
341 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 page_flags, glob->dummy_read_page);
343 if (unlikely(bo->ttm == NULL))
344 ret = -ENOMEM;
345 break;
346 default:
347 pr_err("Illegal buffer object type\n");
348 ret = -EINVAL;
349 break;
350 }
351
352 return ret;
353 }
354
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356 struct ttm_mem_reg *mem,
357 bool evict, bool interruptible,
358 bool no_wait_reserve, bool no_wait_gpu)
359 {
360 struct ttm_bo_device *bdev = bo->bdev;
361 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365 int ret = 0;
366
367 if (old_is_pci || new_is_pci ||
368 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369 ret = ttm_mem_io_lock(old_man, true);
370 if (unlikely(ret != 0))
371 goto out_err;
372 ttm_bo_unmap_virtual_locked(bo);
373 ttm_mem_io_unlock(old_man);
374 }
375
376 /*
377 * Create and bind a ttm if required.
378 */
379
380 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381 if (bo->ttm == NULL) {
382 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383 ret = ttm_bo_add_ttm(bo, zero);
384 if (ret)
385 goto out_err;
386 }
387
388 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389 if (ret)
390 goto out_err;
391
392 if (mem->mem_type != TTM_PL_SYSTEM) {
393 ret = ttm_tt_bind(bo->ttm, mem);
394 if (ret)
395 goto out_err;
396 }
397
398 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399 if (bdev->driver->move_notify)
400 bdev->driver->move_notify(bo, mem);
401 bo->mem = *mem;
402 mem->mm_node = NULL;
403 goto moved;
404 }
405 }
406
407 if (bdev->driver->move_notify)
408 bdev->driver->move_notify(bo, mem);
409
410 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
411 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
412 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
413 else if (bdev->driver->move)
414 ret = bdev->driver->move(bo, evict, interruptible,
415 no_wait_reserve, no_wait_gpu, mem);
416 else
417 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
418
419 if (ret) {
420 if (bdev->driver->move_notify) {
421 struct ttm_mem_reg tmp_mem = *mem;
422 *mem = bo->mem;
423 bo->mem = tmp_mem;
424 bdev->driver->move_notify(bo, mem);
425 bo->mem = *mem;
426 }
427
428 goto out_err;
429 }
430
431 moved:
432 if (bo->evicted) {
433 if (bdev->driver->invalidate_caches) {
434 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
435 if (ret)
436 pr_err("Can not flush read caches\n");
437 }
438 bo->evicted = false;
439 }
440
441 if (bo->mem.mm_node) {
442 bo->offset = (bo->mem.start << PAGE_SHIFT) +
443 bdev->man[bo->mem.mem_type].gpu_offset;
444 bo->cur_placement = bo->mem.placement;
445 } else
446 bo->offset = 0;
447
448 return 0;
449
450 out_err:
451 new_man = &bdev->man[bo->mem.mem_type];
452 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
453 ttm_tt_unbind(bo->ttm);
454 ttm_tt_destroy(bo->ttm);
455 bo->ttm = NULL;
456 }
457
458 return ret;
459 }
460
461 /**
462 * Call bo::reserved.
463 * Will release GPU memory type usage on destruction.
464 * This is the place to put in driver specific hooks to release
465 * driver private resources.
466 * Will release the bo::reserved lock.
467 */
468
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)469 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
470 {
471 if (bo->bdev->driver->move_notify)
472 bo->bdev->driver->move_notify(bo, NULL);
473
474 if (bo->ttm) {
475 ttm_tt_unbind(bo->ttm);
476 ttm_tt_destroy(bo->ttm);
477 bo->ttm = NULL;
478 }
479 ttm_bo_mem_put(bo, &bo->mem);
480
481 atomic_set(&bo->reserved, 0);
482
483 /*
484 * Make processes trying to reserve really pick it up.
485 */
486 smp_mb__after_atomic_dec();
487 wake_up_all(&bo->event_queue);
488 }
489
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)490 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
491 {
492 struct ttm_bo_device *bdev = bo->bdev;
493 struct ttm_bo_global *glob = bo->glob;
494 struct ttm_bo_driver *driver;
495 void *sync_obj = NULL;
496 void *sync_obj_arg;
497 int put_count;
498 int ret;
499
500 spin_lock(&bdev->fence_lock);
501 (void) ttm_bo_wait(bo, false, false, true);
502 if (!bo->sync_obj) {
503
504 spin_lock(&glob->lru_lock);
505
506 /**
507 * Lock inversion between bo:reserve and bdev::fence_lock here,
508 * but that's OK, since we're only trylocking.
509 */
510
511 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
512
513 if (unlikely(ret == -EBUSY))
514 goto queue;
515
516 spin_unlock(&bdev->fence_lock);
517 put_count = ttm_bo_del_from_lru(bo);
518
519 spin_unlock(&glob->lru_lock);
520 ttm_bo_cleanup_memtype_use(bo);
521
522 ttm_bo_list_ref_sub(bo, put_count, true);
523
524 return;
525 } else {
526 spin_lock(&glob->lru_lock);
527 }
528 queue:
529 driver = bdev->driver;
530 if (bo->sync_obj)
531 sync_obj = driver->sync_obj_ref(bo->sync_obj);
532 sync_obj_arg = bo->sync_obj_arg;
533
534 kref_get(&bo->list_kref);
535 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
536 spin_unlock(&glob->lru_lock);
537 spin_unlock(&bdev->fence_lock);
538
539 if (sync_obj) {
540 driver->sync_obj_flush(sync_obj, sync_obj_arg);
541 driver->sync_obj_unref(&sync_obj);
542 }
543 schedule_delayed_work(&bdev->wq,
544 ((HZ / 100) < 1) ? 1 : HZ / 100);
545 }
546
547 /**
548 * function ttm_bo_cleanup_refs
549 * If bo idle, remove from delayed- and lru lists, and unref.
550 * If not idle, do nothing.
551 *
552 * @interruptible Any sleeps should occur interruptibly.
553 * @no_wait_reserve Never wait for reserve. Return -EBUSY instead.
554 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
555 */
556
ttm_bo_cleanup_refs(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)557 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
558 bool interruptible,
559 bool no_wait_reserve,
560 bool no_wait_gpu)
561 {
562 struct ttm_bo_device *bdev = bo->bdev;
563 struct ttm_bo_global *glob = bo->glob;
564 int put_count;
565 int ret = 0;
566
567 retry:
568 spin_lock(&bdev->fence_lock);
569 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
570 spin_unlock(&bdev->fence_lock);
571
572 if (unlikely(ret != 0))
573 return ret;
574
575 spin_lock(&glob->lru_lock);
576
577 if (unlikely(list_empty(&bo->ddestroy))) {
578 spin_unlock(&glob->lru_lock);
579 return 0;
580 }
581
582 ret = ttm_bo_reserve_locked(bo, interruptible,
583 no_wait_reserve, false, 0);
584
585 if (unlikely(ret != 0)) {
586 spin_unlock(&glob->lru_lock);
587 return ret;
588 }
589
590 /**
591 * We can re-check for sync object without taking
592 * the bo::lock since setting the sync object requires
593 * also bo::reserved. A busy object at this point may
594 * be caused by another thread recently starting an accelerated
595 * eviction.
596 */
597
598 if (unlikely(bo->sync_obj)) {
599 atomic_set(&bo->reserved, 0);
600 wake_up_all(&bo->event_queue);
601 spin_unlock(&glob->lru_lock);
602 goto retry;
603 }
604
605 put_count = ttm_bo_del_from_lru(bo);
606 list_del_init(&bo->ddestroy);
607 ++put_count;
608
609 spin_unlock(&glob->lru_lock);
610 ttm_bo_cleanup_memtype_use(bo);
611
612 ttm_bo_list_ref_sub(bo, put_count, true);
613
614 return 0;
615 }
616
617 /**
618 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
619 * encountered buffers.
620 */
621
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)622 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
623 {
624 struct ttm_bo_global *glob = bdev->glob;
625 struct ttm_buffer_object *entry = NULL;
626 int ret = 0;
627
628 spin_lock(&glob->lru_lock);
629 if (list_empty(&bdev->ddestroy))
630 goto out_unlock;
631
632 entry = list_first_entry(&bdev->ddestroy,
633 struct ttm_buffer_object, ddestroy);
634 kref_get(&entry->list_kref);
635
636 for (;;) {
637 struct ttm_buffer_object *nentry = NULL;
638
639 if (entry->ddestroy.next != &bdev->ddestroy) {
640 nentry = list_first_entry(&entry->ddestroy,
641 struct ttm_buffer_object, ddestroy);
642 kref_get(&nentry->list_kref);
643 }
644
645 spin_unlock(&glob->lru_lock);
646 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
647 !remove_all);
648 kref_put(&entry->list_kref, ttm_bo_release_list);
649 entry = nentry;
650
651 if (ret || !entry)
652 goto out;
653
654 spin_lock(&glob->lru_lock);
655 if (list_empty(&entry->ddestroy))
656 break;
657 }
658
659 out_unlock:
660 spin_unlock(&glob->lru_lock);
661 out:
662 if (entry)
663 kref_put(&entry->list_kref, ttm_bo_release_list);
664 return ret;
665 }
666
ttm_bo_delayed_workqueue(struct work_struct * work)667 static void ttm_bo_delayed_workqueue(struct work_struct *work)
668 {
669 struct ttm_bo_device *bdev =
670 container_of(work, struct ttm_bo_device, wq.work);
671
672 if (ttm_bo_delayed_delete(bdev, false)) {
673 schedule_delayed_work(&bdev->wq,
674 ((HZ / 100) < 1) ? 1 : HZ / 100);
675 }
676 }
677
ttm_bo_release(struct kref * kref)678 static void ttm_bo_release(struct kref *kref)
679 {
680 struct ttm_buffer_object *bo =
681 container_of(kref, struct ttm_buffer_object, kref);
682 struct ttm_bo_device *bdev = bo->bdev;
683 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
684
685 if (likely(bo->vm_node != NULL)) {
686 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
687 drm_mm_put_block(bo->vm_node);
688 bo->vm_node = NULL;
689 }
690 write_unlock(&bdev->vm_lock);
691 ttm_mem_io_lock(man, false);
692 ttm_mem_io_free_vm(bo);
693 ttm_mem_io_unlock(man);
694 ttm_bo_cleanup_refs_or_queue(bo);
695 kref_put(&bo->list_kref, ttm_bo_release_list);
696 write_lock(&bdev->vm_lock);
697 }
698
ttm_bo_unref(struct ttm_buffer_object ** p_bo)699 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
700 {
701 struct ttm_buffer_object *bo = *p_bo;
702 struct ttm_bo_device *bdev = bo->bdev;
703
704 *p_bo = NULL;
705 write_lock(&bdev->vm_lock);
706 kref_put(&bo->kref, ttm_bo_release);
707 write_unlock(&bdev->vm_lock);
708 }
709 EXPORT_SYMBOL(ttm_bo_unref);
710
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)711 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
712 {
713 return cancel_delayed_work_sync(&bdev->wq);
714 }
715 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
716
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)717 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
718 {
719 if (resched)
720 schedule_delayed_work(&bdev->wq,
721 ((HZ / 100) < 1) ? 1 : HZ / 100);
722 }
723 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
724
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)725 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
726 bool no_wait_reserve, bool no_wait_gpu)
727 {
728 struct ttm_bo_device *bdev = bo->bdev;
729 struct ttm_mem_reg evict_mem;
730 struct ttm_placement placement;
731 int ret = 0;
732
733 spin_lock(&bdev->fence_lock);
734 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
735 spin_unlock(&bdev->fence_lock);
736
737 if (unlikely(ret != 0)) {
738 if (ret != -ERESTARTSYS) {
739 pr_err("Failed to expire sync object before buffer eviction\n");
740 }
741 goto out;
742 }
743
744 BUG_ON(!atomic_read(&bo->reserved));
745
746 evict_mem = bo->mem;
747 evict_mem.mm_node = NULL;
748 evict_mem.bus.io_reserved_vm = false;
749 evict_mem.bus.io_reserved_count = 0;
750
751 placement.fpfn = 0;
752 placement.lpfn = 0;
753 placement.num_placement = 0;
754 placement.num_busy_placement = 0;
755 bdev->driver->evict_flags(bo, &placement);
756 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
757 no_wait_reserve, no_wait_gpu);
758 if (ret) {
759 if (ret != -ERESTARTSYS) {
760 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
761 bo);
762 ttm_bo_mem_space_debug(bo, &placement);
763 }
764 goto out;
765 }
766
767 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
768 no_wait_reserve, no_wait_gpu);
769 if (ret) {
770 if (ret != -ERESTARTSYS)
771 pr_err("Buffer eviction failed\n");
772 ttm_bo_mem_put(bo, &evict_mem);
773 goto out;
774 }
775 bo->evicted = true;
776 out:
777 return ret;
778 }
779
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)780 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
781 uint32_t mem_type,
782 bool interruptible, bool no_wait_reserve,
783 bool no_wait_gpu)
784 {
785 struct ttm_bo_global *glob = bdev->glob;
786 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
787 struct ttm_buffer_object *bo;
788 int ret, put_count = 0;
789
790 retry:
791 spin_lock(&glob->lru_lock);
792 if (list_empty(&man->lru)) {
793 spin_unlock(&glob->lru_lock);
794 return -EBUSY;
795 }
796
797 bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
798 kref_get(&bo->list_kref);
799
800 if (!list_empty(&bo->ddestroy)) {
801 spin_unlock(&glob->lru_lock);
802 ret = ttm_bo_cleanup_refs(bo, interruptible,
803 no_wait_reserve, no_wait_gpu);
804 kref_put(&bo->list_kref, ttm_bo_release_list);
805
806 if (likely(ret == 0 || ret == -ERESTARTSYS))
807 return ret;
808
809 goto retry;
810 }
811
812 ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
813
814 if (unlikely(ret == -EBUSY)) {
815 spin_unlock(&glob->lru_lock);
816 if (likely(!no_wait_gpu))
817 ret = ttm_bo_wait_unreserved(bo, interruptible);
818
819 kref_put(&bo->list_kref, ttm_bo_release_list);
820
821 /**
822 * We *need* to retry after releasing the lru lock.
823 */
824
825 if (unlikely(ret != 0))
826 return ret;
827 goto retry;
828 }
829
830 put_count = ttm_bo_del_from_lru(bo);
831 spin_unlock(&glob->lru_lock);
832
833 BUG_ON(ret != 0);
834
835 ttm_bo_list_ref_sub(bo, put_count, true);
836
837 ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
838 ttm_bo_unreserve(bo);
839
840 kref_put(&bo->list_kref, ttm_bo_release_list);
841 return ret;
842 }
843
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)844 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
845 {
846 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
847
848 if (mem->mm_node)
849 (*man->func->put_node)(man, mem);
850 }
851 EXPORT_SYMBOL(ttm_bo_mem_put);
852
853 /**
854 * Repeatedly evict memory from the LRU for @mem_type until we create enough
855 * space, or we've evicted everything and there isn't enough space.
856 */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)857 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
858 uint32_t mem_type,
859 struct ttm_placement *placement,
860 struct ttm_mem_reg *mem,
861 bool interruptible,
862 bool no_wait_reserve,
863 bool no_wait_gpu)
864 {
865 struct ttm_bo_device *bdev = bo->bdev;
866 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
867 int ret;
868
869 do {
870 ret = (*man->func->get_node)(man, bo, placement, mem);
871 if (unlikely(ret != 0))
872 return ret;
873 if (mem->mm_node)
874 break;
875 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
876 no_wait_reserve, no_wait_gpu);
877 if (unlikely(ret != 0))
878 return ret;
879 } while (1);
880 if (mem->mm_node == NULL)
881 return -ENOMEM;
882 mem->mem_type = mem_type;
883 return 0;
884 }
885
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)886 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
887 uint32_t cur_placement,
888 uint32_t proposed_placement)
889 {
890 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
891 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
892
893 /**
894 * Keep current caching if possible.
895 */
896
897 if ((cur_placement & caching) != 0)
898 result |= (cur_placement & caching);
899 else if ((man->default_caching & caching) != 0)
900 result |= man->default_caching;
901 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
902 result |= TTM_PL_FLAG_CACHED;
903 else if ((TTM_PL_FLAG_WC & caching) != 0)
904 result |= TTM_PL_FLAG_WC;
905 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
906 result |= TTM_PL_FLAG_UNCACHED;
907
908 return result;
909 }
910
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)911 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
912 uint32_t mem_type,
913 uint32_t proposed_placement,
914 uint32_t *masked_placement)
915 {
916 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
917
918 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
919 return false;
920
921 if ((proposed_placement & man->available_caching) == 0)
922 return false;
923
924 cur_flags |= (proposed_placement & man->available_caching);
925
926 *masked_placement = cur_flags;
927 return true;
928 }
929
930 /**
931 * Creates space for memory region @mem according to its type.
932 *
933 * This function first searches for free space in compatible memory types in
934 * the priority order defined by the driver. If free space isn't found, then
935 * ttm_bo_mem_force_space is attempted in priority order to evict and find
936 * space.
937 */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)938 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
939 struct ttm_placement *placement,
940 struct ttm_mem_reg *mem,
941 bool interruptible, bool no_wait_reserve,
942 bool no_wait_gpu)
943 {
944 struct ttm_bo_device *bdev = bo->bdev;
945 struct ttm_mem_type_manager *man;
946 uint32_t mem_type = TTM_PL_SYSTEM;
947 uint32_t cur_flags = 0;
948 bool type_found = false;
949 bool type_ok = false;
950 bool has_erestartsys = false;
951 int i, ret;
952
953 mem->mm_node = NULL;
954 for (i = 0; i < placement->num_placement; ++i) {
955 ret = ttm_mem_type_from_flags(placement->placement[i],
956 &mem_type);
957 if (ret)
958 return ret;
959 man = &bdev->man[mem_type];
960
961 type_ok = ttm_bo_mt_compatible(man,
962 mem_type,
963 placement->placement[i],
964 &cur_flags);
965
966 if (!type_ok)
967 continue;
968
969 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
970 cur_flags);
971 /*
972 * Use the access and other non-mapping-related flag bits from
973 * the memory placement flags to the current flags
974 */
975 ttm_flag_masked(&cur_flags, placement->placement[i],
976 ~TTM_PL_MASK_MEMTYPE);
977
978 if (mem_type == TTM_PL_SYSTEM)
979 break;
980
981 if (man->has_type && man->use_type) {
982 type_found = true;
983 ret = (*man->func->get_node)(man, bo, placement, mem);
984 if (unlikely(ret))
985 return ret;
986 }
987 if (mem->mm_node)
988 break;
989 }
990
991 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
992 mem->mem_type = mem_type;
993 mem->placement = cur_flags;
994 return 0;
995 }
996
997 if (!type_found)
998 return -EINVAL;
999
1000 for (i = 0; i < placement->num_busy_placement; ++i) {
1001 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1002 &mem_type);
1003 if (ret)
1004 return ret;
1005 man = &bdev->man[mem_type];
1006 if (!man->has_type)
1007 continue;
1008 if (!ttm_bo_mt_compatible(man,
1009 mem_type,
1010 placement->busy_placement[i],
1011 &cur_flags))
1012 continue;
1013
1014 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1015 cur_flags);
1016 /*
1017 * Use the access and other non-mapping-related flag bits from
1018 * the memory placement flags to the current flags
1019 */
1020 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1021 ~TTM_PL_MASK_MEMTYPE);
1022
1023
1024 if (mem_type == TTM_PL_SYSTEM) {
1025 mem->mem_type = mem_type;
1026 mem->placement = cur_flags;
1027 mem->mm_node = NULL;
1028 return 0;
1029 }
1030
1031 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1032 interruptible, no_wait_reserve, no_wait_gpu);
1033 if (ret == 0 && mem->mm_node) {
1034 mem->placement = cur_flags;
1035 return 0;
1036 }
1037 if (ret == -ERESTARTSYS)
1038 has_erestartsys = true;
1039 }
1040 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1041 return ret;
1042 }
1043 EXPORT_SYMBOL(ttm_bo_mem_space);
1044
ttm_bo_wait_cpu(struct ttm_buffer_object * bo,bool no_wait)1045 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1046 {
1047 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1048 return -EBUSY;
1049
1050 return wait_event_interruptible(bo->event_queue,
1051 atomic_read(&bo->cpu_writers) == 0);
1052 }
1053 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1054
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1055 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1056 struct ttm_placement *placement,
1057 bool interruptible, bool no_wait_reserve,
1058 bool no_wait_gpu)
1059 {
1060 int ret = 0;
1061 struct ttm_mem_reg mem;
1062 struct ttm_bo_device *bdev = bo->bdev;
1063
1064 BUG_ON(!atomic_read(&bo->reserved));
1065
1066 /*
1067 * FIXME: It's possible to pipeline buffer moves.
1068 * Have the driver move function wait for idle when necessary,
1069 * instead of doing it here.
1070 */
1071 spin_lock(&bdev->fence_lock);
1072 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1073 spin_unlock(&bdev->fence_lock);
1074 if (ret)
1075 return ret;
1076 mem.num_pages = bo->num_pages;
1077 mem.size = mem.num_pages << PAGE_SHIFT;
1078 mem.page_alignment = bo->mem.page_alignment;
1079 mem.bus.io_reserved_vm = false;
1080 mem.bus.io_reserved_count = 0;
1081 /*
1082 * Determine where to move the buffer.
1083 */
1084 ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1085 if (ret)
1086 goto out_unlock;
1087 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1088 out_unlock:
1089 if (ret && mem.mm_node)
1090 ttm_bo_mem_put(bo, &mem);
1091 return ret;
1092 }
1093
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem,uint32_t * new_flags)1094 static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1095 struct ttm_mem_reg *mem,
1096 uint32_t *new_flags)
1097 {
1098 int i;
1099
1100 if (mem->mm_node && placement->lpfn != 0 &&
1101 (mem->start < placement->fpfn ||
1102 mem->start + mem->num_pages > placement->lpfn))
1103 return false;
1104
1105 for (i = 0; i < placement->num_placement; i++) {
1106 *new_flags = placement->placement[i];
1107 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1108 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1109 return true;
1110 }
1111
1112 for (i = 0; i < placement->num_busy_placement; i++) {
1113 *new_flags = placement->busy_placement[i];
1114 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1115 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1116 return true;
1117 }
1118
1119 return false;
1120 }
1121
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1122 int ttm_bo_validate(struct ttm_buffer_object *bo,
1123 struct ttm_placement *placement,
1124 bool interruptible, bool no_wait_reserve,
1125 bool no_wait_gpu)
1126 {
1127 int ret;
1128 uint32_t new_flags;
1129
1130 BUG_ON(!atomic_read(&bo->reserved));
1131 /* Check that range is valid */
1132 if (placement->lpfn || placement->fpfn)
1133 if (placement->fpfn > placement->lpfn ||
1134 (placement->lpfn - placement->fpfn) < bo->num_pages)
1135 return -EINVAL;
1136 /*
1137 * Check whether we need to move buffer.
1138 */
1139 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1140 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1141 if (ret)
1142 return ret;
1143 } else {
1144 /*
1145 * Use the access and other non-mapping-related flag bits from
1146 * the compatible memory placement flags to the active flags
1147 */
1148 ttm_flag_masked(&bo->mem.placement, new_flags,
1149 ~TTM_PL_MASK_MEMTYPE);
1150 }
1151 /*
1152 * We might need to add a TTM.
1153 */
1154 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1155 ret = ttm_bo_add_ttm(bo, true);
1156 if (ret)
1157 return ret;
1158 }
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(ttm_bo_validate);
1162
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1163 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1164 struct ttm_placement *placement)
1165 {
1166 BUG_ON((placement->fpfn || placement->lpfn) &&
1167 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1168
1169 return 0;
1170 }
1171
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,size_t acc_size,void (* destroy)(struct ttm_buffer_object *))1172 int ttm_bo_init(struct ttm_bo_device *bdev,
1173 struct ttm_buffer_object *bo,
1174 unsigned long size,
1175 enum ttm_bo_type type,
1176 struct ttm_placement *placement,
1177 uint32_t page_alignment,
1178 unsigned long buffer_start,
1179 bool interruptible,
1180 struct file *persistent_swap_storage,
1181 size_t acc_size,
1182 void (*destroy) (struct ttm_buffer_object *))
1183 {
1184 int ret = 0;
1185 unsigned long num_pages;
1186 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1187
1188 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1189 if (ret) {
1190 pr_err("Out of kernel memory\n");
1191 if (destroy)
1192 (*destroy)(bo);
1193 else
1194 kfree(bo);
1195 return -ENOMEM;
1196 }
1197
1198 size += buffer_start & ~PAGE_MASK;
1199 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1200 if (num_pages == 0) {
1201 pr_err("Illegal buffer object size\n");
1202 if (destroy)
1203 (*destroy)(bo);
1204 else
1205 kfree(bo);
1206 ttm_mem_global_free(mem_glob, acc_size);
1207 return -EINVAL;
1208 }
1209 bo->destroy = destroy;
1210
1211 kref_init(&bo->kref);
1212 kref_init(&bo->list_kref);
1213 atomic_set(&bo->cpu_writers, 0);
1214 atomic_set(&bo->reserved, 1);
1215 init_waitqueue_head(&bo->event_queue);
1216 INIT_LIST_HEAD(&bo->lru);
1217 INIT_LIST_HEAD(&bo->ddestroy);
1218 INIT_LIST_HEAD(&bo->swap);
1219 INIT_LIST_HEAD(&bo->io_reserve_lru);
1220 bo->bdev = bdev;
1221 bo->glob = bdev->glob;
1222 bo->type = type;
1223 bo->num_pages = num_pages;
1224 bo->mem.size = num_pages << PAGE_SHIFT;
1225 bo->mem.mem_type = TTM_PL_SYSTEM;
1226 bo->mem.num_pages = bo->num_pages;
1227 bo->mem.mm_node = NULL;
1228 bo->mem.page_alignment = page_alignment;
1229 bo->mem.bus.io_reserved_vm = false;
1230 bo->mem.bus.io_reserved_count = 0;
1231 bo->buffer_start = buffer_start & PAGE_MASK;
1232 bo->priv_flags = 0;
1233 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1234 bo->seq_valid = false;
1235 bo->persistent_swap_storage = persistent_swap_storage;
1236 bo->acc_size = acc_size;
1237 atomic_inc(&bo->glob->bo_count);
1238
1239 ret = ttm_bo_check_placement(bo, placement);
1240 if (unlikely(ret != 0))
1241 goto out_err;
1242
1243 /*
1244 * For ttm_bo_type_device buffers, allocate
1245 * address space from the device.
1246 */
1247 if (bo->type == ttm_bo_type_device) {
1248 ret = ttm_bo_setup_vm(bo);
1249 if (ret)
1250 goto out_err;
1251 }
1252
1253 ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1254 if (ret)
1255 goto out_err;
1256
1257 ttm_bo_unreserve(bo);
1258 return 0;
1259
1260 out_err:
1261 ttm_bo_unreserve(bo);
1262 ttm_bo_unref(&bo);
1263
1264 return ret;
1265 }
1266 EXPORT_SYMBOL(ttm_bo_init);
1267
ttm_bo_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1268 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1269 unsigned long bo_size,
1270 unsigned struct_size)
1271 {
1272 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1273 size_t size = 0;
1274
1275 size += ttm_round_pot(struct_size);
1276 size += PAGE_ALIGN(npages * sizeof(void *));
1277 size += ttm_round_pot(sizeof(struct ttm_tt));
1278 return size;
1279 }
1280 EXPORT_SYMBOL(ttm_bo_acc_size);
1281
ttm_bo_dma_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1282 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1283 unsigned long bo_size,
1284 unsigned struct_size)
1285 {
1286 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1287 size_t size = 0;
1288
1289 size += ttm_round_pot(struct_size);
1290 size += PAGE_ALIGN(npages * sizeof(void *));
1291 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1292 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1293 return size;
1294 }
1295 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1296
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1297 int ttm_bo_create(struct ttm_bo_device *bdev,
1298 unsigned long size,
1299 enum ttm_bo_type type,
1300 struct ttm_placement *placement,
1301 uint32_t page_alignment,
1302 unsigned long buffer_start,
1303 bool interruptible,
1304 struct file *persistent_swap_storage,
1305 struct ttm_buffer_object **p_bo)
1306 {
1307 struct ttm_buffer_object *bo;
1308 size_t acc_size;
1309 int ret;
1310
1311 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1312 if (unlikely(bo == NULL))
1313 return -ENOMEM;
1314
1315 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1316 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1317 buffer_start, interruptible,
1318 persistent_swap_storage, acc_size, NULL);
1319 if (likely(ret == 0))
1320 *p_bo = bo;
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(ttm_bo_create);
1325
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1326 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1327 unsigned mem_type, bool allow_errors)
1328 {
1329 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1330 struct ttm_bo_global *glob = bdev->glob;
1331 int ret;
1332
1333 /*
1334 * Can't use standard list traversal since we're unlocking.
1335 */
1336
1337 spin_lock(&glob->lru_lock);
1338 while (!list_empty(&man->lru)) {
1339 spin_unlock(&glob->lru_lock);
1340 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1341 if (ret) {
1342 if (allow_errors) {
1343 return ret;
1344 } else {
1345 pr_err("Cleanup eviction failed\n");
1346 }
1347 }
1348 spin_lock(&glob->lru_lock);
1349 }
1350 spin_unlock(&glob->lru_lock);
1351 return 0;
1352 }
1353
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1354 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1355 {
1356 struct ttm_mem_type_manager *man;
1357 int ret = -EINVAL;
1358
1359 if (mem_type >= TTM_NUM_MEM_TYPES) {
1360 pr_err("Illegal memory type %d\n", mem_type);
1361 return ret;
1362 }
1363 man = &bdev->man[mem_type];
1364
1365 if (!man->has_type) {
1366 pr_err("Trying to take down uninitialized memory manager type %u\n",
1367 mem_type);
1368 return ret;
1369 }
1370
1371 man->use_type = false;
1372 man->has_type = false;
1373
1374 ret = 0;
1375 if (mem_type > 0) {
1376 ttm_bo_force_list_clean(bdev, mem_type, false);
1377
1378 ret = (*man->func->takedown)(man);
1379 }
1380
1381 return ret;
1382 }
1383 EXPORT_SYMBOL(ttm_bo_clean_mm);
1384
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1385 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1386 {
1387 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1388
1389 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1390 pr_err("Illegal memory manager memory type %u\n", mem_type);
1391 return -EINVAL;
1392 }
1393
1394 if (!man->has_type) {
1395 pr_err("Memory type %u has not been initialized\n", mem_type);
1396 return 0;
1397 }
1398
1399 return ttm_bo_force_list_clean(bdev, mem_type, true);
1400 }
1401 EXPORT_SYMBOL(ttm_bo_evict_mm);
1402
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1403 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1404 unsigned long p_size)
1405 {
1406 int ret = -EINVAL;
1407 struct ttm_mem_type_manager *man;
1408
1409 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1410 man = &bdev->man[type];
1411 BUG_ON(man->has_type);
1412 man->io_reserve_fastpath = true;
1413 man->use_io_reserve_lru = false;
1414 mutex_init(&man->io_reserve_mutex);
1415 INIT_LIST_HEAD(&man->io_reserve_lru);
1416
1417 ret = bdev->driver->init_mem_type(bdev, type, man);
1418 if (ret)
1419 return ret;
1420 man->bdev = bdev;
1421
1422 ret = 0;
1423 if (type != TTM_PL_SYSTEM) {
1424 ret = (*man->func->init)(man, p_size);
1425 if (ret)
1426 return ret;
1427 }
1428 man->has_type = true;
1429 man->use_type = true;
1430 man->size = p_size;
1431
1432 INIT_LIST_HEAD(&man->lru);
1433
1434 return 0;
1435 }
1436 EXPORT_SYMBOL(ttm_bo_init_mm);
1437
ttm_bo_global_kobj_release(struct kobject * kobj)1438 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1439 {
1440 struct ttm_bo_global *glob =
1441 container_of(kobj, struct ttm_bo_global, kobj);
1442
1443 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1444 __free_page(glob->dummy_read_page);
1445 kfree(glob);
1446 }
1447
ttm_bo_global_release(struct drm_global_reference * ref)1448 void ttm_bo_global_release(struct drm_global_reference *ref)
1449 {
1450 struct ttm_bo_global *glob = ref->object;
1451
1452 kobject_del(&glob->kobj);
1453 kobject_put(&glob->kobj);
1454 }
1455 EXPORT_SYMBOL(ttm_bo_global_release);
1456
ttm_bo_global_init(struct drm_global_reference * ref)1457 int ttm_bo_global_init(struct drm_global_reference *ref)
1458 {
1459 struct ttm_bo_global_ref *bo_ref =
1460 container_of(ref, struct ttm_bo_global_ref, ref);
1461 struct ttm_bo_global *glob = ref->object;
1462 int ret;
1463
1464 mutex_init(&glob->device_list_mutex);
1465 spin_lock_init(&glob->lru_lock);
1466 glob->mem_glob = bo_ref->mem_glob;
1467 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1468
1469 if (unlikely(glob->dummy_read_page == NULL)) {
1470 ret = -ENOMEM;
1471 goto out_no_drp;
1472 }
1473
1474 INIT_LIST_HEAD(&glob->swap_lru);
1475 INIT_LIST_HEAD(&glob->device_list);
1476
1477 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1478 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1479 if (unlikely(ret != 0)) {
1480 pr_err("Could not register buffer object swapout\n");
1481 goto out_no_shrink;
1482 }
1483
1484 atomic_set(&glob->bo_count, 0);
1485
1486 ret = kobject_init_and_add(
1487 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1488 if (unlikely(ret != 0))
1489 kobject_put(&glob->kobj);
1490 return ret;
1491 out_no_shrink:
1492 __free_page(glob->dummy_read_page);
1493 out_no_drp:
1494 kfree(glob);
1495 return ret;
1496 }
1497 EXPORT_SYMBOL(ttm_bo_global_init);
1498
1499
ttm_bo_device_release(struct ttm_bo_device * bdev)1500 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1501 {
1502 int ret = 0;
1503 unsigned i = TTM_NUM_MEM_TYPES;
1504 struct ttm_mem_type_manager *man;
1505 struct ttm_bo_global *glob = bdev->glob;
1506
1507 while (i--) {
1508 man = &bdev->man[i];
1509 if (man->has_type) {
1510 man->use_type = false;
1511 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1512 ret = -EBUSY;
1513 pr_err("DRM memory manager type %d is not clean\n",
1514 i);
1515 }
1516 man->has_type = false;
1517 }
1518 }
1519
1520 mutex_lock(&glob->device_list_mutex);
1521 list_del(&bdev->device_list);
1522 mutex_unlock(&glob->device_list_mutex);
1523
1524 cancel_delayed_work_sync(&bdev->wq);
1525
1526 while (ttm_bo_delayed_delete(bdev, true))
1527 ;
1528
1529 spin_lock(&glob->lru_lock);
1530 if (list_empty(&bdev->ddestroy))
1531 TTM_DEBUG("Delayed destroy list was clean\n");
1532
1533 if (list_empty(&bdev->man[0].lru))
1534 TTM_DEBUG("Swap list was clean\n");
1535 spin_unlock(&glob->lru_lock);
1536
1537 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1538 write_lock(&bdev->vm_lock);
1539 drm_mm_takedown(&bdev->addr_space_mm);
1540 write_unlock(&bdev->vm_lock);
1541
1542 return ret;
1543 }
1544 EXPORT_SYMBOL(ttm_bo_device_release);
1545
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,uint64_t file_page_offset,bool need_dma32)1546 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1547 struct ttm_bo_global *glob,
1548 struct ttm_bo_driver *driver,
1549 uint64_t file_page_offset,
1550 bool need_dma32)
1551 {
1552 int ret = -EINVAL;
1553
1554 rwlock_init(&bdev->vm_lock);
1555 bdev->driver = driver;
1556
1557 memset(bdev->man, 0, sizeof(bdev->man));
1558
1559 /*
1560 * Initialize the system memory buffer type.
1561 * Other types need to be driver / IOCTL initialized.
1562 */
1563 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1564 if (unlikely(ret != 0))
1565 goto out_no_sys;
1566
1567 bdev->addr_space_rb = RB_ROOT;
1568 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1569 if (unlikely(ret != 0))
1570 goto out_no_addr_mm;
1571
1572 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1573 bdev->nice_mode = true;
1574 INIT_LIST_HEAD(&bdev->ddestroy);
1575 bdev->dev_mapping = NULL;
1576 bdev->glob = glob;
1577 bdev->need_dma32 = need_dma32;
1578 bdev->val_seq = 0;
1579 spin_lock_init(&bdev->fence_lock);
1580 mutex_lock(&glob->device_list_mutex);
1581 list_add_tail(&bdev->device_list, &glob->device_list);
1582 mutex_unlock(&glob->device_list_mutex);
1583
1584 return 0;
1585 out_no_addr_mm:
1586 ttm_bo_clean_mm(bdev, 0);
1587 out_no_sys:
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(ttm_bo_device_init);
1591
1592 /*
1593 * buffer object vm functions.
1594 */
1595
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1596 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1597 {
1598 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1599
1600 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1601 if (mem->mem_type == TTM_PL_SYSTEM)
1602 return false;
1603
1604 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1605 return false;
1606
1607 if (mem->placement & TTM_PL_FLAG_CACHED)
1608 return false;
1609 }
1610 return true;
1611 }
1612
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1613 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1614 {
1615 struct ttm_bo_device *bdev = bo->bdev;
1616 loff_t offset = (loff_t) bo->addr_space_offset;
1617 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1618
1619 if (!bdev->dev_mapping)
1620 return;
1621 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1622 ttm_mem_io_free_vm(bo);
1623 }
1624
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1625 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1626 {
1627 struct ttm_bo_device *bdev = bo->bdev;
1628 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1629
1630 ttm_mem_io_lock(man, false);
1631 ttm_bo_unmap_virtual_locked(bo);
1632 ttm_mem_io_unlock(man);
1633 }
1634
1635
1636 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1637
ttm_bo_vm_insert_rb(struct ttm_buffer_object * bo)1638 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1639 {
1640 struct ttm_bo_device *bdev = bo->bdev;
1641 struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1642 struct rb_node *parent = NULL;
1643 struct ttm_buffer_object *cur_bo;
1644 unsigned long offset = bo->vm_node->start;
1645 unsigned long cur_offset;
1646
1647 while (*cur) {
1648 parent = *cur;
1649 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1650 cur_offset = cur_bo->vm_node->start;
1651 if (offset < cur_offset)
1652 cur = &parent->rb_left;
1653 else if (offset > cur_offset)
1654 cur = &parent->rb_right;
1655 else
1656 BUG();
1657 }
1658
1659 rb_link_node(&bo->vm_rb, parent, cur);
1660 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1661 }
1662
1663 /**
1664 * ttm_bo_setup_vm:
1665 *
1666 * @bo: the buffer to allocate address space for
1667 *
1668 * Allocate address space in the drm device so that applications
1669 * can mmap the buffer and access the contents. This only
1670 * applies to ttm_bo_type_device objects as others are not
1671 * placed in the drm device address space.
1672 */
1673
ttm_bo_setup_vm(struct ttm_buffer_object * bo)1674 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1675 {
1676 struct ttm_bo_device *bdev = bo->bdev;
1677 int ret;
1678
1679 retry_pre_get:
1680 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1681 if (unlikely(ret != 0))
1682 return ret;
1683
1684 write_lock(&bdev->vm_lock);
1685 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1686 bo->mem.num_pages, 0, 0);
1687
1688 if (unlikely(bo->vm_node == NULL)) {
1689 ret = -ENOMEM;
1690 goto out_unlock;
1691 }
1692
1693 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1694 bo->mem.num_pages, 0);
1695
1696 if (unlikely(bo->vm_node == NULL)) {
1697 write_unlock(&bdev->vm_lock);
1698 goto retry_pre_get;
1699 }
1700
1701 ttm_bo_vm_insert_rb(bo);
1702 write_unlock(&bdev->vm_lock);
1703 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1704
1705 return 0;
1706 out_unlock:
1707 write_unlock(&bdev->vm_lock);
1708 return ret;
1709 }
1710
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1711 int ttm_bo_wait(struct ttm_buffer_object *bo,
1712 bool lazy, bool interruptible, bool no_wait)
1713 {
1714 struct ttm_bo_driver *driver = bo->bdev->driver;
1715 struct ttm_bo_device *bdev = bo->bdev;
1716 void *sync_obj;
1717 void *sync_obj_arg;
1718 int ret = 0;
1719
1720 if (likely(bo->sync_obj == NULL))
1721 return 0;
1722
1723 while (bo->sync_obj) {
1724
1725 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1726 void *tmp_obj = bo->sync_obj;
1727 bo->sync_obj = NULL;
1728 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1729 spin_unlock(&bdev->fence_lock);
1730 driver->sync_obj_unref(&tmp_obj);
1731 spin_lock(&bdev->fence_lock);
1732 continue;
1733 }
1734
1735 if (no_wait)
1736 return -EBUSY;
1737
1738 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1739 sync_obj_arg = bo->sync_obj_arg;
1740 spin_unlock(&bdev->fence_lock);
1741 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1742 lazy, interruptible);
1743 if (unlikely(ret != 0)) {
1744 driver->sync_obj_unref(&sync_obj);
1745 spin_lock(&bdev->fence_lock);
1746 return ret;
1747 }
1748 spin_lock(&bdev->fence_lock);
1749 if (likely(bo->sync_obj == sync_obj &&
1750 bo->sync_obj_arg == sync_obj_arg)) {
1751 void *tmp_obj = bo->sync_obj;
1752 bo->sync_obj = NULL;
1753 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1754 &bo->priv_flags);
1755 spin_unlock(&bdev->fence_lock);
1756 driver->sync_obj_unref(&sync_obj);
1757 driver->sync_obj_unref(&tmp_obj);
1758 spin_lock(&bdev->fence_lock);
1759 } else {
1760 spin_unlock(&bdev->fence_lock);
1761 driver->sync_obj_unref(&sync_obj);
1762 spin_lock(&bdev->fence_lock);
1763 }
1764 }
1765 return 0;
1766 }
1767 EXPORT_SYMBOL(ttm_bo_wait);
1768
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1769 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1770 {
1771 struct ttm_bo_device *bdev = bo->bdev;
1772 int ret = 0;
1773
1774 /*
1775 * Using ttm_bo_reserve makes sure the lru lists are updated.
1776 */
1777
1778 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1779 if (unlikely(ret != 0))
1780 return ret;
1781 spin_lock(&bdev->fence_lock);
1782 ret = ttm_bo_wait(bo, false, true, no_wait);
1783 spin_unlock(&bdev->fence_lock);
1784 if (likely(ret == 0))
1785 atomic_inc(&bo->cpu_writers);
1786 ttm_bo_unreserve(bo);
1787 return ret;
1788 }
1789 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1790
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1791 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1792 {
1793 if (atomic_dec_and_test(&bo->cpu_writers))
1794 wake_up_all(&bo->event_queue);
1795 }
1796 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1797
1798 /**
1799 * A buffer object shrink method that tries to swap out the first
1800 * buffer object on the bo_global::swap_lru list.
1801 */
1802
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1803 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1804 {
1805 struct ttm_bo_global *glob =
1806 container_of(shrink, struct ttm_bo_global, shrink);
1807 struct ttm_buffer_object *bo;
1808 int ret = -EBUSY;
1809 int put_count;
1810 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1811
1812 spin_lock(&glob->lru_lock);
1813 while (ret == -EBUSY) {
1814 if (unlikely(list_empty(&glob->swap_lru))) {
1815 spin_unlock(&glob->lru_lock);
1816 return -EBUSY;
1817 }
1818
1819 bo = list_first_entry(&glob->swap_lru,
1820 struct ttm_buffer_object, swap);
1821 kref_get(&bo->list_kref);
1822
1823 if (!list_empty(&bo->ddestroy)) {
1824 spin_unlock(&glob->lru_lock);
1825 (void) ttm_bo_cleanup_refs(bo, false, false, false);
1826 kref_put(&bo->list_kref, ttm_bo_release_list);
1827 spin_lock(&glob->lru_lock);
1828 continue;
1829 }
1830
1831 /**
1832 * Reserve buffer. Since we unlock while sleeping, we need
1833 * to re-check that nobody removed us from the swap-list while
1834 * we slept.
1835 */
1836
1837 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1838 if (unlikely(ret == -EBUSY)) {
1839 spin_unlock(&glob->lru_lock);
1840 ttm_bo_wait_unreserved(bo, false);
1841 kref_put(&bo->list_kref, ttm_bo_release_list);
1842 spin_lock(&glob->lru_lock);
1843 }
1844 }
1845
1846 BUG_ON(ret != 0);
1847 put_count = ttm_bo_del_from_lru(bo);
1848 spin_unlock(&glob->lru_lock);
1849
1850 ttm_bo_list_ref_sub(bo, put_count, true);
1851
1852 /**
1853 * Wait for GPU, then move to system cached.
1854 */
1855
1856 spin_lock(&bo->bdev->fence_lock);
1857 ret = ttm_bo_wait(bo, false, false, false);
1858 spin_unlock(&bo->bdev->fence_lock);
1859
1860 if (unlikely(ret != 0))
1861 goto out;
1862
1863 if ((bo->mem.placement & swap_placement) != swap_placement) {
1864 struct ttm_mem_reg evict_mem;
1865
1866 evict_mem = bo->mem;
1867 evict_mem.mm_node = NULL;
1868 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1869 evict_mem.mem_type = TTM_PL_SYSTEM;
1870
1871 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1872 false, false, false);
1873 if (unlikely(ret != 0))
1874 goto out;
1875 }
1876
1877 ttm_bo_unmap_virtual(bo);
1878
1879 /**
1880 * Swap out. Buffer will be swapped in again as soon as
1881 * anyone tries to access a ttm page.
1882 */
1883
1884 if (bo->bdev->driver->swap_notify)
1885 bo->bdev->driver->swap_notify(bo);
1886
1887 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1888 out:
1889
1890 /**
1891 *
1892 * Unreserve without putting on LRU to avoid swapping out an
1893 * already swapped buffer.
1894 */
1895
1896 atomic_set(&bo->reserved, 0);
1897 wake_up_all(&bo->event_queue);
1898 kref_put(&bo->list_kref, ttm_bo_release_list);
1899 return ret;
1900 }
1901
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1902 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1903 {
1904 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1905 ;
1906 }
1907 EXPORT_SYMBOL(ttm_bo_swapout_all);
1908