1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <asm/atomic.h>
41 
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45 
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49 
50 static struct attribute ttm_bo_count = {
51 	.name = "bo_count",
52 	.mode = S_IRUGO
53 };
54 
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57 	int i;
58 
59 	for (i = 0; i <= TTM_PL_PRIV5; i++)
60 		if (flags & (1 << i)) {
61 			*mem_type = i;
62 			return 0;
63 		}
64 	return -EINVAL;
65 }
66 
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70 
71 	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72 	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73 	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74 	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75 	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76 	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77 		man->available_caching);
78 	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79 		man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 		bo, bo->mem.num_pages, bo->mem.size >> 10,
91 		bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98 			i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
ttm_bo_global_show(struct kobject * kobj,struct attribute * attr,char * buffer)103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
ttm_bo_type_flags(unsigned type)130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
ttm_bo_release_list(struct kref * list_kref)135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 
141 	BUG_ON(atomic_read(&bo->list_kref.refcount));
142 	BUG_ON(atomic_read(&bo->kref.refcount));
143 	BUG_ON(atomic_read(&bo->cpu_writers));
144 	BUG_ON(bo->sync_obj != NULL);
145 	BUG_ON(bo->mem.mm_node != NULL);
146 	BUG_ON(!list_empty(&bo->lru));
147 	BUG_ON(!list_empty(&bo->ddestroy));
148 
149 	if (bo->ttm)
150 		ttm_tt_destroy(bo->ttm);
151 	atomic_dec(&bo->glob->bo_count);
152 	if (bo->destroy)
153 		bo->destroy(bo);
154 	else {
155 		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156 		kfree(bo);
157 	}
158 }
159 
ttm_bo_wait_unreserved(struct ttm_buffer_object * bo,bool interruptible)160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162 	if (interruptible) {
163 		return wait_event_interruptible(bo->event_queue,
164 					       atomic_read(&bo->reserved) == 0);
165 	} else {
166 		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167 		return 0;
168 	}
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171 
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174 	struct ttm_bo_device *bdev = bo->bdev;
175 	struct ttm_mem_type_manager *man;
176 
177 	BUG_ON(!atomic_read(&bo->reserved));
178 
179 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180 
181 		BUG_ON(!list_empty(&bo->lru));
182 
183 		man = &bdev->man[bo->mem.mem_type];
184 		list_add_tail(&bo->lru, &man->lru);
185 		kref_get(&bo->list_kref);
186 
187 		if (bo->ttm != NULL) {
188 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
189 			kref_get(&bo->list_kref);
190 		}
191 	}
192 }
193 
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196 	int put_count = 0;
197 
198 	if (!list_empty(&bo->swap)) {
199 		list_del_init(&bo->swap);
200 		++put_count;
201 	}
202 	if (!list_empty(&bo->lru)) {
203 		list_del_init(&bo->lru);
204 		++put_count;
205 	}
206 
207 	/*
208 	 * TODO: Add a driver hook to delete from
209 	 * driver-specific LRU's here.
210 	 */
211 
212 	return put_count;
213 }
214 
ttm_bo_reserve_locked(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216 			  bool interruptible,
217 			  bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219 	struct ttm_bo_global *glob = bo->glob;
220 	int ret;
221 
222 	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223 		/**
224 		 * Deadlock avoidance for multi-bo reserving.
225 		 */
226 		if (use_sequence && bo->seq_valid) {
227 			/**
228 			 * We've already reserved this one.
229 			 */
230 			if (unlikely(sequence == bo->val_seq))
231 				return -EDEADLK;
232 			/**
233 			 * Already reserved by a thread that will not back
234 			 * off for us. We need to back off.
235 			 */
236 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
237 				return -EAGAIN;
238 		}
239 
240 		if (no_wait)
241 			return -EBUSY;
242 
243 		spin_unlock(&glob->lru_lock);
244 		ret = ttm_bo_wait_unreserved(bo, interruptible);
245 		spin_lock(&glob->lru_lock);
246 
247 		if (unlikely(ret))
248 			return ret;
249 	}
250 
251 	if (use_sequence) {
252 		/**
253 		 * Wake up waiters that may need to recheck for deadlock,
254 		 * if we decreased the sequence number.
255 		 */
256 		if (unlikely((bo->val_seq - sequence < (1 << 31))
257 			     || !bo->seq_valid))
258 			wake_up_all(&bo->event_queue);
259 
260 		bo->val_seq = sequence;
261 		bo->seq_valid = true;
262 	} else {
263 		bo->seq_valid = false;
264 	}
265 
266 	return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269 
ttm_bo_ref_bug(struct kref * list_kref)270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272 	BUG();
273 }
274 
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276 			 bool never_free)
277 {
278 	kref_sub(&bo->list_kref, count,
279 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281 
ttm_bo_reserve(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283 		   bool interruptible,
284 		   bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286 	struct ttm_bo_global *glob = bo->glob;
287 	int put_count = 0;
288 	int ret;
289 
290 	spin_lock(&glob->lru_lock);
291 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292 				    sequence);
293 	if (likely(ret == 0))
294 		put_count = ttm_bo_del_from_lru(bo);
295 	spin_unlock(&glob->lru_lock);
296 
297 	ttm_bo_list_ref_sub(bo, put_count, true);
298 
299 	return ret;
300 }
301 
ttm_bo_unreserve_locked(struct ttm_buffer_object * bo)302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304 	ttm_bo_add_to_lru(bo);
305 	atomic_set(&bo->reserved, 0);
306 	wake_up_all(&bo->event_queue);
307 }
308 
ttm_bo_unreserve(struct ttm_buffer_object * bo)309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311 	struct ttm_bo_global *glob = bo->glob;
312 
313 	spin_lock(&glob->lru_lock);
314 	ttm_bo_unreserve_locked(bo);
315 	spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318 
319 /*
320  * Call bo->mutex locked.
321  */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324 	struct ttm_bo_device *bdev = bo->bdev;
325 	struct ttm_bo_global *glob = bo->glob;
326 	int ret = 0;
327 	uint32_t page_flags = 0;
328 
329 	TTM_ASSERT_LOCKED(&bo->mutex);
330 	bo->ttm = NULL;
331 
332 	if (bdev->need_dma32)
333 		page_flags |= TTM_PAGE_FLAG_DMA32;
334 
335 	switch (bo->type) {
336 	case ttm_bo_type_device:
337 		if (zero_alloc)
338 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339 	case ttm_bo_type_kernel:
340 		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341 					page_flags, glob->dummy_read_page);
342 		if (unlikely(bo->ttm == NULL))
343 			ret = -ENOMEM;
344 		break;
345 	case ttm_bo_type_user:
346 		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347 					page_flags | TTM_PAGE_FLAG_USER,
348 					glob->dummy_read_page);
349 		if (unlikely(bo->ttm == NULL)) {
350 			ret = -ENOMEM;
351 			break;
352 		}
353 
354 		ret = ttm_tt_set_user(bo->ttm, current,
355 				      bo->buffer_start, bo->num_pages);
356 		if (unlikely(ret != 0))
357 			ttm_tt_destroy(bo->ttm);
358 		break;
359 	default:
360 		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
361 		ret = -EINVAL;
362 		break;
363 	}
364 
365 	return ret;
366 }
367 
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)368 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
369 				  struct ttm_mem_reg *mem,
370 				  bool evict, bool interruptible,
371 				  bool no_wait_reserve, bool no_wait_gpu)
372 {
373 	struct ttm_bo_device *bdev = bo->bdev;
374 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
375 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
376 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
377 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
378 	int ret = 0;
379 
380 	if (old_is_pci || new_is_pci ||
381 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
382 		ret = ttm_mem_io_lock(old_man, true);
383 		if (unlikely(ret != 0))
384 			goto out_err;
385 		ttm_bo_unmap_virtual_locked(bo);
386 		ttm_mem_io_unlock(old_man);
387 	}
388 
389 	/*
390 	 * Create and bind a ttm if required.
391 	 */
392 
393 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
394 		ret = ttm_bo_add_ttm(bo, false);
395 		if (ret)
396 			goto out_err;
397 
398 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399 		if (ret)
400 			goto out_err;
401 
402 		if (mem->mem_type != TTM_PL_SYSTEM) {
403 			ret = ttm_tt_bind(bo->ttm, mem);
404 			if (ret)
405 				goto out_err;
406 		}
407 
408 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409 			if (bdev->driver->move_notify)
410 				bdev->driver->move_notify(bo, mem);
411 			bo->mem = *mem;
412 			mem->mm_node = NULL;
413 			goto moved;
414 		}
415 	}
416 
417 	if (bdev->driver->move_notify)
418 		bdev->driver->move_notify(bo, mem);
419 
420 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
421 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
422 		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
423 	else if (bdev->driver->move)
424 		ret = bdev->driver->move(bo, evict, interruptible,
425 					 no_wait_reserve, no_wait_gpu, mem);
426 	else
427 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428 
429 	if (ret)
430 		goto out_err;
431 
432 moved:
433 	if (bo->evicted) {
434 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
435 		if (ret)
436 			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
437 		bo->evicted = false;
438 	}
439 
440 	if (bo->mem.mm_node) {
441 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
442 		    bdev->man[bo->mem.mem_type].gpu_offset;
443 		bo->cur_placement = bo->mem.placement;
444 	} else
445 		bo->offset = 0;
446 
447 	return 0;
448 
449 out_err:
450 	new_man = &bdev->man[bo->mem.mem_type];
451 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
452 		ttm_tt_unbind(bo->ttm);
453 		ttm_tt_destroy(bo->ttm);
454 		bo->ttm = NULL;
455 	}
456 
457 	return ret;
458 }
459 
460 /**
461  * Call bo::reserved.
462  * Will release GPU memory type usage on destruction.
463  * This is the place to put in driver specific hooks to release
464  * driver private resources.
465  * Will release the bo::reserved lock.
466  */
467 
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)468 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
469 {
470 	if (bo->ttm) {
471 		ttm_tt_unbind(bo->ttm);
472 		ttm_tt_destroy(bo->ttm);
473 		bo->ttm = NULL;
474 	}
475 	ttm_bo_mem_put(bo, &bo->mem);
476 
477 	atomic_set(&bo->reserved, 0);
478 
479 	/*
480 	 * Make processes trying to reserve really pick it up.
481 	 */
482 	smp_mb__after_atomic_dec();
483 	wake_up_all(&bo->event_queue);
484 }
485 
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)486 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
487 {
488 	struct ttm_bo_device *bdev = bo->bdev;
489 	struct ttm_bo_global *glob = bo->glob;
490 	struct ttm_bo_driver *driver;
491 	void *sync_obj = NULL;
492 	void *sync_obj_arg;
493 	int put_count;
494 	int ret;
495 
496 	spin_lock(&bdev->fence_lock);
497 	(void) ttm_bo_wait(bo, false, false, true);
498 	if (!bo->sync_obj) {
499 
500 		spin_lock(&glob->lru_lock);
501 
502 		/**
503 		 * Lock inversion between bo:reserve and bdev::fence_lock here,
504 		 * but that's OK, since we're only trylocking.
505 		 */
506 
507 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
508 
509 		if (unlikely(ret == -EBUSY))
510 			goto queue;
511 
512 		spin_unlock(&bdev->fence_lock);
513 		put_count = ttm_bo_del_from_lru(bo);
514 
515 		spin_unlock(&glob->lru_lock);
516 		ttm_bo_cleanup_memtype_use(bo);
517 
518 		ttm_bo_list_ref_sub(bo, put_count, true);
519 
520 		return;
521 	} else {
522 		spin_lock(&glob->lru_lock);
523 	}
524 queue:
525 	driver = bdev->driver;
526 	if (bo->sync_obj)
527 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
528 	sync_obj_arg = bo->sync_obj_arg;
529 
530 	kref_get(&bo->list_kref);
531 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
532 	spin_unlock(&glob->lru_lock);
533 	spin_unlock(&bdev->fence_lock);
534 
535 	if (sync_obj) {
536 		driver->sync_obj_flush(sync_obj, sync_obj_arg);
537 		driver->sync_obj_unref(&sync_obj);
538 	}
539 	schedule_delayed_work(&bdev->wq,
540 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
541 }
542 
543 /**
544  * function ttm_bo_cleanup_refs
545  * If bo idle, remove from delayed- and lru lists, and unref.
546  * If not idle, do nothing.
547  *
548  * @interruptible         Any sleeps should occur interruptibly.
549  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
550  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
551  */
552 
ttm_bo_cleanup_refs(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)553 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
554 			       bool interruptible,
555 			       bool no_wait_reserve,
556 			       bool no_wait_gpu)
557 {
558 	struct ttm_bo_device *bdev = bo->bdev;
559 	struct ttm_bo_global *glob = bo->glob;
560 	int put_count;
561 	int ret = 0;
562 
563 retry:
564 	spin_lock(&bdev->fence_lock);
565 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
566 	spin_unlock(&bdev->fence_lock);
567 
568 	if (unlikely(ret != 0))
569 		return ret;
570 
571 	spin_lock(&glob->lru_lock);
572 	ret = ttm_bo_reserve_locked(bo, interruptible,
573 				    no_wait_reserve, false, 0);
574 
575 	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
576 		spin_unlock(&glob->lru_lock);
577 		return ret;
578 	}
579 
580 	/**
581 	 * We can re-check for sync object without taking
582 	 * the bo::lock since setting the sync object requires
583 	 * also bo::reserved. A busy object at this point may
584 	 * be caused by another thread recently starting an accelerated
585 	 * eviction.
586 	 */
587 
588 	if (unlikely(bo->sync_obj)) {
589 		atomic_set(&bo->reserved, 0);
590 		wake_up_all(&bo->event_queue);
591 		spin_unlock(&glob->lru_lock);
592 		goto retry;
593 	}
594 
595 	put_count = ttm_bo_del_from_lru(bo);
596 	list_del_init(&bo->ddestroy);
597 	++put_count;
598 
599 	spin_unlock(&glob->lru_lock);
600 	ttm_bo_cleanup_memtype_use(bo);
601 
602 	ttm_bo_list_ref_sub(bo, put_count, true);
603 
604 	return 0;
605 }
606 
607 /**
608  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
609  * encountered buffers.
610  */
611 
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)612 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
613 {
614 	struct ttm_bo_global *glob = bdev->glob;
615 	struct ttm_buffer_object *entry = NULL;
616 	int ret = 0;
617 
618 	spin_lock(&glob->lru_lock);
619 	if (list_empty(&bdev->ddestroy))
620 		goto out_unlock;
621 
622 	entry = list_first_entry(&bdev->ddestroy,
623 		struct ttm_buffer_object, ddestroy);
624 	kref_get(&entry->list_kref);
625 
626 	for (;;) {
627 		struct ttm_buffer_object *nentry = NULL;
628 
629 		if (entry->ddestroy.next != &bdev->ddestroy) {
630 			nentry = list_first_entry(&entry->ddestroy,
631 				struct ttm_buffer_object, ddestroy);
632 			kref_get(&nentry->list_kref);
633 		}
634 
635 		spin_unlock(&glob->lru_lock);
636 		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
637 					  !remove_all);
638 		kref_put(&entry->list_kref, ttm_bo_release_list);
639 		entry = nentry;
640 
641 		if (ret || !entry)
642 			goto out;
643 
644 		spin_lock(&glob->lru_lock);
645 		if (list_empty(&entry->ddestroy))
646 			break;
647 	}
648 
649 out_unlock:
650 	spin_unlock(&glob->lru_lock);
651 out:
652 	if (entry)
653 		kref_put(&entry->list_kref, ttm_bo_release_list);
654 	return ret;
655 }
656 
ttm_bo_delayed_workqueue(struct work_struct * work)657 static void ttm_bo_delayed_workqueue(struct work_struct *work)
658 {
659 	struct ttm_bo_device *bdev =
660 	    container_of(work, struct ttm_bo_device, wq.work);
661 
662 	if (ttm_bo_delayed_delete(bdev, false)) {
663 		schedule_delayed_work(&bdev->wq,
664 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
665 	}
666 }
667 
ttm_bo_release(struct kref * kref)668 static void ttm_bo_release(struct kref *kref)
669 {
670 	struct ttm_buffer_object *bo =
671 	    container_of(kref, struct ttm_buffer_object, kref);
672 	struct ttm_bo_device *bdev = bo->bdev;
673 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
674 
675 	if (likely(bo->vm_node != NULL)) {
676 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
677 		drm_mm_put_block(bo->vm_node);
678 		bo->vm_node = NULL;
679 	}
680 	write_unlock(&bdev->vm_lock);
681 	ttm_mem_io_lock(man, false);
682 	ttm_mem_io_free_vm(bo);
683 	ttm_mem_io_unlock(man);
684 	ttm_bo_cleanup_refs_or_queue(bo);
685 	kref_put(&bo->list_kref, ttm_bo_release_list);
686 	write_lock(&bdev->vm_lock);
687 }
688 
ttm_bo_unref(struct ttm_buffer_object ** p_bo)689 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
690 {
691 	struct ttm_buffer_object *bo = *p_bo;
692 	struct ttm_bo_device *bdev = bo->bdev;
693 
694 	*p_bo = NULL;
695 	write_lock(&bdev->vm_lock);
696 	kref_put(&bo->kref, ttm_bo_release);
697 	write_unlock(&bdev->vm_lock);
698 }
699 EXPORT_SYMBOL(ttm_bo_unref);
700 
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)701 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
702 {
703 	return cancel_delayed_work_sync(&bdev->wq);
704 }
705 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
706 
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)707 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
708 {
709 	if (resched)
710 		schedule_delayed_work(&bdev->wq,
711 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
712 }
713 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
714 
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)715 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
716 			bool no_wait_reserve, bool no_wait_gpu)
717 {
718 	struct ttm_bo_device *bdev = bo->bdev;
719 	struct ttm_mem_reg evict_mem;
720 	struct ttm_placement placement;
721 	int ret = 0;
722 
723 	spin_lock(&bdev->fence_lock);
724 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
725 	spin_unlock(&bdev->fence_lock);
726 
727 	if (unlikely(ret != 0)) {
728 		if (ret != -ERESTARTSYS) {
729 			printk(KERN_ERR TTM_PFX
730 			       "Failed to expire sync object before "
731 			       "buffer eviction.\n");
732 		}
733 		goto out;
734 	}
735 
736 	BUG_ON(!atomic_read(&bo->reserved));
737 
738 	evict_mem = bo->mem;
739 	evict_mem.mm_node = NULL;
740 	evict_mem.bus.io_reserved_vm = false;
741 	evict_mem.bus.io_reserved_count = 0;
742 
743 	placement.fpfn = 0;
744 	placement.lpfn = 0;
745 	placement.num_placement = 0;
746 	placement.num_busy_placement = 0;
747 	bdev->driver->evict_flags(bo, &placement);
748 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
749 				no_wait_reserve, no_wait_gpu);
750 	if (ret) {
751 		if (ret != -ERESTARTSYS) {
752 			printk(KERN_ERR TTM_PFX
753 			       "Failed to find memory space for "
754 			       "buffer 0x%p eviction.\n", bo);
755 			ttm_bo_mem_space_debug(bo, &placement);
756 		}
757 		goto out;
758 	}
759 
760 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
761 				     no_wait_reserve, no_wait_gpu);
762 	if (ret) {
763 		if (ret != -ERESTARTSYS)
764 			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
765 		ttm_bo_mem_put(bo, &evict_mem);
766 		goto out;
767 	}
768 	bo->evicted = true;
769 out:
770 	return ret;
771 }
772 
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)773 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
774 				uint32_t mem_type,
775 				bool interruptible, bool no_wait_reserve,
776 				bool no_wait_gpu)
777 {
778 	struct ttm_bo_global *glob = bdev->glob;
779 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
780 	struct ttm_buffer_object *bo;
781 	int ret, put_count = 0;
782 
783 retry:
784 	spin_lock(&glob->lru_lock);
785 	if (list_empty(&man->lru)) {
786 		spin_unlock(&glob->lru_lock);
787 		return -EBUSY;
788 	}
789 
790 	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
791 	kref_get(&bo->list_kref);
792 
793 	if (!list_empty(&bo->ddestroy)) {
794 		spin_unlock(&glob->lru_lock);
795 		ret = ttm_bo_cleanup_refs(bo, interruptible,
796 					  no_wait_reserve, no_wait_gpu);
797 		kref_put(&bo->list_kref, ttm_bo_release_list);
798 
799 		if (likely(ret == 0 || ret == -ERESTARTSYS))
800 			return ret;
801 
802 		goto retry;
803 	}
804 
805 	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
806 
807 	if (unlikely(ret == -EBUSY)) {
808 		spin_unlock(&glob->lru_lock);
809 		if (likely(!no_wait_gpu))
810 			ret = ttm_bo_wait_unreserved(bo, interruptible);
811 
812 		kref_put(&bo->list_kref, ttm_bo_release_list);
813 
814 		/**
815 		 * We *need* to retry after releasing the lru lock.
816 		 */
817 
818 		if (unlikely(ret != 0))
819 			return ret;
820 		goto retry;
821 	}
822 
823 	put_count = ttm_bo_del_from_lru(bo);
824 	spin_unlock(&glob->lru_lock);
825 
826 	BUG_ON(ret != 0);
827 
828 	ttm_bo_list_ref_sub(bo, put_count, true);
829 
830 	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
831 	ttm_bo_unreserve(bo);
832 
833 	kref_put(&bo->list_kref, ttm_bo_release_list);
834 	return ret;
835 }
836 
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)837 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
838 {
839 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
840 
841 	if (mem->mm_node)
842 		(*man->func->put_node)(man, mem);
843 }
844 EXPORT_SYMBOL(ttm_bo_mem_put);
845 
846 /**
847  * Repeatedly evict memory from the LRU for @mem_type until we create enough
848  * space, or we've evicted everything and there isn't enough space.
849  */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)850 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
851 					uint32_t mem_type,
852 					struct ttm_placement *placement,
853 					struct ttm_mem_reg *mem,
854 					bool interruptible,
855 					bool no_wait_reserve,
856 					bool no_wait_gpu)
857 {
858 	struct ttm_bo_device *bdev = bo->bdev;
859 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
860 	int ret;
861 
862 	do {
863 		ret = (*man->func->get_node)(man, bo, placement, mem);
864 		if (unlikely(ret != 0))
865 			return ret;
866 		if (mem->mm_node)
867 			break;
868 		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
869 						no_wait_reserve, no_wait_gpu);
870 		if (unlikely(ret != 0))
871 			return ret;
872 	} while (1);
873 	if (mem->mm_node == NULL)
874 		return -ENOMEM;
875 	mem->mem_type = mem_type;
876 	return 0;
877 }
878 
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)879 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
880 				      uint32_t cur_placement,
881 				      uint32_t proposed_placement)
882 {
883 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
884 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
885 
886 	/**
887 	 * Keep current caching if possible.
888 	 */
889 
890 	if ((cur_placement & caching) != 0)
891 		result |= (cur_placement & caching);
892 	else if ((man->default_caching & caching) != 0)
893 		result |= man->default_caching;
894 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
895 		result |= TTM_PL_FLAG_CACHED;
896 	else if ((TTM_PL_FLAG_WC & caching) != 0)
897 		result |= TTM_PL_FLAG_WC;
898 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
899 		result |= TTM_PL_FLAG_UNCACHED;
900 
901 	return result;
902 }
903 
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,bool disallow_fixed,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)904 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
905 				 bool disallow_fixed,
906 				 uint32_t mem_type,
907 				 uint32_t proposed_placement,
908 				 uint32_t *masked_placement)
909 {
910 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
911 
912 	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
913 		return false;
914 
915 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
916 		return false;
917 
918 	if ((proposed_placement & man->available_caching) == 0)
919 		return false;
920 
921 	cur_flags |= (proposed_placement & man->available_caching);
922 
923 	*masked_placement = cur_flags;
924 	return true;
925 }
926 
927 /**
928  * Creates space for memory region @mem according to its type.
929  *
930  * This function first searches for free space in compatible memory types in
931  * the priority order defined by the driver.  If free space isn't found, then
932  * ttm_bo_mem_force_space is attempted in priority order to evict and find
933  * space.
934  */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)935 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
936 			struct ttm_placement *placement,
937 			struct ttm_mem_reg *mem,
938 			bool interruptible, bool no_wait_reserve,
939 			bool no_wait_gpu)
940 {
941 	struct ttm_bo_device *bdev = bo->bdev;
942 	struct ttm_mem_type_manager *man;
943 	uint32_t mem_type = TTM_PL_SYSTEM;
944 	uint32_t cur_flags = 0;
945 	bool type_found = false;
946 	bool type_ok = false;
947 	bool has_erestartsys = false;
948 	int i, ret;
949 
950 	mem->mm_node = NULL;
951 	for (i = 0; i < placement->num_placement; ++i) {
952 		ret = ttm_mem_type_from_flags(placement->placement[i],
953 						&mem_type);
954 		if (ret)
955 			return ret;
956 		man = &bdev->man[mem_type];
957 
958 		type_ok = ttm_bo_mt_compatible(man,
959 						bo->type == ttm_bo_type_user,
960 						mem_type,
961 						placement->placement[i],
962 						&cur_flags);
963 
964 		if (!type_ok)
965 			continue;
966 
967 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
968 						  cur_flags);
969 		/*
970 		 * Use the access and other non-mapping-related flag bits from
971 		 * the memory placement flags to the current flags
972 		 */
973 		ttm_flag_masked(&cur_flags, placement->placement[i],
974 				~TTM_PL_MASK_MEMTYPE);
975 
976 		if (mem_type == TTM_PL_SYSTEM)
977 			break;
978 
979 		if (man->has_type && man->use_type) {
980 			type_found = true;
981 			ret = (*man->func->get_node)(man, bo, placement, mem);
982 			if (unlikely(ret))
983 				return ret;
984 		}
985 		if (mem->mm_node)
986 			break;
987 	}
988 
989 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
990 		mem->mem_type = mem_type;
991 		mem->placement = cur_flags;
992 		return 0;
993 	}
994 
995 	if (!type_found)
996 		return -EINVAL;
997 
998 	for (i = 0; i < placement->num_busy_placement; ++i) {
999 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1000 						&mem_type);
1001 		if (ret)
1002 			return ret;
1003 		man = &bdev->man[mem_type];
1004 		if (!man->has_type)
1005 			continue;
1006 		if (!ttm_bo_mt_compatible(man,
1007 						bo->type == ttm_bo_type_user,
1008 						mem_type,
1009 						placement->busy_placement[i],
1010 						&cur_flags))
1011 			continue;
1012 
1013 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1014 						  cur_flags);
1015 		/*
1016 		 * Use the access and other non-mapping-related flag bits from
1017 		 * the memory placement flags to the current flags
1018 		 */
1019 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1020 				~TTM_PL_MASK_MEMTYPE);
1021 
1022 
1023 		if (mem_type == TTM_PL_SYSTEM) {
1024 			mem->mem_type = mem_type;
1025 			mem->placement = cur_flags;
1026 			mem->mm_node = NULL;
1027 			return 0;
1028 		}
1029 
1030 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1031 						interruptible, no_wait_reserve, no_wait_gpu);
1032 		if (ret == 0 && mem->mm_node) {
1033 			mem->placement = cur_flags;
1034 			return 0;
1035 		}
1036 		if (ret == -ERESTARTSYS)
1037 			has_erestartsys = true;
1038 	}
1039 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1040 	return ret;
1041 }
1042 EXPORT_SYMBOL(ttm_bo_mem_space);
1043 
ttm_bo_wait_cpu(struct ttm_buffer_object * bo,bool no_wait)1044 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1045 {
1046 	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1047 		return -EBUSY;
1048 
1049 	return wait_event_interruptible(bo->event_queue,
1050 					atomic_read(&bo->cpu_writers) == 0);
1051 }
1052 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1053 
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1054 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1055 			struct ttm_placement *placement,
1056 			bool interruptible, bool no_wait_reserve,
1057 			bool no_wait_gpu)
1058 {
1059 	int ret = 0;
1060 	struct ttm_mem_reg mem;
1061 	struct ttm_bo_device *bdev = bo->bdev;
1062 
1063 	BUG_ON(!atomic_read(&bo->reserved));
1064 
1065 	/*
1066 	 * FIXME: It's possible to pipeline buffer moves.
1067 	 * Have the driver move function wait for idle when necessary,
1068 	 * instead of doing it here.
1069 	 */
1070 	spin_lock(&bdev->fence_lock);
1071 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1072 	spin_unlock(&bdev->fence_lock);
1073 	if (ret)
1074 		return ret;
1075 	mem.num_pages = bo->num_pages;
1076 	mem.size = mem.num_pages << PAGE_SHIFT;
1077 	mem.page_alignment = bo->mem.page_alignment;
1078 	mem.bus.io_reserved_vm = false;
1079 	mem.bus.io_reserved_count = 0;
1080 	/*
1081 	 * Determine where to move the buffer.
1082 	 */
1083 	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1084 	if (ret)
1085 		goto out_unlock;
1086 	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1087 out_unlock:
1088 	if (ret && mem.mm_node)
1089 		ttm_bo_mem_put(bo, &mem);
1090 	return ret;
1091 }
1092 
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem)1093 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1094 			     struct ttm_mem_reg *mem)
1095 {
1096 	int i;
1097 
1098 	if (mem->mm_node && placement->lpfn != 0 &&
1099 	    (mem->start < placement->fpfn ||
1100 	     mem->start + mem->num_pages > placement->lpfn))
1101 		return -1;
1102 
1103 	for (i = 0; i < placement->num_placement; i++) {
1104 		if ((placement->placement[i] & mem->placement &
1105 			TTM_PL_MASK_CACHING) &&
1106 			(placement->placement[i] & mem->placement &
1107 			TTM_PL_MASK_MEM))
1108 			return i;
1109 	}
1110 	return -1;
1111 }
1112 
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1113 int ttm_bo_validate(struct ttm_buffer_object *bo,
1114 			struct ttm_placement *placement,
1115 			bool interruptible, bool no_wait_reserve,
1116 			bool no_wait_gpu)
1117 {
1118 	int ret;
1119 
1120 	BUG_ON(!atomic_read(&bo->reserved));
1121 	/* Check that range is valid */
1122 	if (placement->lpfn || placement->fpfn)
1123 		if (placement->fpfn > placement->lpfn ||
1124 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1125 			return -EINVAL;
1126 	/*
1127 	 * Check whether we need to move buffer.
1128 	 */
1129 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1130 	if (ret < 0) {
1131 		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1132 		if (ret)
1133 			return ret;
1134 	} else {
1135 		/*
1136 		 * Use the access and other non-mapping-related flag bits from
1137 		 * the compatible memory placement flags to the active flags
1138 		 */
1139 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1140 				~TTM_PL_MASK_MEMTYPE);
1141 	}
1142 	/*
1143 	 * We might need to add a TTM.
1144 	 */
1145 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1146 		ret = ttm_bo_add_ttm(bo, true);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 	return 0;
1151 }
1152 EXPORT_SYMBOL(ttm_bo_validate);
1153 
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1154 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1155 				struct ttm_placement *placement)
1156 {
1157 	BUG_ON((placement->fpfn || placement->lpfn) &&
1158 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1159 
1160 	return 0;
1161 }
1162 
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,size_t acc_size,void (* destroy)(struct ttm_buffer_object *))1163 int ttm_bo_init(struct ttm_bo_device *bdev,
1164 		struct ttm_buffer_object *bo,
1165 		unsigned long size,
1166 		enum ttm_bo_type type,
1167 		struct ttm_placement *placement,
1168 		uint32_t page_alignment,
1169 		unsigned long buffer_start,
1170 		bool interruptible,
1171 		struct file *persistent_swap_storage,
1172 		size_t acc_size,
1173 		void (*destroy) (struct ttm_buffer_object *))
1174 {
1175 	int ret = 0;
1176 	unsigned long num_pages;
1177 
1178 	size += buffer_start & ~PAGE_MASK;
1179 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1180 	if (num_pages == 0) {
1181 		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1182 		if (destroy)
1183 			(*destroy)(bo);
1184 		else
1185 			kfree(bo);
1186 		return -EINVAL;
1187 	}
1188 	bo->destroy = destroy;
1189 
1190 	kref_init(&bo->kref);
1191 	kref_init(&bo->list_kref);
1192 	atomic_set(&bo->cpu_writers, 0);
1193 	atomic_set(&bo->reserved, 1);
1194 	init_waitqueue_head(&bo->event_queue);
1195 	INIT_LIST_HEAD(&bo->lru);
1196 	INIT_LIST_HEAD(&bo->ddestroy);
1197 	INIT_LIST_HEAD(&bo->swap);
1198 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1199 	bo->bdev = bdev;
1200 	bo->glob = bdev->glob;
1201 	bo->type = type;
1202 	bo->num_pages = num_pages;
1203 	bo->mem.size = num_pages << PAGE_SHIFT;
1204 	bo->mem.mem_type = TTM_PL_SYSTEM;
1205 	bo->mem.num_pages = bo->num_pages;
1206 	bo->mem.mm_node = NULL;
1207 	bo->mem.page_alignment = page_alignment;
1208 	bo->mem.bus.io_reserved_vm = false;
1209 	bo->mem.bus.io_reserved_count = 0;
1210 	bo->buffer_start = buffer_start & PAGE_MASK;
1211 	bo->priv_flags = 0;
1212 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1213 	bo->seq_valid = false;
1214 	bo->persistent_swap_storage = persistent_swap_storage;
1215 	bo->acc_size = acc_size;
1216 	atomic_inc(&bo->glob->bo_count);
1217 
1218 	ret = ttm_bo_check_placement(bo, placement);
1219 	if (unlikely(ret != 0))
1220 		goto out_err;
1221 
1222 	/*
1223 	 * For ttm_bo_type_device buffers, allocate
1224 	 * address space from the device.
1225 	 */
1226 	if (bo->type == ttm_bo_type_device) {
1227 		ret = ttm_bo_setup_vm(bo);
1228 		if (ret)
1229 			goto out_err;
1230 	}
1231 
1232 	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1233 	if (ret)
1234 		goto out_err;
1235 
1236 	ttm_bo_unreserve(bo);
1237 	return 0;
1238 
1239 out_err:
1240 	ttm_bo_unreserve(bo);
1241 	ttm_bo_unref(&bo);
1242 
1243 	return ret;
1244 }
1245 EXPORT_SYMBOL(ttm_bo_init);
1246 
ttm_bo_size(struct ttm_bo_global * glob,unsigned long num_pages)1247 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1248 				 unsigned long num_pages)
1249 {
1250 	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1251 	    PAGE_MASK;
1252 
1253 	return glob->ttm_bo_size + 2 * page_array_size;
1254 }
1255 
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1256 int ttm_bo_create(struct ttm_bo_device *bdev,
1257 			unsigned long size,
1258 			enum ttm_bo_type type,
1259 			struct ttm_placement *placement,
1260 			uint32_t page_alignment,
1261 			unsigned long buffer_start,
1262 			bool interruptible,
1263 			struct file *persistent_swap_storage,
1264 			struct ttm_buffer_object **p_bo)
1265 {
1266 	struct ttm_buffer_object *bo;
1267 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1268 	int ret;
1269 
1270 	size_t acc_size =
1271 	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1272 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1273 	if (unlikely(ret != 0))
1274 		return ret;
1275 
1276 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1277 
1278 	if (unlikely(bo == NULL)) {
1279 		ttm_mem_global_free(mem_glob, acc_size);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1284 				buffer_start, interruptible,
1285 				persistent_swap_storage, acc_size, NULL);
1286 	if (likely(ret == 0))
1287 		*p_bo = bo;
1288 
1289 	return ret;
1290 }
1291 
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1292 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1293 					unsigned mem_type, bool allow_errors)
1294 {
1295 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1296 	struct ttm_bo_global *glob = bdev->glob;
1297 	int ret;
1298 
1299 	/*
1300 	 * Can't use standard list traversal since we're unlocking.
1301 	 */
1302 
1303 	spin_lock(&glob->lru_lock);
1304 	while (!list_empty(&man->lru)) {
1305 		spin_unlock(&glob->lru_lock);
1306 		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1307 		if (ret) {
1308 			if (allow_errors) {
1309 				return ret;
1310 			} else {
1311 				printk(KERN_ERR TTM_PFX
1312 					"Cleanup eviction failed\n");
1313 			}
1314 		}
1315 		spin_lock(&glob->lru_lock);
1316 	}
1317 	spin_unlock(&glob->lru_lock);
1318 	return 0;
1319 }
1320 
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1321 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1322 {
1323 	struct ttm_mem_type_manager *man;
1324 	int ret = -EINVAL;
1325 
1326 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1327 		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1328 		return ret;
1329 	}
1330 	man = &bdev->man[mem_type];
1331 
1332 	if (!man->has_type) {
1333 		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1334 		       "memory manager type %u\n", mem_type);
1335 		return ret;
1336 	}
1337 
1338 	man->use_type = false;
1339 	man->has_type = false;
1340 
1341 	ret = 0;
1342 	if (mem_type > 0) {
1343 		ttm_bo_force_list_clean(bdev, mem_type, false);
1344 
1345 		ret = (*man->func->takedown)(man);
1346 	}
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(ttm_bo_clean_mm);
1351 
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1352 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1353 {
1354 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1355 
1356 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1357 		printk(KERN_ERR TTM_PFX
1358 		       "Illegal memory manager memory type %u.\n",
1359 		       mem_type);
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (!man->has_type) {
1364 		printk(KERN_ERR TTM_PFX
1365 		       "Memory type %u has not been initialized.\n",
1366 		       mem_type);
1367 		return 0;
1368 	}
1369 
1370 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1371 }
1372 EXPORT_SYMBOL(ttm_bo_evict_mm);
1373 
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1374 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1375 			unsigned long p_size)
1376 {
1377 	int ret = -EINVAL;
1378 	struct ttm_mem_type_manager *man;
1379 
1380 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1381 	man = &bdev->man[type];
1382 	BUG_ON(man->has_type);
1383 	man->io_reserve_fastpath = true;
1384 	man->use_io_reserve_lru = false;
1385 	mutex_init(&man->io_reserve_mutex);
1386 	INIT_LIST_HEAD(&man->io_reserve_lru);
1387 
1388 	ret = bdev->driver->init_mem_type(bdev, type, man);
1389 	if (ret)
1390 		return ret;
1391 	man->bdev = bdev;
1392 
1393 	ret = 0;
1394 	if (type != TTM_PL_SYSTEM) {
1395 		ret = (*man->func->init)(man, p_size);
1396 		if (ret)
1397 			return ret;
1398 	}
1399 	man->has_type = true;
1400 	man->use_type = true;
1401 	man->size = p_size;
1402 
1403 	INIT_LIST_HEAD(&man->lru);
1404 
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(ttm_bo_init_mm);
1408 
ttm_bo_global_kobj_release(struct kobject * kobj)1409 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1410 {
1411 	struct ttm_bo_global *glob =
1412 		container_of(kobj, struct ttm_bo_global, kobj);
1413 
1414 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1415 	__free_page(glob->dummy_read_page);
1416 	kfree(glob);
1417 }
1418 
ttm_bo_global_release(struct drm_global_reference * ref)1419 void ttm_bo_global_release(struct drm_global_reference *ref)
1420 {
1421 	struct ttm_bo_global *glob = ref->object;
1422 
1423 	kobject_del(&glob->kobj);
1424 	kobject_put(&glob->kobj);
1425 }
1426 EXPORT_SYMBOL(ttm_bo_global_release);
1427 
ttm_bo_global_init(struct drm_global_reference * ref)1428 int ttm_bo_global_init(struct drm_global_reference *ref)
1429 {
1430 	struct ttm_bo_global_ref *bo_ref =
1431 		container_of(ref, struct ttm_bo_global_ref, ref);
1432 	struct ttm_bo_global *glob = ref->object;
1433 	int ret;
1434 
1435 	mutex_init(&glob->device_list_mutex);
1436 	spin_lock_init(&glob->lru_lock);
1437 	glob->mem_glob = bo_ref->mem_glob;
1438 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1439 
1440 	if (unlikely(glob->dummy_read_page == NULL)) {
1441 		ret = -ENOMEM;
1442 		goto out_no_drp;
1443 	}
1444 
1445 	INIT_LIST_HEAD(&glob->swap_lru);
1446 	INIT_LIST_HEAD(&glob->device_list);
1447 
1448 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1449 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1450 	if (unlikely(ret != 0)) {
1451 		printk(KERN_ERR TTM_PFX
1452 		       "Could not register buffer object swapout.\n");
1453 		goto out_no_shrink;
1454 	}
1455 
1456 	glob->ttm_bo_extra_size =
1457 		ttm_round_pot(sizeof(struct ttm_tt)) +
1458 		ttm_round_pot(sizeof(struct ttm_backend));
1459 
1460 	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1461 		ttm_round_pot(sizeof(struct ttm_buffer_object));
1462 
1463 	atomic_set(&glob->bo_count, 0);
1464 
1465 	ret = kobject_init_and_add(
1466 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1467 	if (unlikely(ret != 0))
1468 		kobject_put(&glob->kobj);
1469 	return ret;
1470 out_no_shrink:
1471 	__free_page(glob->dummy_read_page);
1472 out_no_drp:
1473 	kfree(glob);
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(ttm_bo_global_init);
1477 
1478 
ttm_bo_device_release(struct ttm_bo_device * bdev)1479 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1480 {
1481 	int ret = 0;
1482 	unsigned i = TTM_NUM_MEM_TYPES;
1483 	struct ttm_mem_type_manager *man;
1484 	struct ttm_bo_global *glob = bdev->glob;
1485 
1486 	while (i--) {
1487 		man = &bdev->man[i];
1488 		if (man->has_type) {
1489 			man->use_type = false;
1490 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1491 				ret = -EBUSY;
1492 				printk(KERN_ERR TTM_PFX
1493 				       "DRM memory manager type %d "
1494 				       "is not clean.\n", i);
1495 			}
1496 			man->has_type = false;
1497 		}
1498 	}
1499 
1500 	mutex_lock(&glob->device_list_mutex);
1501 	list_del(&bdev->device_list);
1502 	mutex_unlock(&glob->device_list_mutex);
1503 
1504 	cancel_delayed_work_sync(&bdev->wq);
1505 
1506 	while (ttm_bo_delayed_delete(bdev, true))
1507 		;
1508 
1509 	spin_lock(&glob->lru_lock);
1510 	if (list_empty(&bdev->ddestroy))
1511 		TTM_DEBUG("Delayed destroy list was clean\n");
1512 
1513 	if (list_empty(&bdev->man[0].lru))
1514 		TTM_DEBUG("Swap list was clean\n");
1515 	spin_unlock(&glob->lru_lock);
1516 
1517 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1518 	write_lock(&bdev->vm_lock);
1519 	drm_mm_takedown(&bdev->addr_space_mm);
1520 	write_unlock(&bdev->vm_lock);
1521 
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL(ttm_bo_device_release);
1525 
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,uint64_t file_page_offset,bool need_dma32)1526 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1527 		       struct ttm_bo_global *glob,
1528 		       struct ttm_bo_driver *driver,
1529 		       uint64_t file_page_offset,
1530 		       bool need_dma32)
1531 {
1532 	int ret = -EINVAL;
1533 
1534 	rwlock_init(&bdev->vm_lock);
1535 	bdev->driver = driver;
1536 
1537 	memset(bdev->man, 0, sizeof(bdev->man));
1538 
1539 	/*
1540 	 * Initialize the system memory buffer type.
1541 	 * Other types need to be driver / IOCTL initialized.
1542 	 */
1543 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1544 	if (unlikely(ret != 0))
1545 		goto out_no_sys;
1546 
1547 	bdev->addr_space_rb = RB_ROOT;
1548 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1549 	if (unlikely(ret != 0))
1550 		goto out_no_addr_mm;
1551 
1552 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1553 	bdev->nice_mode = true;
1554 	INIT_LIST_HEAD(&bdev->ddestroy);
1555 	bdev->dev_mapping = NULL;
1556 	bdev->glob = glob;
1557 	bdev->need_dma32 = need_dma32;
1558 	bdev->val_seq = 0;
1559 	spin_lock_init(&bdev->fence_lock);
1560 	mutex_lock(&glob->device_list_mutex);
1561 	list_add_tail(&bdev->device_list, &glob->device_list);
1562 	mutex_unlock(&glob->device_list_mutex);
1563 
1564 	return 0;
1565 out_no_addr_mm:
1566 	ttm_bo_clean_mm(bdev, 0);
1567 out_no_sys:
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL(ttm_bo_device_init);
1571 
1572 /*
1573  * buffer object vm functions.
1574  */
1575 
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1576 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1577 {
1578 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1579 
1580 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1581 		if (mem->mem_type == TTM_PL_SYSTEM)
1582 			return false;
1583 
1584 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1585 			return false;
1586 
1587 		if (mem->placement & TTM_PL_FLAG_CACHED)
1588 			return false;
1589 	}
1590 	return true;
1591 }
1592 
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1593 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1594 {
1595 	struct ttm_bo_device *bdev = bo->bdev;
1596 	loff_t offset = (loff_t) bo->addr_space_offset;
1597 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1598 
1599 	if (!bdev->dev_mapping)
1600 		return;
1601 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1602 	ttm_mem_io_free_vm(bo);
1603 }
1604 
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1605 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1606 {
1607 	struct ttm_bo_device *bdev = bo->bdev;
1608 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1609 
1610 	ttm_mem_io_lock(man, false);
1611 	ttm_bo_unmap_virtual_locked(bo);
1612 	ttm_mem_io_unlock(man);
1613 }
1614 
1615 
1616 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1617 
ttm_bo_vm_insert_rb(struct ttm_buffer_object * bo)1618 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1619 {
1620 	struct ttm_bo_device *bdev = bo->bdev;
1621 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1622 	struct rb_node *parent = NULL;
1623 	struct ttm_buffer_object *cur_bo;
1624 	unsigned long offset = bo->vm_node->start;
1625 	unsigned long cur_offset;
1626 
1627 	while (*cur) {
1628 		parent = *cur;
1629 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1630 		cur_offset = cur_bo->vm_node->start;
1631 		if (offset < cur_offset)
1632 			cur = &parent->rb_left;
1633 		else if (offset > cur_offset)
1634 			cur = &parent->rb_right;
1635 		else
1636 			BUG();
1637 	}
1638 
1639 	rb_link_node(&bo->vm_rb, parent, cur);
1640 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1641 }
1642 
1643 /**
1644  * ttm_bo_setup_vm:
1645  *
1646  * @bo: the buffer to allocate address space for
1647  *
1648  * Allocate address space in the drm device so that applications
1649  * can mmap the buffer and access the contents. This only
1650  * applies to ttm_bo_type_device objects as others are not
1651  * placed in the drm device address space.
1652  */
1653 
ttm_bo_setup_vm(struct ttm_buffer_object * bo)1654 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1655 {
1656 	struct ttm_bo_device *bdev = bo->bdev;
1657 	int ret;
1658 
1659 retry_pre_get:
1660 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1661 	if (unlikely(ret != 0))
1662 		return ret;
1663 
1664 	write_lock(&bdev->vm_lock);
1665 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1666 					 bo->mem.num_pages, 0, 0);
1667 
1668 	if (unlikely(bo->vm_node == NULL)) {
1669 		ret = -ENOMEM;
1670 		goto out_unlock;
1671 	}
1672 
1673 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1674 					      bo->mem.num_pages, 0);
1675 
1676 	if (unlikely(bo->vm_node == NULL)) {
1677 		write_unlock(&bdev->vm_lock);
1678 		goto retry_pre_get;
1679 	}
1680 
1681 	ttm_bo_vm_insert_rb(bo);
1682 	write_unlock(&bdev->vm_lock);
1683 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1684 
1685 	return 0;
1686 out_unlock:
1687 	write_unlock(&bdev->vm_lock);
1688 	return ret;
1689 }
1690 
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1691 int ttm_bo_wait(struct ttm_buffer_object *bo,
1692 		bool lazy, bool interruptible, bool no_wait)
1693 {
1694 	struct ttm_bo_driver *driver = bo->bdev->driver;
1695 	struct ttm_bo_device *bdev = bo->bdev;
1696 	void *sync_obj;
1697 	void *sync_obj_arg;
1698 	int ret = 0;
1699 
1700 	if (likely(bo->sync_obj == NULL))
1701 		return 0;
1702 
1703 	while (bo->sync_obj) {
1704 
1705 		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1706 			void *tmp_obj = bo->sync_obj;
1707 			bo->sync_obj = NULL;
1708 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1709 			spin_unlock(&bdev->fence_lock);
1710 			driver->sync_obj_unref(&tmp_obj);
1711 			spin_lock(&bdev->fence_lock);
1712 			continue;
1713 		}
1714 
1715 		if (no_wait)
1716 			return -EBUSY;
1717 
1718 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1719 		sync_obj_arg = bo->sync_obj_arg;
1720 		spin_unlock(&bdev->fence_lock);
1721 		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1722 					    lazy, interruptible);
1723 		if (unlikely(ret != 0)) {
1724 			driver->sync_obj_unref(&sync_obj);
1725 			spin_lock(&bdev->fence_lock);
1726 			return ret;
1727 		}
1728 		spin_lock(&bdev->fence_lock);
1729 		if (likely(bo->sync_obj == sync_obj &&
1730 			   bo->sync_obj_arg == sync_obj_arg)) {
1731 			void *tmp_obj = bo->sync_obj;
1732 			bo->sync_obj = NULL;
1733 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1734 				  &bo->priv_flags);
1735 			spin_unlock(&bdev->fence_lock);
1736 			driver->sync_obj_unref(&sync_obj);
1737 			driver->sync_obj_unref(&tmp_obj);
1738 			spin_lock(&bdev->fence_lock);
1739 		} else {
1740 			spin_unlock(&bdev->fence_lock);
1741 			driver->sync_obj_unref(&sync_obj);
1742 			spin_lock(&bdev->fence_lock);
1743 		}
1744 	}
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL(ttm_bo_wait);
1748 
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1749 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1750 {
1751 	struct ttm_bo_device *bdev = bo->bdev;
1752 	int ret = 0;
1753 
1754 	/*
1755 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1756 	 */
1757 
1758 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1759 	if (unlikely(ret != 0))
1760 		return ret;
1761 	spin_lock(&bdev->fence_lock);
1762 	ret = ttm_bo_wait(bo, false, true, no_wait);
1763 	spin_unlock(&bdev->fence_lock);
1764 	if (likely(ret == 0))
1765 		atomic_inc(&bo->cpu_writers);
1766 	ttm_bo_unreserve(bo);
1767 	return ret;
1768 }
1769 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1770 
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1771 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1772 {
1773 	if (atomic_dec_and_test(&bo->cpu_writers))
1774 		wake_up_all(&bo->event_queue);
1775 }
1776 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1777 
1778 /**
1779  * A buffer object shrink method that tries to swap out the first
1780  * buffer object on the bo_global::swap_lru list.
1781  */
1782 
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1783 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1784 {
1785 	struct ttm_bo_global *glob =
1786 	    container_of(shrink, struct ttm_bo_global, shrink);
1787 	struct ttm_buffer_object *bo;
1788 	int ret = -EBUSY;
1789 	int put_count;
1790 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1791 
1792 	spin_lock(&glob->lru_lock);
1793 	while (ret == -EBUSY) {
1794 		if (unlikely(list_empty(&glob->swap_lru))) {
1795 			spin_unlock(&glob->lru_lock);
1796 			return -EBUSY;
1797 		}
1798 
1799 		bo = list_first_entry(&glob->swap_lru,
1800 				      struct ttm_buffer_object, swap);
1801 		kref_get(&bo->list_kref);
1802 
1803 		if (!list_empty(&bo->ddestroy)) {
1804 			spin_unlock(&glob->lru_lock);
1805 			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1806 			kref_put(&bo->list_kref, ttm_bo_release_list);
1807 			continue;
1808 		}
1809 
1810 		/**
1811 		 * Reserve buffer. Since we unlock while sleeping, we need
1812 		 * to re-check that nobody removed us from the swap-list while
1813 		 * we slept.
1814 		 */
1815 
1816 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1817 		if (unlikely(ret == -EBUSY)) {
1818 			spin_unlock(&glob->lru_lock);
1819 			ttm_bo_wait_unreserved(bo, false);
1820 			kref_put(&bo->list_kref, ttm_bo_release_list);
1821 			spin_lock(&glob->lru_lock);
1822 		}
1823 	}
1824 
1825 	BUG_ON(ret != 0);
1826 	put_count = ttm_bo_del_from_lru(bo);
1827 	spin_unlock(&glob->lru_lock);
1828 
1829 	ttm_bo_list_ref_sub(bo, put_count, true);
1830 
1831 	/**
1832 	 * Wait for GPU, then move to system cached.
1833 	 */
1834 
1835 	spin_lock(&bo->bdev->fence_lock);
1836 	ret = ttm_bo_wait(bo, false, false, false);
1837 	spin_unlock(&bo->bdev->fence_lock);
1838 
1839 	if (unlikely(ret != 0))
1840 		goto out;
1841 
1842 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1843 		struct ttm_mem_reg evict_mem;
1844 
1845 		evict_mem = bo->mem;
1846 		evict_mem.mm_node = NULL;
1847 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1848 		evict_mem.mem_type = TTM_PL_SYSTEM;
1849 
1850 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1851 					     false, false, false);
1852 		if (unlikely(ret != 0))
1853 			goto out;
1854 	}
1855 
1856 	ttm_bo_unmap_virtual(bo);
1857 
1858 	/**
1859 	 * Swap out. Buffer will be swapped in again as soon as
1860 	 * anyone tries to access a ttm page.
1861 	 */
1862 
1863 	if (bo->bdev->driver->swap_notify)
1864 		bo->bdev->driver->swap_notify(bo);
1865 
1866 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1867 out:
1868 
1869 	/**
1870 	 *
1871 	 * Unreserve without putting on LRU to avoid swapping out an
1872 	 * already swapped buffer.
1873 	 */
1874 
1875 	atomic_set(&bo->reserved, 0);
1876 	wake_up_all(&bo->event_queue);
1877 	kref_put(&bo->list_kref, ttm_bo_release_list);
1878 	return ret;
1879 }
1880 
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1881 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1882 {
1883 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1884 		;
1885 }
1886 EXPORT_SYMBOL(ttm_bo_swapout_all);
1887