1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/mm/tsb.c
3 *
4 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/preempt.h>
9 #include <linux/slab.h>
10 #include <linux/mm_types.h>
11 #include <linux/pgtable.h>
12
13 #include <asm/page.h>
14 #include <asm/mmu_context.h>
15 #include <asm/setup.h>
16 #include <asm/tsb.h>
17 #include <asm/tlb.h>
18 #include <asm/oplib.h>
19
20 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
21
tsb_hash(unsigned long vaddr,unsigned long hash_shift,unsigned long nentries)22 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
23 {
24 vaddr >>= hash_shift;
25 return vaddr & (nentries - 1);
26 }
27
tag_compare(unsigned long tag,unsigned long vaddr)28 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
29 {
30 return (tag == (vaddr >> 22));
31 }
32
flush_tsb_kernel_range_scan(unsigned long start,unsigned long end)33 static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
34 {
35 unsigned long idx;
36
37 for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
38 struct tsb *ent = &swapper_tsb[idx];
39 unsigned long match = idx << 13;
40
41 match |= (ent->tag << 22);
42 if (match >= start && match < end)
43 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
44 }
45 }
46
47 /* TSB flushes need only occur on the processor initiating the address
48 * space modification, not on each cpu the address space has run on.
49 * Only the TLB flush needs that treatment.
50 */
51
flush_tsb_kernel_range(unsigned long start,unsigned long end)52 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
53 {
54 unsigned long v;
55
56 if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
57 return flush_tsb_kernel_range_scan(start, end);
58
59 for (v = start; v < end; v += PAGE_SIZE) {
60 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
61 KERNEL_TSB_NENTRIES);
62 struct tsb *ent = &swapper_tsb[hash];
63
64 if (tag_compare(ent->tag, v))
65 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
66 }
67 }
68
__flush_tsb_one_entry(unsigned long tsb,unsigned long v,unsigned long hash_shift,unsigned long nentries)69 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
70 unsigned long hash_shift,
71 unsigned long nentries)
72 {
73 unsigned long tag, ent, hash;
74
75 v &= ~0x1UL;
76 hash = tsb_hash(v, hash_shift, nentries);
77 ent = tsb + (hash * sizeof(struct tsb));
78 tag = (v >> 22UL);
79
80 tsb_flush(ent, tag);
81 }
82
__flush_tsb_one(struct tlb_batch * tb,unsigned long hash_shift,unsigned long tsb,unsigned long nentries)83 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
84 unsigned long tsb, unsigned long nentries)
85 {
86 unsigned long i;
87
88 for (i = 0; i < tb->tlb_nr; i++)
89 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
90 }
91
92 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
__flush_huge_tsb_one_entry(unsigned long tsb,unsigned long v,unsigned long hash_shift,unsigned long nentries,unsigned int hugepage_shift)93 static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
94 unsigned long hash_shift,
95 unsigned long nentries,
96 unsigned int hugepage_shift)
97 {
98 unsigned int hpage_entries;
99 unsigned int i;
100
101 hpage_entries = 1 << (hugepage_shift - hash_shift);
102 for (i = 0; i < hpage_entries; i++)
103 __flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
104 nentries);
105 }
106
__flush_huge_tsb_one(struct tlb_batch * tb,unsigned long hash_shift,unsigned long tsb,unsigned long nentries,unsigned int hugepage_shift)107 static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
108 unsigned long tsb, unsigned long nentries,
109 unsigned int hugepage_shift)
110 {
111 unsigned long i;
112
113 for (i = 0; i < tb->tlb_nr; i++)
114 __flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
115 nentries, hugepage_shift);
116 }
117 #endif
118
flush_tsb_user(struct tlb_batch * tb)119 void flush_tsb_user(struct tlb_batch *tb)
120 {
121 struct mm_struct *mm = tb->mm;
122 unsigned long nentries, base, flags;
123
124 spin_lock_irqsave(&mm->context.lock, flags);
125
126 if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
127 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
128 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
129 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
130 base = __pa(base);
131 if (tb->hugepage_shift == PAGE_SHIFT)
132 __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
133 #if defined(CONFIG_HUGETLB_PAGE)
134 else
135 __flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
136 tb->hugepage_shift);
137 #endif
138 }
139 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
140 else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
141 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
142 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
143 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
144 base = __pa(base);
145 __flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
146 tb->hugepage_shift);
147 }
148 #endif
149 spin_unlock_irqrestore(&mm->context.lock, flags);
150 }
151
flush_tsb_user_page(struct mm_struct * mm,unsigned long vaddr,unsigned int hugepage_shift)152 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
153 unsigned int hugepage_shift)
154 {
155 unsigned long nentries, base, flags;
156
157 spin_lock_irqsave(&mm->context.lock, flags);
158
159 if (hugepage_shift < REAL_HPAGE_SHIFT) {
160 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
161 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
162 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
163 base = __pa(base);
164 if (hugepage_shift == PAGE_SHIFT)
165 __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
166 nentries);
167 #if defined(CONFIG_HUGETLB_PAGE)
168 else
169 __flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
170 nentries, hugepage_shift);
171 #endif
172 }
173 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
174 else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
175 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
176 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
177 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
178 base = __pa(base);
179 __flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
180 nentries, hugepage_shift);
181 }
182 #endif
183 spin_unlock_irqrestore(&mm->context.lock, flags);
184 }
185
186 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
187 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
188
189 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
190 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
191 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
192 #endif
193
setup_tsb_params(struct mm_struct * mm,unsigned long tsb_idx,unsigned long tsb_bytes)194 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
195 {
196 unsigned long tsb_reg, base, tsb_paddr;
197 unsigned long page_sz, tte;
198
199 mm->context.tsb_block[tsb_idx].tsb_nentries =
200 tsb_bytes / sizeof(struct tsb);
201
202 switch (tsb_idx) {
203 case MM_TSB_BASE:
204 base = TSBMAP_8K_BASE;
205 break;
206 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
207 case MM_TSB_HUGE:
208 base = TSBMAP_4M_BASE;
209 break;
210 #endif
211 default:
212 BUG();
213 }
214
215 tte = pgprot_val(PAGE_KERNEL_LOCKED);
216 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
217 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
218
219 /* Use the smallest page size that can map the whole TSB
220 * in one TLB entry.
221 */
222 switch (tsb_bytes) {
223 case 8192 << 0:
224 tsb_reg = 0x0UL;
225 #ifdef DCACHE_ALIASING_POSSIBLE
226 base += (tsb_paddr & 8192);
227 #endif
228 page_sz = 8192;
229 break;
230
231 case 8192 << 1:
232 tsb_reg = 0x1UL;
233 page_sz = 64 * 1024;
234 break;
235
236 case 8192 << 2:
237 tsb_reg = 0x2UL;
238 page_sz = 64 * 1024;
239 break;
240
241 case 8192 << 3:
242 tsb_reg = 0x3UL;
243 page_sz = 64 * 1024;
244 break;
245
246 case 8192 << 4:
247 tsb_reg = 0x4UL;
248 page_sz = 512 * 1024;
249 break;
250
251 case 8192 << 5:
252 tsb_reg = 0x5UL;
253 page_sz = 512 * 1024;
254 break;
255
256 case 8192 << 6:
257 tsb_reg = 0x6UL;
258 page_sz = 512 * 1024;
259 break;
260
261 case 8192 << 7:
262 tsb_reg = 0x7UL;
263 page_sz = 4 * 1024 * 1024;
264 break;
265
266 default:
267 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
268 current->comm, current->pid, tsb_bytes);
269 BUG();
270 }
271 tte |= pte_sz_bits(page_sz);
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
274 /* Physical mapping, no locked TLB entry for TSB. */
275 tsb_reg |= tsb_paddr;
276
277 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
278 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
279 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
280 } else {
281 tsb_reg |= base;
282 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
283 tte |= (tsb_paddr & ~(page_sz - 1UL));
284
285 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
286 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
287 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
288 }
289
290 /* Setup the Hypervisor TSB descriptor. */
291 if (tlb_type == hypervisor) {
292 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
293
294 switch (tsb_idx) {
295 case MM_TSB_BASE:
296 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
297 break;
298 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
299 case MM_TSB_HUGE:
300 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
301 break;
302 #endif
303 default:
304 BUG();
305 }
306 hp->assoc = 1;
307 hp->num_ttes = tsb_bytes / 16;
308 hp->ctx_idx = 0;
309 switch (tsb_idx) {
310 case MM_TSB_BASE:
311 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
312 break;
313 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
314 case MM_TSB_HUGE:
315 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
316 break;
317 #endif
318 default:
319 BUG();
320 }
321 hp->tsb_base = tsb_paddr;
322 hp->resv = 0;
323 }
324 }
325
326 struct kmem_cache *pgtable_cache __read_mostly;
327
328 static struct kmem_cache *tsb_caches[8] __read_mostly;
329
330 static const char *tsb_cache_names[8] = {
331 "tsb_8KB",
332 "tsb_16KB",
333 "tsb_32KB",
334 "tsb_64KB",
335 "tsb_128KB",
336 "tsb_256KB",
337 "tsb_512KB",
338 "tsb_1MB",
339 };
340
pgtable_cache_init(void)341 void __init pgtable_cache_init(void)
342 {
343 unsigned long i;
344
345 pgtable_cache = kmem_cache_create("pgtable_cache",
346 PAGE_SIZE, PAGE_SIZE,
347 0,
348 _clear_page);
349 if (!pgtable_cache) {
350 prom_printf("pgtable_cache_init(): Could not create!\n");
351 prom_halt();
352 }
353
354 for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
355 unsigned long size = 8192 << i;
356 const char *name = tsb_cache_names[i];
357
358 tsb_caches[i] = kmem_cache_create(name,
359 size, size,
360 0, NULL);
361 if (!tsb_caches[i]) {
362 prom_printf("Could not create %s cache\n", name);
363 prom_halt();
364 }
365 }
366 }
367
368 int sysctl_tsb_ratio = -2;
369
tsb_size_to_rss_limit(unsigned long new_size)370 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
371 {
372 unsigned long num_ents = (new_size / sizeof(struct tsb));
373
374 if (sysctl_tsb_ratio < 0)
375 return num_ents - (num_ents >> -sysctl_tsb_ratio);
376 else
377 return num_ents + (num_ents >> sysctl_tsb_ratio);
378 }
379
380 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
381 * do_sparc64_fault() invokes this routine to try and grow it.
382 *
383 * When we reach the maximum TSB size supported, we stick ~0UL into
384 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
385 * will not trigger any longer.
386 *
387 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
388 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
389 * must be 512K aligned. It also must be physically contiguous, so we
390 * cannot use vmalloc().
391 *
392 * The idea here is to grow the TSB when the RSS of the process approaches
393 * the number of entries that the current TSB can hold at once. Currently,
394 * we trigger when the RSS hits 3/4 of the TSB capacity.
395 */
tsb_grow(struct mm_struct * mm,unsigned long tsb_index,unsigned long rss)396 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
397 {
398 unsigned long max_tsb_size = 1 * 1024 * 1024;
399 unsigned long new_size, old_size, flags;
400 struct tsb *old_tsb, *new_tsb;
401 unsigned long new_cache_index, old_cache_index;
402 unsigned long new_rss_limit;
403 gfp_t gfp_flags;
404
405 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
406 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
407
408 new_cache_index = 0;
409 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
410 new_rss_limit = tsb_size_to_rss_limit(new_size);
411 if (new_rss_limit > rss)
412 break;
413 new_cache_index++;
414 }
415
416 if (new_size == max_tsb_size)
417 new_rss_limit = ~0UL;
418
419 retry_tsb_alloc:
420 gfp_flags = GFP_KERNEL;
421 if (new_size > (PAGE_SIZE * 2))
422 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
423
424 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
425 gfp_flags, numa_node_id());
426 if (unlikely(!new_tsb)) {
427 /* Not being able to fork due to a high-order TSB
428 * allocation failure is very bad behavior. Just back
429 * down to a 0-order allocation and force no TSB
430 * growing for this address space.
431 */
432 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
433 new_cache_index > 0) {
434 new_cache_index = 0;
435 new_size = 8192;
436 new_rss_limit = ~0UL;
437 goto retry_tsb_alloc;
438 }
439
440 /* If we failed on a TSB grow, we are under serious
441 * memory pressure so don't try to grow any more.
442 */
443 if (mm->context.tsb_block[tsb_index].tsb != NULL)
444 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
445 return;
446 }
447
448 /* Mark all tags as invalid. */
449 tsb_init(new_tsb, new_size);
450
451 /* Ok, we are about to commit the changes. If we are
452 * growing an existing TSB the locking is very tricky,
453 * so WATCH OUT!
454 *
455 * We have to hold mm->context.lock while committing to the
456 * new TSB, this synchronizes us with processors in
457 * flush_tsb_user() and switch_mm() for this address space.
458 *
459 * But even with that lock held, processors run asynchronously
460 * accessing the old TSB via TLB miss handling. This is OK
461 * because those actions are just propagating state from the
462 * Linux page tables into the TSB, page table mappings are not
463 * being changed. If a real fault occurs, the processor will
464 * synchronize with us when it hits flush_tsb_user(), this is
465 * also true for the case where vmscan is modifying the page
466 * tables. The only thing we need to be careful with is to
467 * skip any locked TSB entries during copy_tsb().
468 *
469 * When we finish committing to the new TSB, we have to drop
470 * the lock and ask all other cpus running this address space
471 * to run tsb_context_switch() to see the new TSB table.
472 */
473 spin_lock_irqsave(&mm->context.lock, flags);
474
475 old_tsb = mm->context.tsb_block[tsb_index].tsb;
476 old_cache_index =
477 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
478 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
479 sizeof(struct tsb));
480
481
482 /* Handle multiple threads trying to grow the TSB at the same time.
483 * One will get in here first, and bump the size and the RSS limit.
484 * The others will get in here next and hit this check.
485 */
486 if (unlikely(old_tsb &&
487 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
488 spin_unlock_irqrestore(&mm->context.lock, flags);
489
490 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
491 return;
492 }
493
494 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
495
496 if (old_tsb) {
497 extern void copy_tsb(unsigned long old_tsb_base,
498 unsigned long old_tsb_size,
499 unsigned long new_tsb_base,
500 unsigned long new_tsb_size,
501 unsigned long page_size_shift);
502 unsigned long old_tsb_base = (unsigned long) old_tsb;
503 unsigned long new_tsb_base = (unsigned long) new_tsb;
504
505 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
506 old_tsb_base = __pa(old_tsb_base);
507 new_tsb_base = __pa(new_tsb_base);
508 }
509 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size,
510 tsb_index == MM_TSB_BASE ?
511 PAGE_SHIFT : REAL_HPAGE_SHIFT);
512 }
513
514 mm->context.tsb_block[tsb_index].tsb = new_tsb;
515 setup_tsb_params(mm, tsb_index, new_size);
516
517 spin_unlock_irqrestore(&mm->context.lock, flags);
518
519 /* If old_tsb is NULL, we're being invoked for the first time
520 * from init_new_context().
521 */
522 if (old_tsb) {
523 /* Reload it on the local cpu. */
524 tsb_context_switch(mm);
525
526 /* Now force other processors to do the same. */
527 preempt_disable();
528 smp_tsb_sync(mm);
529 preempt_enable();
530
531 /* Now it is safe to free the old tsb. */
532 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
533 }
534 }
535
init_new_context(struct task_struct * tsk,struct mm_struct * mm)536 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
537 {
538 unsigned long mm_rss = get_mm_rss(mm);
539 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
540 unsigned long saved_hugetlb_pte_count;
541 unsigned long saved_thp_pte_count;
542 #endif
543 unsigned int i;
544
545 spin_lock_init(&mm->context.lock);
546
547 mm->context.sparc64_ctx_val = 0UL;
548
549 mm->context.tag_store = NULL;
550 spin_lock_init(&mm->context.tag_lock);
551
552 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
553 /* We reset them to zero because the fork() page copying
554 * will re-increment the counters as the parent PTEs are
555 * copied into the child address space.
556 */
557 saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
558 saved_thp_pte_count = mm->context.thp_pte_count;
559 mm->context.hugetlb_pte_count = 0;
560 mm->context.thp_pte_count = 0;
561
562 mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
563 #endif
564
565 /* copy_mm() copies over the parent's mm_struct before calling
566 * us, so we need to zero out the TSB pointer or else tsb_grow()
567 * will be confused and think there is an older TSB to free up.
568 */
569 for (i = 0; i < MM_NUM_TSBS; i++)
570 mm->context.tsb_block[i].tsb = NULL;
571
572 /* If this is fork, inherit the parent's TSB size. We would
573 * grow it to that size on the first page fault anyways.
574 */
575 tsb_grow(mm, MM_TSB_BASE, mm_rss);
576
577 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
578 if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
579 tsb_grow(mm, MM_TSB_HUGE,
580 (saved_hugetlb_pte_count + saved_thp_pte_count) *
581 REAL_HPAGE_PER_HPAGE);
582 #endif
583
584 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
585 return -ENOMEM;
586
587 return 0;
588 }
589
tsb_destroy_one(struct tsb_config * tp)590 static void tsb_destroy_one(struct tsb_config *tp)
591 {
592 unsigned long cache_index;
593
594 if (!tp->tsb)
595 return;
596 cache_index = tp->tsb_reg_val & 0x7UL;
597 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
598 tp->tsb = NULL;
599 tp->tsb_reg_val = 0UL;
600 }
601
destroy_context(struct mm_struct * mm)602 void destroy_context(struct mm_struct *mm)
603 {
604 unsigned long flags, i;
605
606 for (i = 0; i < MM_NUM_TSBS; i++)
607 tsb_destroy_one(&mm->context.tsb_block[i]);
608
609 spin_lock_irqsave(&ctx_alloc_lock, flags);
610
611 if (CTX_VALID(mm->context)) {
612 unsigned long nr = CTX_NRBITS(mm->context);
613 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
614 }
615
616 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
617
618 /* If ADI tag storage was allocated for this task, free it */
619 if (mm->context.tag_store) {
620 tag_storage_desc_t *tag_desc;
621 unsigned long max_desc;
622 unsigned char *tags;
623
624 tag_desc = mm->context.tag_store;
625 max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t);
626 for (i = 0; i < max_desc; i++) {
627 tags = tag_desc->tags;
628 tag_desc->tags = NULL;
629 kfree(tags);
630 tag_desc++;
631 }
632 kfree(mm->context.tag_store);
633 mm->context.tag_store = NULL;
634 }
635 }
636