1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/tsb.h>
13 #include <asm/tlb.h>
14 #include <asm/oplib.h>
15 
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
17 
tsb_hash(unsigned long vaddr,unsigned long hash_shift,unsigned long nentries)18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
19 {
20 	vaddr >>= hash_shift;
21 	return vaddr & (nentries - 1);
22 }
23 
tag_compare(unsigned long tag,unsigned long vaddr)24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
25 {
26 	return (tag == (vaddr >> 22));
27 }
28 
29 /* TSB flushes need only occur on the processor initiating the address
30  * space modification, not on each cpu the address space has run on.
31  * Only the TLB flush needs that treatment.
32  */
33 
flush_tsb_kernel_range(unsigned long start,unsigned long end)34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
35 {
36 	unsigned long v;
37 
38 	for (v = start; v < end; v += PAGE_SIZE) {
39 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40 					      KERNEL_TSB_NENTRIES);
41 		struct tsb *ent = &swapper_tsb[hash];
42 
43 		if (tag_compare(ent->tag, v))
44 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
45 	}
46 }
47 
__flush_tsb_one_entry(unsigned long tsb,unsigned long v,unsigned long hash_shift,unsigned long nentries)48 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
49 				  unsigned long hash_shift,
50 				  unsigned long nentries)
51 {
52 	unsigned long tag, ent, hash;
53 
54 	v &= ~0x1UL;
55 	hash = tsb_hash(v, hash_shift, nentries);
56 	ent = tsb + (hash * sizeof(struct tsb));
57 	tag = (v >> 22UL);
58 
59 	tsb_flush(ent, tag);
60 }
61 
__flush_tsb_one(struct tlb_batch * tb,unsigned long hash_shift,unsigned long tsb,unsigned long nentries)62 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
63 			    unsigned long tsb, unsigned long nentries)
64 {
65 	unsigned long i;
66 
67 	for (i = 0; i < tb->tlb_nr; i++)
68 		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
69 }
70 
flush_tsb_user(struct tlb_batch * tb)71 void flush_tsb_user(struct tlb_batch *tb)
72 {
73 	struct mm_struct *mm = tb->mm;
74 	unsigned long nentries, base, flags;
75 
76 	spin_lock_irqsave(&mm->context.lock, flags);
77 
78 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
79 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
80 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
81 		base = __pa(base);
82 	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
83 
84 #ifdef CONFIG_HUGETLB_PAGE
85 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
86 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
87 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
88 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
89 			base = __pa(base);
90 		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
91 	}
92 #endif
93 	spin_unlock_irqrestore(&mm->context.lock, flags);
94 }
95 
flush_tsb_user_page(struct mm_struct * mm,unsigned long vaddr)96 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
97 {
98 	unsigned long nentries, base, flags;
99 
100 	spin_lock_irqsave(&mm->context.lock, flags);
101 
102 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
103 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
104 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
105 		base = __pa(base);
106 	__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
107 
108 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
109 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
110 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
111 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
112 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
113 			base = __pa(base);
114 		__flush_tsb_one_entry(base, vaddr, HPAGE_SHIFT, nentries);
115 	}
116 #endif
117 	spin_unlock_irqrestore(&mm->context.lock, flags);
118 }
119 
120 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
121 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
122 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
123 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
124 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
125 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
126 #else
127 #error Broken base page size setting...
128 #endif
129 
130 #ifdef CONFIG_HUGETLB_PAGE
131 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
132 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
133 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
134 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
135 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
136 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
137 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
138 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
139 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
140 #else
141 #error Broken huge page size setting...
142 #endif
143 #endif
144 
setup_tsb_params(struct mm_struct * mm,unsigned long tsb_idx,unsigned long tsb_bytes)145 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
146 {
147 	unsigned long tsb_reg, base, tsb_paddr;
148 	unsigned long page_sz, tte;
149 
150 	mm->context.tsb_block[tsb_idx].tsb_nentries =
151 		tsb_bytes / sizeof(struct tsb);
152 
153 	base = TSBMAP_BASE;
154 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
155 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
156 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
157 
158 	/* Use the smallest page size that can map the whole TSB
159 	 * in one TLB entry.
160 	 */
161 	switch (tsb_bytes) {
162 	case 8192 << 0:
163 		tsb_reg = 0x0UL;
164 #ifdef DCACHE_ALIASING_POSSIBLE
165 		base += (tsb_paddr & 8192);
166 #endif
167 		page_sz = 8192;
168 		break;
169 
170 	case 8192 << 1:
171 		tsb_reg = 0x1UL;
172 		page_sz = 64 * 1024;
173 		break;
174 
175 	case 8192 << 2:
176 		tsb_reg = 0x2UL;
177 		page_sz = 64 * 1024;
178 		break;
179 
180 	case 8192 << 3:
181 		tsb_reg = 0x3UL;
182 		page_sz = 64 * 1024;
183 		break;
184 
185 	case 8192 << 4:
186 		tsb_reg = 0x4UL;
187 		page_sz = 512 * 1024;
188 		break;
189 
190 	case 8192 << 5:
191 		tsb_reg = 0x5UL;
192 		page_sz = 512 * 1024;
193 		break;
194 
195 	case 8192 << 6:
196 		tsb_reg = 0x6UL;
197 		page_sz = 512 * 1024;
198 		break;
199 
200 	case 8192 << 7:
201 		tsb_reg = 0x7UL;
202 		page_sz = 4 * 1024 * 1024;
203 		break;
204 
205 	default:
206 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
207 		       current->comm, current->pid, tsb_bytes);
208 		do_exit(SIGSEGV);
209 	}
210 	tte |= pte_sz_bits(page_sz);
211 
212 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
213 		/* Physical mapping, no locked TLB entry for TSB.  */
214 		tsb_reg |= tsb_paddr;
215 
216 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
217 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
218 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
219 	} else {
220 		tsb_reg |= base;
221 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
222 		tte |= (tsb_paddr & ~(page_sz - 1UL));
223 
224 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
225 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
226 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
227 	}
228 
229 	/* Setup the Hypervisor TSB descriptor.  */
230 	if (tlb_type == hypervisor) {
231 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
232 
233 		switch (tsb_idx) {
234 		case MM_TSB_BASE:
235 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
236 			break;
237 #ifdef CONFIG_HUGETLB_PAGE
238 		case MM_TSB_HUGE:
239 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
240 			break;
241 #endif
242 		default:
243 			BUG();
244 		}
245 		hp->assoc = 1;
246 		hp->num_ttes = tsb_bytes / 16;
247 		hp->ctx_idx = 0;
248 		switch (tsb_idx) {
249 		case MM_TSB_BASE:
250 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
251 			break;
252 #ifdef CONFIG_HUGETLB_PAGE
253 		case MM_TSB_HUGE:
254 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
255 			break;
256 #endif
257 		default:
258 			BUG();
259 		}
260 		hp->tsb_base = tsb_paddr;
261 		hp->resv = 0;
262 	}
263 }
264 
265 struct kmem_cache *pgtable_cache __read_mostly;
266 
267 static struct kmem_cache *tsb_caches[8] __read_mostly;
268 
269 static const char *tsb_cache_names[8] = {
270 	"tsb_8KB",
271 	"tsb_16KB",
272 	"tsb_32KB",
273 	"tsb_64KB",
274 	"tsb_128KB",
275 	"tsb_256KB",
276 	"tsb_512KB",
277 	"tsb_1MB",
278 };
279 
pgtable_cache_init(void)280 void __init pgtable_cache_init(void)
281 {
282 	unsigned long i;
283 
284 	pgtable_cache = kmem_cache_create("pgtable_cache",
285 					  PAGE_SIZE, PAGE_SIZE,
286 					  0,
287 					  _clear_page);
288 	if (!pgtable_cache) {
289 		prom_printf("pgtable_cache_init(): Could not create!\n");
290 		prom_halt();
291 	}
292 
293 	for (i = 0; i < 8; i++) {
294 		unsigned long size = 8192 << i;
295 		const char *name = tsb_cache_names[i];
296 
297 		tsb_caches[i] = kmem_cache_create(name,
298 						  size, size,
299 						  0, NULL);
300 		if (!tsb_caches[i]) {
301 			prom_printf("Could not create %s cache\n", name);
302 			prom_halt();
303 		}
304 	}
305 }
306 
307 int sysctl_tsb_ratio = -2;
308 
tsb_size_to_rss_limit(unsigned long new_size)309 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
310 {
311 	unsigned long num_ents = (new_size / sizeof(struct tsb));
312 
313 	if (sysctl_tsb_ratio < 0)
314 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
315 	else
316 		return num_ents + (num_ents >> sysctl_tsb_ratio);
317 }
318 
319 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
320  * do_sparc64_fault() invokes this routine to try and grow it.
321  *
322  * When we reach the maximum TSB size supported, we stick ~0UL into
323  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
324  * will not trigger any longer.
325  *
326  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
327  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
328  * must be 512K aligned.  It also must be physically contiguous, so we
329  * cannot use vmalloc().
330  *
331  * The idea here is to grow the TSB when the RSS of the process approaches
332  * the number of entries that the current TSB can hold at once.  Currently,
333  * we trigger when the RSS hits 3/4 of the TSB capacity.
334  */
tsb_grow(struct mm_struct * mm,unsigned long tsb_index,unsigned long rss)335 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
336 {
337 	unsigned long max_tsb_size = 1 * 1024 * 1024;
338 	unsigned long new_size, old_size, flags;
339 	struct tsb *old_tsb, *new_tsb;
340 	unsigned long new_cache_index, old_cache_index;
341 	unsigned long new_rss_limit;
342 	gfp_t gfp_flags;
343 
344 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
345 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
346 
347 	new_cache_index = 0;
348 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
349 		new_rss_limit = tsb_size_to_rss_limit(new_size);
350 		if (new_rss_limit > rss)
351 			break;
352 		new_cache_index++;
353 	}
354 
355 	if (new_size == max_tsb_size)
356 		new_rss_limit = ~0UL;
357 
358 retry_tsb_alloc:
359 	gfp_flags = GFP_KERNEL;
360 	if (new_size > (PAGE_SIZE * 2))
361 		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
362 
363 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
364 					gfp_flags, numa_node_id());
365 	if (unlikely(!new_tsb)) {
366 		/* Not being able to fork due to a high-order TSB
367 		 * allocation failure is very bad behavior.  Just back
368 		 * down to a 0-order allocation and force no TSB
369 		 * growing for this address space.
370 		 */
371 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
372 		    new_cache_index > 0) {
373 			new_cache_index = 0;
374 			new_size = 8192;
375 			new_rss_limit = ~0UL;
376 			goto retry_tsb_alloc;
377 		}
378 
379 		/* If we failed on a TSB grow, we are under serious
380 		 * memory pressure so don't try to grow any more.
381 		 */
382 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
383 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
384 		return;
385 	}
386 
387 	/* Mark all tags as invalid.  */
388 	tsb_init(new_tsb, new_size);
389 
390 	/* Ok, we are about to commit the changes.  If we are
391 	 * growing an existing TSB the locking is very tricky,
392 	 * so WATCH OUT!
393 	 *
394 	 * We have to hold mm->context.lock while committing to the
395 	 * new TSB, this synchronizes us with processors in
396 	 * flush_tsb_user() and switch_mm() for this address space.
397 	 *
398 	 * But even with that lock held, processors run asynchronously
399 	 * accessing the old TSB via TLB miss handling.  This is OK
400 	 * because those actions are just propagating state from the
401 	 * Linux page tables into the TSB, page table mappings are not
402 	 * being changed.  If a real fault occurs, the processor will
403 	 * synchronize with us when it hits flush_tsb_user(), this is
404 	 * also true for the case where vmscan is modifying the page
405 	 * tables.  The only thing we need to be careful with is to
406 	 * skip any locked TSB entries during copy_tsb().
407 	 *
408 	 * When we finish committing to the new TSB, we have to drop
409 	 * the lock and ask all other cpus running this address space
410 	 * to run tsb_context_switch() to see the new TSB table.
411 	 */
412 	spin_lock_irqsave(&mm->context.lock, flags);
413 
414 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
415 	old_cache_index =
416 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
417 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
418 		    sizeof(struct tsb));
419 
420 
421 	/* Handle multiple threads trying to grow the TSB at the same time.
422 	 * One will get in here first, and bump the size and the RSS limit.
423 	 * The others will get in here next and hit this check.
424 	 */
425 	if (unlikely(old_tsb &&
426 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
427 		spin_unlock_irqrestore(&mm->context.lock, flags);
428 
429 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
430 		return;
431 	}
432 
433 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
434 
435 	if (old_tsb) {
436 		extern void copy_tsb(unsigned long old_tsb_base,
437 				     unsigned long old_tsb_size,
438 				     unsigned long new_tsb_base,
439 				     unsigned long new_tsb_size);
440 		unsigned long old_tsb_base = (unsigned long) old_tsb;
441 		unsigned long new_tsb_base = (unsigned long) new_tsb;
442 
443 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
444 			old_tsb_base = __pa(old_tsb_base);
445 			new_tsb_base = __pa(new_tsb_base);
446 		}
447 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
448 	}
449 
450 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
451 	setup_tsb_params(mm, tsb_index, new_size);
452 
453 	spin_unlock_irqrestore(&mm->context.lock, flags);
454 
455 	/* If old_tsb is NULL, we're being invoked for the first time
456 	 * from init_new_context().
457 	 */
458 	if (old_tsb) {
459 		/* Reload it on the local cpu.  */
460 		tsb_context_switch(mm);
461 
462 		/* Now force other processors to do the same.  */
463 		preempt_disable();
464 		smp_tsb_sync(mm);
465 		preempt_enable();
466 
467 		/* Now it is safe to free the old tsb.  */
468 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
469 	}
470 }
471 
init_new_context(struct task_struct * tsk,struct mm_struct * mm)472 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
473 {
474 #ifdef CONFIG_HUGETLB_PAGE
475 	unsigned long huge_pte_count;
476 #endif
477 	unsigned int i;
478 
479 	spin_lock_init(&mm->context.lock);
480 
481 	mm->context.sparc64_ctx_val = 0UL;
482 
483 #ifdef CONFIG_HUGETLB_PAGE
484 	/* We reset it to zero because the fork() page copying
485 	 * will re-increment the counters as the parent PTEs are
486 	 * copied into the child address space.
487 	 */
488 	huge_pte_count = mm->context.huge_pte_count;
489 	mm->context.huge_pte_count = 0;
490 #endif
491 
492 	/* copy_mm() copies over the parent's mm_struct before calling
493 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
494 	 * will be confused and think there is an older TSB to free up.
495 	 */
496 	for (i = 0; i < MM_NUM_TSBS; i++)
497 		mm->context.tsb_block[i].tsb = NULL;
498 
499 	/* If this is fork, inherit the parent's TSB size.  We would
500 	 * grow it to that size on the first page fault anyways.
501 	 */
502 	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
503 
504 #ifdef CONFIG_HUGETLB_PAGE
505 	if (unlikely(huge_pte_count))
506 		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
507 #endif
508 
509 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
510 		return -ENOMEM;
511 
512 	return 0;
513 }
514 
tsb_destroy_one(struct tsb_config * tp)515 static void tsb_destroy_one(struct tsb_config *tp)
516 {
517 	unsigned long cache_index;
518 
519 	if (!tp->tsb)
520 		return;
521 	cache_index = tp->tsb_reg_val & 0x7UL;
522 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
523 	tp->tsb = NULL;
524 	tp->tsb_reg_val = 0UL;
525 }
526 
destroy_context(struct mm_struct * mm)527 void destroy_context(struct mm_struct *mm)
528 {
529 	unsigned long flags, i;
530 
531 	for (i = 0; i < MM_NUM_TSBS; i++)
532 		tsb_destroy_one(&mm->context.tsb_block[i]);
533 
534 	spin_lock_irqsave(&ctx_alloc_lock, flags);
535 
536 	if (CTX_VALID(mm->context)) {
537 		unsigned long nr = CTX_NRBITS(mm->context);
538 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
539 	}
540 
541 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
542 }
543