1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
init_se_kmem_caches(void)82 int init_se_kmem_caches(void)
83 {
84 se_sess_cache = kmem_cache_create("se_sess_cache",
85 sizeof(struct se_session), __alignof__(struct se_session),
86 0, NULL);
87 if (!se_sess_cache) {
88 pr_err("kmem_cache_create() for struct se_session"
89 " failed\n");
90 goto out;
91 }
92 se_ua_cache = kmem_cache_create("se_ua_cache",
93 sizeof(struct se_ua), __alignof__(struct se_ua),
94 0, NULL);
95 if (!se_ua_cache) {
96 pr_err("kmem_cache_create() for struct se_ua failed\n");
97 goto out_free_sess_cache;
98 }
99 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100 sizeof(struct t10_pr_registration),
101 __alignof__(struct t10_pr_registration), 0, NULL);
102 if (!t10_pr_reg_cache) {
103 pr_err("kmem_cache_create() for struct t10_pr_registration"
104 " failed\n");
105 goto out_free_ua_cache;
106 }
107 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109 0, NULL);
110 if (!t10_alua_lu_gp_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112 " failed\n");
113 goto out_free_pr_reg_cache;
114 }
115 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116 sizeof(struct t10_alua_lu_gp_member),
117 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118 if (!t10_alua_lu_gp_mem_cache) {
119 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120 "cache failed\n");
121 goto out_free_lu_gp_cache;
122 }
123 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124 sizeof(struct t10_alua_tg_pt_gp),
125 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126 if (!t10_alua_tg_pt_gp_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "cache failed\n");
129 goto out_free_lu_gp_mem_cache;
130 }
131 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132 "t10_alua_tg_pt_gp_mem_cache",
133 sizeof(struct t10_alua_tg_pt_gp_member),
134 __alignof__(struct t10_alua_tg_pt_gp_member),
135 0, NULL);
136 if (!t10_alua_tg_pt_gp_mem_cache) {
137 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138 "mem_t failed\n");
139 goto out_free_tg_pt_gp_cache;
140 }
141
142 target_completion_wq = alloc_workqueue("target_completion",
143 WQ_MEM_RECLAIM, 0);
144 if (!target_completion_wq)
145 goto out_free_tg_pt_gp_mem_cache;
146
147 return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184 * Allocate a new row index for the entry type specified
185 */
scsi_get_new_index(scsi_index_t type)186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188 u32 new_index;
189
190 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192 spin_lock(&scsi_mib_index_lock);
193 new_index = ++scsi_mib_index[type];
194 spin_unlock(&scsi_mib_index_lock);
195
196 return new_index;
197 }
198
transport_init_queue_obj(struct se_queue_obj * qobj)199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201 atomic_set(&qobj->queue_cnt, 0);
202 INIT_LIST_HEAD(&qobj->qobj_list);
203 init_waitqueue_head(&qobj->thread_wq);
204 spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
transport_subsystem_check_init(void)207 void transport_subsystem_check_init(void)
208 {
209 int ret;
210
211 if (sub_api_initialized)
212 return;
213
214 ret = request_module("target_core_iblock");
215 if (ret != 0)
216 pr_err("Unable to load target_core_iblock\n");
217
218 ret = request_module("target_core_file");
219 if (ret != 0)
220 pr_err("Unable to load target_core_file\n");
221
222 ret = request_module("target_core_pscsi");
223 if (ret != 0)
224 pr_err("Unable to load target_core_pscsi\n");
225
226 ret = request_module("target_core_stgt");
227 if (ret != 0)
228 pr_err("Unable to load target_core_stgt\n");
229
230 sub_api_initialized = 1;
231 return;
232 }
233
transport_init_session(void)234 struct se_session *transport_init_session(void)
235 {
236 struct se_session *se_sess;
237
238 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239 if (!se_sess) {
240 pr_err("Unable to allocate struct se_session from"
241 " se_sess_cache\n");
242 return ERR_PTR(-ENOMEM);
243 }
244 INIT_LIST_HEAD(&se_sess->sess_list);
245 INIT_LIST_HEAD(&se_sess->sess_acl_list);
246 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247 INIT_LIST_HEAD(&se_sess->sess_wait_list);
248 spin_lock_init(&se_sess->sess_cmd_lock);
249 kref_init(&se_sess->sess_kref);
250
251 return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254
255 /*
256 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)258 void __transport_register_session(
259 struct se_portal_group *se_tpg,
260 struct se_node_acl *se_nacl,
261 struct se_session *se_sess,
262 void *fabric_sess_ptr)
263 {
264 unsigned char buf[PR_REG_ISID_LEN];
265
266 se_sess->se_tpg = se_tpg;
267 se_sess->fabric_sess_ptr = fabric_sess_ptr;
268 /*
269 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270 *
271 * Only set for struct se_session's that will actually be moving I/O.
272 * eg: *NOT* discovery sessions.
273 */
274 if (se_nacl) {
275 /*
276 * If the fabric module supports an ISID based TransportID,
277 * save this value in binary from the fabric I_T Nexus now.
278 */
279 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280 memset(&buf[0], 0, PR_REG_ISID_LEN);
281 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282 &buf[0], PR_REG_ISID_LEN);
283 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284 }
285 kref_get(&se_nacl->acl_kref);
286
287 spin_lock_irq(&se_nacl->nacl_sess_lock);
288 /*
289 * The se_nacl->nacl_sess pointer will be set to the
290 * last active I_T Nexus for each struct se_node_acl.
291 */
292 se_nacl->nacl_sess = se_sess;
293
294 list_add_tail(&se_sess->sess_acl_list,
295 &se_nacl->acl_sess_list);
296 spin_unlock_irq(&se_nacl->nacl_sess_lock);
297 }
298 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299
300 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)305 void transport_register_session(
306 struct se_portal_group *se_tpg,
307 struct se_node_acl *se_nacl,
308 struct se_session *se_sess,
309 void *fabric_sess_ptr)
310 {
311 unsigned long flags;
312
313 spin_lock_irqsave(&se_tpg->session_lock, flags);
314 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318
target_release_session(struct kref * kref)319 static void target_release_session(struct kref *kref)
320 {
321 struct se_session *se_sess = container_of(kref,
322 struct se_session, sess_kref);
323 struct se_portal_group *se_tpg = se_sess->se_tpg;
324
325 se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327
target_get_session(struct se_session * se_sess)328 void target_get_session(struct se_session *se_sess)
329 {
330 kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333
target_put_session(struct se_session * se_sess)334 int target_put_session(struct se_session *se_sess)
335 {
336 return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339
target_complete_nacl(struct kref * kref)340 static void target_complete_nacl(struct kref *kref)
341 {
342 struct se_node_acl *nacl = container_of(kref,
343 struct se_node_acl, acl_kref);
344
345 complete(&nacl->acl_free_comp);
346 }
347
target_put_nacl(struct se_node_acl * nacl)348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350 kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352
transport_deregister_session_configfs(struct se_session * se_sess)353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355 struct se_node_acl *se_nacl;
356 unsigned long flags;
357 /*
358 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359 */
360 se_nacl = se_sess->se_node_acl;
361 if (se_nacl) {
362 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363 if (se_nacl->acl_stop == 0)
364 list_del(&se_sess->sess_acl_list);
365 /*
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
369 */
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
376 }
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
transport_free_session(struct se_session * se_sess)382 void transport_free_session(struct se_session *se_sess)
383 {
384 kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
transport_deregister_session(struct se_session * se_sess)388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct target_core_fabric_ops *se_tfo;
392 struct se_node_acl *se_nacl;
393 unsigned long flags;
394 bool comp_nacl = true;
395
396 if (!se_tpg) {
397 transport_free_session(se_sess);
398 return;
399 }
400 se_tfo = se_tpg->se_tpg_tfo;
401
402 spin_lock_irqsave(&se_tpg->session_lock, flags);
403 list_del(&se_sess->sess_list);
404 se_sess->se_tpg = NULL;
405 se_sess->fabric_sess_ptr = NULL;
406 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407
408 /*
409 * Determine if we need to do extra work for this initiator node's
410 * struct se_node_acl if it had been previously dynamically generated.
411 */
412 se_nacl = se_sess->se_node_acl;
413
414 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 if (se_nacl && se_nacl->dynamic_node_acl) {
416 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417 list_del(&se_nacl->acl_list);
418 se_tpg->num_node_acls--;
419 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420 core_tpg_wait_for_nacl_pr_ref(se_nacl);
421 core_free_device_list_for_node(se_nacl, se_tpg);
422 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423
424 comp_nacl = false;
425 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 }
427 }
428 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429
430 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 se_tpg->se_tpg_tfo->get_fabric_name());
432 /*
433 * If last kref is dropping now for an explict NodeACL, awake sleeping
434 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435 * removal context.
436 */
437 if (se_nacl && comp_nacl == true)
438 target_put_nacl(se_nacl);
439
440 transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443
444 /*
445 * Called with cmd->t_state_lock held.
446 */
transport_all_task_dev_remove_state(struct se_cmd * cmd)447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449 struct se_device *dev = cmd->se_dev;
450 struct se_task *task;
451 unsigned long flags;
452
453 if (!dev)
454 return;
455
456 list_for_each_entry(task, &cmd->t_task_list, t_list) {
457 if (task->task_flags & TF_ACTIVE)
458 continue;
459
460 spin_lock_irqsave(&dev->execute_task_lock, flags);
461 if (task->t_state_active) {
462 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463 cmd->se_tfo->get_task_tag(cmd), dev, task);
464
465 list_del(&task->t_state_list);
466 atomic_dec(&cmd->t_task_cdbs_ex_left);
467 task->t_state_active = false;
468 }
469 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470 }
471
472 }
473
474 /* transport_cmd_check_stop():
475 *
476 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477 * 'transport_off = 2' determines if task_dev_state should be removed.
478 *
479 * A non-zero u8 t_state sets cmd->t_state.
480 * Returns 1 when command is stopped, else 0.
481 */
transport_cmd_check_stop(struct se_cmd * cmd,int transport_off,u8 t_state)482 static int transport_cmd_check_stop(
483 struct se_cmd *cmd,
484 int transport_off,
485 u8 t_state)
486 {
487 unsigned long flags;
488
489 spin_lock_irqsave(&cmd->t_state_lock, flags);
490 /*
491 * Determine if IOCTL context caller in requesting the stopping of this
492 * command for LUN shutdown purposes.
493 */
494 if (cmd->transport_state & CMD_T_LUN_STOP) {
495 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497
498 cmd->transport_state &= ~CMD_T_ACTIVE;
499 if (transport_off == 2)
500 transport_all_task_dev_remove_state(cmd);
501 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502
503 complete(&cmd->transport_lun_stop_comp);
504 return 1;
505 }
506 /*
507 * Determine if frontend context caller is requesting the stopping of
508 * this command for frontend exceptions.
509 */
510 if (cmd->transport_state & CMD_T_STOP) {
511 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512 __func__, __LINE__,
513 cmd->se_tfo->get_task_tag(cmd));
514
515 if (transport_off == 2)
516 transport_all_task_dev_remove_state(cmd);
517
518 /*
519 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 * to FE.
521 */
522 if (transport_off == 2)
523 cmd->se_lun = NULL;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526 complete(&cmd->t_transport_stop_comp);
527 return 1;
528 }
529 if (transport_off) {
530 cmd->transport_state &= ~CMD_T_ACTIVE;
531 if (transport_off == 2) {
532 transport_all_task_dev_remove_state(cmd);
533 /*
534 * Clear struct se_cmd->se_lun before the transport_off == 2
535 * handoff to fabric module.
536 */
537 cmd->se_lun = NULL;
538 /*
539 * Some fabric modules like tcm_loop can release
540 * their internally allocated I/O reference now and
541 * struct se_cmd now.
542 *
543 * Fabric modules are expected to return '1' here if the
544 * se_cmd being passed is released at this point,
545 * or zero if not being released.
546 */
547 if (cmd->se_tfo->check_stop_free != NULL) {
548 spin_unlock_irqrestore(
549 &cmd->t_state_lock, flags);
550
551 return cmd->se_tfo->check_stop_free(cmd);
552 }
553 }
554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556 return 0;
557 } else if (t_state)
558 cmd->t_state = t_state;
559 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560
561 return 0;
562 }
563
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566 return transport_cmd_check_stop(cmd, 2, 0);
567 }
568
transport_lun_remove_cmd(struct se_cmd * cmd)569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571 struct se_lun *lun = cmd->se_lun;
572 unsigned long flags;
573
574 if (!lun)
575 return;
576
577 spin_lock_irqsave(&cmd->t_state_lock, flags);
578 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580 transport_all_task_dev_remove_state(cmd);
581 }
582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583
584 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585 if (!list_empty(&cmd->se_lun_node))
586 list_del_init(&cmd->se_lun_node);
587 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593 transport_lun_remove_cmd(cmd);
594
595 if (transport_cmd_check_stop_to_fabric(cmd))
596 return;
597 if (remove) {
598 transport_remove_cmd_from_queue(cmd);
599 transport_put_cmd(cmd);
600 }
601 }
602
transport_add_cmd_to_queue(struct se_cmd * cmd,int t_state,bool at_head)603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604 bool at_head)
605 {
606 struct se_device *dev = cmd->se_dev;
607 struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 unsigned long flags;
609
610 if (t_state) {
611 spin_lock_irqsave(&cmd->t_state_lock, flags);
612 cmd->t_state = t_state;
613 cmd->transport_state |= CMD_T_ACTIVE;
614 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 }
616
617 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619 /* If the cmd is already on the list, remove it before we add it */
620 if (!list_empty(&cmd->se_queue_node))
621 list_del(&cmd->se_queue_node);
622 else
623 atomic_inc(&qobj->queue_cnt);
624
625 if (at_head)
626 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 else
628 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 cmd->transport_state |= CMD_T_QUEUED;
630 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632 wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj * qobj)636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 struct se_cmd *cmd;
639 unsigned long flags;
640
641 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 if (list_empty(&qobj->qobj_list)) {
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 return NULL;
645 }
646 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648 cmd->transport_state &= ~CMD_T_QUEUED;
649 list_del_init(&cmd->se_queue_node);
650 atomic_dec(&qobj->queue_cnt);
651 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652
653 return cmd;
654 }
655
transport_remove_cmd_from_queue(struct se_cmd * cmd)656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659 unsigned long flags;
660
661 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662 if (!(cmd->transport_state & CMD_T_QUEUED)) {
663 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664 return;
665 }
666 cmd->transport_state &= ~CMD_T_QUEUED;
667 atomic_dec(&qobj->queue_cnt);
668 list_del_init(&cmd->se_queue_node);
669 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671
672 /*
673 * Completion function used by TCM subsystem plugins (such as FILEIO)
674 * for queueing up response from struct se_subsystem_api->do_task()
675 */
transport_complete_sync_cache(struct se_cmd * cmd,int good)676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678 struct se_task *task = list_entry(cmd->t_task_list.next,
679 struct se_task, t_list);
680
681 if (good) {
682 cmd->scsi_status = SAM_STAT_GOOD;
683 task->task_scsi_status = GOOD;
684 } else {
685 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686 task->task_se_cmd->scsi_sense_reason =
687 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688
689 }
690
691 transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694
target_complete_failure_work(struct work_struct * work)695 static void target_complete_failure_work(struct work_struct *work)
696 {
697 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698
699 transport_generic_request_failure(cmd);
700 }
701
702 /* transport_complete_task():
703 *
704 * Called from interrupt and non interrupt context depending
705 * on the transport plugin.
706 */
transport_complete_task(struct se_task * task,int success)707 void transport_complete_task(struct se_task *task, int success)
708 {
709 struct se_cmd *cmd = task->task_se_cmd;
710 struct se_device *dev = cmd->se_dev;
711 unsigned long flags;
712
713 spin_lock_irqsave(&cmd->t_state_lock, flags);
714 task->task_flags &= ~TF_ACTIVE;
715
716 /*
717 * See if any sense data exists, if so set the TASK_SENSE flag.
718 * Also check for any other post completion work that needs to be
719 * done by the plugins.
720 */
721 if (dev && dev->transport->transport_complete) {
722 if (dev->transport->transport_complete(task) != 0) {
723 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724 task->task_flags |= TF_HAS_SENSE;
725 success = 1;
726 }
727 }
728
729 /*
730 * See if we are waiting for outstanding struct se_task
731 * to complete for an exception condition
732 */
733 if (task->task_flags & TF_REQUEST_STOP) {
734 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735 complete(&task->task_stop_comp);
736 return;
737 }
738
739 if (!success)
740 cmd->transport_state |= CMD_T_FAILED;
741
742 /*
743 * Decrement the outstanding t_task_cdbs_left count. The last
744 * struct se_task from struct se_cmd will complete itself into the
745 * device queue depending upon int success.
746 */
747 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749 return;
750 }
751 /*
752 * Check for case where an explict ABORT_TASK has been received
753 * and transport_wait_for_tasks() will be waiting for completion..
754 */
755 if (cmd->transport_state & CMD_T_ABORTED &&
756 cmd->transport_state & CMD_T_STOP) {
757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 complete(&cmd->t_transport_stop_comp);
759 return;
760 } else if (cmd->transport_state & CMD_T_FAILED) {
761 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762 INIT_WORK(&cmd->work, target_complete_failure_work);
763 } else {
764 INIT_WORK(&cmd->work, target_complete_ok_work);
765 }
766
767 cmd->t_state = TRANSPORT_COMPLETE;
768 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770
771 queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774
775 /*
776 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777 * struct se_task list are ready to be added to the active execution list
778 * struct se_device
779
780 * Called with se_dev_t->execute_task_lock called.
781 */
transport_add_task_check_sam_attr(struct se_task * task,struct se_task * task_prev,struct se_device * dev)782 static inline int transport_add_task_check_sam_attr(
783 struct se_task *task,
784 struct se_task *task_prev,
785 struct se_device *dev)
786 {
787 /*
788 * No SAM Task attribute emulation enabled, add to tail of
789 * execution queue
790 */
791 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 return 0;
794 }
795 /*
796 * HEAD_OF_QUEUE attribute for received CDB, which means
797 * the first task that is associated with a struct se_cmd goes to
798 * head of the struct se_device->execute_task_list, and task_prev
799 * after that for each subsequent task
800 */
801 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802 list_add(&task->t_execute_list,
803 (task_prev != NULL) ?
804 &task_prev->t_execute_list :
805 &dev->execute_task_list);
806
807 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808 " in execution queue\n",
809 task->task_se_cmd->t_task_cdb[0]);
810 return 1;
811 }
812 /*
813 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814 * transitioned from Dermant -> Active state, and are added to the end
815 * of the struct se_device->execute_task_list
816 */
817 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 return 0;
819 }
820
821 /* __transport_add_task_to_execute_queue():
822 *
823 * Called with se_dev_t->execute_task_lock called.
824 */
__transport_add_task_to_execute_queue(struct se_task * task,struct se_task * task_prev,struct se_device * dev)825 static void __transport_add_task_to_execute_queue(
826 struct se_task *task,
827 struct se_task *task_prev,
828 struct se_device *dev)
829 {
830 int head_of_queue;
831
832 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833 atomic_inc(&dev->execute_tasks);
834
835 if (task->t_state_active)
836 return;
837 /*
838 * Determine if this task needs to go to HEAD_OF_QUEUE for the
839 * state list as well. Running with SAM Task Attribute emulation
840 * will always return head_of_queue == 0 here
841 */
842 if (head_of_queue)
843 list_add(&task->t_state_list, (task_prev) ?
844 &task_prev->t_state_list :
845 &dev->state_task_list);
846 else
847 list_add_tail(&task->t_state_list, &dev->state_task_list);
848
849 task->t_state_active = true;
850
851 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853 task, dev);
854 }
855
transport_add_tasks_to_state_queue(struct se_cmd * cmd)856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858 struct se_device *dev = cmd->se_dev;
859 struct se_task *task;
860 unsigned long flags;
861
862 spin_lock_irqsave(&cmd->t_state_lock, flags);
863 list_for_each_entry(task, &cmd->t_task_list, t_list) {
864 spin_lock(&dev->execute_task_lock);
865 if (!task->t_state_active) {
866 list_add_tail(&task->t_state_list,
867 &dev->state_task_list);
868 task->t_state_active = true;
869
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task->task_se_cmd->se_tfo->get_task_tag(
872 task->task_se_cmd), task, dev);
873 }
874 spin_unlock(&dev->execute_task_lock);
875 }
876 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
__transport_add_tasks_from_cmd(struct se_cmd * cmd)879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 struct se_device *dev = cmd->se_dev;
882 struct se_task *task, *task_prev = NULL;
883
884 list_for_each_entry(task, &cmd->t_task_list, t_list) {
885 if (!list_empty(&task->t_execute_list))
886 continue;
887 /*
888 * __transport_add_task_to_execute_queue() handles the
889 * SAM Task Attribute emulation if enabled
890 */
891 __transport_add_task_to_execute_queue(task, task_prev, dev);
892 task_prev = task;
893 }
894 }
895
transport_add_tasks_from_cmd(struct se_cmd * cmd)896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898 unsigned long flags;
899 struct se_device *dev = cmd->se_dev;
900
901 spin_lock_irqsave(&dev->execute_task_lock, flags);
902 __transport_add_tasks_from_cmd(cmd);
903 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905
__transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907 struct se_device *dev)
908 {
909 list_del_init(&task->t_execute_list);
910 atomic_dec(&dev->execute_tasks);
911 }
912
transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)913 static void transport_remove_task_from_execute_queue(
914 struct se_task *task,
915 struct se_device *dev)
916 {
917 unsigned long flags;
918
919 if (WARN_ON(list_empty(&task->t_execute_list)))
920 return;
921
922 spin_lock_irqsave(&dev->execute_task_lock, flags);
923 __transport_remove_task_from_execute_queue(task, dev);
924 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926
927 /*
928 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929 */
930
target_qf_do_work(struct work_struct * work)931 static void target_qf_do_work(struct work_struct *work)
932 {
933 struct se_device *dev = container_of(work, struct se_device,
934 qf_work_queue);
935 LIST_HEAD(qf_cmd_list);
936 struct se_cmd *cmd, *cmd_tmp;
937
938 spin_lock_irq(&dev->qf_cmd_lock);
939 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940 spin_unlock_irq(&dev->qf_cmd_lock);
941
942 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943 list_del(&cmd->se_qf_node);
944 atomic_dec(&dev->dev_qf_count);
945 smp_mb__after_atomic_dec();
946
947 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951 : "UNKNOWN");
952
953 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954 }
955 }
956
transport_dump_cmd_direction(struct se_cmd * cmd)957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959 switch (cmd->data_direction) {
960 case DMA_NONE:
961 return "NONE";
962 case DMA_FROM_DEVICE:
963 return "READ";
964 case DMA_TO_DEVICE:
965 return "WRITE";
966 case DMA_BIDIRECTIONAL:
967 return "BIDI";
968 default:
969 break;
970 }
971
972 return "UNKNOWN";
973 }
974
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)975 void transport_dump_dev_state(
976 struct se_device *dev,
977 char *b,
978 int *bl)
979 {
980 *bl += sprintf(b + *bl, "Status: ");
981 switch (dev->dev_status) {
982 case TRANSPORT_DEVICE_ACTIVATED:
983 *bl += sprintf(b + *bl, "ACTIVATED");
984 break;
985 case TRANSPORT_DEVICE_DEACTIVATED:
986 *bl += sprintf(b + *bl, "DEACTIVATED");
987 break;
988 case TRANSPORT_DEVICE_SHUTDOWN:
989 *bl += sprintf(b + *bl, "SHUTDOWN");
990 break;
991 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993 *bl += sprintf(b + *bl, "OFFLINE");
994 break;
995 default:
996 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997 break;
998 }
999
1000 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
1001 atomic_read(&dev->execute_tasks), dev->queue_depth);
1002 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1003 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004 *bl += sprintf(b + *bl, " ");
1005 }
1006
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1007 void transport_dump_vpd_proto_id(
1008 struct t10_vpd *vpd,
1009 unsigned char *p_buf,
1010 int p_buf_len)
1011 {
1012 unsigned char buf[VPD_TMP_BUF_SIZE];
1013 int len;
1014
1015 memset(buf, 0, VPD_TMP_BUF_SIZE);
1016 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017
1018 switch (vpd->protocol_identifier) {
1019 case 0x00:
1020 sprintf(buf+len, "Fibre Channel\n");
1021 break;
1022 case 0x10:
1023 sprintf(buf+len, "Parallel SCSI\n");
1024 break;
1025 case 0x20:
1026 sprintf(buf+len, "SSA\n");
1027 break;
1028 case 0x30:
1029 sprintf(buf+len, "IEEE 1394\n");
1030 break;
1031 case 0x40:
1032 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033 " Protocol\n");
1034 break;
1035 case 0x50:
1036 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037 break;
1038 case 0x60:
1039 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040 break;
1041 case 0x70:
1042 sprintf(buf+len, "Automation/Drive Interface Transport"
1043 " Protocol\n");
1044 break;
1045 case 0x80:
1046 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047 break;
1048 default:
1049 sprintf(buf+len, "Unknown 0x%02x\n",
1050 vpd->protocol_identifier);
1051 break;
1052 }
1053
1054 if (p_buf)
1055 strncpy(p_buf, buf, p_buf_len);
1056 else
1057 pr_debug("%s", buf);
1058 }
1059
1060 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063 /*
1064 * Check if the Protocol Identifier Valid (PIV) bit is set..
1065 *
1066 * from spc3r23.pdf section 7.5.1
1067 */
1068 if (page_83[1] & 0x80) {
1069 vpd->protocol_identifier = (page_83[0] & 0xf0);
1070 vpd->protocol_identifier_set = 1;
1071 transport_dump_vpd_proto_id(vpd, NULL, 0);
1072 }
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1076 int transport_dump_vpd_assoc(
1077 struct t10_vpd *vpd,
1078 unsigned char *p_buf,
1079 int p_buf_len)
1080 {
1081 unsigned char buf[VPD_TMP_BUF_SIZE];
1082 int ret = 0;
1083 int len;
1084
1085 memset(buf, 0, VPD_TMP_BUF_SIZE);
1086 len = sprintf(buf, "T10 VPD Identifier Association: ");
1087
1088 switch (vpd->association) {
1089 case 0x00:
1090 sprintf(buf+len, "addressed logical unit\n");
1091 break;
1092 case 0x10:
1093 sprintf(buf+len, "target port\n");
1094 break;
1095 case 0x20:
1096 sprintf(buf+len, "SCSI target device\n");
1097 break;
1098 default:
1099 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100 ret = -EINVAL;
1101 break;
1102 }
1103
1104 if (p_buf)
1105 strncpy(p_buf, buf, p_buf_len);
1106 else
1107 pr_debug("%s", buf);
1108
1109 return ret;
1110 }
1111
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114 /*
1115 * The VPD identification association..
1116 *
1117 * from spc3r23.pdf Section 7.6.3.1 Table 297
1118 */
1119 vpd->association = (page_83[1] & 0x30);
1120 return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1124 int transport_dump_vpd_ident_type(
1125 struct t10_vpd *vpd,
1126 unsigned char *p_buf,
1127 int p_buf_len)
1128 {
1129 unsigned char buf[VPD_TMP_BUF_SIZE];
1130 int ret = 0;
1131 int len;
1132
1133 memset(buf, 0, VPD_TMP_BUF_SIZE);
1134 len = sprintf(buf, "T10 VPD Identifier Type: ");
1135
1136 switch (vpd->device_identifier_type) {
1137 case 0x00:
1138 sprintf(buf+len, "Vendor specific\n");
1139 break;
1140 case 0x01:
1141 sprintf(buf+len, "T10 Vendor ID based\n");
1142 break;
1143 case 0x02:
1144 sprintf(buf+len, "EUI-64 based\n");
1145 break;
1146 case 0x03:
1147 sprintf(buf+len, "NAA\n");
1148 break;
1149 case 0x04:
1150 sprintf(buf+len, "Relative target port identifier\n");
1151 break;
1152 case 0x08:
1153 sprintf(buf+len, "SCSI name string\n");
1154 break;
1155 default:
1156 sprintf(buf+len, "Unsupported: 0x%02x\n",
1157 vpd->device_identifier_type);
1158 ret = -EINVAL;
1159 break;
1160 }
1161
1162 if (p_buf) {
1163 if (p_buf_len < strlen(buf)+1)
1164 return -EINVAL;
1165 strncpy(p_buf, buf, p_buf_len);
1166 } else {
1167 pr_debug("%s", buf);
1168 }
1169
1170 return ret;
1171 }
1172
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175 /*
1176 * The VPD identifier type..
1177 *
1178 * from spc3r23.pdf Section 7.6.3.1 Table 298
1179 */
1180 vpd->device_identifier_type = (page_83[1] & 0x0f);
1181 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1185 int transport_dump_vpd_ident(
1186 struct t10_vpd *vpd,
1187 unsigned char *p_buf,
1188 int p_buf_len)
1189 {
1190 unsigned char buf[VPD_TMP_BUF_SIZE];
1191 int ret = 0;
1192
1193 memset(buf, 0, VPD_TMP_BUF_SIZE);
1194
1195 switch (vpd->device_identifier_code_set) {
1196 case 0x01: /* Binary */
1197 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198 &vpd->device_identifier[0]);
1199 break;
1200 case 0x02: /* ASCII */
1201 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202 &vpd->device_identifier[0]);
1203 break;
1204 case 0x03: /* UTF-8 */
1205 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206 &vpd->device_identifier[0]);
1207 break;
1208 default:
1209 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210 " 0x%02x", vpd->device_identifier_code_set);
1211 ret = -EINVAL;
1212 break;
1213 }
1214
1215 if (p_buf)
1216 strncpy(p_buf, buf, p_buf_len);
1217 else
1218 pr_debug("%s", buf);
1219
1220 return ret;
1221 }
1222
1223 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226 static const char hex_str[] = "0123456789abcdef";
1227 int j = 0, i = 4; /* offset to start of the identifer */
1228
1229 /*
1230 * The VPD Code Set (encoding)
1231 *
1232 * from spc3r23.pdf Section 7.6.3.1 Table 296
1233 */
1234 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235 switch (vpd->device_identifier_code_set) {
1236 case 0x01: /* Binary */
1237 vpd->device_identifier[j++] =
1238 hex_str[vpd->device_identifier_type];
1239 while (i < (4 + page_83[3])) {
1240 vpd->device_identifier[j++] =
1241 hex_str[(page_83[i] & 0xf0) >> 4];
1242 vpd->device_identifier[j++] =
1243 hex_str[page_83[i] & 0x0f];
1244 i++;
1245 }
1246 break;
1247 case 0x02: /* ASCII */
1248 case 0x03: /* UTF-8 */
1249 while (i < (4 + page_83[3]))
1250 vpd->device_identifier[j++] = page_83[i++];
1251 break;
1252 default:
1253 break;
1254 }
1255
1256 return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259
core_setup_task_attr_emulation(struct se_device * dev)1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262 /*
1263 * If this device is from Target_Core_Mod/pSCSI, disable the
1264 * SAM Task Attribute emulation.
1265 *
1266 * This is currently not available in upsream Linux/SCSI Target
1267 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268 */
1269 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271 return;
1272 }
1273
1274 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276 " device\n", dev->transport->name,
1277 dev->transport->get_device_rev(dev));
1278 }
1279
scsi_dump_inquiry(struct se_device * dev)1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283 char buf[17];
1284 int i, device_type;
1285 /*
1286 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287 */
1288 for (i = 0; i < 8; i++)
1289 if (wwn->vendor[i] >= 0x20)
1290 buf[i] = wwn->vendor[i];
1291 else
1292 buf[i] = ' ';
1293 buf[i] = '\0';
1294 pr_debug(" Vendor: %s\n", buf);
1295
1296 for (i = 0; i < 16; i++)
1297 if (wwn->model[i] >= 0x20)
1298 buf[i] = wwn->model[i];
1299 else
1300 buf[i] = ' ';
1301 buf[i] = '\0';
1302 pr_debug(" Model: %s\n", buf);
1303
1304 for (i = 0; i < 4; i++)
1305 if (wwn->revision[i] >= 0x20)
1306 buf[i] = wwn->revision[i];
1307 else
1308 buf[i] = ' ';
1309 buf[i] = '\0';
1310 pr_debug(" Revision: %s\n", buf);
1311
1312 device_type = dev->transport->get_device_type(dev);
1313 pr_debug(" Type: %s ", scsi_device_type(device_type));
1314 pr_debug(" ANSI SCSI revision: %02x\n",
1315 dev->transport->get_device_rev(dev));
1316 }
1317
transport_add_device_to_core_hba(struct se_hba * hba,struct se_subsystem_api * transport,struct se_subsystem_dev * se_dev,u32 device_flags,void * transport_dev,struct se_dev_limits * dev_limits,const char * inquiry_prod,const char * inquiry_rev)1318 struct se_device *transport_add_device_to_core_hba(
1319 struct se_hba *hba,
1320 struct se_subsystem_api *transport,
1321 struct se_subsystem_dev *se_dev,
1322 u32 device_flags,
1323 void *transport_dev,
1324 struct se_dev_limits *dev_limits,
1325 const char *inquiry_prod,
1326 const char *inquiry_rev)
1327 {
1328 int force_pt;
1329 struct se_device *dev;
1330
1331 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332 if (!dev) {
1333 pr_err("Unable to allocate memory for se_dev_t\n");
1334 return NULL;
1335 }
1336
1337 transport_init_queue_obj(&dev->dev_queue_obj);
1338 dev->dev_flags = device_flags;
1339 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1340 dev->dev_ptr = transport_dev;
1341 dev->se_hba = hba;
1342 dev->se_sub_dev = se_dev;
1343 dev->transport = transport;
1344 dev->dev_link_magic = SE_DEV_LINK_MAGIC;
1345 INIT_LIST_HEAD(&dev->dev_list);
1346 INIT_LIST_HEAD(&dev->dev_sep_list);
1347 INIT_LIST_HEAD(&dev->dev_tmr_list);
1348 INIT_LIST_HEAD(&dev->execute_task_list);
1349 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1350 INIT_LIST_HEAD(&dev->state_task_list);
1351 INIT_LIST_HEAD(&dev->qf_cmd_list);
1352 spin_lock_init(&dev->execute_task_lock);
1353 spin_lock_init(&dev->delayed_cmd_lock);
1354 spin_lock_init(&dev->dev_reservation_lock);
1355 spin_lock_init(&dev->dev_status_lock);
1356 spin_lock_init(&dev->se_port_lock);
1357 spin_lock_init(&dev->se_tmr_lock);
1358 spin_lock_init(&dev->qf_cmd_lock);
1359 atomic_set(&dev->dev_ordered_id, 0);
1360
1361 se_dev_set_default_attribs(dev, dev_limits);
1362
1363 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364 dev->creation_time = get_jiffies_64();
1365 spin_lock_init(&dev->stats_lock);
1366
1367 spin_lock(&hba->device_lock);
1368 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369 hba->dev_count++;
1370 spin_unlock(&hba->device_lock);
1371 /*
1372 * Setup the SAM Task Attribute emulation for struct se_device
1373 */
1374 core_setup_task_attr_emulation(dev);
1375 /*
1376 * Force PR and ALUA passthrough emulation with internal object use.
1377 */
1378 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379 /*
1380 * Setup the Reservations infrastructure for struct se_device
1381 */
1382 core_setup_reservations(dev, force_pt);
1383 /*
1384 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385 */
1386 if (core_setup_alua(dev, force_pt) < 0)
1387 goto out;
1388
1389 /*
1390 * Startup the struct se_device processing thread
1391 */
1392 dev->process_thread = kthread_run(transport_processing_thread, dev,
1393 "LIO_%s", dev->transport->name);
1394 if (IS_ERR(dev->process_thread)) {
1395 pr_err("Unable to create kthread: LIO_%s\n",
1396 dev->transport->name);
1397 goto out;
1398 }
1399 /*
1400 * Setup work_queue for QUEUE_FULL
1401 */
1402 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403 /*
1404 * Preload the initial INQUIRY const values if we are doing
1405 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 * passthrough because this is being provided by the backend LLD.
1407 * This is required so that transport_get_inquiry() copies these
1408 * originals once back into DEV_T10_WWN(dev) for the virtual device
1409 * setup.
1410 */
1411 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412 if (!inquiry_prod || !inquiry_rev) {
1413 pr_err("All non TCM/pSCSI plugins require"
1414 " INQUIRY consts\n");
1415 goto out;
1416 }
1417
1418 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421 }
1422 scsi_dump_inquiry(dev);
1423
1424 return dev;
1425 out:
1426 kthread_stop(dev->process_thread);
1427
1428 spin_lock(&hba->device_lock);
1429 list_del(&dev->dev_list);
1430 hba->dev_count--;
1431 spin_unlock(&hba->device_lock);
1432
1433 se_release_vpd_for_dev(dev);
1434
1435 kfree(dev);
1436
1437 return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440
1441 /* transport_generic_prepare_cdb():
1442 *
1443 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1444 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445 * The point of this is since we are mapping iSCSI LUNs to
1446 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447 * devices and HBAs for a loop.
1448 */
transport_generic_prepare_cdb(unsigned char * cdb)1449 static inline void transport_generic_prepare_cdb(
1450 unsigned char *cdb)
1451 {
1452 switch (cdb[0]) {
1453 case READ_10: /* SBC - RDProtect */
1454 case READ_12: /* SBC - RDProtect */
1455 case READ_16: /* SBC - RDProtect */
1456 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457 case VERIFY: /* SBC - VRProtect */
1458 case VERIFY_16: /* SBC - VRProtect */
1459 case WRITE_VERIFY: /* SBC - VRProtect */
1460 case WRITE_VERIFY_12: /* SBC - VRProtect */
1461 case MAINTENANCE_IN: /* SPC - Parameter Data Format for SA RTPG */
1462 break;
1463 default:
1464 cdb[1] &= 0x1f; /* clear logical unit number */
1465 break;
1466 }
1467 }
1468
1469 static struct se_task *
transport_generic_get_task(struct se_cmd * cmd,enum dma_data_direction data_direction)1470 transport_generic_get_task(struct se_cmd *cmd,
1471 enum dma_data_direction data_direction)
1472 {
1473 struct se_task *task;
1474 struct se_device *dev = cmd->se_dev;
1475
1476 task = dev->transport->alloc_task(cmd->t_task_cdb);
1477 if (!task) {
1478 pr_err("Unable to allocate struct se_task\n");
1479 return NULL;
1480 }
1481
1482 INIT_LIST_HEAD(&task->t_list);
1483 INIT_LIST_HEAD(&task->t_execute_list);
1484 INIT_LIST_HEAD(&task->t_state_list);
1485 init_completion(&task->task_stop_comp);
1486 task->task_se_cmd = cmd;
1487 task->task_data_direction = data_direction;
1488
1489 return task;
1490 }
1491
1492 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1493
1494 /*
1495 * Used by fabric modules containing a local struct se_cmd within their
1496 * fabric dependent per I/O descriptor.
1497 */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1498 void transport_init_se_cmd(
1499 struct se_cmd *cmd,
1500 struct target_core_fabric_ops *tfo,
1501 struct se_session *se_sess,
1502 u32 data_length,
1503 int data_direction,
1504 int task_attr,
1505 unsigned char *sense_buffer)
1506 {
1507 INIT_LIST_HEAD(&cmd->se_lun_node);
1508 INIT_LIST_HEAD(&cmd->se_delayed_node);
1509 INIT_LIST_HEAD(&cmd->se_qf_node);
1510 INIT_LIST_HEAD(&cmd->se_queue_node);
1511 INIT_LIST_HEAD(&cmd->se_cmd_list);
1512 INIT_LIST_HEAD(&cmd->t_task_list);
1513 init_completion(&cmd->transport_lun_fe_stop_comp);
1514 init_completion(&cmd->transport_lun_stop_comp);
1515 init_completion(&cmd->t_transport_stop_comp);
1516 init_completion(&cmd->cmd_wait_comp);
1517 spin_lock_init(&cmd->t_state_lock);
1518 cmd->transport_state = CMD_T_DEV_ACTIVE;
1519
1520 cmd->se_tfo = tfo;
1521 cmd->se_sess = se_sess;
1522 cmd->data_length = data_length;
1523 cmd->data_direction = data_direction;
1524 cmd->sam_task_attr = task_attr;
1525 cmd->sense_buffer = sense_buffer;
1526 }
1527 EXPORT_SYMBOL(transport_init_se_cmd);
1528
transport_check_alloc_task_attr(struct se_cmd * cmd)1529 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1530 {
1531 /*
1532 * Check if SAM Task Attribute emulation is enabled for this
1533 * struct se_device storage object
1534 */
1535 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1536 return 0;
1537
1538 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1539 pr_debug("SAM Task Attribute ACA"
1540 " emulation is not supported\n");
1541 return -EINVAL;
1542 }
1543 /*
1544 * Used to determine when ORDERED commands should go from
1545 * Dormant to Active status.
1546 */
1547 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1548 smp_mb__after_atomic_inc();
1549 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550 cmd->se_ordered_id, cmd->sam_task_attr,
1551 cmd->se_dev->transport->name);
1552 return 0;
1553 }
1554
1555 /* transport_generic_allocate_tasks():
1556 *
1557 * Called from fabric RX Thread.
1558 */
transport_generic_allocate_tasks(struct se_cmd * cmd,unsigned char * cdb)1559 int transport_generic_allocate_tasks(
1560 struct se_cmd *cmd,
1561 unsigned char *cdb)
1562 {
1563 int ret;
1564
1565 transport_generic_prepare_cdb(cdb);
1566 /*
1567 * Ensure that the received CDB is less than the max (252 + 8) bytes
1568 * for VARIABLE_LENGTH_CMD
1569 */
1570 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1571 pr_err("Received SCSI CDB with command_size: %d that"
1572 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1574 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1575 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1576 return -EINVAL;
1577 }
1578 /*
1579 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1580 * allocate the additional extended CDB buffer now.. Otherwise
1581 * setup the pointer from __t_task_cdb to t_task_cdb.
1582 */
1583 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1584 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1585 GFP_KERNEL);
1586 if (!cmd->t_task_cdb) {
1587 pr_err("Unable to allocate cmd->t_task_cdb"
1588 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1589 scsi_command_size(cdb),
1590 (unsigned long)sizeof(cmd->__t_task_cdb));
1591 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1592 cmd->scsi_sense_reason =
1593 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1594 return -ENOMEM;
1595 }
1596 } else
1597 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1598 /*
1599 * Copy the original CDB into cmd->
1600 */
1601 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1602 /*
1603 * Setup the received CDB based on SCSI defined opcodes and
1604 * perform unit attention, persistent reservations and ALUA
1605 * checks for virtual device backends. The cmd->t_task_cdb
1606 * pointer is expected to be setup before we reach this point.
1607 */
1608 ret = transport_generic_cmd_sequencer(cmd, cdb);
1609 if (ret < 0)
1610 return ret;
1611 /*
1612 * Check for SAM Task Attribute Emulation
1613 */
1614 if (transport_check_alloc_task_attr(cmd) < 0) {
1615 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1616 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1617 return -EINVAL;
1618 }
1619 spin_lock(&cmd->se_lun->lun_sep_lock);
1620 if (cmd->se_lun->lun_sep)
1621 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1622 spin_unlock(&cmd->se_lun->lun_sep_lock);
1623 return 0;
1624 }
1625 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1626
1627 /*
1628 * Used by fabric module frontends to queue tasks directly.
1629 * Many only be used from process context only
1630 */
transport_handle_cdb_direct(struct se_cmd * cmd)1631 int transport_handle_cdb_direct(
1632 struct se_cmd *cmd)
1633 {
1634 int ret;
1635
1636 if (!cmd->se_lun) {
1637 dump_stack();
1638 pr_err("cmd->se_lun is NULL\n");
1639 return -EINVAL;
1640 }
1641 if (in_interrupt()) {
1642 dump_stack();
1643 pr_err("transport_generic_handle_cdb cannot be called"
1644 " from interrupt context\n");
1645 return -EINVAL;
1646 }
1647 /*
1648 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1649 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1650 * in existing usage to ensure that outstanding descriptors are handled
1651 * correctly during shutdown via transport_wait_for_tasks()
1652 *
1653 * Also, we don't take cmd->t_state_lock here as we only expect
1654 * this to be called for initial descriptor submission.
1655 */
1656 cmd->t_state = TRANSPORT_NEW_CMD;
1657 cmd->transport_state |= CMD_T_ACTIVE;
1658
1659 /*
1660 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1661 * so follow TRANSPORT_NEW_CMD processing thread context usage
1662 * and call transport_generic_request_failure() if necessary..
1663 */
1664 ret = transport_generic_new_cmd(cmd);
1665 if (ret < 0)
1666 transport_generic_request_failure(cmd);
1667
1668 return 0;
1669 }
1670 EXPORT_SYMBOL(transport_handle_cdb_direct);
1671
1672 /**
1673 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1674 *
1675 * @se_cmd: command descriptor to submit
1676 * @se_sess: associated se_sess for endpoint
1677 * @cdb: pointer to SCSI CDB
1678 * @sense: pointer to SCSI sense buffer
1679 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1680 * @data_length: fabric expected data transfer length
1681 * @task_addr: SAM task attribute
1682 * @data_dir: DMA data direction
1683 * @flags: flags for command submission from target_sc_flags_tables
1684 *
1685 * This may only be called from process context, and also currently
1686 * assumes internal allocation of fabric payload buffer by target-core.
1687 **/
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1688 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1689 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1690 u32 data_length, int task_attr, int data_dir, int flags)
1691 {
1692 struct se_portal_group *se_tpg;
1693 int rc;
1694
1695 se_tpg = se_sess->se_tpg;
1696 BUG_ON(!se_tpg);
1697 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1698 BUG_ON(in_interrupt());
1699 /*
1700 * Initialize se_cmd for target operation. From this point
1701 * exceptions are handled by sending exception status via
1702 * target_core_fabric_ops->queue_status() callback
1703 */
1704 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1705 data_length, data_dir, task_attr, sense);
1706 /*
1707 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1708 * se_sess->sess_cmd_list. A second kref_get here is necessary
1709 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1710 * kref_put() to happen during fabric packet acknowledgement.
1711 */
1712 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1713 /*
1714 * Signal bidirectional data payloads to target-core
1715 */
1716 if (flags & TARGET_SCF_BIDI_OP)
1717 se_cmd->se_cmd_flags |= SCF_BIDI;
1718 /*
1719 * Locate se_lun pointer and attach it to struct se_cmd
1720 */
1721 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1722 transport_send_check_condition_and_sense(se_cmd,
1723 se_cmd->scsi_sense_reason, 0);
1724 target_put_sess_cmd(se_sess, se_cmd);
1725 return;
1726 }
1727 /*
1728 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1729 * allocate the necessary tasks to complete the received CDB+data
1730 */
1731 rc = transport_generic_allocate_tasks(se_cmd, cdb);
1732 if (rc != 0) {
1733 transport_generic_request_failure(se_cmd);
1734 return;
1735 }
1736 /*
1737 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1738 * for immediate execution of READs, otherwise wait for
1739 * transport_generic_handle_data() to be called for WRITEs
1740 * when fabric has filled the incoming buffer.
1741 */
1742 transport_handle_cdb_direct(se_cmd);
1743 return;
1744 }
1745 EXPORT_SYMBOL(target_submit_cmd);
1746
target_complete_tmr_failure(struct work_struct * work)1747 static void target_complete_tmr_failure(struct work_struct *work)
1748 {
1749 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1750
1751 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1752 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1753
1754 transport_cmd_check_stop_to_fabric(se_cmd);
1755 }
1756
1757 /**
1758 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1759 * for TMR CDBs
1760 *
1761 * @se_cmd: command descriptor to submit
1762 * @se_sess: associated se_sess for endpoint
1763 * @sense: pointer to SCSI sense buffer
1764 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1765 * @fabric_context: fabric context for TMR req
1766 * @tm_type: Type of TM request
1767 * @gfp: gfp type for caller
1768 * @tag: referenced task tag for TMR_ABORT_TASK
1769 * @flags: submit cmd flags
1770 *
1771 * Callable from all contexts.
1772 **/
1773
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1774 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1775 unsigned char *sense, u32 unpacked_lun,
1776 void *fabric_tmr_ptr, unsigned char tm_type,
1777 gfp_t gfp, unsigned int tag, int flags)
1778 {
1779 struct se_portal_group *se_tpg;
1780 int ret;
1781
1782 se_tpg = se_sess->se_tpg;
1783 BUG_ON(!se_tpg);
1784
1785 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1786 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1787 /*
1788 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1789 * allocation failure.
1790 */
1791 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1792 if (ret < 0)
1793 return -ENOMEM;
1794
1795 if (tm_type == TMR_ABORT_TASK)
1796 se_cmd->se_tmr_req->ref_task_tag = tag;
1797
1798 /* See target_submit_cmd for commentary */
1799 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1800
1801 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1802 if (ret) {
1803 /*
1804 * For callback during failure handling, push this work off
1805 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1806 */
1807 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1808 schedule_work(&se_cmd->work);
1809 return 0;
1810 }
1811 transport_generic_handle_tmr(se_cmd);
1812 return 0;
1813 }
1814 EXPORT_SYMBOL(target_submit_tmr);
1815
1816 /*
1817 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1818 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1819 * complete setup in TCM process context w/ TFO->new_cmd_map().
1820 */
transport_generic_handle_cdb_map(struct se_cmd * cmd)1821 int transport_generic_handle_cdb_map(
1822 struct se_cmd *cmd)
1823 {
1824 if (!cmd->se_lun) {
1825 dump_stack();
1826 pr_err("cmd->se_lun is NULL\n");
1827 return -EINVAL;
1828 }
1829
1830 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1831 return 0;
1832 }
1833 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1834
1835 /* transport_generic_handle_data():
1836 *
1837 *
1838 */
transport_generic_handle_data(struct se_cmd * cmd)1839 int transport_generic_handle_data(
1840 struct se_cmd *cmd)
1841 {
1842 /*
1843 * For the software fabric case, then we assume the nexus is being
1844 * failed/shutdown when signals are pending from the kthread context
1845 * caller, so we return a failure. For the HW target mode case running
1846 * in interrupt code, the signal_pending() check is skipped.
1847 */
1848 if (!in_interrupt() && signal_pending(current))
1849 return -EPERM;
1850 /*
1851 * If the received CDB has aleady been ABORTED by the generic
1852 * target engine, we now call transport_check_aborted_status()
1853 * to queue any delated TASK_ABORTED status for the received CDB to the
1854 * fabric module as we are expecting no further incoming DATA OUT
1855 * sequences at this point.
1856 */
1857 if (transport_check_aborted_status(cmd, 1) != 0)
1858 return 0;
1859
1860 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1861 return 0;
1862 }
1863 EXPORT_SYMBOL(transport_generic_handle_data);
1864
1865 /* transport_generic_handle_tmr():
1866 *
1867 *
1868 */
transport_generic_handle_tmr(struct se_cmd * cmd)1869 int transport_generic_handle_tmr(
1870 struct se_cmd *cmd)
1871 {
1872 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1873 return 0;
1874 }
1875 EXPORT_SYMBOL(transport_generic_handle_tmr);
1876
1877 /*
1878 * If the task is active, request it to be stopped and sleep until it
1879 * has completed.
1880 */
target_stop_task(struct se_task * task,unsigned long * flags)1881 bool target_stop_task(struct se_task *task, unsigned long *flags)
1882 {
1883 struct se_cmd *cmd = task->task_se_cmd;
1884 bool was_active = false;
1885
1886 if (task->task_flags & TF_ACTIVE) {
1887 task->task_flags |= TF_REQUEST_STOP;
1888 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1889
1890 pr_debug("Task %p waiting to complete\n", task);
1891 wait_for_completion(&task->task_stop_comp);
1892 pr_debug("Task %p stopped successfully\n", task);
1893
1894 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1895 atomic_dec(&cmd->t_task_cdbs_left);
1896 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1897 was_active = true;
1898 }
1899
1900 return was_active;
1901 }
1902
transport_stop_tasks_for_cmd(struct se_cmd * cmd)1903 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1904 {
1905 struct se_task *task, *task_tmp;
1906 unsigned long flags;
1907 int ret = 0;
1908
1909 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1910 cmd->se_tfo->get_task_tag(cmd));
1911
1912 /*
1913 * No tasks remain in the execution queue
1914 */
1915 spin_lock_irqsave(&cmd->t_state_lock, flags);
1916 list_for_each_entry_safe(task, task_tmp,
1917 &cmd->t_task_list, t_list) {
1918 pr_debug("Processing task %p\n", task);
1919 /*
1920 * If the struct se_task has not been sent and is not active,
1921 * remove the struct se_task from the execution queue.
1922 */
1923 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1924 spin_unlock_irqrestore(&cmd->t_state_lock,
1925 flags);
1926 transport_remove_task_from_execute_queue(task,
1927 cmd->se_dev);
1928
1929 pr_debug("Task %p removed from execute queue\n", task);
1930 spin_lock_irqsave(&cmd->t_state_lock, flags);
1931 continue;
1932 }
1933
1934 if (!target_stop_task(task, &flags)) {
1935 pr_debug("Task %p - did nothing\n", task);
1936 ret++;
1937 }
1938 }
1939 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1940
1941 return ret;
1942 }
1943
1944 /*
1945 * Handle SAM-esque emulation for generic transport request failures.
1946 */
transport_generic_request_failure(struct se_cmd * cmd)1947 void transport_generic_request_failure(struct se_cmd *cmd)
1948 {
1949 int ret = 0;
1950
1951 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1952 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1953 cmd->t_task_cdb[0]);
1954 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1955 cmd->se_tfo->get_cmd_state(cmd),
1956 cmd->t_state, cmd->scsi_sense_reason);
1957 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1958 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1959 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1960 cmd->t_task_list_num,
1961 atomic_read(&cmd->t_task_cdbs_left),
1962 atomic_read(&cmd->t_task_cdbs_sent),
1963 atomic_read(&cmd->t_task_cdbs_ex_left),
1964 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1965 (cmd->transport_state & CMD_T_STOP) != 0,
1966 (cmd->transport_state & CMD_T_SENT) != 0);
1967
1968 /*
1969 * For SAM Task Attribute emulation for failed struct se_cmd
1970 */
1971 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1972 transport_complete_task_attr(cmd);
1973
1974 switch (cmd->scsi_sense_reason) {
1975 case TCM_NON_EXISTENT_LUN:
1976 case TCM_UNSUPPORTED_SCSI_OPCODE:
1977 case TCM_INVALID_CDB_FIELD:
1978 case TCM_INVALID_PARAMETER_LIST:
1979 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1980 case TCM_UNKNOWN_MODE_PAGE:
1981 case TCM_WRITE_PROTECTED:
1982 case TCM_ADDRESS_OUT_OF_RANGE:
1983 case TCM_CHECK_CONDITION_ABORT_CMD:
1984 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1985 case TCM_CHECK_CONDITION_NOT_READY:
1986 break;
1987 case TCM_RESERVATION_CONFLICT:
1988 /*
1989 * No SENSE Data payload for this case, set SCSI Status
1990 * and queue the response to $FABRIC_MOD.
1991 *
1992 * Uses linux/include/scsi/scsi.h SAM status codes defs
1993 */
1994 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1995 /*
1996 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1997 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1998 * CONFLICT STATUS.
1999 *
2000 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2001 */
2002 if (cmd->se_sess &&
2003 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2004 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2005 cmd->orig_fe_lun, 0x2C,
2006 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2007
2008 ret = cmd->se_tfo->queue_status(cmd);
2009 if (ret == -EAGAIN || ret == -ENOMEM)
2010 goto queue_full;
2011 goto check_stop;
2012 default:
2013 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2014 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2015 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2016 break;
2017 }
2018 /*
2019 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2020 * make the call to transport_send_check_condition_and_sense()
2021 * directly. Otherwise expect the fabric to make the call to
2022 * transport_send_check_condition_and_sense() after handling
2023 * possible unsoliticied write data payloads.
2024 */
2025 ret = transport_send_check_condition_and_sense(cmd,
2026 cmd->scsi_sense_reason, 0);
2027 if (ret == -EAGAIN || ret == -ENOMEM)
2028 goto queue_full;
2029
2030 check_stop:
2031 transport_lun_remove_cmd(cmd);
2032 if (!transport_cmd_check_stop_to_fabric(cmd))
2033 ;
2034 return;
2035
2036 queue_full:
2037 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2038 transport_handle_queue_full(cmd, cmd->se_dev);
2039 }
2040 EXPORT_SYMBOL(transport_generic_request_failure);
2041
transport_lba_21(unsigned char * cdb)2042 static inline u32 transport_lba_21(unsigned char *cdb)
2043 {
2044 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2045 }
2046
transport_lba_32(unsigned char * cdb)2047 static inline u32 transport_lba_32(unsigned char *cdb)
2048 {
2049 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2050 }
2051
transport_lba_64(unsigned char * cdb)2052 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2053 {
2054 unsigned int __v1, __v2;
2055
2056 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2057 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2058
2059 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2060 }
2061
2062 /*
2063 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2064 */
transport_lba_64_ext(unsigned char * cdb)2065 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2066 {
2067 unsigned int __v1, __v2;
2068
2069 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2070 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2071
2072 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2073 }
2074
transport_set_supported_SAM_opcode(struct se_cmd * se_cmd)2075 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2076 {
2077 unsigned long flags;
2078
2079 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2080 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2081 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2082 }
2083
2084 /*
2085 * Called from Fabric Module context from transport_execute_tasks()
2086 *
2087 * The return of this function determins if the tasks from struct se_cmd
2088 * get added to the execution queue in transport_execute_tasks(),
2089 * or are added to the delayed or ordered lists here.
2090 */
transport_execute_task_attr(struct se_cmd * cmd)2091 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2092 {
2093 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2094 return 1;
2095 /*
2096 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2097 * to allow the passed struct se_cmd list of tasks to the front of the list.
2098 */
2099 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2100 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2101 " 0x%02x, se_ordered_id: %u\n",
2102 cmd->t_task_cdb[0],
2103 cmd->se_ordered_id);
2104 return 1;
2105 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2106 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2107 smp_mb__after_atomic_inc();
2108
2109 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2110 " list, se_ordered_id: %u\n",
2111 cmd->t_task_cdb[0],
2112 cmd->se_ordered_id);
2113 /*
2114 * Add ORDERED command to tail of execution queue if
2115 * no other older commands exist that need to be
2116 * completed first.
2117 */
2118 if (!atomic_read(&cmd->se_dev->simple_cmds))
2119 return 1;
2120 } else {
2121 /*
2122 * For SIMPLE and UNTAGGED Task Attribute commands
2123 */
2124 atomic_inc(&cmd->se_dev->simple_cmds);
2125 smp_mb__after_atomic_inc();
2126 }
2127 /*
2128 * Otherwise if one or more outstanding ORDERED task attribute exist,
2129 * add the dormant task(s) built for the passed struct se_cmd to the
2130 * execution queue and become in Active state for this struct se_device.
2131 */
2132 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2133 /*
2134 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2135 * will be drained upon completion of HEAD_OF_QUEUE task.
2136 */
2137 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2138 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2139 list_add_tail(&cmd->se_delayed_node,
2140 &cmd->se_dev->delayed_cmd_list);
2141 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2142
2143 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2144 " delayed CMD list, se_ordered_id: %u\n",
2145 cmd->t_task_cdb[0], cmd->sam_task_attr,
2146 cmd->se_ordered_id);
2147 /*
2148 * Return zero to let transport_execute_tasks() know
2149 * not to add the delayed tasks to the execution list.
2150 */
2151 return 0;
2152 }
2153 /*
2154 * Otherwise, no ORDERED task attributes exist..
2155 */
2156 return 1;
2157 }
2158
2159 /*
2160 * Called from fabric module context in transport_generic_new_cmd() and
2161 * transport_generic_process_write()
2162 */
transport_execute_tasks(struct se_cmd * cmd)2163 static int transport_execute_tasks(struct se_cmd *cmd)
2164 {
2165 int add_tasks;
2166 struct se_device *se_dev = cmd->se_dev;
2167 /*
2168 * Call transport_cmd_check_stop() to see if a fabric exception
2169 * has occurred that prevents execution.
2170 */
2171 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2172 /*
2173 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2174 * attribute for the tasks of the received struct se_cmd CDB
2175 */
2176 add_tasks = transport_execute_task_attr(cmd);
2177 if (!add_tasks)
2178 goto execute_tasks;
2179 /*
2180 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2181 * adds associated se_tasks while holding dev->execute_task_lock
2182 * before I/O dispath to avoid a double spinlock access.
2183 */
2184 __transport_execute_tasks(se_dev, cmd);
2185 return 0;
2186 }
2187
2188 execute_tasks:
2189 __transport_execute_tasks(se_dev, NULL);
2190 return 0;
2191 }
2192
2193 /*
2194 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2195 * from struct se_device->execute_task_list and
2196 *
2197 * Called from transport_processing_thread()
2198 */
__transport_execute_tasks(struct se_device * dev,struct se_cmd * new_cmd)2199 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2200 {
2201 int error;
2202 struct se_cmd *cmd = NULL;
2203 struct se_task *task = NULL;
2204 unsigned long flags;
2205
2206 check_depth:
2207 spin_lock_irq(&dev->execute_task_lock);
2208 if (new_cmd != NULL)
2209 __transport_add_tasks_from_cmd(new_cmd);
2210
2211 if (list_empty(&dev->execute_task_list)) {
2212 spin_unlock_irq(&dev->execute_task_lock);
2213 return 0;
2214 }
2215 task = list_first_entry(&dev->execute_task_list,
2216 struct se_task, t_execute_list);
2217 __transport_remove_task_from_execute_queue(task, dev);
2218 spin_unlock_irq(&dev->execute_task_lock);
2219
2220 cmd = task->task_se_cmd;
2221 spin_lock_irqsave(&cmd->t_state_lock, flags);
2222 task->task_flags |= (TF_ACTIVE | TF_SENT);
2223 atomic_inc(&cmd->t_task_cdbs_sent);
2224
2225 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2226 cmd->t_task_list_num)
2227 cmd->transport_state |= CMD_T_SENT;
2228
2229 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2230
2231 if (cmd->execute_task)
2232 error = cmd->execute_task(task);
2233 else
2234 error = dev->transport->do_task(task);
2235 if (error != 0) {
2236 spin_lock_irqsave(&cmd->t_state_lock, flags);
2237 task->task_flags &= ~TF_ACTIVE;
2238 cmd->transport_state &= ~CMD_T_SENT;
2239 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2240
2241 transport_stop_tasks_for_cmd(cmd);
2242 transport_generic_request_failure(cmd);
2243 }
2244
2245 new_cmd = NULL;
2246 goto check_depth;
2247
2248 return 0;
2249 }
2250
transport_get_sectors_6(unsigned char * cdb,struct se_cmd * cmd,int * ret)2251 static inline u32 transport_get_sectors_6(
2252 unsigned char *cdb,
2253 struct se_cmd *cmd,
2254 int *ret)
2255 {
2256 struct se_device *dev = cmd->se_dev;
2257
2258 /*
2259 * Assume TYPE_DISK for non struct se_device objects.
2260 * Use 8-bit sector value.
2261 */
2262 if (!dev)
2263 goto type_disk;
2264
2265 /*
2266 * Use 24-bit allocation length for TYPE_TAPE.
2267 */
2268 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2269 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2270
2271 /*
2272 * Everything else assume TYPE_DISK Sector CDB location.
2273 * Use 8-bit sector value. SBC-3 says:
2274 *
2275 * A TRANSFER LENGTH field set to zero specifies that 256
2276 * logical blocks shall be written. Any other value
2277 * specifies the number of logical blocks that shall be
2278 * written.
2279 */
2280 type_disk:
2281 return cdb[4] ? : 256;
2282 }
2283
transport_get_sectors_10(unsigned char * cdb,struct se_cmd * cmd,int * ret)2284 static inline u32 transport_get_sectors_10(
2285 unsigned char *cdb,
2286 struct se_cmd *cmd,
2287 int *ret)
2288 {
2289 struct se_device *dev = cmd->se_dev;
2290
2291 /*
2292 * Assume TYPE_DISK for non struct se_device objects.
2293 * Use 16-bit sector value.
2294 */
2295 if (!dev)
2296 goto type_disk;
2297
2298 /*
2299 * XXX_10 is not defined in SSC, throw an exception
2300 */
2301 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2302 *ret = -EINVAL;
2303 return 0;
2304 }
2305
2306 /*
2307 * Everything else assume TYPE_DISK Sector CDB location.
2308 * Use 16-bit sector value.
2309 */
2310 type_disk:
2311 return (u32)(cdb[7] << 8) + cdb[8];
2312 }
2313
transport_get_sectors_12(unsigned char * cdb,struct se_cmd * cmd,int * ret)2314 static inline u32 transport_get_sectors_12(
2315 unsigned char *cdb,
2316 struct se_cmd *cmd,
2317 int *ret)
2318 {
2319 struct se_device *dev = cmd->se_dev;
2320
2321 /*
2322 * Assume TYPE_DISK for non struct se_device objects.
2323 * Use 32-bit sector value.
2324 */
2325 if (!dev)
2326 goto type_disk;
2327
2328 /*
2329 * XXX_12 is not defined in SSC, throw an exception
2330 */
2331 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2332 *ret = -EINVAL;
2333 return 0;
2334 }
2335
2336 /*
2337 * Everything else assume TYPE_DISK Sector CDB location.
2338 * Use 32-bit sector value.
2339 */
2340 type_disk:
2341 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2342 }
2343
transport_get_sectors_16(unsigned char * cdb,struct se_cmd * cmd,int * ret)2344 static inline u32 transport_get_sectors_16(
2345 unsigned char *cdb,
2346 struct se_cmd *cmd,
2347 int *ret)
2348 {
2349 struct se_device *dev = cmd->se_dev;
2350
2351 /*
2352 * Assume TYPE_DISK for non struct se_device objects.
2353 * Use 32-bit sector value.
2354 */
2355 if (!dev)
2356 goto type_disk;
2357
2358 /*
2359 * Use 24-bit allocation length for TYPE_TAPE.
2360 */
2361 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2362 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2363
2364 type_disk:
2365 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2366 (cdb[12] << 8) + cdb[13];
2367 }
2368
2369 /*
2370 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2371 */
transport_get_sectors_32(unsigned char * cdb,struct se_cmd * cmd,int * ret)2372 static inline u32 transport_get_sectors_32(
2373 unsigned char *cdb,
2374 struct se_cmd *cmd,
2375 int *ret)
2376 {
2377 /*
2378 * Assume TYPE_DISK for non struct se_device objects.
2379 * Use 32-bit sector value.
2380 */
2381 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2382 (cdb[30] << 8) + cdb[31];
2383
2384 }
2385
transport_get_size(u32 sectors,unsigned char * cdb,struct se_cmd * cmd)2386 static inline u32 transport_get_size(
2387 u32 sectors,
2388 unsigned char *cdb,
2389 struct se_cmd *cmd)
2390 {
2391 struct se_device *dev = cmd->se_dev;
2392
2393 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2394 if (cdb[1] & 1) { /* sectors */
2395 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2396 } else /* bytes */
2397 return sectors;
2398 }
2399 #if 0
2400 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2401 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2402 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2403 dev->transport->name);
2404 #endif
2405 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2406 }
2407
transport_xor_callback(struct se_cmd * cmd)2408 static void transport_xor_callback(struct se_cmd *cmd)
2409 {
2410 unsigned char *buf, *addr;
2411 struct scatterlist *sg;
2412 unsigned int offset;
2413 int i;
2414 int count;
2415 /*
2416 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2417 *
2418 * 1) read the specified logical block(s);
2419 * 2) transfer logical blocks from the data-out buffer;
2420 * 3) XOR the logical blocks transferred from the data-out buffer with
2421 * the logical blocks read, storing the resulting XOR data in a buffer;
2422 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2423 * blocks transferred from the data-out buffer; and
2424 * 5) transfer the resulting XOR data to the data-in buffer.
2425 */
2426 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2427 if (!buf) {
2428 pr_err("Unable to allocate xor_callback buf\n");
2429 return;
2430 }
2431 /*
2432 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2433 * into the locally allocated *buf
2434 */
2435 sg_copy_to_buffer(cmd->t_data_sg,
2436 cmd->t_data_nents,
2437 buf,
2438 cmd->data_length);
2439
2440 /*
2441 * Now perform the XOR against the BIDI read memory located at
2442 * cmd->t_mem_bidi_list
2443 */
2444
2445 offset = 0;
2446 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2447 addr = kmap_atomic(sg_page(sg));
2448 if (!addr)
2449 goto out;
2450
2451 for (i = 0; i < sg->length; i++)
2452 *(addr + sg->offset + i) ^= *(buf + offset + i);
2453
2454 offset += sg->length;
2455 kunmap_atomic(addr);
2456 }
2457
2458 out:
2459 kfree(buf);
2460 }
2461
2462 /*
2463 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2464 */
transport_get_sense_data(struct se_cmd * cmd)2465 static int transport_get_sense_data(struct se_cmd *cmd)
2466 {
2467 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2468 struct se_device *dev = cmd->se_dev;
2469 struct se_task *task = NULL, *task_tmp;
2470 unsigned long flags;
2471 u32 offset = 0;
2472
2473 WARN_ON(!cmd->se_lun);
2474
2475 if (!dev)
2476 return 0;
2477
2478 spin_lock_irqsave(&cmd->t_state_lock, flags);
2479 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2481 return 0;
2482 }
2483
2484 list_for_each_entry_safe(task, task_tmp,
2485 &cmd->t_task_list, t_list) {
2486 if (!(task->task_flags & TF_HAS_SENSE))
2487 continue;
2488
2489 if (!dev->transport->get_sense_buffer) {
2490 pr_err("dev->transport->get_sense_buffer"
2491 " is NULL\n");
2492 continue;
2493 }
2494
2495 sense_buffer = dev->transport->get_sense_buffer(task);
2496 if (!sense_buffer) {
2497 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2498 " sense buffer for task with sense\n",
2499 cmd->se_tfo->get_task_tag(cmd), task);
2500 continue;
2501 }
2502 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2503
2504 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2505 TRANSPORT_SENSE_BUFFER);
2506
2507 memcpy(&buffer[offset], sense_buffer,
2508 TRANSPORT_SENSE_BUFFER);
2509 cmd->scsi_status = task->task_scsi_status;
2510 /* Automatically padded */
2511 cmd->scsi_sense_length =
2512 (TRANSPORT_SENSE_BUFFER + offset);
2513
2514 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2515 " and sense\n",
2516 dev->se_hba->hba_id, dev->transport->name,
2517 cmd->scsi_status);
2518 return 0;
2519 }
2520 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2521
2522 return -1;
2523 }
2524
transport_dev_end_lba(struct se_device * dev)2525 static inline long long transport_dev_end_lba(struct se_device *dev)
2526 {
2527 return dev->transport->get_blocks(dev) + 1;
2528 }
2529
transport_cmd_get_valid_sectors(struct se_cmd * cmd)2530 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2531 {
2532 struct se_device *dev = cmd->se_dev;
2533 u32 sectors;
2534
2535 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2536 return 0;
2537
2538 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2539
2540 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2541 pr_err("LBA: %llu Sectors: %u exceeds"
2542 " transport_dev_end_lba(): %llu\n",
2543 cmd->t_task_lba, sectors,
2544 transport_dev_end_lba(dev));
2545 return -EINVAL;
2546 }
2547
2548 return 0;
2549 }
2550
target_check_write_same_discard(unsigned char * flags,struct se_device * dev)2551 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2552 {
2553 /*
2554 * Determine if the received WRITE_SAME is used to for direct
2555 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2556 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2557 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2558 */
2559 int passthrough = (dev->transport->transport_type ==
2560 TRANSPORT_PLUGIN_PHBA_PDEV);
2561
2562 if (!passthrough) {
2563 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2564 pr_err("WRITE_SAME PBDATA and LBDATA"
2565 " bits not supported for Block Discard"
2566 " Emulation\n");
2567 return -ENOSYS;
2568 }
2569 /*
2570 * Currently for the emulated case we only accept
2571 * tpws with the UNMAP=1 bit set.
2572 */
2573 if (!(flags[0] & 0x08)) {
2574 pr_err("WRITE_SAME w/o UNMAP bit not"
2575 " supported for Block Discard Emulation\n");
2576 return -ENOSYS;
2577 }
2578 }
2579
2580 return 0;
2581 }
2582
2583 /* transport_generic_cmd_sequencer():
2584 *
2585 * Generic Command Sequencer that should work for most DAS transport
2586 * drivers.
2587 *
2588 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2589 * RX Thread.
2590 *
2591 * FIXME: Need to support other SCSI OPCODES where as well.
2592 */
transport_generic_cmd_sequencer(struct se_cmd * cmd,unsigned char * cdb)2593 static int transport_generic_cmd_sequencer(
2594 struct se_cmd *cmd,
2595 unsigned char *cdb)
2596 {
2597 struct se_device *dev = cmd->se_dev;
2598 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2599 int ret = 0, sector_ret = 0, passthrough;
2600 u32 sectors = 0, size = 0, pr_reg_type = 0;
2601 u16 service_action;
2602 u8 alua_ascq = 0;
2603 /*
2604 * Check for an existing UNIT ATTENTION condition
2605 */
2606 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2607 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2608 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2609 return -EINVAL;
2610 }
2611 /*
2612 * Check status of Asymmetric Logical Unit Assignment port
2613 */
2614 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2615 if (ret != 0) {
2616 /*
2617 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2618 * The ALUA additional sense code qualifier (ASCQ) is determined
2619 * by the ALUA primary or secondary access state..
2620 */
2621 if (ret > 0) {
2622 #if 0
2623 pr_debug("[%s]: ALUA TG Port not available,"
2624 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2625 cmd->se_tfo->get_fabric_name(), alua_ascq);
2626 #endif
2627 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2628 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2629 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2630 return -EINVAL;
2631 }
2632 goto out_invalid_cdb_field;
2633 }
2634 /*
2635 * Check status for SPC-3 Persistent Reservations
2636 */
2637 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2638 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2639 cmd, cdb, pr_reg_type) != 0) {
2640 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2641 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2642 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2643 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2644 return -EBUSY;
2645 }
2646 /*
2647 * This means the CDB is allowed for the SCSI Initiator port
2648 * when said port is *NOT* holding the legacy SPC-2 or
2649 * SPC-3 Persistent Reservation.
2650 */
2651 }
2652
2653 /*
2654 * If we operate in passthrough mode we skip most CDB emulation and
2655 * instead hand the commands down to the physical SCSI device.
2656 */
2657 passthrough =
2658 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2659
2660 switch (cdb[0]) {
2661 case READ_6:
2662 sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
2663 if (sector_ret)
2664 goto out_unsupported_cdb;
2665 size = transport_get_size(sectors, cdb, cmd);
2666 cmd->t_task_lba = transport_lba_21(cdb);
2667 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2668 break;
2669 case READ_10:
2670 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2671 if (sector_ret)
2672 goto out_unsupported_cdb;
2673 size = transport_get_size(sectors, cdb, cmd);
2674 cmd->t_task_lba = transport_lba_32(cdb);
2675 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2676 break;
2677 case READ_12:
2678 sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
2679 if (sector_ret)
2680 goto out_unsupported_cdb;
2681 size = transport_get_size(sectors, cdb, cmd);
2682 cmd->t_task_lba = transport_lba_32(cdb);
2683 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2684 break;
2685 case READ_16:
2686 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2687 if (sector_ret)
2688 goto out_unsupported_cdb;
2689 size = transport_get_size(sectors, cdb, cmd);
2690 cmd->t_task_lba = transport_lba_64(cdb);
2691 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2692 break;
2693 case WRITE_6:
2694 sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
2695 if (sector_ret)
2696 goto out_unsupported_cdb;
2697 size = transport_get_size(sectors, cdb, cmd);
2698 cmd->t_task_lba = transport_lba_21(cdb);
2699 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2700 break;
2701 case WRITE_10:
2702 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2703 if (sector_ret)
2704 goto out_unsupported_cdb;
2705 size = transport_get_size(sectors, cdb, cmd);
2706 cmd->t_task_lba = transport_lba_32(cdb);
2707 if (cdb[1] & 0x8)
2708 cmd->se_cmd_flags |= SCF_FUA;
2709 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2710 break;
2711 case WRITE_12:
2712 sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
2713 if (sector_ret)
2714 goto out_unsupported_cdb;
2715 size = transport_get_size(sectors, cdb, cmd);
2716 cmd->t_task_lba = transport_lba_32(cdb);
2717 if (cdb[1] & 0x8)
2718 cmd->se_cmd_flags |= SCF_FUA;
2719 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2720 break;
2721 case WRITE_16:
2722 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2723 if (sector_ret)
2724 goto out_unsupported_cdb;
2725 size = transport_get_size(sectors, cdb, cmd);
2726 cmd->t_task_lba = transport_lba_64(cdb);
2727 if (cdb[1] & 0x8)
2728 cmd->se_cmd_flags |= SCF_FUA;
2729 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2730 break;
2731 case XDWRITEREAD_10:
2732 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2733 !(cmd->se_cmd_flags & SCF_BIDI))
2734 goto out_invalid_cdb_field;
2735 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2736 if (sector_ret)
2737 goto out_unsupported_cdb;
2738 size = transport_get_size(sectors, cdb, cmd);
2739 cmd->t_task_lba = transport_lba_32(cdb);
2740 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2741
2742 /*
2743 * Do now allow BIDI commands for passthrough mode.
2744 */
2745 if (passthrough)
2746 goto out_unsupported_cdb;
2747
2748 /*
2749 * Setup BIDI XOR callback to be run after I/O completion.
2750 */
2751 cmd->transport_complete_callback = &transport_xor_callback;
2752 if (cdb[1] & 0x8)
2753 cmd->se_cmd_flags |= SCF_FUA;
2754 break;
2755 case VARIABLE_LENGTH_CMD:
2756 service_action = get_unaligned_be16(&cdb[8]);
2757 switch (service_action) {
2758 case XDWRITEREAD_32:
2759 sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
2760 if (sector_ret)
2761 goto out_unsupported_cdb;
2762 size = transport_get_size(sectors, cdb, cmd);
2763 /*
2764 * Use WRITE_32 and READ_32 opcodes for the emulated
2765 * XDWRITE_READ_32 logic.
2766 */
2767 cmd->t_task_lba = transport_lba_64_ext(cdb);
2768 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2769
2770 /*
2771 * Do now allow BIDI commands for passthrough mode.
2772 */
2773 if (passthrough)
2774 goto out_unsupported_cdb;
2775
2776 /*
2777 * Setup BIDI XOR callback to be run during after I/O
2778 * completion.
2779 */
2780 cmd->transport_complete_callback = &transport_xor_callback;
2781 if (cdb[1] & 0x8)
2782 cmd->se_cmd_flags |= SCF_FUA;
2783 break;
2784 case WRITE_SAME_32:
2785 sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
2786 if (sector_ret)
2787 goto out_unsupported_cdb;
2788
2789 if (sectors)
2790 size = transport_get_size(1, cdb, cmd);
2791 else {
2792 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2793 " supported\n");
2794 goto out_invalid_cdb_field;
2795 }
2796
2797 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2798 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2799
2800 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2801 goto out_unsupported_cdb;
2802 if (!passthrough)
2803 cmd->execute_task = target_emulate_write_same;
2804 break;
2805 default:
2806 pr_err("VARIABLE_LENGTH_CMD service action"
2807 " 0x%04x not supported\n", service_action);
2808 goto out_unsupported_cdb;
2809 }
2810 break;
2811 case MAINTENANCE_IN:
2812 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2813 /* MAINTENANCE_IN from SCC-2 */
2814 /*
2815 * Check for emulated MI_REPORT_TARGET_PGS.
2816 */
2817 if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS &&
2818 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2819 cmd->execute_task =
2820 target_emulate_report_target_port_groups;
2821 }
2822 size = (cdb[6] << 24) | (cdb[7] << 16) |
2823 (cdb[8] << 8) | cdb[9];
2824 } else {
2825 /* GPCMD_SEND_KEY from multi media commands */
2826 size = (cdb[8] << 8) + cdb[9];
2827 }
2828 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829 break;
2830 case MODE_SELECT:
2831 size = cdb[4];
2832 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833 break;
2834 case MODE_SELECT_10:
2835 size = (cdb[7] << 8) + cdb[8];
2836 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837 break;
2838 case MODE_SENSE:
2839 size = cdb[4];
2840 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841 if (!passthrough)
2842 cmd->execute_task = target_emulate_modesense;
2843 break;
2844 case MODE_SENSE_10:
2845 size = (cdb[7] << 8) + cdb[8];
2846 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2847 if (!passthrough)
2848 cmd->execute_task = target_emulate_modesense;
2849 break;
2850 case GPCMD_READ_BUFFER_CAPACITY:
2851 case GPCMD_SEND_OPC:
2852 case LOG_SELECT:
2853 case LOG_SENSE:
2854 size = (cdb[7] << 8) + cdb[8];
2855 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2856 break;
2857 case READ_BLOCK_LIMITS:
2858 size = READ_BLOCK_LEN;
2859 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860 break;
2861 case GPCMD_GET_CONFIGURATION:
2862 case GPCMD_READ_FORMAT_CAPACITIES:
2863 case GPCMD_READ_DISC_INFO:
2864 case GPCMD_READ_TRACK_RZONE_INFO:
2865 size = (cdb[7] << 8) + cdb[8];
2866 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2867 break;
2868 case PERSISTENT_RESERVE_IN:
2869 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2870 cmd->execute_task = target_scsi3_emulate_pr_in;
2871 size = (cdb[7] << 8) + cdb[8];
2872 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873 break;
2874 case PERSISTENT_RESERVE_OUT:
2875 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2876 cmd->execute_task = target_scsi3_emulate_pr_out;
2877 size = (cdb[7] << 8) + cdb[8];
2878 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879 break;
2880 case GPCMD_MECHANISM_STATUS:
2881 case GPCMD_READ_DVD_STRUCTURE:
2882 size = (cdb[8] << 8) + cdb[9];
2883 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884 break;
2885 case READ_POSITION:
2886 size = READ_POSITION_LEN;
2887 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2888 break;
2889 case MAINTENANCE_OUT:
2890 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2891 /* MAINTENANCE_OUT from SCC-2
2892 *
2893 * Check for emulated MO_SET_TARGET_PGS.
2894 */
2895 if (cdb[1] == MO_SET_TARGET_PGS &&
2896 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2897 cmd->execute_task =
2898 target_emulate_set_target_port_groups;
2899 }
2900
2901 size = (cdb[6] << 24) | (cdb[7] << 16) |
2902 (cdb[8] << 8) | cdb[9];
2903 } else {
2904 /* GPCMD_REPORT_KEY from multi media commands */
2905 size = (cdb[8] << 8) + cdb[9];
2906 }
2907 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2908 break;
2909 case INQUIRY:
2910 size = (cdb[3] << 8) + cdb[4];
2911 /*
2912 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2913 * See spc4r17 section 5.3
2914 */
2915 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2916 cmd->sam_task_attr = MSG_HEAD_TAG;
2917 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2918 if (!passthrough)
2919 cmd->execute_task = target_emulate_inquiry;
2920 break;
2921 case READ_BUFFER:
2922 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2923 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2924 break;
2925 case READ_CAPACITY:
2926 size = READ_CAP_LEN;
2927 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2928 if (!passthrough)
2929 cmd->execute_task = target_emulate_readcapacity;
2930 break;
2931 case READ_MEDIA_SERIAL_NUMBER:
2932 case SECURITY_PROTOCOL_IN:
2933 case SECURITY_PROTOCOL_OUT:
2934 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2935 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2936 break;
2937 case SERVICE_ACTION_IN:
2938 switch (cmd->t_task_cdb[1] & 0x1f) {
2939 case SAI_READ_CAPACITY_16:
2940 if (!passthrough)
2941 cmd->execute_task =
2942 target_emulate_readcapacity_16;
2943 break;
2944 default:
2945 if (passthrough)
2946 break;
2947
2948 pr_err("Unsupported SA: 0x%02x\n",
2949 cmd->t_task_cdb[1] & 0x1f);
2950 goto out_invalid_cdb_field;
2951 }
2952 /*FALLTHROUGH*/
2953 case ACCESS_CONTROL_IN:
2954 case ACCESS_CONTROL_OUT:
2955 case EXTENDED_COPY:
2956 case READ_ATTRIBUTE:
2957 case RECEIVE_COPY_RESULTS:
2958 case WRITE_ATTRIBUTE:
2959 size = (cdb[10] << 24) | (cdb[11] << 16) |
2960 (cdb[12] << 8) | cdb[13];
2961 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2962 break;
2963 case RECEIVE_DIAGNOSTIC:
2964 case SEND_DIAGNOSTIC:
2965 size = (cdb[3] << 8) | cdb[4];
2966 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2967 break;
2968 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2969 #if 0
2970 case GPCMD_READ_CD:
2971 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2972 size = (2336 * sectors);
2973 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2974 break;
2975 #endif
2976 case READ_TOC:
2977 size = cdb[8];
2978 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2979 break;
2980 case REQUEST_SENSE:
2981 size = cdb[4];
2982 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2983 if (!passthrough)
2984 cmd->execute_task = target_emulate_request_sense;
2985 break;
2986 case READ_ELEMENT_STATUS:
2987 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2988 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2989 break;
2990 case WRITE_BUFFER:
2991 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2992 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2993 break;
2994 case RESERVE:
2995 case RESERVE_10:
2996 /*
2997 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2998 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2999 */
3000 if (cdb[0] == RESERVE_10)
3001 size = (cdb[7] << 8) | cdb[8];
3002 else
3003 size = cmd->data_length;
3004
3005 /*
3006 * Setup the legacy emulated handler for SPC-2 and
3007 * >= SPC-3 compatible reservation handling (CRH=1)
3008 * Otherwise, we assume the underlying SCSI logic is
3009 * is running in SPC_PASSTHROUGH, and wants reservations
3010 * emulation disabled.
3011 */
3012 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3013 cmd->execute_task = target_scsi2_reservation_reserve;
3014 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3015 break;
3016 case RELEASE:
3017 case RELEASE_10:
3018 /*
3019 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3020 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3021 */
3022 if (cdb[0] == RELEASE_10)
3023 size = (cdb[7] << 8) | cdb[8];
3024 else
3025 size = cmd->data_length;
3026
3027 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3028 cmd->execute_task = target_scsi2_reservation_release;
3029 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3030 break;
3031 case SYNCHRONIZE_CACHE:
3032 case SYNCHRONIZE_CACHE_16:
3033 /*
3034 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3035 */
3036 if (cdb[0] == SYNCHRONIZE_CACHE) {
3037 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
3038 cmd->t_task_lba = transport_lba_32(cdb);
3039 } else {
3040 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
3041 cmd->t_task_lba = transport_lba_64(cdb);
3042 }
3043 if (sector_ret)
3044 goto out_unsupported_cdb;
3045
3046 size = transport_get_size(sectors, cdb, cmd);
3047 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3048
3049 if (passthrough)
3050 break;
3051
3052 /*
3053 * Check to ensure that LBA + Range does not exceed past end of
3054 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3055 */
3056 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3057 if (transport_cmd_get_valid_sectors(cmd) < 0)
3058 goto out_invalid_cdb_field;
3059 }
3060 cmd->execute_task = target_emulate_synchronize_cache;
3061 break;
3062 case UNMAP:
3063 size = get_unaligned_be16(&cdb[7]);
3064 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3065 if (!passthrough)
3066 cmd->execute_task = target_emulate_unmap;
3067 break;
3068 case WRITE_SAME_16:
3069 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
3070 if (sector_ret)
3071 goto out_unsupported_cdb;
3072
3073 if (sectors)
3074 size = transport_get_size(1, cdb, cmd);
3075 else {
3076 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3077 goto out_invalid_cdb_field;
3078 }
3079
3080 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3081 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3082
3083 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3084 goto out_unsupported_cdb;
3085 if (!passthrough)
3086 cmd->execute_task = target_emulate_write_same;
3087 break;
3088 case WRITE_SAME:
3089 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
3090 if (sector_ret)
3091 goto out_unsupported_cdb;
3092
3093 if (sectors)
3094 size = transport_get_size(1, cdb, cmd);
3095 else {
3096 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3097 goto out_invalid_cdb_field;
3098 }
3099
3100 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3101 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3102 /*
3103 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3104 * of byte 1 bit 3 UNMAP instead of original reserved field
3105 */
3106 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3107 goto out_unsupported_cdb;
3108 if (!passthrough)
3109 cmd->execute_task = target_emulate_write_same;
3110 break;
3111 case ALLOW_MEDIUM_REMOVAL:
3112 case ERASE:
3113 case REZERO_UNIT:
3114 case SEEK_10:
3115 case SPACE:
3116 case START_STOP:
3117 case TEST_UNIT_READY:
3118 case VERIFY:
3119 case WRITE_FILEMARKS:
3120 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3121 if (!passthrough)
3122 cmd->execute_task = target_emulate_noop;
3123 break;
3124 case GPCMD_CLOSE_TRACK:
3125 case INITIALIZE_ELEMENT_STATUS:
3126 case GPCMD_LOAD_UNLOAD:
3127 case GPCMD_SET_SPEED:
3128 case MOVE_MEDIUM:
3129 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3130 break;
3131 case REPORT_LUNS:
3132 cmd->execute_task = target_report_luns;
3133 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3134 /*
3135 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3136 * See spc4r17 section 5.3
3137 */
3138 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3139 cmd->sam_task_attr = MSG_HEAD_TAG;
3140 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3141 break;
3142 default:
3143 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3144 " 0x%02x, sending CHECK_CONDITION.\n",
3145 cmd->se_tfo->get_fabric_name(), cdb[0]);
3146 goto out_unsupported_cdb;
3147 }
3148
3149 if (size != cmd->data_length) {
3150 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3151 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3152 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3153 cmd->data_length, size, cdb[0]);
3154
3155 cmd->cmd_spdtl = size;
3156
3157 if (cmd->data_direction == DMA_TO_DEVICE) {
3158 pr_err("Rejecting underflow/overflow"
3159 " WRITE data\n");
3160 goto out_invalid_cdb_field;
3161 }
3162 /*
3163 * Reject READ_* or WRITE_* with overflow/underflow for
3164 * type SCF_SCSI_DATA_SG_IO_CDB.
3165 */
3166 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3167 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3168 " CDB on non 512-byte sector setup subsystem"
3169 " plugin: %s\n", dev->transport->name);
3170 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3171 goto out_invalid_cdb_field;
3172 }
3173 /*
3174 * For the overflow case keep the existing fabric provided
3175 * ->data_length. Otherwise for the underflow case, reset
3176 * ->data_length to the smaller SCSI expected data transfer
3177 * length.
3178 */
3179 if (size > cmd->data_length) {
3180 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3181 cmd->residual_count = (size - cmd->data_length);
3182 } else {
3183 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3184 cmd->residual_count = (cmd->data_length - size);
3185 cmd->data_length = size;
3186 }
3187 }
3188
3189 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3190 sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3191 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3192 cdb[0], sectors);
3193 goto out_invalid_cdb_field;
3194 }
3195
3196 /* reject any command that we don't have a handler for */
3197 if (!(passthrough || cmd->execute_task ||
3198 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3199 goto out_unsupported_cdb;
3200
3201 transport_set_supported_SAM_opcode(cmd);
3202 return ret;
3203
3204 out_unsupported_cdb:
3205 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3206 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3207 return -EINVAL;
3208 out_invalid_cdb_field:
3209 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3210 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3211 return -EINVAL;
3212 }
3213
3214 /*
3215 * Called from I/O completion to determine which dormant/delayed
3216 * and ordered cmds need to have their tasks added to the execution queue.
3217 */
transport_complete_task_attr(struct se_cmd * cmd)3218 static void transport_complete_task_attr(struct se_cmd *cmd)
3219 {
3220 struct se_device *dev = cmd->se_dev;
3221 struct se_cmd *cmd_p, *cmd_tmp;
3222 int new_active_tasks = 0;
3223
3224 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3225 atomic_dec(&dev->simple_cmds);
3226 smp_mb__after_atomic_dec();
3227 dev->dev_cur_ordered_id++;
3228 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3229 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3230 cmd->se_ordered_id);
3231 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3232 dev->dev_cur_ordered_id++;
3233 pr_debug("Incremented dev_cur_ordered_id: %u for"
3234 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3235 cmd->se_ordered_id);
3236 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3237 atomic_dec(&dev->dev_ordered_sync);
3238 smp_mb__after_atomic_dec();
3239
3240 dev->dev_cur_ordered_id++;
3241 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3242 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3243 }
3244 /*
3245 * Process all commands up to the last received
3246 * ORDERED task attribute which requires another blocking
3247 * boundary
3248 */
3249 spin_lock(&dev->delayed_cmd_lock);
3250 list_for_each_entry_safe(cmd_p, cmd_tmp,
3251 &dev->delayed_cmd_list, se_delayed_node) {
3252
3253 list_del(&cmd_p->se_delayed_node);
3254 spin_unlock(&dev->delayed_cmd_lock);
3255
3256 pr_debug("Calling add_tasks() for"
3257 " cmd_p: 0x%02x Task Attr: 0x%02x"
3258 " Dormant -> Active, se_ordered_id: %u\n",
3259 cmd_p->t_task_cdb[0],
3260 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3261
3262 transport_add_tasks_from_cmd(cmd_p);
3263 new_active_tasks++;
3264
3265 spin_lock(&dev->delayed_cmd_lock);
3266 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3267 break;
3268 }
3269 spin_unlock(&dev->delayed_cmd_lock);
3270 /*
3271 * If new tasks have become active, wake up the transport thread
3272 * to do the processing of the Active tasks.
3273 */
3274 if (new_active_tasks != 0)
3275 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3276 }
3277
transport_complete_qf(struct se_cmd * cmd)3278 static void transport_complete_qf(struct se_cmd *cmd)
3279 {
3280 int ret = 0;
3281
3282 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3283 transport_complete_task_attr(cmd);
3284
3285 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3286 ret = cmd->se_tfo->queue_status(cmd);
3287 if (ret)
3288 goto out;
3289 }
3290
3291 switch (cmd->data_direction) {
3292 case DMA_FROM_DEVICE:
3293 ret = cmd->se_tfo->queue_data_in(cmd);
3294 break;
3295 case DMA_TO_DEVICE:
3296 if (cmd->t_bidi_data_sg) {
3297 ret = cmd->se_tfo->queue_data_in(cmd);
3298 if (ret < 0)
3299 break;
3300 }
3301 /* Fall through for DMA_TO_DEVICE */
3302 case DMA_NONE:
3303 ret = cmd->se_tfo->queue_status(cmd);
3304 break;
3305 default:
3306 break;
3307 }
3308
3309 out:
3310 if (ret < 0) {
3311 transport_handle_queue_full(cmd, cmd->se_dev);
3312 return;
3313 }
3314 transport_lun_remove_cmd(cmd);
3315 transport_cmd_check_stop_to_fabric(cmd);
3316 }
3317
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)3318 static void transport_handle_queue_full(
3319 struct se_cmd *cmd,
3320 struct se_device *dev)
3321 {
3322 spin_lock_irq(&dev->qf_cmd_lock);
3323 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3324 atomic_inc(&dev->dev_qf_count);
3325 smp_mb__after_atomic_inc();
3326 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3327
3328 schedule_work(&cmd->se_dev->qf_work_queue);
3329 }
3330
target_complete_ok_work(struct work_struct * work)3331 static void target_complete_ok_work(struct work_struct *work)
3332 {
3333 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3334 int reason = 0, ret;
3335
3336 /*
3337 * Check if we need to move delayed/dormant tasks from cmds on the
3338 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3339 * Attribute.
3340 */
3341 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3342 transport_complete_task_attr(cmd);
3343 /*
3344 * Check to schedule QUEUE_FULL work, or execute an existing
3345 * cmd->transport_qf_callback()
3346 */
3347 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3348 schedule_work(&cmd->se_dev->qf_work_queue);
3349
3350 /*
3351 * Check if we need to retrieve a sense buffer from
3352 * the struct se_cmd in question.
3353 */
3354 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3355 if (transport_get_sense_data(cmd) < 0)
3356 reason = TCM_NON_EXISTENT_LUN;
3357
3358 /*
3359 * Only set when an struct se_task->task_scsi_status returned
3360 * a non GOOD status.
3361 */
3362 if (cmd->scsi_status) {
3363 ret = transport_send_check_condition_and_sense(
3364 cmd, reason, 1);
3365 if (ret == -EAGAIN || ret == -ENOMEM)
3366 goto queue_full;
3367
3368 transport_lun_remove_cmd(cmd);
3369 transport_cmd_check_stop_to_fabric(cmd);
3370 return;
3371 }
3372 }
3373 /*
3374 * Check for a callback, used by amongst other things
3375 * XDWRITE_READ_10 emulation.
3376 */
3377 if (cmd->transport_complete_callback)
3378 cmd->transport_complete_callback(cmd);
3379
3380 switch (cmd->data_direction) {
3381 case DMA_FROM_DEVICE:
3382 spin_lock(&cmd->se_lun->lun_sep_lock);
3383 if (cmd->se_lun->lun_sep) {
3384 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3385 cmd->data_length;
3386 }
3387 spin_unlock(&cmd->se_lun->lun_sep_lock);
3388
3389 ret = cmd->se_tfo->queue_data_in(cmd);
3390 if (ret == -EAGAIN || ret == -ENOMEM)
3391 goto queue_full;
3392 break;
3393 case DMA_TO_DEVICE:
3394 spin_lock(&cmd->se_lun->lun_sep_lock);
3395 if (cmd->se_lun->lun_sep) {
3396 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3397 cmd->data_length;
3398 }
3399 spin_unlock(&cmd->se_lun->lun_sep_lock);
3400 /*
3401 * Check if we need to send READ payload for BIDI-COMMAND
3402 */
3403 if (cmd->t_bidi_data_sg) {
3404 spin_lock(&cmd->se_lun->lun_sep_lock);
3405 if (cmd->se_lun->lun_sep) {
3406 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3407 cmd->data_length;
3408 }
3409 spin_unlock(&cmd->se_lun->lun_sep_lock);
3410 ret = cmd->se_tfo->queue_data_in(cmd);
3411 if (ret == -EAGAIN || ret == -ENOMEM)
3412 goto queue_full;
3413 break;
3414 }
3415 /* Fall through for DMA_TO_DEVICE */
3416 case DMA_NONE:
3417 ret = cmd->se_tfo->queue_status(cmd);
3418 if (ret == -EAGAIN || ret == -ENOMEM)
3419 goto queue_full;
3420 break;
3421 default:
3422 break;
3423 }
3424
3425 transport_lun_remove_cmd(cmd);
3426 transport_cmd_check_stop_to_fabric(cmd);
3427 return;
3428
3429 queue_full:
3430 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3431 " data_direction: %d\n", cmd, cmd->data_direction);
3432 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3433 transport_handle_queue_full(cmd, cmd->se_dev);
3434 }
3435
transport_free_dev_tasks(struct se_cmd * cmd)3436 static void transport_free_dev_tasks(struct se_cmd *cmd)
3437 {
3438 struct se_task *task, *task_tmp;
3439 unsigned long flags;
3440 LIST_HEAD(dispose_list);
3441
3442 spin_lock_irqsave(&cmd->t_state_lock, flags);
3443 list_for_each_entry_safe(task, task_tmp,
3444 &cmd->t_task_list, t_list) {
3445 if (!(task->task_flags & TF_ACTIVE))
3446 list_move_tail(&task->t_list, &dispose_list);
3447 }
3448 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3449
3450 while (!list_empty(&dispose_list)) {
3451 task = list_first_entry(&dispose_list, struct se_task, t_list);
3452
3453 if (task->task_sg != cmd->t_data_sg &&
3454 task->task_sg != cmd->t_bidi_data_sg)
3455 kfree(task->task_sg);
3456
3457 list_del(&task->t_list);
3458
3459 cmd->se_dev->transport->free_task(task);
3460 }
3461 }
3462
transport_free_sgl(struct scatterlist * sgl,int nents)3463 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3464 {
3465 struct scatterlist *sg;
3466 int count;
3467
3468 for_each_sg(sgl, sg, nents, count)
3469 __free_page(sg_page(sg));
3470
3471 kfree(sgl);
3472 }
3473
transport_free_pages(struct se_cmd * cmd)3474 static inline void transport_free_pages(struct se_cmd *cmd)
3475 {
3476 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3477 return;
3478
3479 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3480 cmd->t_data_sg = NULL;
3481 cmd->t_data_nents = 0;
3482
3483 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3484 cmd->t_bidi_data_sg = NULL;
3485 cmd->t_bidi_data_nents = 0;
3486 }
3487
3488 /**
3489 * transport_release_cmd - free a command
3490 * @cmd: command to free
3491 *
3492 * This routine unconditionally frees a command, and reference counting
3493 * or list removal must be done in the caller.
3494 */
transport_release_cmd(struct se_cmd * cmd)3495 static void transport_release_cmd(struct se_cmd *cmd)
3496 {
3497 BUG_ON(!cmd->se_tfo);
3498
3499 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3500 core_tmr_release_req(cmd->se_tmr_req);
3501 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3502 kfree(cmd->t_task_cdb);
3503 /*
3504 * If this cmd has been setup with target_get_sess_cmd(), drop
3505 * the kref and call ->release_cmd() in kref callback.
3506 */
3507 if (cmd->check_release != 0) {
3508 target_put_sess_cmd(cmd->se_sess, cmd);
3509 return;
3510 }
3511 cmd->se_tfo->release_cmd(cmd);
3512 }
3513
3514 /**
3515 * transport_put_cmd - release a reference to a command
3516 * @cmd: command to release
3517 *
3518 * This routine releases our reference to the command and frees it if possible.
3519 */
transport_put_cmd(struct se_cmd * cmd)3520 static void transport_put_cmd(struct se_cmd *cmd)
3521 {
3522 unsigned long flags;
3523 int free_tasks = 0;
3524
3525 spin_lock_irqsave(&cmd->t_state_lock, flags);
3526 if (atomic_read(&cmd->t_fe_count)) {
3527 if (!atomic_dec_and_test(&cmd->t_fe_count))
3528 goto out_busy;
3529 }
3530
3531 if (atomic_read(&cmd->t_se_count)) {
3532 if (!atomic_dec_and_test(&cmd->t_se_count))
3533 goto out_busy;
3534 }
3535
3536 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3537 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3538 transport_all_task_dev_remove_state(cmd);
3539 free_tasks = 1;
3540 }
3541 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3542
3543 if (free_tasks != 0)
3544 transport_free_dev_tasks(cmd);
3545
3546 transport_free_pages(cmd);
3547 transport_release_cmd(cmd);
3548 return;
3549 out_busy:
3550 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3551 }
3552
3553 /*
3554 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3555 * allocating in the core.
3556 * @cmd: Associated se_cmd descriptor
3557 * @mem: SGL style memory for TCM WRITE / READ
3558 * @sg_mem_num: Number of SGL elements
3559 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3560 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3561 *
3562 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3563 * of parameters.
3564 */
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)3565 int transport_generic_map_mem_to_cmd(
3566 struct se_cmd *cmd,
3567 struct scatterlist *sgl,
3568 u32 sgl_count,
3569 struct scatterlist *sgl_bidi,
3570 u32 sgl_bidi_count)
3571 {
3572 if (!sgl || !sgl_count)
3573 return 0;
3574
3575 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3576 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3577 /*
3578 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3579 * scatterlists already have been set to follow what the fabric
3580 * passes for the original expected data transfer length.
3581 */
3582 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3583 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3584 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3585 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3586 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3587 return -EINVAL;
3588 }
3589
3590 cmd->t_data_sg = sgl;
3591 cmd->t_data_nents = sgl_count;
3592
3593 if (sgl_bidi && sgl_bidi_count) {
3594 cmd->t_bidi_data_sg = sgl_bidi;
3595 cmd->t_bidi_data_nents = sgl_bidi_count;
3596 }
3597 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3598 }
3599
3600 return 0;
3601 }
3602 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3603
transport_kmap_data_sg(struct se_cmd * cmd)3604 void *transport_kmap_data_sg(struct se_cmd *cmd)
3605 {
3606 struct scatterlist *sg = cmd->t_data_sg;
3607 struct page **pages;
3608 int i;
3609
3610 BUG_ON(!sg);
3611 /*
3612 * We need to take into account a possible offset here for fabrics like
3613 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3614 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3615 */
3616 if (!cmd->t_data_nents)
3617 return NULL;
3618 else if (cmd->t_data_nents == 1)
3619 return kmap(sg_page(sg)) + sg->offset;
3620
3621 /* >1 page. use vmap */
3622 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3623 if (!pages)
3624 return NULL;
3625
3626 /* convert sg[] to pages[] */
3627 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3628 pages[i] = sg_page(sg);
3629 }
3630
3631 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3632 kfree(pages);
3633 if (!cmd->t_data_vmap)
3634 return NULL;
3635
3636 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3637 }
3638 EXPORT_SYMBOL(transport_kmap_data_sg);
3639
transport_kunmap_data_sg(struct se_cmd * cmd)3640 void transport_kunmap_data_sg(struct se_cmd *cmd)
3641 {
3642 if (!cmd->t_data_nents) {
3643 return;
3644 } else if (cmd->t_data_nents == 1) {
3645 kunmap(sg_page(cmd->t_data_sg));
3646 return;
3647 }
3648
3649 vunmap(cmd->t_data_vmap);
3650 cmd->t_data_vmap = NULL;
3651 }
3652 EXPORT_SYMBOL(transport_kunmap_data_sg);
3653
3654 static int
transport_generic_get_mem(struct se_cmd * cmd)3655 transport_generic_get_mem(struct se_cmd *cmd)
3656 {
3657 u32 length = cmd->data_length;
3658 unsigned int nents;
3659 struct page *page;
3660 gfp_t zero_flag;
3661 int i = 0;
3662
3663 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3664 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3665 if (!cmd->t_data_sg)
3666 return -ENOMEM;
3667
3668 cmd->t_data_nents = nents;
3669 sg_init_table(cmd->t_data_sg, nents);
3670
3671 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3672
3673 while (length) {
3674 u32 page_len = min_t(u32, length, PAGE_SIZE);
3675 page = alloc_page(GFP_KERNEL | zero_flag);
3676 if (!page)
3677 goto out;
3678
3679 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3680 length -= page_len;
3681 i++;
3682 }
3683 return 0;
3684
3685 out:
3686 while (i > 0) {
3687 i--;
3688 __free_page(sg_page(&cmd->t_data_sg[i]));
3689 }
3690 kfree(cmd->t_data_sg);
3691 cmd->t_data_sg = NULL;
3692 return -ENOMEM;
3693 }
3694
3695 /* Reduce sectors if they are too long for the device */
transport_limit_task_sectors(struct se_device * dev,unsigned long long lba,sector_t sectors)3696 static inline sector_t transport_limit_task_sectors(
3697 struct se_device *dev,
3698 unsigned long long lba,
3699 sector_t sectors)
3700 {
3701 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3702
3703 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3704 if ((lba + sectors) > transport_dev_end_lba(dev))
3705 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3706
3707 return sectors;
3708 }
3709
3710
3711 /*
3712 * This function can be used by HW target mode drivers to create a linked
3713 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3714 * This is intended to be called during the completion path by TCM Core
3715 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3716 */
transport_do_task_sg_chain(struct se_cmd * cmd)3717 void transport_do_task_sg_chain(struct se_cmd *cmd)
3718 {
3719 struct scatterlist *sg_first = NULL;
3720 struct scatterlist *sg_prev = NULL;
3721 int sg_prev_nents = 0;
3722 struct scatterlist *sg;
3723 struct se_task *task;
3724 u32 chained_nents = 0;
3725 int i;
3726
3727 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3728
3729 /*
3730 * Walk the struct se_task list and setup scatterlist chains
3731 * for each contiguously allocated struct se_task->task_sg[].
3732 */
3733 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3734 if (!task->task_sg)
3735 continue;
3736
3737 if (!sg_first) {
3738 sg_first = task->task_sg;
3739 chained_nents = task->task_sg_nents;
3740 } else {
3741 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3742 chained_nents += task->task_sg_nents;
3743 }
3744 /*
3745 * For the padded tasks, use the extra SGL vector allocated
3746 * in transport_allocate_data_tasks() for the sg_prev_nents
3747 * offset into sg_chain() above.
3748 *
3749 * We do not need the padding for the last task (or a single
3750 * task), but in that case we will never use the sg_prev_nents
3751 * value below which would be incorrect.
3752 */
3753 sg_prev_nents = (task->task_sg_nents + 1);
3754 sg_prev = task->task_sg;
3755 }
3756 /*
3757 * Setup the starting pointer and total t_tasks_sg_linked_no including
3758 * padding SGs for linking and to mark the end.
3759 */
3760 cmd->t_tasks_sg_chained = sg_first;
3761 cmd->t_tasks_sg_chained_no = chained_nents;
3762
3763 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3764 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3765 cmd->t_tasks_sg_chained_no);
3766
3767 for_each_sg(cmd->t_tasks_sg_chained, sg,
3768 cmd->t_tasks_sg_chained_no, i) {
3769
3770 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3771 i, sg, sg_page(sg), sg->length, sg->offset);
3772 if (sg_is_chain(sg))
3773 pr_debug("SG: %p sg_is_chain=1\n", sg);
3774 if (sg_is_last(sg))
3775 pr_debug("SG: %p sg_is_last=1\n", sg);
3776 }
3777 }
3778 EXPORT_SYMBOL(transport_do_task_sg_chain);
3779
3780 /*
3781 * Break up cmd into chunks transport can handle
3782 */
3783 static int
transport_allocate_data_tasks(struct se_cmd * cmd,enum dma_data_direction data_direction,struct scatterlist * cmd_sg,unsigned int sgl_nents)3784 transport_allocate_data_tasks(struct se_cmd *cmd,
3785 enum dma_data_direction data_direction,
3786 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3787 {
3788 struct se_device *dev = cmd->se_dev;
3789 int task_count, i;
3790 unsigned long long lba;
3791 sector_t sectors, dev_max_sectors;
3792 u32 sector_size;
3793
3794 if (transport_cmd_get_valid_sectors(cmd) < 0)
3795 return -EINVAL;
3796
3797 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3798 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3799
3800 WARN_ON(cmd->data_length % sector_size);
3801
3802 lba = cmd->t_task_lba;
3803 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3804 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3805
3806 /*
3807 * If we need just a single task reuse the SG list in the command
3808 * and avoid a lot of work.
3809 */
3810 if (task_count == 1) {
3811 struct se_task *task;
3812 unsigned long flags;
3813
3814 task = transport_generic_get_task(cmd, data_direction);
3815 if (!task)
3816 return -ENOMEM;
3817
3818 task->task_sg = cmd_sg;
3819 task->task_sg_nents = sgl_nents;
3820
3821 task->task_lba = lba;
3822 task->task_sectors = sectors;
3823 task->task_size = task->task_sectors * sector_size;
3824
3825 spin_lock_irqsave(&cmd->t_state_lock, flags);
3826 list_add_tail(&task->t_list, &cmd->t_task_list);
3827 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3828
3829 return task_count;
3830 }
3831
3832 for (i = 0; i < task_count; i++) {
3833 struct se_task *task;
3834 unsigned int task_size, task_sg_nents_padded;
3835 struct scatterlist *sg;
3836 unsigned long flags;
3837 int count;
3838
3839 task = transport_generic_get_task(cmd, data_direction);
3840 if (!task)
3841 return -ENOMEM;
3842
3843 task->task_lba = lba;
3844 task->task_sectors = min(sectors, dev_max_sectors);
3845 task->task_size = task->task_sectors * sector_size;
3846
3847 /*
3848 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3849 * in order to calculate the number per task SGL entries
3850 */
3851 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3852 /*
3853 * Check if the fabric module driver is requesting that all
3854 * struct se_task->task_sg[] be chained together.. If so,
3855 * then allocate an extra padding SG entry for linking and
3856 * marking the end of the chained SGL for every task except
3857 * the last one for (task_count > 1) operation, or skipping
3858 * the extra padding for the (task_count == 1) case.
3859 */
3860 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3861 task_sg_nents_padded = (task->task_sg_nents + 1);
3862 } else
3863 task_sg_nents_padded = task->task_sg_nents;
3864
3865 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3866 task_sg_nents_padded, GFP_KERNEL);
3867 if (!task->task_sg) {
3868 cmd->se_dev->transport->free_task(task);
3869 return -ENOMEM;
3870 }
3871
3872 sg_init_table(task->task_sg, task_sg_nents_padded);
3873
3874 task_size = task->task_size;
3875
3876 /* Build new sgl, only up to task_size */
3877 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3878 if (cmd_sg->length > task_size)
3879 break;
3880
3881 *sg = *cmd_sg;
3882 task_size -= cmd_sg->length;
3883 cmd_sg = sg_next(cmd_sg);
3884 }
3885
3886 lba += task->task_sectors;
3887 sectors -= task->task_sectors;
3888
3889 spin_lock_irqsave(&cmd->t_state_lock, flags);
3890 list_add_tail(&task->t_list, &cmd->t_task_list);
3891 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3892 }
3893
3894 return task_count;
3895 }
3896
3897 static int
transport_allocate_control_task(struct se_cmd * cmd)3898 transport_allocate_control_task(struct se_cmd *cmd)
3899 {
3900 struct se_task *task;
3901 unsigned long flags;
3902
3903 /* Workaround for handling zero-length control CDBs */
3904 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3905 !cmd->data_length)
3906 return 0;
3907
3908 task = transport_generic_get_task(cmd, cmd->data_direction);
3909 if (!task)
3910 return -ENOMEM;
3911
3912 task->task_sg = cmd->t_data_sg;
3913 task->task_size = cmd->data_length;
3914 task->task_sg_nents = cmd->t_data_nents;
3915
3916 spin_lock_irqsave(&cmd->t_state_lock, flags);
3917 list_add_tail(&task->t_list, &cmd->t_task_list);
3918 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3919
3920 /* Success! Return number of tasks allocated */
3921 return 1;
3922 }
3923
3924 /*
3925 * Allocate any required ressources to execute the command, and either place
3926 * it on the execution queue if possible. For writes we might not have the
3927 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3928 */
transport_generic_new_cmd(struct se_cmd * cmd)3929 int transport_generic_new_cmd(struct se_cmd *cmd)
3930 {
3931 struct se_device *dev = cmd->se_dev;
3932 int task_cdbs, task_cdbs_bidi = 0;
3933 int set_counts = 1;
3934 int ret = 0;
3935
3936 /*
3937 * Determine is the TCM fabric module has already allocated physical
3938 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3939 * beforehand.
3940 */
3941 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3942 cmd->data_length) {
3943 ret = transport_generic_get_mem(cmd);
3944 if (ret < 0)
3945 goto out_fail;
3946 }
3947
3948 /*
3949 * For BIDI command set up the read tasks first.
3950 */
3951 if (cmd->t_bidi_data_sg &&
3952 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3953 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3954
3955 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3956 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3957 cmd->t_bidi_data_nents);
3958 if (task_cdbs_bidi <= 0)
3959 goto out_fail;
3960
3961 atomic_inc(&cmd->t_fe_count);
3962 atomic_inc(&cmd->t_se_count);
3963 set_counts = 0;
3964 }
3965
3966 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3967 task_cdbs = transport_allocate_data_tasks(cmd,
3968 cmd->data_direction, cmd->t_data_sg,
3969 cmd->t_data_nents);
3970 } else {
3971 task_cdbs = transport_allocate_control_task(cmd);
3972 }
3973
3974 if (task_cdbs < 0)
3975 goto out_fail;
3976 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3977 spin_lock_irq(&cmd->t_state_lock);
3978 cmd->t_state = TRANSPORT_COMPLETE;
3979 cmd->transport_state |= CMD_T_ACTIVE;
3980 spin_unlock_irq(&cmd->t_state_lock);
3981
3982 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3983 u8 ua_asc = 0, ua_ascq = 0;
3984
3985 core_scsi3_ua_clear_for_request_sense(cmd,
3986 &ua_asc, &ua_ascq);
3987 }
3988
3989 INIT_WORK(&cmd->work, target_complete_ok_work);
3990 queue_work(target_completion_wq, &cmd->work);
3991 return 0;
3992 }
3993
3994 if (set_counts) {
3995 atomic_inc(&cmd->t_fe_count);
3996 atomic_inc(&cmd->t_se_count);
3997 }
3998
3999 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
4000 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
4001 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
4002
4003 /*
4004 * For WRITEs, let the fabric know its buffer is ready..
4005 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4006 * will be added to the struct se_device execution queue after its WRITE
4007 * data has arrived. (ie: It gets handled by the transport processing
4008 * thread a second time)
4009 */
4010 if (cmd->data_direction == DMA_TO_DEVICE) {
4011 transport_add_tasks_to_state_queue(cmd);
4012 return transport_generic_write_pending(cmd);
4013 }
4014 /*
4015 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4016 * to the execution queue.
4017 */
4018 transport_execute_tasks(cmd);
4019 return 0;
4020
4021 out_fail:
4022 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4023 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4024 return -EINVAL;
4025 }
4026 EXPORT_SYMBOL(transport_generic_new_cmd);
4027
4028 /* transport_generic_process_write():
4029 *
4030 *
4031 */
transport_generic_process_write(struct se_cmd * cmd)4032 void transport_generic_process_write(struct se_cmd *cmd)
4033 {
4034 transport_execute_tasks(cmd);
4035 }
4036 EXPORT_SYMBOL(transport_generic_process_write);
4037
transport_write_pending_qf(struct se_cmd * cmd)4038 static void transport_write_pending_qf(struct se_cmd *cmd)
4039 {
4040 int ret;
4041
4042 ret = cmd->se_tfo->write_pending(cmd);
4043 if (ret == -EAGAIN || ret == -ENOMEM) {
4044 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4045 cmd);
4046 transport_handle_queue_full(cmd, cmd->se_dev);
4047 }
4048 }
4049
transport_generic_write_pending(struct se_cmd * cmd)4050 static int transport_generic_write_pending(struct se_cmd *cmd)
4051 {
4052 unsigned long flags;
4053 int ret;
4054
4055 spin_lock_irqsave(&cmd->t_state_lock, flags);
4056 cmd->t_state = TRANSPORT_WRITE_PENDING;
4057 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4058
4059 /*
4060 * Clear the se_cmd for WRITE_PENDING status in order to set
4061 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4062 * from HW target mode interrupt code. This is safe to be called
4063 * with transport_off=1 before the cmd->se_tfo->write_pending
4064 * because the se_cmd->se_lun pointer is not being cleared.
4065 */
4066 transport_cmd_check_stop(cmd, 1, 0);
4067
4068 /*
4069 * Call the fabric write_pending function here to let the
4070 * frontend know that WRITE buffers are ready.
4071 */
4072 ret = cmd->se_tfo->write_pending(cmd);
4073 if (ret == -EAGAIN || ret == -ENOMEM)
4074 goto queue_full;
4075 else if (ret < 0)
4076 return ret;
4077
4078 return 1;
4079
4080 queue_full:
4081 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4082 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4083 transport_handle_queue_full(cmd, cmd->se_dev);
4084 return 0;
4085 }
4086
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)4087 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4088 {
4089 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4090 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4091 transport_wait_for_tasks(cmd);
4092
4093 transport_release_cmd(cmd);
4094 } else {
4095 if (wait_for_tasks)
4096 transport_wait_for_tasks(cmd);
4097
4098 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4099
4100 if (cmd->se_lun)
4101 transport_lun_remove_cmd(cmd);
4102
4103 transport_free_dev_tasks(cmd);
4104
4105 transport_put_cmd(cmd);
4106 }
4107 }
4108 EXPORT_SYMBOL(transport_generic_free_cmd);
4109
4110 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4111 * @se_sess: session to reference
4112 * @se_cmd: command descriptor to add
4113 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
4114 */
target_get_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd,bool ack_kref)4115 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4116 bool ack_kref)
4117 {
4118 unsigned long flags;
4119
4120 kref_init(&se_cmd->cmd_kref);
4121 /*
4122 * Add a second kref if the fabric caller is expecting to handle
4123 * fabric acknowledgement that requires two target_put_sess_cmd()
4124 * invocations before se_cmd descriptor release.
4125 */
4126 if (ack_kref == true) {
4127 kref_get(&se_cmd->cmd_kref);
4128 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4129 }
4130
4131 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4132 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4133 se_cmd->check_release = 1;
4134 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4135 }
4136 EXPORT_SYMBOL(target_get_sess_cmd);
4137
target_release_cmd_kref(struct kref * kref)4138 static void target_release_cmd_kref(struct kref *kref)
4139 {
4140 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4141 struct se_session *se_sess = se_cmd->se_sess;
4142 unsigned long flags;
4143
4144 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4145 if (list_empty(&se_cmd->se_cmd_list)) {
4146 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4147 se_cmd->se_tfo->release_cmd(se_cmd);
4148 return;
4149 }
4150 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4151 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4152 complete(&se_cmd->cmd_wait_comp);
4153 return;
4154 }
4155 list_del(&se_cmd->se_cmd_list);
4156 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4157
4158 se_cmd->se_tfo->release_cmd(se_cmd);
4159 }
4160
4161 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4162 * @se_sess: session to reference
4163 * @se_cmd: command descriptor to drop
4164 */
target_put_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd)4165 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4166 {
4167 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4168 }
4169 EXPORT_SYMBOL(target_put_sess_cmd);
4170
4171 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4172 * @se_sess: session to split
4173 */
target_splice_sess_cmd_list(struct se_session * se_sess)4174 void target_splice_sess_cmd_list(struct se_session *se_sess)
4175 {
4176 struct se_cmd *se_cmd;
4177 unsigned long flags;
4178
4179 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4180 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4181
4182 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4183 se_sess->sess_tearing_down = 1;
4184
4185 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4186
4187 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4188 se_cmd->cmd_wait_set = 1;
4189
4190 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4191 }
4192 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4193
4194 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4195 * @se_sess: session to wait for active I/O
4196 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4197 */
target_wait_for_sess_cmds(struct se_session * se_sess,int wait_for_tasks)4198 void target_wait_for_sess_cmds(
4199 struct se_session *se_sess,
4200 int wait_for_tasks)
4201 {
4202 struct se_cmd *se_cmd, *tmp_cmd;
4203 bool rc = false;
4204
4205 list_for_each_entry_safe(se_cmd, tmp_cmd,
4206 &se_sess->sess_wait_list, se_cmd_list) {
4207 list_del(&se_cmd->se_cmd_list);
4208
4209 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4210 " %d\n", se_cmd, se_cmd->t_state,
4211 se_cmd->se_tfo->get_cmd_state(se_cmd));
4212
4213 if (wait_for_tasks) {
4214 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4215 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4216 se_cmd->se_tfo->get_cmd_state(se_cmd));
4217
4218 rc = transport_wait_for_tasks(se_cmd);
4219
4220 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4221 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4222 se_cmd->se_tfo->get_cmd_state(se_cmd));
4223 }
4224
4225 if (!rc) {
4226 wait_for_completion(&se_cmd->cmd_wait_comp);
4227 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4228 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4229 se_cmd->se_tfo->get_cmd_state(se_cmd));
4230 }
4231
4232 se_cmd->se_tfo->release_cmd(se_cmd);
4233 }
4234 }
4235 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4236
4237 /* transport_lun_wait_for_tasks():
4238 *
4239 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4240 * an struct se_lun to be successfully shutdown.
4241 */
transport_lun_wait_for_tasks(struct se_cmd * cmd,struct se_lun * lun)4242 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4243 {
4244 unsigned long flags;
4245 int ret;
4246 /*
4247 * If the frontend has already requested this struct se_cmd to
4248 * be stopped, we can safely ignore this struct se_cmd.
4249 */
4250 spin_lock_irqsave(&cmd->t_state_lock, flags);
4251 if (cmd->transport_state & CMD_T_STOP) {
4252 cmd->transport_state &= ~CMD_T_LUN_STOP;
4253
4254 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4255 cmd->se_tfo->get_task_tag(cmd));
4256 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4257 transport_cmd_check_stop(cmd, 1, 0);
4258 return -EPERM;
4259 }
4260 cmd->transport_state |= CMD_T_LUN_FE_STOP;
4261 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4262
4263 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4264
4265 ret = transport_stop_tasks_for_cmd(cmd);
4266
4267 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4268 " %d\n", cmd, cmd->t_task_list_num, ret);
4269 if (!ret) {
4270 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4271 cmd->se_tfo->get_task_tag(cmd));
4272 wait_for_completion(&cmd->transport_lun_stop_comp);
4273 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4274 cmd->se_tfo->get_task_tag(cmd));
4275 }
4276 transport_remove_cmd_from_queue(cmd);
4277
4278 return 0;
4279 }
4280
__transport_clear_lun_from_sessions(struct se_lun * lun)4281 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4282 {
4283 struct se_cmd *cmd = NULL;
4284 unsigned long lun_flags, cmd_flags;
4285 /*
4286 * Do exception processing and return CHECK_CONDITION status to the
4287 * Initiator Port.
4288 */
4289 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4290 while (!list_empty(&lun->lun_cmd_list)) {
4291 cmd = list_first_entry(&lun->lun_cmd_list,
4292 struct se_cmd, se_lun_node);
4293 list_del_init(&cmd->se_lun_node);
4294
4295 /*
4296 * This will notify iscsi_target_transport.c:
4297 * transport_cmd_check_stop() that a LUN shutdown is in
4298 * progress for the iscsi_cmd_t.
4299 */
4300 spin_lock(&cmd->t_state_lock);
4301 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4302 "_lun_stop for ITT: 0x%08x\n",
4303 cmd->se_lun->unpacked_lun,
4304 cmd->se_tfo->get_task_tag(cmd));
4305 cmd->transport_state |= CMD_T_LUN_STOP;
4306 spin_unlock(&cmd->t_state_lock);
4307
4308 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4309
4310 if (!cmd->se_lun) {
4311 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4312 cmd->se_tfo->get_task_tag(cmd),
4313 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4314 BUG();
4315 }
4316 /*
4317 * If the Storage engine still owns the iscsi_cmd_t, determine
4318 * and/or stop its context.
4319 */
4320 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4321 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4322 cmd->se_tfo->get_task_tag(cmd));
4323
4324 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4325 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4326 continue;
4327 }
4328
4329 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4330 "_wait_for_tasks(): SUCCESS\n",
4331 cmd->se_lun->unpacked_lun,
4332 cmd->se_tfo->get_task_tag(cmd));
4333
4334 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4335 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4336 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4337 goto check_cond;
4338 }
4339 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4340 transport_all_task_dev_remove_state(cmd);
4341 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4342
4343 transport_free_dev_tasks(cmd);
4344 /*
4345 * The Storage engine stopped this struct se_cmd before it was
4346 * send to the fabric frontend for delivery back to the
4347 * Initiator Node. Return this SCSI CDB back with an
4348 * CHECK_CONDITION status.
4349 */
4350 check_cond:
4351 transport_send_check_condition_and_sense(cmd,
4352 TCM_NON_EXISTENT_LUN, 0);
4353 /*
4354 * If the fabric frontend is waiting for this iscsi_cmd_t to
4355 * be released, notify the waiting thread now that LU has
4356 * finished accessing it.
4357 */
4358 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4359 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4360 pr_debug("SE_LUN[%d] - Detected FE stop for"
4361 " struct se_cmd: %p ITT: 0x%08x\n",
4362 lun->unpacked_lun,
4363 cmd, cmd->se_tfo->get_task_tag(cmd));
4364
4365 spin_unlock_irqrestore(&cmd->t_state_lock,
4366 cmd_flags);
4367 transport_cmd_check_stop(cmd, 1, 0);
4368 complete(&cmd->transport_lun_fe_stop_comp);
4369 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4370 continue;
4371 }
4372 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4373 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4374
4375 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4376 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4377 }
4378 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4379 }
4380
transport_clear_lun_thread(void * p)4381 static int transport_clear_lun_thread(void *p)
4382 {
4383 struct se_lun *lun = p;
4384
4385 __transport_clear_lun_from_sessions(lun);
4386 complete(&lun->lun_shutdown_comp);
4387
4388 return 0;
4389 }
4390
transport_clear_lun_from_sessions(struct se_lun * lun)4391 int transport_clear_lun_from_sessions(struct se_lun *lun)
4392 {
4393 struct task_struct *kt;
4394
4395 kt = kthread_run(transport_clear_lun_thread, lun,
4396 "tcm_cl_%u", lun->unpacked_lun);
4397 if (IS_ERR(kt)) {
4398 pr_err("Unable to start clear_lun thread\n");
4399 return PTR_ERR(kt);
4400 }
4401 wait_for_completion(&lun->lun_shutdown_comp);
4402
4403 return 0;
4404 }
4405
4406 /**
4407 * transport_wait_for_tasks - wait for completion to occur
4408 * @cmd: command to wait
4409 *
4410 * Called from frontend fabric context to wait for storage engine
4411 * to pause and/or release frontend generated struct se_cmd.
4412 */
transport_wait_for_tasks(struct se_cmd * cmd)4413 bool transport_wait_for_tasks(struct se_cmd *cmd)
4414 {
4415 unsigned long flags;
4416
4417 spin_lock_irqsave(&cmd->t_state_lock, flags);
4418 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4419 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4420 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4421 return false;
4422 }
4423 /*
4424 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4425 * has been set in transport_set_supported_SAM_opcode().
4426 */
4427 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4428 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4429 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4430 return false;
4431 }
4432 /*
4433 * If we are already stopped due to an external event (ie: LUN shutdown)
4434 * sleep until the connection can have the passed struct se_cmd back.
4435 * The cmd->transport_lun_stopped_sem will be upped by
4436 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4437 * has completed its operation on the struct se_cmd.
4438 */
4439 if (cmd->transport_state & CMD_T_LUN_STOP) {
4440 pr_debug("wait_for_tasks: Stopping"
4441 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4442 "_stop_comp); for ITT: 0x%08x\n",
4443 cmd->se_tfo->get_task_tag(cmd));
4444 /*
4445 * There is a special case for WRITES where a FE exception +
4446 * LUN shutdown means ConfigFS context is still sleeping on
4447 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4448 * We go ahead and up transport_lun_stop_comp just to be sure
4449 * here.
4450 */
4451 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4452 complete(&cmd->transport_lun_stop_comp);
4453 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4454 spin_lock_irqsave(&cmd->t_state_lock, flags);
4455
4456 transport_all_task_dev_remove_state(cmd);
4457 /*
4458 * At this point, the frontend who was the originator of this
4459 * struct se_cmd, now owns the structure and can be released through
4460 * normal means below.
4461 */
4462 pr_debug("wait_for_tasks: Stopped"
4463 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4464 "stop_comp); for ITT: 0x%08x\n",
4465 cmd->se_tfo->get_task_tag(cmd));
4466
4467 cmd->transport_state &= ~CMD_T_LUN_STOP;
4468 }
4469
4470 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4471 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4472 return false;
4473 }
4474
4475 cmd->transport_state |= CMD_T_STOP;
4476
4477 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4478 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4479 cmd, cmd->se_tfo->get_task_tag(cmd),
4480 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4481
4482 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4483
4484 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4485
4486 wait_for_completion(&cmd->t_transport_stop_comp);
4487
4488 spin_lock_irqsave(&cmd->t_state_lock, flags);
4489 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4490
4491 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4492 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4493 cmd->se_tfo->get_task_tag(cmd));
4494
4495 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4496
4497 return true;
4498 }
4499 EXPORT_SYMBOL(transport_wait_for_tasks);
4500
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)4501 static int transport_get_sense_codes(
4502 struct se_cmd *cmd,
4503 u8 *asc,
4504 u8 *ascq)
4505 {
4506 *asc = cmd->scsi_asc;
4507 *ascq = cmd->scsi_ascq;
4508
4509 return 0;
4510 }
4511
transport_set_sense_codes(struct se_cmd * cmd,u8 asc,u8 ascq)4512 static int transport_set_sense_codes(
4513 struct se_cmd *cmd,
4514 u8 asc,
4515 u8 ascq)
4516 {
4517 cmd->scsi_asc = asc;
4518 cmd->scsi_ascq = ascq;
4519
4520 return 0;
4521 }
4522
transport_send_check_condition_and_sense(struct se_cmd * cmd,u8 reason,int from_transport)4523 int transport_send_check_condition_and_sense(
4524 struct se_cmd *cmd,
4525 u8 reason,
4526 int from_transport)
4527 {
4528 unsigned char *buffer = cmd->sense_buffer;
4529 unsigned long flags;
4530 int offset;
4531 u8 asc = 0, ascq = 0;
4532
4533 spin_lock_irqsave(&cmd->t_state_lock, flags);
4534 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4535 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4536 return 0;
4537 }
4538 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4539 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4540
4541 if (!reason && from_transport)
4542 goto after_reason;
4543
4544 if (!from_transport)
4545 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4546 /*
4547 * Data Segment and SenseLength of the fabric response PDU.
4548 *
4549 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4550 * from include/scsi/scsi_cmnd.h
4551 */
4552 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4553 TRANSPORT_SENSE_BUFFER);
4554 /*
4555 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4556 * SENSE KEY values from include/scsi/scsi.h
4557 */
4558 switch (reason) {
4559 case TCM_NON_EXISTENT_LUN:
4560 /* CURRENT ERROR */
4561 buffer[offset] = 0x70;
4562 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4563 /* ILLEGAL REQUEST */
4564 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4565 /* LOGICAL UNIT NOT SUPPORTED */
4566 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4567 break;
4568 case TCM_UNSUPPORTED_SCSI_OPCODE:
4569 case TCM_SECTOR_COUNT_TOO_MANY:
4570 /* CURRENT ERROR */
4571 buffer[offset] = 0x70;
4572 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4573 /* ILLEGAL REQUEST */
4574 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4575 /* INVALID COMMAND OPERATION CODE */
4576 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4577 break;
4578 case TCM_UNKNOWN_MODE_PAGE:
4579 /* CURRENT ERROR */
4580 buffer[offset] = 0x70;
4581 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4582 /* ILLEGAL REQUEST */
4583 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4584 /* INVALID FIELD IN CDB */
4585 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4586 break;
4587 case TCM_CHECK_CONDITION_ABORT_CMD:
4588 /* CURRENT ERROR */
4589 buffer[offset] = 0x70;
4590 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4591 /* ABORTED COMMAND */
4592 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4593 /* BUS DEVICE RESET FUNCTION OCCURRED */
4594 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4595 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4596 break;
4597 case TCM_INCORRECT_AMOUNT_OF_DATA:
4598 /* CURRENT ERROR */
4599 buffer[offset] = 0x70;
4600 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4601 /* ABORTED COMMAND */
4602 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4603 /* WRITE ERROR */
4604 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4605 /* NOT ENOUGH UNSOLICITED DATA */
4606 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4607 break;
4608 case TCM_INVALID_CDB_FIELD:
4609 /* CURRENT ERROR */
4610 buffer[offset] = 0x70;
4611 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4612 /* ILLEGAL REQUEST */
4613 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4614 /* INVALID FIELD IN CDB */
4615 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4616 break;
4617 case TCM_INVALID_PARAMETER_LIST:
4618 /* CURRENT ERROR */
4619 buffer[offset] = 0x70;
4620 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4621 /* ILLEGAL REQUEST */
4622 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4623 /* INVALID FIELD IN PARAMETER LIST */
4624 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4625 break;
4626 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4627 /* CURRENT ERROR */
4628 buffer[offset] = 0x70;
4629 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4630 /* ABORTED COMMAND */
4631 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4632 /* WRITE ERROR */
4633 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4634 /* UNEXPECTED_UNSOLICITED_DATA */
4635 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4636 break;
4637 case TCM_SERVICE_CRC_ERROR:
4638 /* CURRENT ERROR */
4639 buffer[offset] = 0x70;
4640 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4641 /* ABORTED COMMAND */
4642 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4643 /* PROTOCOL SERVICE CRC ERROR */
4644 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4645 /* N/A */
4646 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4647 break;
4648 case TCM_SNACK_REJECTED:
4649 /* CURRENT ERROR */
4650 buffer[offset] = 0x70;
4651 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4652 /* ABORTED COMMAND */
4653 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4654 /* READ ERROR */
4655 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4656 /* FAILED RETRANSMISSION REQUEST */
4657 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4658 break;
4659 case TCM_WRITE_PROTECTED:
4660 /* CURRENT ERROR */
4661 buffer[offset] = 0x70;
4662 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4663 /* DATA PROTECT */
4664 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4665 /* WRITE PROTECTED */
4666 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4667 break;
4668 case TCM_ADDRESS_OUT_OF_RANGE:
4669 /* CURRENT ERROR */
4670 buffer[offset] = 0x70;
4671 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4672 /* ILLEGAL REQUEST */
4673 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4674 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4675 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4676 break;
4677 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4678 /* CURRENT ERROR */
4679 buffer[offset] = 0x70;
4680 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4681 /* UNIT ATTENTION */
4682 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4683 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4684 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4685 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4686 break;
4687 case TCM_CHECK_CONDITION_NOT_READY:
4688 /* CURRENT ERROR */
4689 buffer[offset] = 0x70;
4690 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4691 /* Not Ready */
4692 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4693 transport_get_sense_codes(cmd, &asc, &ascq);
4694 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4695 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4696 break;
4697 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4698 default:
4699 /* CURRENT ERROR */
4700 buffer[offset] = 0x70;
4701 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4702 /* ILLEGAL REQUEST */
4703 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4704 /* LOGICAL UNIT COMMUNICATION FAILURE */
4705 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x08;
4706 break;
4707 }
4708 /*
4709 * This code uses linux/include/scsi/scsi.h SAM status codes!
4710 */
4711 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4712 /*
4713 * Automatically padded, this value is encoded in the fabric's
4714 * data_length response PDU containing the SCSI defined sense data.
4715 */
4716 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4717
4718 after_reason:
4719 return cmd->se_tfo->queue_status(cmd);
4720 }
4721 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4722
transport_check_aborted_status(struct se_cmd * cmd,int send_status)4723 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4724 {
4725 int ret = 0;
4726
4727 if (cmd->transport_state & CMD_T_ABORTED) {
4728 if (!send_status ||
4729 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4730 return 1;
4731 #if 0
4732 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4733 " status for CDB: 0x%02x ITT: 0x%08x\n",
4734 cmd->t_task_cdb[0],
4735 cmd->se_tfo->get_task_tag(cmd));
4736 #endif
4737 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4738 cmd->se_tfo->queue_status(cmd);
4739 ret = 1;
4740 }
4741 return ret;
4742 }
4743 EXPORT_SYMBOL(transport_check_aborted_status);
4744
transport_send_task_abort(struct se_cmd * cmd)4745 void transport_send_task_abort(struct se_cmd *cmd)
4746 {
4747 unsigned long flags;
4748
4749 spin_lock_irqsave(&cmd->t_state_lock, flags);
4750 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4751 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4752 return;
4753 }
4754 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4755
4756 /*
4757 * If there are still expected incoming fabric WRITEs, we wait
4758 * until until they have completed before sending a TASK_ABORTED
4759 * response. This response with TASK_ABORTED status will be
4760 * queued back to fabric module by transport_check_aborted_status().
4761 */
4762 if (cmd->data_direction == DMA_TO_DEVICE) {
4763 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4764 cmd->transport_state |= CMD_T_ABORTED;
4765 smp_mb__after_atomic_inc();
4766 }
4767 }
4768 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4769 #if 0
4770 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4771 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4772 cmd->se_tfo->get_task_tag(cmd));
4773 #endif
4774 cmd->se_tfo->queue_status(cmd);
4775 }
4776
transport_generic_do_tmr(struct se_cmd * cmd)4777 static int transport_generic_do_tmr(struct se_cmd *cmd)
4778 {
4779 struct se_device *dev = cmd->se_dev;
4780 struct se_tmr_req *tmr = cmd->se_tmr_req;
4781 int ret;
4782
4783 switch (tmr->function) {
4784 case TMR_ABORT_TASK:
4785 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4786 break;
4787 case TMR_ABORT_TASK_SET:
4788 case TMR_CLEAR_ACA:
4789 case TMR_CLEAR_TASK_SET:
4790 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4791 break;
4792 case TMR_LUN_RESET:
4793 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4794 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4795 TMR_FUNCTION_REJECTED;
4796 break;
4797 case TMR_TARGET_WARM_RESET:
4798 tmr->response = TMR_FUNCTION_REJECTED;
4799 break;
4800 case TMR_TARGET_COLD_RESET:
4801 tmr->response = TMR_FUNCTION_REJECTED;
4802 break;
4803 default:
4804 pr_err("Uknown TMR function: 0x%02x.\n",
4805 tmr->function);
4806 tmr->response = TMR_FUNCTION_REJECTED;
4807 break;
4808 }
4809
4810 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4811 cmd->se_tfo->queue_tm_rsp(cmd);
4812
4813 transport_cmd_check_stop_to_fabric(cmd);
4814 return 0;
4815 }
4816
4817 /* transport_processing_thread():
4818 *
4819 *
4820 */
transport_processing_thread(void * param)4821 static int transport_processing_thread(void *param)
4822 {
4823 int ret;
4824 struct se_cmd *cmd;
4825 struct se_device *dev = param;
4826
4827 while (!kthread_should_stop()) {
4828 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4829 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4830 kthread_should_stop());
4831 if (ret < 0)
4832 goto out;
4833
4834 get_cmd:
4835 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4836 if (!cmd)
4837 continue;
4838
4839 switch (cmd->t_state) {
4840 case TRANSPORT_NEW_CMD:
4841 BUG();
4842 break;
4843 case TRANSPORT_NEW_CMD_MAP:
4844 if (!cmd->se_tfo->new_cmd_map) {
4845 pr_err("cmd->se_tfo->new_cmd_map is"
4846 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4847 BUG();
4848 }
4849 ret = cmd->se_tfo->new_cmd_map(cmd);
4850 if (ret < 0) {
4851 transport_generic_request_failure(cmd);
4852 break;
4853 }
4854 ret = transport_generic_new_cmd(cmd);
4855 if (ret < 0) {
4856 transport_generic_request_failure(cmd);
4857 break;
4858 }
4859 break;
4860 case TRANSPORT_PROCESS_WRITE:
4861 transport_generic_process_write(cmd);
4862 break;
4863 case TRANSPORT_PROCESS_TMR:
4864 transport_generic_do_tmr(cmd);
4865 break;
4866 case TRANSPORT_COMPLETE_QF_WP:
4867 transport_write_pending_qf(cmd);
4868 break;
4869 case TRANSPORT_COMPLETE_QF_OK:
4870 transport_complete_qf(cmd);
4871 break;
4872 default:
4873 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4874 "i_state: %d on SE LUN: %u\n",
4875 cmd->t_state,
4876 cmd->se_tfo->get_task_tag(cmd),
4877 cmd->se_tfo->get_cmd_state(cmd),
4878 cmd->se_lun->unpacked_lun);
4879 BUG();
4880 }
4881
4882 goto get_cmd;
4883 }
4884
4885 out:
4886 WARN_ON(!list_empty(&dev->state_task_list));
4887 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4888 dev->process_thread = NULL;
4889 return 0;
4890 }
4891