1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
update_sk_prot(struct sock * sk,struct tls_context * ctx)68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 WRITE_ONCE(sk->sk_socket->ops,
75 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
wait_on_pending_writer(struct sock * sk,long * timeo)78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 break;
97 }
98 remove_wait_queue(sk_sleep(sk), &wait);
99 return rc;
100 }
101
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)102 int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
105 u16 first_offset,
106 int flags)
107 {
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 int ret = 0;
110 struct page *p;
111 size_t size;
112 int offset = first_offset;
113
114 size = sg->length - offset;
115 offset += sg->offset;
116
117 ctx->in_tcp_sendpages = true;
118 while (1) {
119 if (sg_is_last(sg))
120 sendpage_flags = flags;
121
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
124 p = sg_page(sg);
125 retry:
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128 if (ret != size) {
129 if (ret > 0) {
130 offset += ret;
131 size -= ret;
132 goto retry;
133 }
134
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
139 return ret;
140 }
141
142 put_page(p);
143 sk_mem_uncharge(sk, sg->length);
144 sg = sg_next(sg);
145 if (!sg)
146 break;
147
148 offset = sg->offset;
149 size = sg->length;
150 }
151
152 ctx->in_tcp_sendpages = false;
153
154 return 0;
155 }
156
tls_handle_open_record(struct sock * sk,int flags)157 static int tls_handle_open_record(struct sock *sk, int flags)
158 {
159 struct tls_context *ctx = tls_get_ctx(sk);
160
161 if (tls_is_pending_open_record(ctx))
162 return ctx->push_pending_record(sk, flags);
163
164 return 0;
165 }
166
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168 unsigned char *record_type)
169 {
170 struct cmsghdr *cmsg;
171 int rc = -EINVAL;
172
173 for_each_cmsghdr(cmsg, msg) {
174 if (!CMSG_OK(msg, cmsg))
175 return -EINVAL;
176 if (cmsg->cmsg_level != SOL_TLS)
177 continue;
178
179 switch (cmsg->cmsg_type) {
180 case TLS_SET_RECORD_TYPE:
181 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182 return -EINVAL;
183
184 if (msg->msg_flags & MSG_MORE)
185 return -EINVAL;
186
187 rc = tls_handle_open_record(sk, msg->msg_flags);
188 if (rc)
189 return rc;
190
191 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
192 rc = 0;
193 break;
194 default:
195 return -EINVAL;
196 }
197 }
198
199 return rc;
200 }
201
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203 int flags)
204 {
205 struct scatterlist *sg;
206 u16 offset;
207
208 sg = ctx->partially_sent_record;
209 offset = ctx->partially_sent_offset;
210
211 ctx->partially_sent_record = NULL;
212 return tls_push_sg(sk, ctx, sg, offset, flags);
213 }
214
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
216 {
217 struct scatterlist *sg;
218
219 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220 put_page(sg_page(sg));
221 sk_mem_uncharge(sk, sg->length);
222 }
223 ctx->partially_sent_record = NULL;
224 }
225
tls_write_space(struct sock * sk)226 static void tls_write_space(struct sock *sk)
227 {
228 struct tls_context *ctx = tls_get_ctx(sk);
229
230 /* If in_tcp_sendpages call lower protocol write space handler
231 * to ensure we wake up any waiting operations there. For example
232 * if do_tcp_sendpages where to call sk_wait_event.
233 */
234 if (ctx->in_tcp_sendpages) {
235 ctx->sk_write_space(sk);
236 return;
237 }
238
239 #ifdef CONFIG_TLS_DEVICE
240 if (ctx->tx_conf == TLS_HW)
241 tls_device_write_space(sk, ctx);
242 else
243 #endif
244 tls_sw_write_space(sk, ctx);
245
246 ctx->sk_write_space(sk);
247 }
248
249 /**
250 * tls_ctx_free() - free TLS ULP context
251 * @sk: socket to with @ctx is attached
252 * @ctx: TLS context structure
253 *
254 * Free TLS context. If @sk is %NULL caller guarantees that the socket
255 * to which @ctx was attached has no outstanding references.
256 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
258 {
259 if (!ctx)
260 return;
261
262 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264 mutex_destroy(&ctx->tx_lock);
265
266 if (sk)
267 kfree_rcu(ctx, rcu);
268 else
269 kfree(ctx);
270 }
271
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)272 static void tls_sk_proto_cleanup(struct sock *sk,
273 struct tls_context *ctx, long timeo)
274 {
275 if (unlikely(sk->sk_write_pending) &&
276 !wait_on_pending_writer(sk, &timeo))
277 tls_handle_open_record(sk, 0);
278
279 /* We need these for tls_sw_fallback handling of other packets */
280 if (ctx->tx_conf == TLS_SW) {
281 kfree(ctx->tx.rec_seq);
282 kfree(ctx->tx.iv);
283 tls_sw_release_resources_tx(sk);
284 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285 } else if (ctx->tx_conf == TLS_HW) {
286 tls_device_free_resources_tx(sk);
287 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288 }
289
290 if (ctx->rx_conf == TLS_SW) {
291 tls_sw_release_resources_rx(sk);
292 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293 } else if (ctx->rx_conf == TLS_HW) {
294 tls_device_offload_cleanup_rx(sk);
295 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
296 }
297 }
298
tls_sk_proto_close(struct sock * sk,long timeout)299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301 struct inet_connection_sock *icsk = inet_csk(sk);
302 struct tls_context *ctx = tls_get_ctx(sk);
303 long timeo = sock_sndtimeo(sk, 0);
304 bool free_ctx;
305
306 if (ctx->tx_conf == TLS_SW)
307 tls_sw_cancel_work_tx(ctx);
308
309 lock_sock(sk);
310 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311
312 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313 tls_sk_proto_cleanup(sk, ctx, timeo);
314
315 write_lock_bh(&sk->sk_callback_lock);
316 if (free_ctx)
317 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319 if (sk->sk_write_space == tls_write_space)
320 sk->sk_write_space = ctx->sk_write_space;
321 write_unlock_bh(&sk->sk_callback_lock);
322 release_sock(sk);
323 if (ctx->tx_conf == TLS_SW)
324 tls_sw_free_ctx_tx(ctx);
325 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326 tls_sw_strparser_done(ctx);
327 if (ctx->rx_conf == TLS_SW)
328 tls_sw_free_ctx_rx(ctx);
329 ctx->sk_proto->close(sk, timeout);
330
331 if (free_ctx)
332 tls_ctx_free(sk, ctx);
333 }
334
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336 int __user *optlen, int tx)
337 {
338 int rc = 0;
339 struct tls_context *ctx = tls_get_ctx(sk);
340 struct tls_crypto_info *crypto_info;
341 struct cipher_context *cctx;
342 int len;
343
344 if (get_user(len, optlen))
345 return -EFAULT;
346
347 if (!optval || (len < sizeof(*crypto_info))) {
348 rc = -EINVAL;
349 goto out;
350 }
351
352 if (!ctx) {
353 rc = -EBUSY;
354 goto out;
355 }
356
357 /* get user crypto info */
358 if (tx) {
359 crypto_info = &ctx->crypto_send.info;
360 cctx = &ctx->tx;
361 } else {
362 crypto_info = &ctx->crypto_recv.info;
363 cctx = &ctx->rx;
364 }
365
366 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
367 rc = -EBUSY;
368 goto out;
369 }
370
371 if (len == sizeof(*crypto_info)) {
372 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
373 rc = -EFAULT;
374 goto out;
375 }
376
377 switch (crypto_info->cipher_type) {
378 case TLS_CIPHER_AES_GCM_128: {
379 struct tls12_crypto_info_aes_gcm_128 *
380 crypto_info_aes_gcm_128 =
381 container_of(crypto_info,
382 struct tls12_crypto_info_aes_gcm_128,
383 info);
384
385 if (len != sizeof(*crypto_info_aes_gcm_128)) {
386 rc = -EINVAL;
387 goto out;
388 }
389 lock_sock(sk);
390 memcpy(crypto_info_aes_gcm_128->iv,
391 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392 TLS_CIPHER_AES_GCM_128_IV_SIZE);
393 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395 release_sock(sk);
396 if (copy_to_user(optval,
397 crypto_info_aes_gcm_128,
398 sizeof(*crypto_info_aes_gcm_128)))
399 rc = -EFAULT;
400 break;
401 }
402 case TLS_CIPHER_AES_GCM_256: {
403 struct tls12_crypto_info_aes_gcm_256 *
404 crypto_info_aes_gcm_256 =
405 container_of(crypto_info,
406 struct tls12_crypto_info_aes_gcm_256,
407 info);
408
409 if (len != sizeof(*crypto_info_aes_gcm_256)) {
410 rc = -EINVAL;
411 goto out;
412 }
413 lock_sock(sk);
414 memcpy(crypto_info_aes_gcm_256->iv,
415 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416 TLS_CIPHER_AES_GCM_256_IV_SIZE);
417 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
419 release_sock(sk);
420 if (copy_to_user(optval,
421 crypto_info_aes_gcm_256,
422 sizeof(*crypto_info_aes_gcm_256)))
423 rc = -EFAULT;
424 break;
425 }
426 case TLS_CIPHER_AES_CCM_128: {
427 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
428 container_of(crypto_info,
429 struct tls12_crypto_info_aes_ccm_128, info);
430
431 if (len != sizeof(*aes_ccm_128)) {
432 rc = -EINVAL;
433 goto out;
434 }
435 lock_sock(sk);
436 memcpy(aes_ccm_128->iv,
437 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
438 TLS_CIPHER_AES_CCM_128_IV_SIZE);
439 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
440 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
441 release_sock(sk);
442 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
443 rc = -EFAULT;
444 break;
445 }
446 case TLS_CIPHER_CHACHA20_POLY1305: {
447 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
448 container_of(crypto_info,
449 struct tls12_crypto_info_chacha20_poly1305,
450 info);
451
452 if (len != sizeof(*chacha20_poly1305)) {
453 rc = -EINVAL;
454 goto out;
455 }
456 lock_sock(sk);
457 memcpy(chacha20_poly1305->iv,
458 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
459 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
460 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
461 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
462 release_sock(sk);
463 if (copy_to_user(optval, chacha20_poly1305,
464 sizeof(*chacha20_poly1305)))
465 rc = -EFAULT;
466 break;
467 }
468 case TLS_CIPHER_SM4_GCM: {
469 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
470 container_of(crypto_info,
471 struct tls12_crypto_info_sm4_gcm, info);
472
473 if (len != sizeof(*sm4_gcm_info)) {
474 rc = -EINVAL;
475 goto out;
476 }
477 lock_sock(sk);
478 memcpy(sm4_gcm_info->iv,
479 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
480 TLS_CIPHER_SM4_GCM_IV_SIZE);
481 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
482 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
483 release_sock(sk);
484 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
485 rc = -EFAULT;
486 break;
487 }
488 case TLS_CIPHER_SM4_CCM: {
489 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
490 container_of(crypto_info,
491 struct tls12_crypto_info_sm4_ccm, info);
492
493 if (len != sizeof(*sm4_ccm_info)) {
494 rc = -EINVAL;
495 goto out;
496 }
497 lock_sock(sk);
498 memcpy(sm4_ccm_info->iv,
499 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
500 TLS_CIPHER_SM4_CCM_IV_SIZE);
501 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
502 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
503 release_sock(sk);
504 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
505 rc = -EFAULT;
506 break;
507 }
508 default:
509 rc = -EINVAL;
510 }
511
512 out:
513 return rc;
514 }
515
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)516 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
517 int __user *optlen)
518 {
519 struct tls_context *ctx = tls_get_ctx(sk);
520 unsigned int value;
521 int len;
522
523 if (get_user(len, optlen))
524 return -EFAULT;
525
526 if (len != sizeof(value))
527 return -EINVAL;
528
529 value = ctx->zerocopy_sendfile;
530 if (copy_to_user(optval, &value, sizeof(value)))
531 return -EFAULT;
532
533 return 0;
534 }
535
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)536 static int do_tls_getsockopt(struct sock *sk, int optname,
537 char __user *optval, int __user *optlen)
538 {
539 int rc = 0;
540
541 switch (optname) {
542 case TLS_TX:
543 case TLS_RX:
544 rc = do_tls_getsockopt_conf(sk, optval, optlen,
545 optname == TLS_TX);
546 break;
547 case TLS_TX_ZEROCOPY_RO:
548 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
549 break;
550 default:
551 rc = -ENOPROTOOPT;
552 break;
553 }
554 return rc;
555 }
556
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)557 static int tls_getsockopt(struct sock *sk, int level, int optname,
558 char __user *optval, int __user *optlen)
559 {
560 struct tls_context *ctx = tls_get_ctx(sk);
561
562 if (level != SOL_TLS)
563 return ctx->sk_proto->getsockopt(sk, level,
564 optname, optval, optlen);
565
566 return do_tls_getsockopt(sk, optname, optval, optlen);
567 }
568
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)569 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
570 unsigned int optlen, int tx)
571 {
572 struct tls_crypto_info *crypto_info;
573 struct tls_crypto_info *alt_crypto_info;
574 struct tls_context *ctx = tls_get_ctx(sk);
575 size_t optsize;
576 int rc = 0;
577 int conf;
578
579 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
580 return -EINVAL;
581
582 if (tx) {
583 crypto_info = &ctx->crypto_send.info;
584 alt_crypto_info = &ctx->crypto_recv.info;
585 } else {
586 crypto_info = &ctx->crypto_recv.info;
587 alt_crypto_info = &ctx->crypto_send.info;
588 }
589
590 /* Currently we don't support set crypto info more than one time */
591 if (TLS_CRYPTO_INFO_READY(crypto_info))
592 return -EBUSY;
593
594 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
595 if (rc) {
596 rc = -EFAULT;
597 goto err_crypto_info;
598 }
599
600 /* check version */
601 if (crypto_info->version != TLS_1_2_VERSION &&
602 crypto_info->version != TLS_1_3_VERSION) {
603 rc = -EINVAL;
604 goto err_crypto_info;
605 }
606
607 /* Ensure that TLS version and ciphers are same in both directions */
608 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
609 if (alt_crypto_info->version != crypto_info->version ||
610 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
611 rc = -EINVAL;
612 goto err_crypto_info;
613 }
614 }
615
616 switch (crypto_info->cipher_type) {
617 case TLS_CIPHER_AES_GCM_128:
618 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
619 break;
620 case TLS_CIPHER_AES_GCM_256: {
621 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
622 break;
623 }
624 case TLS_CIPHER_AES_CCM_128:
625 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
626 break;
627 case TLS_CIPHER_CHACHA20_POLY1305:
628 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
629 break;
630 case TLS_CIPHER_SM4_GCM:
631 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
632 break;
633 case TLS_CIPHER_SM4_CCM:
634 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
635 break;
636 default:
637 rc = -EINVAL;
638 goto err_crypto_info;
639 }
640
641 if (optlen != optsize) {
642 rc = -EINVAL;
643 goto err_crypto_info;
644 }
645
646 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
647 sizeof(*crypto_info),
648 optlen - sizeof(*crypto_info));
649 if (rc) {
650 rc = -EFAULT;
651 goto err_crypto_info;
652 }
653
654 if (tx) {
655 rc = tls_set_device_offload(sk, ctx);
656 conf = TLS_HW;
657 if (!rc) {
658 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
659 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
660 } else {
661 rc = tls_set_sw_offload(sk, ctx, 1);
662 if (rc)
663 goto err_crypto_info;
664 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
665 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
666 conf = TLS_SW;
667 }
668 } else {
669 rc = tls_set_device_offload_rx(sk, ctx);
670 conf = TLS_HW;
671 if (!rc) {
672 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
673 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
674 } else {
675 rc = tls_set_sw_offload(sk, ctx, 0);
676 if (rc)
677 goto err_crypto_info;
678 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
679 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
680 conf = TLS_SW;
681 }
682 tls_sw_strparser_arm(sk, ctx);
683 }
684
685 if (tx)
686 ctx->tx_conf = conf;
687 else
688 ctx->rx_conf = conf;
689 update_sk_prot(sk, ctx);
690 if (tx) {
691 ctx->sk_write_space = sk->sk_write_space;
692 sk->sk_write_space = tls_write_space;
693 }
694 return 0;
695
696 err_crypto_info:
697 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
698 return rc;
699 }
700
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)701 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
702 unsigned int optlen)
703 {
704 struct tls_context *ctx = tls_get_ctx(sk);
705 unsigned int value;
706
707 if (sockptr_is_null(optval) || optlen != sizeof(value))
708 return -EINVAL;
709
710 if (copy_from_sockptr(&value, optval, sizeof(value)))
711 return -EFAULT;
712
713 if (value > 1)
714 return -EINVAL;
715
716 ctx->zerocopy_sendfile = value;
717
718 return 0;
719 }
720
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)721 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
722 unsigned int optlen)
723 {
724 int rc = 0;
725
726 switch (optname) {
727 case TLS_TX:
728 case TLS_RX:
729 lock_sock(sk);
730 rc = do_tls_setsockopt_conf(sk, optval, optlen,
731 optname == TLS_TX);
732 release_sock(sk);
733 break;
734 case TLS_TX_ZEROCOPY_RO:
735 lock_sock(sk);
736 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
737 release_sock(sk);
738 break;
739 default:
740 rc = -ENOPROTOOPT;
741 break;
742 }
743 return rc;
744 }
745
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)746 static int tls_setsockopt(struct sock *sk, int level, int optname,
747 sockptr_t optval, unsigned int optlen)
748 {
749 struct tls_context *ctx = tls_get_ctx(sk);
750
751 if (level != SOL_TLS)
752 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
753 optlen);
754
755 return do_tls_setsockopt(sk, optname, optval, optlen);
756 }
757
tls_ctx_create(struct sock * sk)758 struct tls_context *tls_ctx_create(struct sock *sk)
759 {
760 struct inet_connection_sock *icsk = inet_csk(sk);
761 struct tls_context *ctx;
762
763 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
764 if (!ctx)
765 return NULL;
766
767 mutex_init(&ctx->tx_lock);
768 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
769 ctx->sk_proto = READ_ONCE(sk->sk_prot);
770 ctx->sk = sk;
771 return ctx;
772 }
773
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)774 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
775 const struct proto_ops *base)
776 {
777 ops[TLS_BASE][TLS_BASE] = *base;
778
779 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
780 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
781
782 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
783 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
784
785 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
786 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
787
788 #ifdef CONFIG_TLS_DEVICE
789 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
790 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
791
792 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
793 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
794
795 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
796
797 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
798
799 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
800 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
801 #endif
802 #ifdef CONFIG_TLS_TOE
803 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
804 #endif
805 }
806
tls_build_proto(struct sock * sk)807 static void tls_build_proto(struct sock *sk)
808 {
809 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
810 struct proto *prot = READ_ONCE(sk->sk_prot);
811
812 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
813 if (ip_ver == TLSV6 &&
814 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
815 mutex_lock(&tcpv6_prot_mutex);
816 if (likely(prot != saved_tcpv6_prot)) {
817 build_protos(tls_prots[TLSV6], prot);
818 build_proto_ops(tls_proto_ops[TLSV6],
819 sk->sk_socket->ops);
820 smp_store_release(&saved_tcpv6_prot, prot);
821 }
822 mutex_unlock(&tcpv6_prot_mutex);
823 }
824
825 if (ip_ver == TLSV4 &&
826 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
827 mutex_lock(&tcpv4_prot_mutex);
828 if (likely(prot != saved_tcpv4_prot)) {
829 build_protos(tls_prots[TLSV4], prot);
830 build_proto_ops(tls_proto_ops[TLSV4],
831 sk->sk_socket->ops);
832 smp_store_release(&saved_tcpv4_prot, prot);
833 }
834 mutex_unlock(&tcpv4_prot_mutex);
835 }
836 }
837
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)838 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
839 const struct proto *base)
840 {
841 prot[TLS_BASE][TLS_BASE] = *base;
842 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
843 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
844 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
845
846 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
847 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
848 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
849
850 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
851 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
852 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
853 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
854
855 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
856 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
857 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
858 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
859
860 #ifdef CONFIG_TLS_DEVICE
861 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
862 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
863 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
864
865 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
866 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
867 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
868
869 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
870
871 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
872
873 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
874 #endif
875 #ifdef CONFIG_TLS_TOE
876 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
877 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
878 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
879 #endif
880 }
881
tls_init(struct sock * sk)882 static int tls_init(struct sock *sk)
883 {
884 struct tls_context *ctx;
885 int rc = 0;
886
887 tls_build_proto(sk);
888
889 #ifdef CONFIG_TLS_TOE
890 if (tls_toe_bypass(sk))
891 return 0;
892 #endif
893
894 /* The TLS ulp is currently supported only for TCP sockets
895 * in ESTABLISHED state.
896 * Supporting sockets in LISTEN state will require us
897 * to modify the accept implementation to clone rather then
898 * share the ulp context.
899 */
900 if (sk->sk_state != TCP_ESTABLISHED)
901 return -ENOTCONN;
902
903 /* allocate tls context */
904 write_lock_bh(&sk->sk_callback_lock);
905 ctx = tls_ctx_create(sk);
906 if (!ctx) {
907 rc = -ENOMEM;
908 goto out;
909 }
910
911 ctx->tx_conf = TLS_BASE;
912 ctx->rx_conf = TLS_BASE;
913 update_sk_prot(sk, ctx);
914 out:
915 write_unlock_bh(&sk->sk_callback_lock);
916 return rc;
917 }
918
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))919 static void tls_update(struct sock *sk, struct proto *p,
920 void (*write_space)(struct sock *sk))
921 {
922 struct tls_context *ctx;
923
924 WARN_ON_ONCE(sk->sk_prot == p);
925
926 ctx = tls_get_ctx(sk);
927 if (likely(ctx)) {
928 ctx->sk_write_space = write_space;
929 ctx->sk_proto = p;
930 } else {
931 /* Pairs with lockless read in sk_clone_lock(). */
932 WRITE_ONCE(sk->sk_prot, p);
933 sk->sk_write_space = write_space;
934 }
935 }
936
tls_get_info(const struct sock * sk,struct sk_buff * skb)937 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
938 {
939 u16 version, cipher_type;
940 struct tls_context *ctx;
941 struct nlattr *start;
942 int err;
943
944 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
945 if (!start)
946 return -EMSGSIZE;
947
948 rcu_read_lock();
949 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
950 if (!ctx) {
951 err = 0;
952 goto nla_failure;
953 }
954 version = ctx->prot_info.version;
955 if (version) {
956 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
957 if (err)
958 goto nla_failure;
959 }
960 cipher_type = ctx->prot_info.cipher_type;
961 if (cipher_type) {
962 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
963 if (err)
964 goto nla_failure;
965 }
966 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
967 if (err)
968 goto nla_failure;
969
970 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
971 if (err)
972 goto nla_failure;
973
974 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
975 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
976 if (err)
977 goto nla_failure;
978 }
979
980 rcu_read_unlock();
981 nla_nest_end(skb, start);
982 return 0;
983
984 nla_failure:
985 rcu_read_unlock();
986 nla_nest_cancel(skb, start);
987 return err;
988 }
989
tls_get_info_size(const struct sock * sk)990 static size_t tls_get_info_size(const struct sock *sk)
991 {
992 size_t size = 0;
993
994 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
995 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
996 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
997 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
998 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
999 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1000 0;
1001
1002 return size;
1003 }
1004
tls_init_net(struct net * net)1005 static int __net_init tls_init_net(struct net *net)
1006 {
1007 int err;
1008
1009 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1010 if (!net->mib.tls_statistics)
1011 return -ENOMEM;
1012
1013 err = tls_proc_init(net);
1014 if (err)
1015 goto err_free_stats;
1016
1017 return 0;
1018 err_free_stats:
1019 free_percpu(net->mib.tls_statistics);
1020 return err;
1021 }
1022
tls_exit_net(struct net * net)1023 static void __net_exit tls_exit_net(struct net *net)
1024 {
1025 tls_proc_fini(net);
1026 free_percpu(net->mib.tls_statistics);
1027 }
1028
1029 static struct pernet_operations tls_proc_ops = {
1030 .init = tls_init_net,
1031 .exit = tls_exit_net,
1032 };
1033
1034 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1035 .name = "tls",
1036 .owner = THIS_MODULE,
1037 .init = tls_init,
1038 .update = tls_update,
1039 .get_info = tls_get_info,
1040 .get_info_size = tls_get_info_size,
1041 };
1042
tls_register(void)1043 static int __init tls_register(void)
1044 {
1045 int err;
1046
1047 err = register_pernet_subsys(&tls_proc_ops);
1048 if (err)
1049 return err;
1050
1051 err = tls_device_init();
1052 if (err) {
1053 unregister_pernet_subsys(&tls_proc_ops);
1054 return err;
1055 }
1056
1057 tcp_register_ulp(&tcp_tls_ulp_ops);
1058
1059 return 0;
1060 }
1061
tls_unregister(void)1062 static void __exit tls_unregister(void)
1063 {
1064 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1065 tls_device_cleanup();
1066 unregister_pernet_subsys(&tls_proc_ops);
1067 }
1068
1069 module_init(tls_register);
1070 module_exit(tls_unregister);
1071