1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44
45 #include <asm/alternative.h>
46 #include <asm/compat.h>
47 #include <asm/cpufeature.h>
48 #include <asm/cacheflush.h>
49 #include <asm/exec.h>
50 #include <asm/fpsimd.h>
51 #include <asm/mmu_context.h>
52 #include <asm/mte.h>
53 #include <asm/processor.h>
54 #include <asm/pointer_auth.h>
55 #include <asm/stacktrace.h>
56 #include <asm/switch_to.h>
57 #include <asm/system_misc.h>
58
59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __ro_after_init;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64
65 /*
66 * Function pointers to optional machine specific functions
67 */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70
71 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)72 void arch_cpu_idle_dead(void)
73 {
74 cpu_die();
75 }
76 #endif
77
78 /*
79 * Called by kexec, immediately prior to machine_kexec().
80 *
81 * This must completely disable all secondary CPUs; simply causing those CPUs
82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
83 * kexec'd kernel to use any and all RAM as it sees fit, without having to
84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
86 */
machine_shutdown(void)87 void machine_shutdown(void)
88 {
89 smp_shutdown_nonboot_cpus(reboot_cpu);
90 }
91
92 /*
93 * Halting simply requires that the secondary CPUs stop performing any
94 * activity (executing tasks, handling interrupts). smp_send_stop()
95 * achieves this.
96 */
machine_halt(void)97 void machine_halt(void)
98 {
99 local_irq_disable();
100 smp_send_stop();
101 while (1);
102 }
103
104 /*
105 * Power-off simply requires that the secondary CPUs stop performing any
106 * activity (executing tasks, handling interrupts). smp_send_stop()
107 * achieves this. When the system power is turned off, it will take all CPUs
108 * with it.
109 */
machine_power_off(void)110 void machine_power_off(void)
111 {
112 local_irq_disable();
113 smp_send_stop();
114 do_kernel_power_off();
115 }
116
117 /*
118 * Restart requires that the secondary CPUs stop performing any activity
119 * while the primary CPU resets the system. Systems with multiple CPUs must
120 * provide a HW restart implementation, to ensure that all CPUs reset at once.
121 * This is required so that any code running after reset on the primary CPU
122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123 * executing pre-reset code, and using RAM that the primary CPU's code wishes
124 * to use. Implementing such co-ordination would be essentially impossible.
125 */
machine_restart(char * cmd)126 void machine_restart(char *cmd)
127 {
128 /* Disable interrupts first */
129 local_irq_disable();
130 smp_send_stop();
131
132 /*
133 * UpdateCapsule() depends on the system being reset via
134 * ResetSystem().
135 */
136 if (efi_enabled(EFI_RUNTIME_SERVICES))
137 efi_reboot(reboot_mode, NULL);
138
139 /* Now call the architecture specific reboot code. */
140 do_kernel_restart(cmd);
141
142 /*
143 * Whoops - the architecture was unable to reboot.
144 */
145 printk("Reboot failed -- System halted\n");
146 while (1);
147 }
148
149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150 static const char *const btypes[] = {
151 bstr(NONE, "--"),
152 bstr( JC, "jc"),
153 bstr( C, "-c"),
154 bstr( J , "j-")
155 };
156 #undef bstr
157
print_pstate(struct pt_regs * regs)158 static void print_pstate(struct pt_regs *regs)
159 {
160 u64 pstate = regs->pstate;
161
162 if (compat_user_mode(regs)) {
163 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
164 pstate,
165 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174 pstate & PSR_AA32_F_BIT ? 'F' : 'f',
175 pstate & PSR_AA32_DIT_BIT ? '+' : '-',
176 pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
177 } else {
178 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
179 PSR_BTYPE_SHIFT];
180
181 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
182 pstate,
183 pstate & PSR_N_BIT ? 'N' : 'n',
184 pstate & PSR_Z_BIT ? 'Z' : 'z',
185 pstate & PSR_C_BIT ? 'C' : 'c',
186 pstate & PSR_V_BIT ? 'V' : 'v',
187 pstate & PSR_D_BIT ? 'D' : 'd',
188 pstate & PSR_A_BIT ? 'A' : 'a',
189 pstate & PSR_I_BIT ? 'I' : 'i',
190 pstate & PSR_F_BIT ? 'F' : 'f',
191 pstate & PSR_PAN_BIT ? '+' : '-',
192 pstate & PSR_UAO_BIT ? '+' : '-',
193 pstate & PSR_TCO_BIT ? '+' : '-',
194 pstate & PSR_DIT_BIT ? '+' : '-',
195 pstate & PSR_SSBS_BIT ? '+' : '-',
196 btype_str);
197 }
198 }
199
__show_regs(struct pt_regs * regs)200 void __show_regs(struct pt_regs *regs)
201 {
202 int i, top_reg;
203 u64 lr, sp;
204
205 if (compat_user_mode(regs)) {
206 lr = regs->compat_lr;
207 sp = regs->compat_sp;
208 top_reg = 12;
209 } else {
210 lr = regs->regs[30];
211 sp = regs->sp;
212 top_reg = 29;
213 }
214
215 show_regs_print_info(KERN_DEFAULT);
216 print_pstate(regs);
217
218 if (!user_mode(regs)) {
219 printk("pc : %pS\n", (void *)regs->pc);
220 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
221 } else {
222 printk("pc : %016llx\n", regs->pc);
223 printk("lr : %016llx\n", lr);
224 }
225
226 printk("sp : %016llx\n", sp);
227
228 if (system_uses_irq_prio_masking())
229 printk("pmr_save: %08llx\n", regs->pmr_save);
230
231 i = top_reg;
232
233 while (i >= 0) {
234 printk("x%-2d: %016llx", i, regs->regs[i]);
235
236 while (i-- % 3)
237 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
238
239 pr_cont("\n");
240 }
241 }
242
show_regs(struct pt_regs * regs)243 void show_regs(struct pt_regs *regs)
244 {
245 __show_regs(regs);
246 dump_backtrace(regs, NULL, KERN_DEFAULT);
247 }
248
tls_thread_flush(void)249 static void tls_thread_flush(void)
250 {
251 write_sysreg(0, tpidr_el0);
252 if (system_supports_tpidr2())
253 write_sysreg_s(0, SYS_TPIDR2_EL0);
254
255 if (is_compat_task()) {
256 current->thread.uw.tp_value = 0;
257
258 /*
259 * We need to ensure ordering between the shadow state and the
260 * hardware state, so that we don't corrupt the hardware state
261 * with a stale shadow state during context switch.
262 */
263 barrier();
264 write_sysreg(0, tpidrro_el0);
265 }
266 }
267
flush_tagged_addr_state(void)268 static void flush_tagged_addr_state(void)
269 {
270 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
271 clear_thread_flag(TIF_TAGGED_ADDR);
272 }
273
flush_thread(void)274 void flush_thread(void)
275 {
276 fpsimd_flush_thread();
277 tls_thread_flush();
278 flush_ptrace_hw_breakpoint(current);
279 flush_tagged_addr_state();
280 }
281
release_thread(struct task_struct * dead_task)282 void release_thread(struct task_struct *dead_task)
283 {
284 }
285
arch_release_task_struct(struct task_struct * tsk)286 void arch_release_task_struct(struct task_struct *tsk)
287 {
288 fpsimd_release_task(tsk);
289 }
290
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)291 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
292 {
293 if (current->mm)
294 fpsimd_preserve_current_state();
295 *dst = *src;
296
297 /* We rely on the above assignment to initialize dst's thread_flags: */
298 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
299
300 /*
301 * Detach src's sve_state (if any) from dst so that it does not
302 * get erroneously used or freed prematurely. dst's copies
303 * will be allocated on demand later on if dst uses SVE.
304 * For consistency, also clear TIF_SVE here: this could be done
305 * later in copy_process(), but to avoid tripping up future
306 * maintainers it is best not to leave TIF flags and buffers in
307 * an inconsistent state, even temporarily.
308 */
309 dst->thread.sve_state = NULL;
310 clear_tsk_thread_flag(dst, TIF_SVE);
311
312 /*
313 * In the unlikely event that we create a new thread with ZA
314 * enabled we should retain the ZA state so duplicate it here.
315 * This may be shortly freed if we exec() or if CLONE_SETTLS
316 * but it's simpler to do it here. To avoid confusing the rest
317 * of the code ensure that we have a sve_state allocated
318 * whenever za_state is allocated.
319 */
320 if (thread_za_enabled(&src->thread)) {
321 dst->thread.sve_state = kzalloc(sve_state_size(src),
322 GFP_KERNEL);
323 if (!dst->thread.sve_state)
324 return -ENOMEM;
325 dst->thread.za_state = kmemdup(src->thread.za_state,
326 za_state_size(src),
327 GFP_KERNEL);
328 if (!dst->thread.za_state) {
329 kfree(dst->thread.sve_state);
330 dst->thread.sve_state = NULL;
331 return -ENOMEM;
332 }
333 } else {
334 dst->thread.za_state = NULL;
335 clear_tsk_thread_flag(dst, TIF_SME);
336 }
337
338 /* clear any pending asynchronous tag fault raised by the parent */
339 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
340
341 return 0;
342 }
343
344 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
345
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)346 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
347 {
348 unsigned long clone_flags = args->flags;
349 unsigned long stack_start = args->stack;
350 unsigned long tls = args->tls;
351 struct pt_regs *childregs = task_pt_regs(p);
352
353 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
354
355 /*
356 * In case p was allocated the same task_struct pointer as some
357 * other recently-exited task, make sure p is disassociated from
358 * any cpu that may have run that now-exited task recently.
359 * Otherwise we could erroneously skip reloading the FPSIMD
360 * registers for p.
361 */
362 fpsimd_flush_task_state(p);
363
364 ptrauth_thread_init_kernel(p);
365
366 if (likely(!args->fn)) {
367 *childregs = *current_pt_regs();
368 childregs->regs[0] = 0;
369
370 /*
371 * Read the current TLS pointer from tpidr_el0 as it may be
372 * out-of-sync with the saved value.
373 */
374 *task_user_tls(p) = read_sysreg(tpidr_el0);
375 if (system_supports_tpidr2())
376 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
377
378 if (stack_start) {
379 if (is_compat_thread(task_thread_info(p)))
380 childregs->compat_sp = stack_start;
381 else
382 childregs->sp = stack_start;
383 }
384
385 /*
386 * If a TLS pointer was passed to clone, use it for the new
387 * thread. We also reset TPIDR2 if it's in use.
388 */
389 if (clone_flags & CLONE_SETTLS) {
390 p->thread.uw.tp_value = tls;
391 p->thread.tpidr2_el0 = 0;
392 }
393 } else {
394 /*
395 * A kthread has no context to ERET to, so ensure any buggy
396 * ERET is treated as an illegal exception return.
397 *
398 * When a user task is created from a kthread, childregs will
399 * be initialized by start_thread() or start_compat_thread().
400 */
401 memset(childregs, 0, sizeof(struct pt_regs));
402 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
403
404 p->thread.cpu_context.x19 = (unsigned long)args->fn;
405 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
406 }
407 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
408 p->thread.cpu_context.sp = (unsigned long)childregs;
409 /*
410 * For the benefit of the unwinder, set up childregs->stackframe
411 * as the final frame for the new task.
412 */
413 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
414
415 ptrace_hw_copy_thread(p);
416
417 return 0;
418 }
419
tls_preserve_current_state(void)420 void tls_preserve_current_state(void)
421 {
422 *task_user_tls(current) = read_sysreg(tpidr_el0);
423 if (system_supports_tpidr2() && !is_compat_task())
424 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
425 }
426
tls_thread_switch(struct task_struct * next)427 static void tls_thread_switch(struct task_struct *next)
428 {
429 tls_preserve_current_state();
430
431 if (is_compat_thread(task_thread_info(next)))
432 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
433 else if (!arm64_kernel_unmapped_at_el0())
434 write_sysreg(0, tpidrro_el0);
435
436 write_sysreg(*task_user_tls(next), tpidr_el0);
437 if (system_supports_tpidr2())
438 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
439 }
440
441 /*
442 * Force SSBS state on context-switch, since it may be lost after migrating
443 * from a CPU which treats the bit as RES0 in a heterogeneous system.
444 */
ssbs_thread_switch(struct task_struct * next)445 static void ssbs_thread_switch(struct task_struct *next)
446 {
447 /*
448 * Nothing to do for kernel threads, but 'regs' may be junk
449 * (e.g. idle task) so check the flags and bail early.
450 */
451 if (unlikely(next->flags & PF_KTHREAD))
452 return;
453
454 /*
455 * If all CPUs implement the SSBS extension, then we just need to
456 * context-switch the PSTATE field.
457 */
458 if (cpus_have_const_cap(ARM64_SSBS))
459 return;
460
461 spectre_v4_enable_task_mitigation(next);
462 }
463
464 /*
465 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
466 * shadow copy so that we can restore this upon entry from userspace.
467 *
468 * This is *only* for exception entry from EL0, and is not valid until we
469 * __switch_to() a user task.
470 */
471 DEFINE_PER_CPU(struct task_struct *, __entry_task);
472
entry_task_switch(struct task_struct * next)473 static void entry_task_switch(struct task_struct *next)
474 {
475 __this_cpu_write(__entry_task, next);
476 }
477
478 /*
479 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
480 * Ensure access is disabled when switching to a 32bit task, ensure
481 * access is enabled when switching to a 64bit task.
482 */
erratum_1418040_thread_switch(struct task_struct * next)483 static void erratum_1418040_thread_switch(struct task_struct *next)
484 {
485 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
486 !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
487 return;
488
489 if (is_compat_thread(task_thread_info(next)))
490 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
491 else
492 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
493 }
494
erratum_1418040_new_exec(void)495 static void erratum_1418040_new_exec(void)
496 {
497 preempt_disable();
498 erratum_1418040_thread_switch(current);
499 preempt_enable();
500 }
501
502 /*
503 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
504 * this function must be called with preemption disabled and the update to
505 * sctlr_user must be made in the same preemption disabled block so that
506 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
507 */
update_sctlr_el1(u64 sctlr)508 void update_sctlr_el1(u64 sctlr)
509 {
510 /*
511 * EnIA must not be cleared while in the kernel as this is necessary for
512 * in-kernel PAC. It will be cleared on kernel exit if needed.
513 */
514 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
515
516 /* ISB required for the kernel uaccess routines when setting TCF0. */
517 isb();
518 }
519
520 /*
521 * Thread switching.
522 */
523 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)524 struct task_struct *__switch_to(struct task_struct *prev,
525 struct task_struct *next)
526 {
527 struct task_struct *last;
528
529 fpsimd_thread_switch(next);
530 tls_thread_switch(next);
531 hw_breakpoint_thread_switch(next);
532 contextidr_thread_switch(next);
533 entry_task_switch(next);
534 ssbs_thread_switch(next);
535 erratum_1418040_thread_switch(next);
536 ptrauth_thread_switch_user(next);
537
538 /*
539 * Complete any pending TLB or cache maintenance on this CPU in case
540 * the thread migrates to a different CPU.
541 * This full barrier is also required by the membarrier system
542 * call.
543 */
544 dsb(ish);
545
546 /*
547 * MTE thread switching must happen after the DSB above to ensure that
548 * any asynchronous tag check faults have been logged in the TFSR*_EL1
549 * registers.
550 */
551 mte_thread_switch(next);
552 /* avoid expensive SCTLR_EL1 accesses if no change */
553 if (prev->thread.sctlr_user != next->thread.sctlr_user)
554 update_sctlr_el1(next->thread.sctlr_user);
555
556 /* the actual thread switch */
557 last = cpu_switch_to(prev, next);
558
559 return last;
560 }
561
562 struct wchan_info {
563 unsigned long pc;
564 int count;
565 };
566
get_wchan_cb(void * arg,unsigned long pc)567 static bool get_wchan_cb(void *arg, unsigned long pc)
568 {
569 struct wchan_info *wchan_info = arg;
570
571 if (!in_sched_functions(pc)) {
572 wchan_info->pc = pc;
573 return false;
574 }
575 return wchan_info->count++ < 16;
576 }
577
__get_wchan(struct task_struct * p)578 unsigned long __get_wchan(struct task_struct *p)
579 {
580 struct wchan_info wchan_info = {
581 .pc = 0,
582 .count = 0,
583 };
584
585 if (!try_get_task_stack(p))
586 return 0;
587
588 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
589
590 put_task_stack(p);
591
592 return wchan_info.pc;
593 }
594
arch_align_stack(unsigned long sp)595 unsigned long arch_align_stack(unsigned long sp)
596 {
597 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
598 sp -= get_random_int() & ~PAGE_MASK;
599 return sp & ~0xf;
600 }
601
602 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)603 int compat_elf_check_arch(const struct elf32_hdr *hdr)
604 {
605 if (!system_supports_32bit_el0())
606 return false;
607
608 if ((hdr)->e_machine != EM_ARM)
609 return false;
610
611 if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
612 return false;
613
614 /*
615 * Prevent execve() of a 32-bit program from a deadline task
616 * if the restricted affinity mask would be inadmissible on an
617 * asymmetric system.
618 */
619 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
620 !dl_task_check_affinity(current, system_32bit_el0_cpumask());
621 }
622 #endif
623
624 /*
625 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
626 */
arch_setup_new_exec(void)627 void arch_setup_new_exec(void)
628 {
629 unsigned long mmflags = 0;
630
631 if (is_compat_task()) {
632 mmflags = MMCF_AARCH32;
633
634 /*
635 * Restrict the CPU affinity mask for a 32-bit task so that
636 * it contains only 32-bit-capable CPUs.
637 *
638 * From the perspective of the task, this looks similar to
639 * what would happen if the 64-bit-only CPUs were hot-unplugged
640 * at the point of execve(), although we try a bit harder to
641 * honour the cpuset hierarchy.
642 */
643 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
644 force_compatible_cpus_allowed_ptr(current);
645 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
646 relax_compatible_cpus_allowed_ptr(current);
647 }
648
649 current->mm->context.flags = mmflags;
650 ptrauth_thread_init_user();
651 mte_thread_init_user();
652 erratum_1418040_new_exec();
653
654 if (task_spec_ssb_noexec(current)) {
655 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
656 PR_SPEC_ENABLE);
657 }
658 }
659
660 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
661 /*
662 * Control the relaxed ABI allowing tagged user addresses into the kernel.
663 */
664 static unsigned int tagged_addr_disabled;
665
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)666 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
667 {
668 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
669 struct thread_info *ti = task_thread_info(task);
670
671 if (is_compat_thread(ti))
672 return -EINVAL;
673
674 if (system_supports_mte())
675 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
676 | PR_MTE_TAG_MASK;
677
678 if (arg & ~valid_mask)
679 return -EINVAL;
680
681 /*
682 * Do not allow the enabling of the tagged address ABI if globally
683 * disabled via sysctl abi.tagged_addr_disabled.
684 */
685 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
686 return -EINVAL;
687
688 if (set_mte_ctrl(task, arg) != 0)
689 return -EINVAL;
690
691 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
692
693 return 0;
694 }
695
get_tagged_addr_ctrl(struct task_struct * task)696 long get_tagged_addr_ctrl(struct task_struct *task)
697 {
698 long ret = 0;
699 struct thread_info *ti = task_thread_info(task);
700
701 if (is_compat_thread(ti))
702 return -EINVAL;
703
704 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
705 ret = PR_TAGGED_ADDR_ENABLE;
706
707 ret |= get_mte_ctrl(task);
708
709 return ret;
710 }
711
712 /*
713 * Global sysctl to disable the tagged user addresses support. This control
714 * only prevents the tagged address ABI enabling via prctl() and does not
715 * disable it for tasks that already opted in to the relaxed ABI.
716 */
717
718 static struct ctl_table tagged_addr_sysctl_table[] = {
719 {
720 .procname = "tagged_addr_disabled",
721 .mode = 0644,
722 .data = &tagged_addr_disabled,
723 .maxlen = sizeof(int),
724 .proc_handler = proc_dointvec_minmax,
725 .extra1 = SYSCTL_ZERO,
726 .extra2 = SYSCTL_ONE,
727 },
728 { }
729 };
730
tagged_addr_init(void)731 static int __init tagged_addr_init(void)
732 {
733 if (!register_sysctl("abi", tagged_addr_sysctl_table))
734 return -EINVAL;
735 return 0;
736 }
737
738 core_initcall(tagged_addr_init);
739 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
740
741 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)742 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
743 bool has_interp, bool is_interp)
744 {
745 /*
746 * For dynamically linked executables the interpreter is
747 * responsible for setting PROT_BTI on everything except
748 * itself.
749 */
750 if (is_interp != has_interp)
751 return prot;
752
753 if (!(state->flags & ARM64_ELF_BTI))
754 return prot;
755
756 if (prot & PROT_EXEC)
757 prot |= PROT_BTI;
758
759 return prot;
760 }
761 #endif
762