1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44 * against NETDEV_DOWN notifications.
45 */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
tls_device_free_ctx(struct tls_context * ctx)56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58 if (ctx->tx_conf == TLS_HW) {
59 kfree(tls_offload_ctx_tx(ctx));
60 kfree(ctx->tx.rec_seq);
61 kfree(ctx->tx.iv);
62 }
63
64 if (ctx->rx_conf == TLS_HW)
65 kfree(tls_offload_ctx_rx(ctx));
66
67 tls_ctx_free(NULL, ctx);
68 }
69
tls_device_gc_task(struct work_struct * work)70 static void tls_device_gc_task(struct work_struct *work)
71 {
72 struct tls_context *ctx, *tmp;
73 unsigned long flags;
74 LIST_HEAD(gc_list);
75
76 spin_lock_irqsave(&tls_device_lock, flags);
77 list_splice_init(&tls_device_gc_list, &gc_list);
78 spin_unlock_irqrestore(&tls_device_lock, flags);
79
80 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81 struct net_device *netdev = ctx->netdev;
82
83 if (netdev && ctx->tx_conf == TLS_HW) {
84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85 TLS_OFFLOAD_CTX_DIR_TX);
86 dev_put(netdev);
87 ctx->netdev = NULL;
88 }
89
90 list_del(&ctx->list);
91 tls_device_free_ctx(ctx);
92 }
93 }
94
tls_device_queue_ctx_destruction(struct tls_context * ctx)95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97 unsigned long flags;
98
99 spin_lock_irqsave(&tls_device_lock, flags);
100 if (unlikely(!refcount_dec_and_test(&ctx->refcount)))
101 goto unlock;
102
103 list_move_tail(&ctx->list, &tls_device_gc_list);
104
105 /* schedule_work inside the spinlock
106 * to make sure tls_device_down waits for that work.
107 */
108 schedule_work(&tls_device_gc_work);
109 unlock:
110 spin_unlock_irqrestore(&tls_device_lock, flags);
111 }
112
113 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)114 static struct net_device *get_netdev_for_sock(struct sock *sk)
115 {
116 struct dst_entry *dst = sk_dst_get(sk);
117 struct net_device *netdev = NULL;
118
119 if (likely(dst)) {
120 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
121 dev_hold(netdev);
122 }
123
124 dst_release(dst);
125
126 return netdev;
127 }
128
destroy_record(struct tls_record_info * record)129 static void destroy_record(struct tls_record_info *record)
130 {
131 int i;
132
133 for (i = 0; i < record->num_frags; i++)
134 __skb_frag_unref(&record->frags[i], false);
135 kfree(record);
136 }
137
delete_all_records(struct tls_offload_context_tx * offload_ctx)138 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
139 {
140 struct tls_record_info *info, *temp;
141
142 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
143 list_del(&info->list);
144 destroy_record(info);
145 }
146
147 offload_ctx->retransmit_hint = NULL;
148 }
149
tls_icsk_clean_acked(struct sock * sk,u32 acked_seq)150 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
151 {
152 struct tls_context *tls_ctx = tls_get_ctx(sk);
153 struct tls_record_info *info, *temp;
154 struct tls_offload_context_tx *ctx;
155 u64 deleted_records = 0;
156 unsigned long flags;
157
158 if (!tls_ctx)
159 return;
160
161 ctx = tls_offload_ctx_tx(tls_ctx);
162
163 spin_lock_irqsave(&ctx->lock, flags);
164 info = ctx->retransmit_hint;
165 if (info && !before(acked_seq, info->end_seq))
166 ctx->retransmit_hint = NULL;
167
168 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
169 if (before(acked_seq, info->end_seq))
170 break;
171 list_del(&info->list);
172
173 destroy_record(info);
174 deleted_records++;
175 }
176
177 ctx->unacked_record_sn += deleted_records;
178 spin_unlock_irqrestore(&ctx->lock, flags);
179 }
180
181 /* At this point, there should be no references on this
182 * socket and no in-flight SKBs associated with this
183 * socket, so it is safe to free all the resources.
184 */
tls_device_sk_destruct(struct sock * sk)185 void tls_device_sk_destruct(struct sock *sk)
186 {
187 struct tls_context *tls_ctx = tls_get_ctx(sk);
188 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
189
190 tls_ctx->sk_destruct(sk);
191
192 if (tls_ctx->tx_conf == TLS_HW) {
193 if (ctx->open_record)
194 destroy_record(ctx->open_record);
195 delete_all_records(ctx);
196 crypto_free_aead(ctx->aead_send);
197 clean_acked_data_disable(inet_csk(sk));
198 }
199
200 tls_device_queue_ctx_destruction(tls_ctx);
201 }
202 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
203
tls_device_free_resources_tx(struct sock * sk)204 void tls_device_free_resources_tx(struct sock *sk)
205 {
206 struct tls_context *tls_ctx = tls_get_ctx(sk);
207
208 tls_free_partial_record(sk, tls_ctx);
209 }
210
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)211 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
212 {
213 struct tls_context *tls_ctx = tls_get_ctx(sk);
214
215 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
216 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
217 }
218 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
219
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)220 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
221 u32 seq)
222 {
223 struct net_device *netdev;
224 struct sk_buff *skb;
225 int err = 0;
226 u8 *rcd_sn;
227
228 skb = tcp_write_queue_tail(sk);
229 if (skb)
230 TCP_SKB_CB(skb)->eor = 1;
231
232 rcd_sn = tls_ctx->tx.rec_seq;
233
234 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
235 down_read(&device_offload_lock);
236 netdev = tls_ctx->netdev;
237 if (netdev)
238 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
239 rcd_sn,
240 TLS_OFFLOAD_CTX_DIR_TX);
241 up_read(&device_offload_lock);
242 if (err)
243 return;
244
245 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
246 }
247
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)248 static void tls_append_frag(struct tls_record_info *record,
249 struct page_frag *pfrag,
250 int size)
251 {
252 skb_frag_t *frag;
253
254 frag = &record->frags[record->num_frags - 1];
255 if (skb_frag_page(frag) == pfrag->page &&
256 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
257 skb_frag_size_add(frag, size);
258 } else {
259 ++frag;
260 __skb_frag_set_page(frag, pfrag->page);
261 skb_frag_off_set(frag, pfrag->offset);
262 skb_frag_size_set(frag, size);
263 ++record->num_frags;
264 get_page(pfrag->page);
265 }
266
267 pfrag->offset += size;
268 record->len += size;
269 }
270
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)271 static int tls_push_record(struct sock *sk,
272 struct tls_context *ctx,
273 struct tls_offload_context_tx *offload_ctx,
274 struct tls_record_info *record,
275 int flags)
276 {
277 struct tls_prot_info *prot = &ctx->prot_info;
278 struct tcp_sock *tp = tcp_sk(sk);
279 skb_frag_t *frag;
280 int i;
281
282 record->end_seq = tp->write_seq + record->len;
283 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
284 offload_ctx->open_record = NULL;
285
286 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
287 tls_device_resync_tx(sk, ctx, tp->write_seq);
288
289 tls_advance_record_sn(sk, prot, &ctx->tx);
290
291 for (i = 0; i < record->num_frags; i++) {
292 frag = &record->frags[i];
293 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
294 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
295 skb_frag_size(frag), skb_frag_off(frag));
296 sk_mem_charge(sk, skb_frag_size(frag));
297 get_page(skb_frag_page(frag));
298 }
299 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
300
301 /* all ready, send */
302 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
303 }
304
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)305 static int tls_device_record_close(struct sock *sk,
306 struct tls_context *ctx,
307 struct tls_record_info *record,
308 struct page_frag *pfrag,
309 unsigned char record_type)
310 {
311 struct tls_prot_info *prot = &ctx->prot_info;
312 int ret;
313
314 /* append tag
315 * device will fill in the tag, we just need to append a placeholder
316 * use socket memory to improve coalescing (re-using a single buffer
317 * increases frag count)
318 * if we can't allocate memory now, steal some back from data
319 */
320 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
321 sk->sk_allocation))) {
322 ret = 0;
323 tls_append_frag(record, pfrag, prot->tag_size);
324 } else {
325 ret = prot->tag_size;
326 if (record->len <= prot->overhead_size)
327 return -ENOMEM;
328 }
329
330 /* fill prepend */
331 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
332 record->len - prot->overhead_size,
333 record_type);
334 return ret;
335 }
336
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)337 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
338 struct page_frag *pfrag,
339 size_t prepend_size)
340 {
341 struct tls_record_info *record;
342 skb_frag_t *frag;
343
344 record = kmalloc(sizeof(*record), GFP_KERNEL);
345 if (!record)
346 return -ENOMEM;
347
348 frag = &record->frags[0];
349 __skb_frag_set_page(frag, pfrag->page);
350 skb_frag_off_set(frag, pfrag->offset);
351 skb_frag_size_set(frag, prepend_size);
352
353 get_page(pfrag->page);
354 pfrag->offset += prepend_size;
355
356 record->num_frags = 1;
357 record->len = prepend_size;
358 offload_ctx->open_record = record;
359 return 0;
360 }
361
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)362 static int tls_do_allocation(struct sock *sk,
363 struct tls_offload_context_tx *offload_ctx,
364 struct page_frag *pfrag,
365 size_t prepend_size)
366 {
367 int ret;
368
369 if (!offload_ctx->open_record) {
370 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
371 sk->sk_allocation))) {
372 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
373 sk_stream_moderate_sndbuf(sk);
374 return -ENOMEM;
375 }
376
377 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
378 if (ret)
379 return ret;
380
381 if (pfrag->size > pfrag->offset)
382 return 0;
383 }
384
385 if (!sk_page_frag_refill(sk, pfrag))
386 return -ENOMEM;
387
388 return 0;
389 }
390
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)391 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
392 {
393 size_t pre_copy, nocache;
394
395 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
396 if (pre_copy) {
397 pre_copy = min(pre_copy, bytes);
398 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
399 return -EFAULT;
400 bytes -= pre_copy;
401 addr += pre_copy;
402 }
403
404 nocache = round_down(bytes, SMP_CACHE_BYTES);
405 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
406 return -EFAULT;
407 bytes -= nocache;
408 addr += nocache;
409
410 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
411 return -EFAULT;
412
413 return 0;
414 }
415
416 union tls_iter_offset {
417 struct iov_iter *msg_iter;
418 int offset;
419 };
420
tls_push_data(struct sock * sk,union tls_iter_offset iter_offset,size_t size,int flags,unsigned char record_type,struct page * zc_page)421 static int tls_push_data(struct sock *sk,
422 union tls_iter_offset iter_offset,
423 size_t size, int flags,
424 unsigned char record_type,
425 struct page *zc_page)
426 {
427 struct tls_context *tls_ctx = tls_get_ctx(sk);
428 struct tls_prot_info *prot = &tls_ctx->prot_info;
429 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
430 struct tls_record_info *record;
431 int tls_push_record_flags;
432 struct page_frag *pfrag;
433 size_t orig_size = size;
434 u32 max_open_record_len;
435 bool more = false;
436 bool done = false;
437 int copy, rc = 0;
438 long timeo;
439
440 if (flags &
441 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
442 return -EOPNOTSUPP;
443
444 if (unlikely(sk->sk_err))
445 return -sk->sk_err;
446
447 flags |= MSG_SENDPAGE_DECRYPTED;
448 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
449
450 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
451 if (tls_is_partially_sent_record(tls_ctx)) {
452 rc = tls_push_partial_record(sk, tls_ctx, flags);
453 if (rc < 0)
454 return rc;
455 }
456
457 pfrag = sk_page_frag(sk);
458
459 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
460 * we need to leave room for an authentication tag.
461 */
462 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
463 prot->prepend_size;
464 do {
465 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
466 if (unlikely(rc)) {
467 rc = sk_stream_wait_memory(sk, &timeo);
468 if (!rc)
469 continue;
470
471 record = ctx->open_record;
472 if (!record)
473 break;
474 handle_error:
475 if (record_type != TLS_RECORD_TYPE_DATA) {
476 /* avoid sending partial
477 * record with type !=
478 * application_data
479 */
480 size = orig_size;
481 destroy_record(record);
482 ctx->open_record = NULL;
483 } else if (record->len > prot->prepend_size) {
484 goto last_record;
485 }
486
487 break;
488 }
489
490 record = ctx->open_record;
491
492 copy = min_t(size_t, size, max_open_record_len - record->len);
493 if (copy && zc_page) {
494 struct page_frag zc_pfrag;
495
496 zc_pfrag.page = zc_page;
497 zc_pfrag.offset = iter_offset.offset;
498 zc_pfrag.size = copy;
499 tls_append_frag(record, &zc_pfrag, copy);
500 } else if (copy) {
501 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
502
503 rc = tls_device_copy_data(page_address(pfrag->page) +
504 pfrag->offset, copy,
505 iter_offset.msg_iter);
506 if (rc)
507 goto handle_error;
508 tls_append_frag(record, pfrag, copy);
509 }
510
511 size -= copy;
512 if (!size) {
513 last_record:
514 tls_push_record_flags = flags;
515 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
516 more = true;
517 break;
518 }
519
520 done = true;
521 }
522
523 if (done || record->len >= max_open_record_len ||
524 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
525 rc = tls_device_record_close(sk, tls_ctx, record,
526 pfrag, record_type);
527 if (rc) {
528 if (rc > 0) {
529 size += rc;
530 } else {
531 size = orig_size;
532 destroy_record(record);
533 ctx->open_record = NULL;
534 break;
535 }
536 }
537
538 rc = tls_push_record(sk,
539 tls_ctx,
540 ctx,
541 record,
542 tls_push_record_flags);
543 if (rc < 0)
544 break;
545 }
546 } while (!done);
547
548 tls_ctx->pending_open_record_frags = more;
549
550 if (orig_size - size > 0)
551 rc = orig_size - size;
552
553 return rc;
554 }
555
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)556 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
557 {
558 unsigned char record_type = TLS_RECORD_TYPE_DATA;
559 struct tls_context *tls_ctx = tls_get_ctx(sk);
560 union tls_iter_offset iter;
561 int rc;
562
563 mutex_lock(&tls_ctx->tx_lock);
564 lock_sock(sk);
565
566 if (unlikely(msg->msg_controllen)) {
567 rc = tls_proccess_cmsg(sk, msg, &record_type);
568 if (rc)
569 goto out;
570 }
571
572 iter.msg_iter = &msg->msg_iter;
573 rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
574
575 out:
576 release_sock(sk);
577 mutex_unlock(&tls_ctx->tx_lock);
578 return rc;
579 }
580
tls_device_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)581 int tls_device_sendpage(struct sock *sk, struct page *page,
582 int offset, size_t size, int flags)
583 {
584 struct tls_context *tls_ctx = tls_get_ctx(sk);
585 union tls_iter_offset iter_offset;
586 struct iov_iter msg_iter;
587 char *kaddr;
588 struct kvec iov;
589 int rc;
590
591 if (flags & MSG_SENDPAGE_NOTLAST)
592 flags |= MSG_MORE;
593
594 mutex_lock(&tls_ctx->tx_lock);
595 lock_sock(sk);
596
597 if (flags & MSG_OOB) {
598 rc = -EOPNOTSUPP;
599 goto out;
600 }
601
602 if (tls_ctx->zerocopy_sendfile) {
603 iter_offset.offset = offset;
604 rc = tls_push_data(sk, iter_offset, size,
605 flags, TLS_RECORD_TYPE_DATA, page);
606 goto out;
607 }
608
609 kaddr = kmap(page);
610 iov.iov_base = kaddr + offset;
611 iov.iov_len = size;
612 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
613 iter_offset.msg_iter = &msg_iter;
614 rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
615 NULL);
616 kunmap(page);
617
618 out:
619 release_sock(sk);
620 mutex_unlock(&tls_ctx->tx_lock);
621 return rc;
622 }
623
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)624 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
625 u32 seq, u64 *p_record_sn)
626 {
627 u64 record_sn = context->hint_record_sn;
628 struct tls_record_info *info, *last;
629
630 info = context->retransmit_hint;
631 if (!info ||
632 before(seq, info->end_seq - info->len)) {
633 /* if retransmit_hint is irrelevant start
634 * from the beginning of the list
635 */
636 info = list_first_entry_or_null(&context->records_list,
637 struct tls_record_info, list);
638 if (!info)
639 return NULL;
640 /* send the start_marker record if seq number is before the
641 * tls offload start marker sequence number. This record is
642 * required to handle TCP packets which are before TLS offload
643 * started.
644 * And if it's not start marker, look if this seq number
645 * belongs to the list.
646 */
647 if (likely(!tls_record_is_start_marker(info))) {
648 /* we have the first record, get the last record to see
649 * if this seq number belongs to the list.
650 */
651 last = list_last_entry(&context->records_list,
652 struct tls_record_info, list);
653
654 if (!between(seq, tls_record_start_seq(info),
655 last->end_seq))
656 return NULL;
657 }
658 record_sn = context->unacked_record_sn;
659 }
660
661 /* We just need the _rcu for the READ_ONCE() */
662 rcu_read_lock();
663 list_for_each_entry_from_rcu(info, &context->records_list, list) {
664 if (before(seq, info->end_seq)) {
665 if (!context->retransmit_hint ||
666 after(info->end_seq,
667 context->retransmit_hint->end_seq)) {
668 context->hint_record_sn = record_sn;
669 context->retransmit_hint = info;
670 }
671 *p_record_sn = record_sn;
672 goto exit_rcu_unlock;
673 }
674 record_sn++;
675 }
676 info = NULL;
677
678 exit_rcu_unlock:
679 rcu_read_unlock();
680 return info;
681 }
682 EXPORT_SYMBOL(tls_get_record);
683
tls_device_push_pending_record(struct sock * sk,int flags)684 static int tls_device_push_pending_record(struct sock *sk, int flags)
685 {
686 union tls_iter_offset iter;
687 struct iov_iter msg_iter;
688
689 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
690 iter.msg_iter = &msg_iter;
691 return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
692 }
693
tls_device_write_space(struct sock * sk,struct tls_context * ctx)694 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
695 {
696 if (tls_is_partially_sent_record(ctx)) {
697 gfp_t sk_allocation = sk->sk_allocation;
698
699 WARN_ON_ONCE(sk->sk_write_pending);
700
701 sk->sk_allocation = GFP_ATOMIC;
702 tls_push_partial_record(sk, ctx,
703 MSG_DONTWAIT | MSG_NOSIGNAL |
704 MSG_SENDPAGE_DECRYPTED);
705 sk->sk_allocation = sk_allocation;
706 }
707 }
708
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)709 static void tls_device_resync_rx(struct tls_context *tls_ctx,
710 struct sock *sk, u32 seq, u8 *rcd_sn)
711 {
712 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
713 struct net_device *netdev;
714
715 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
716 rcu_read_lock();
717 netdev = READ_ONCE(tls_ctx->netdev);
718 if (netdev)
719 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
720 TLS_OFFLOAD_CTX_DIR_RX);
721 rcu_read_unlock();
722 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
723 }
724
725 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)726 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
727 s64 resync_req, u32 *seq, u16 *rcd_delta)
728 {
729 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
730 u32 req_seq = resync_req >> 32;
731 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
732 u16 i;
733
734 *rcd_delta = 0;
735
736 if (is_async) {
737 /* shouldn't get to wraparound:
738 * too long in async stage, something bad happened
739 */
740 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
741 return false;
742
743 /* asynchronous stage: log all headers seq such that
744 * req_seq <= seq <= end_seq, and wait for real resync request
745 */
746 if (before(*seq, req_seq))
747 return false;
748 if (!after(*seq, req_end) &&
749 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
750 resync_async->log[resync_async->loglen++] = *seq;
751
752 resync_async->rcd_delta++;
753
754 return false;
755 }
756
757 /* synchronous stage: check against the logged entries and
758 * proceed to check the next entries if no match was found
759 */
760 for (i = 0; i < resync_async->loglen; i++)
761 if (req_seq == resync_async->log[i] &&
762 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
763 *rcd_delta = resync_async->rcd_delta - i;
764 *seq = req_seq;
765 resync_async->loglen = 0;
766 resync_async->rcd_delta = 0;
767 return true;
768 }
769
770 resync_async->loglen = 0;
771 resync_async->rcd_delta = 0;
772
773 if (req_seq == *seq &&
774 atomic64_try_cmpxchg(&resync_async->req,
775 &resync_req, 0))
776 return true;
777
778 return false;
779 }
780
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)781 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
782 {
783 struct tls_context *tls_ctx = tls_get_ctx(sk);
784 struct tls_offload_context_rx *rx_ctx;
785 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
786 u32 sock_data, is_req_pending;
787 struct tls_prot_info *prot;
788 s64 resync_req;
789 u16 rcd_delta;
790 u32 req_seq;
791
792 if (tls_ctx->rx_conf != TLS_HW)
793 return;
794 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
795 return;
796
797 prot = &tls_ctx->prot_info;
798 rx_ctx = tls_offload_ctx_rx(tls_ctx);
799 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
800
801 switch (rx_ctx->resync_type) {
802 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
803 resync_req = atomic64_read(&rx_ctx->resync_req);
804 req_seq = resync_req >> 32;
805 seq += TLS_HEADER_SIZE - 1;
806 is_req_pending = resync_req;
807
808 if (likely(!is_req_pending) || req_seq != seq ||
809 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
810 return;
811 break;
812 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
813 if (likely(!rx_ctx->resync_nh_do_now))
814 return;
815
816 /* head of next rec is already in, note that the sock_inq will
817 * include the currently parsed message when called from parser
818 */
819 sock_data = tcp_inq(sk);
820 if (sock_data > rcd_len) {
821 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
822 rcd_len);
823 return;
824 }
825
826 rx_ctx->resync_nh_do_now = 0;
827 seq += rcd_len;
828 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
829 break;
830 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
831 resync_req = atomic64_read(&rx_ctx->resync_async->req);
832 is_req_pending = resync_req;
833 if (likely(!is_req_pending))
834 return;
835
836 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
837 resync_req, &seq, &rcd_delta))
838 return;
839 tls_bigint_subtract(rcd_sn, rcd_delta);
840 break;
841 }
842
843 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
844 }
845
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)846 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
847 struct tls_offload_context_rx *ctx,
848 struct sock *sk, struct sk_buff *skb)
849 {
850 struct strp_msg *rxm;
851
852 /* device will request resyncs by itself based on stream scan */
853 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
854 return;
855 /* already scheduled */
856 if (ctx->resync_nh_do_now)
857 return;
858 /* seen decrypted fragments since last fully-failed record */
859 if (ctx->resync_nh_reset) {
860 ctx->resync_nh_reset = 0;
861 ctx->resync_nh.decrypted_failed = 1;
862 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
863 return;
864 }
865
866 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
867 return;
868
869 /* doing resync, bump the next target in case it fails */
870 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
871 ctx->resync_nh.decrypted_tgt *= 2;
872 else
873 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
874
875 rxm = strp_msg(skb);
876
877 /* head of next rec is already in, parser will sync for us */
878 if (tcp_inq(sk) > rxm->full_len) {
879 trace_tls_device_rx_resync_nh_schedule(sk);
880 ctx->resync_nh_do_now = 1;
881 } else {
882 struct tls_prot_info *prot = &tls_ctx->prot_info;
883 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
884
885 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
886 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
887
888 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
889 rcd_sn);
890 }
891 }
892
tls_device_reencrypt(struct sock * sk,struct sk_buff * skb)893 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
894 {
895 struct strp_msg *rxm = strp_msg(skb);
896 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
897 struct sk_buff *skb_iter, *unused;
898 struct scatterlist sg[1];
899 char *orig_buf, *buf;
900
901 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
902 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
903 if (!orig_buf)
904 return -ENOMEM;
905 buf = orig_buf;
906
907 nsg = skb_cow_data(skb, 0, &unused);
908 if (unlikely(nsg < 0)) {
909 err = nsg;
910 goto free_buf;
911 }
912
913 sg_init_table(sg, 1);
914 sg_set_buf(&sg[0], buf,
915 rxm->full_len + TLS_HEADER_SIZE +
916 TLS_CIPHER_AES_GCM_128_IV_SIZE);
917 err = skb_copy_bits(skb, offset, buf,
918 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
919 if (err)
920 goto free_buf;
921
922 /* We are interested only in the decrypted data not the auth */
923 err = decrypt_skb(sk, skb, sg);
924 if (err != -EBADMSG)
925 goto free_buf;
926 else
927 err = 0;
928
929 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
930
931 if (skb_pagelen(skb) > offset) {
932 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
933
934 if (skb->decrypted) {
935 err = skb_store_bits(skb, offset, buf, copy);
936 if (err)
937 goto free_buf;
938 }
939
940 offset += copy;
941 buf += copy;
942 }
943
944 pos = skb_pagelen(skb);
945 skb_walk_frags(skb, skb_iter) {
946 int frag_pos;
947
948 /* Practically all frags must belong to msg if reencrypt
949 * is needed with current strparser and coalescing logic,
950 * but strparser may "get optimized", so let's be safe.
951 */
952 if (pos + skb_iter->len <= offset)
953 goto done_with_frag;
954 if (pos >= data_len + rxm->offset)
955 break;
956
957 frag_pos = offset - pos;
958 copy = min_t(int, skb_iter->len - frag_pos,
959 data_len + rxm->offset - offset);
960
961 if (skb_iter->decrypted) {
962 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
963 if (err)
964 goto free_buf;
965 }
966
967 offset += copy;
968 buf += copy;
969 done_with_frag:
970 pos += skb_iter->len;
971 }
972
973 free_buf:
974 kfree(orig_buf);
975 return err;
976 }
977
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx,struct sk_buff * skb,struct strp_msg * rxm)978 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
979 struct sk_buff *skb, struct strp_msg *rxm)
980 {
981 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
982 int is_decrypted = skb->decrypted;
983 int is_encrypted = !is_decrypted;
984 struct sk_buff *skb_iter;
985
986 /* Check if all the data is decrypted already */
987 skb_walk_frags(skb, skb_iter) {
988 is_decrypted &= skb_iter->decrypted;
989 is_encrypted &= !skb_iter->decrypted;
990 }
991
992 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
993 tls_ctx->rx.rec_seq, rxm->full_len,
994 is_encrypted, is_decrypted);
995
996 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
997 if (likely(is_encrypted || is_decrypted))
998 return is_decrypted;
999
1000 /* After tls_device_down disables the offload, the next SKB will
1001 * likely have initial fragments decrypted, and final ones not
1002 * decrypted. We need to reencrypt that single SKB.
1003 */
1004 return tls_device_reencrypt(sk, skb);
1005 }
1006
1007 /* Return immediately if the record is either entirely plaintext or
1008 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1009 * record.
1010 */
1011 if (is_decrypted) {
1012 ctx->resync_nh_reset = 1;
1013 return is_decrypted;
1014 }
1015 if (is_encrypted) {
1016 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1017 return 0;
1018 }
1019
1020 ctx->resync_nh_reset = 1;
1021 return tls_device_reencrypt(sk, skb);
1022 }
1023
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1024 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1025 struct net_device *netdev)
1026 {
1027 if (sk->sk_destruct != tls_device_sk_destruct) {
1028 refcount_set(&ctx->refcount, 1);
1029 dev_hold(netdev);
1030 ctx->netdev = netdev;
1031 spin_lock_irq(&tls_device_lock);
1032 list_add_tail(&ctx->list, &tls_device_list);
1033 spin_unlock_irq(&tls_device_lock);
1034
1035 ctx->sk_destruct = sk->sk_destruct;
1036 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1037 }
1038 }
1039
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)1040 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1041 {
1042 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1043 struct tls_context *tls_ctx = tls_get_ctx(sk);
1044 struct tls_prot_info *prot = &tls_ctx->prot_info;
1045 struct tls_record_info *start_marker_record;
1046 struct tls_offload_context_tx *offload_ctx;
1047 struct tls_crypto_info *crypto_info;
1048 struct net_device *netdev;
1049 char *iv, *rec_seq;
1050 struct sk_buff *skb;
1051 __be64 rcd_sn;
1052 int rc;
1053
1054 if (!ctx)
1055 return -EINVAL;
1056
1057 if (ctx->priv_ctx_tx)
1058 return -EEXIST;
1059
1060 netdev = get_netdev_for_sock(sk);
1061 if (!netdev) {
1062 pr_err_ratelimited("%s: netdev not found\n", __func__);
1063 return -EINVAL;
1064 }
1065
1066 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1067 rc = -EOPNOTSUPP;
1068 goto release_netdev;
1069 }
1070
1071 crypto_info = &ctx->crypto_send.info;
1072 if (crypto_info->version != TLS_1_2_VERSION) {
1073 rc = -EOPNOTSUPP;
1074 goto release_netdev;
1075 }
1076
1077 switch (crypto_info->cipher_type) {
1078 case TLS_CIPHER_AES_GCM_128:
1079 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1080 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1081 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1082 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1083 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1084 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1085 rec_seq =
1086 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1087 break;
1088 default:
1089 rc = -EINVAL;
1090 goto release_netdev;
1091 }
1092
1093 /* Sanity-check the rec_seq_size for stack allocations */
1094 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1095 rc = -EINVAL;
1096 goto release_netdev;
1097 }
1098
1099 prot->version = crypto_info->version;
1100 prot->cipher_type = crypto_info->cipher_type;
1101 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1102 prot->tag_size = tag_size;
1103 prot->overhead_size = prot->prepend_size + prot->tag_size;
1104 prot->iv_size = iv_size;
1105 prot->salt_size = salt_size;
1106 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1107 GFP_KERNEL);
1108 if (!ctx->tx.iv) {
1109 rc = -ENOMEM;
1110 goto release_netdev;
1111 }
1112
1113 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1114
1115 prot->rec_seq_size = rec_seq_size;
1116 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1117 if (!ctx->tx.rec_seq) {
1118 rc = -ENOMEM;
1119 goto free_iv;
1120 }
1121
1122 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1123 if (!start_marker_record) {
1124 rc = -ENOMEM;
1125 goto free_rec_seq;
1126 }
1127
1128 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1129 if (!offload_ctx) {
1130 rc = -ENOMEM;
1131 goto free_marker_record;
1132 }
1133
1134 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1135 if (rc)
1136 goto free_offload_ctx;
1137
1138 /* start at rec_seq - 1 to account for the start marker record */
1139 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1140 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1141
1142 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1143 start_marker_record->len = 0;
1144 start_marker_record->num_frags = 0;
1145
1146 INIT_LIST_HEAD(&offload_ctx->records_list);
1147 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1148 spin_lock_init(&offload_ctx->lock);
1149 sg_init_table(offload_ctx->sg_tx_data,
1150 ARRAY_SIZE(offload_ctx->sg_tx_data));
1151
1152 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1153 ctx->push_pending_record = tls_device_push_pending_record;
1154
1155 /* TLS offload is greatly simplified if we don't send
1156 * SKBs where only part of the payload needs to be encrypted.
1157 * So mark the last skb in the write queue as end of record.
1158 */
1159 skb = tcp_write_queue_tail(sk);
1160 if (skb)
1161 TCP_SKB_CB(skb)->eor = 1;
1162
1163 /* Avoid offloading if the device is down
1164 * We don't want to offload new flows after
1165 * the NETDEV_DOWN event
1166 *
1167 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1168 * handler thus protecting from the device going down before
1169 * ctx was added to tls_device_list.
1170 */
1171 down_read(&device_offload_lock);
1172 if (!(netdev->flags & IFF_UP)) {
1173 rc = -EINVAL;
1174 goto release_lock;
1175 }
1176
1177 ctx->priv_ctx_tx = offload_ctx;
1178 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1179 &ctx->crypto_send.info,
1180 tcp_sk(sk)->write_seq);
1181 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1182 tcp_sk(sk)->write_seq, rec_seq, rc);
1183 if (rc)
1184 goto release_lock;
1185
1186 tls_device_attach(ctx, sk, netdev);
1187 up_read(&device_offload_lock);
1188
1189 /* following this assignment tls_is_sk_tx_device_offloaded
1190 * will return true and the context might be accessed
1191 * by the netdev's xmit function.
1192 */
1193 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1194 dev_put(netdev);
1195
1196 return 0;
1197
1198 release_lock:
1199 up_read(&device_offload_lock);
1200 clean_acked_data_disable(inet_csk(sk));
1201 crypto_free_aead(offload_ctx->aead_send);
1202 free_offload_ctx:
1203 kfree(offload_ctx);
1204 ctx->priv_ctx_tx = NULL;
1205 free_marker_record:
1206 kfree(start_marker_record);
1207 free_rec_seq:
1208 kfree(ctx->tx.rec_seq);
1209 free_iv:
1210 kfree(ctx->tx.iv);
1211 release_netdev:
1212 dev_put(netdev);
1213 return rc;
1214 }
1215
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1216 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1217 {
1218 struct tls12_crypto_info_aes_gcm_128 *info;
1219 struct tls_offload_context_rx *context;
1220 struct net_device *netdev;
1221 int rc = 0;
1222
1223 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1224 return -EOPNOTSUPP;
1225
1226 netdev = get_netdev_for_sock(sk);
1227 if (!netdev) {
1228 pr_err_ratelimited("%s: netdev not found\n", __func__);
1229 return -EINVAL;
1230 }
1231
1232 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1233 rc = -EOPNOTSUPP;
1234 goto release_netdev;
1235 }
1236
1237 /* Avoid offloading if the device is down
1238 * We don't want to offload new flows after
1239 * the NETDEV_DOWN event
1240 *
1241 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1242 * handler thus protecting from the device going down before
1243 * ctx was added to tls_device_list.
1244 */
1245 down_read(&device_offload_lock);
1246 if (!(netdev->flags & IFF_UP)) {
1247 rc = -EINVAL;
1248 goto release_lock;
1249 }
1250
1251 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1252 if (!context) {
1253 rc = -ENOMEM;
1254 goto release_lock;
1255 }
1256 context->resync_nh_reset = 1;
1257
1258 ctx->priv_ctx_rx = context;
1259 rc = tls_set_sw_offload(sk, ctx, 0);
1260 if (rc)
1261 goto release_ctx;
1262
1263 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1264 &ctx->crypto_recv.info,
1265 tcp_sk(sk)->copied_seq);
1266 info = (void *)&ctx->crypto_recv.info;
1267 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1268 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1269 if (rc)
1270 goto free_sw_resources;
1271
1272 tls_device_attach(ctx, sk, netdev);
1273 up_read(&device_offload_lock);
1274
1275 dev_put(netdev);
1276
1277 return 0;
1278
1279 free_sw_resources:
1280 up_read(&device_offload_lock);
1281 tls_sw_free_resources_rx(sk);
1282 down_read(&device_offload_lock);
1283 release_ctx:
1284 ctx->priv_ctx_rx = NULL;
1285 release_lock:
1286 up_read(&device_offload_lock);
1287 release_netdev:
1288 dev_put(netdev);
1289 return rc;
1290 }
1291
tls_device_offload_cleanup_rx(struct sock * sk)1292 void tls_device_offload_cleanup_rx(struct sock *sk)
1293 {
1294 struct tls_context *tls_ctx = tls_get_ctx(sk);
1295 struct net_device *netdev;
1296
1297 down_read(&device_offload_lock);
1298 netdev = tls_ctx->netdev;
1299 if (!netdev)
1300 goto out;
1301
1302 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1303 TLS_OFFLOAD_CTX_DIR_RX);
1304
1305 if (tls_ctx->tx_conf != TLS_HW) {
1306 dev_put(netdev);
1307 tls_ctx->netdev = NULL;
1308 } else {
1309 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1310 }
1311 out:
1312 up_read(&device_offload_lock);
1313 tls_sw_release_resources_rx(sk);
1314 }
1315
tls_device_down(struct net_device * netdev)1316 static int tls_device_down(struct net_device *netdev)
1317 {
1318 struct tls_context *ctx, *tmp;
1319 unsigned long flags;
1320 LIST_HEAD(list);
1321
1322 /* Request a write lock to block new offload attempts */
1323 down_write(&device_offload_lock);
1324
1325 spin_lock_irqsave(&tls_device_lock, flags);
1326 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1327 if (ctx->netdev != netdev ||
1328 !refcount_inc_not_zero(&ctx->refcount))
1329 continue;
1330
1331 list_move(&ctx->list, &list);
1332 }
1333 spin_unlock_irqrestore(&tls_device_lock, flags);
1334
1335 list_for_each_entry_safe(ctx, tmp, &list, list) {
1336 /* Stop offloaded TX and switch to the fallback.
1337 * tls_is_sk_tx_device_offloaded will return false.
1338 */
1339 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1340
1341 /* Stop the RX and TX resync.
1342 * tls_dev_resync must not be called after tls_dev_del.
1343 */
1344 WRITE_ONCE(ctx->netdev, NULL);
1345
1346 /* Start skipping the RX resync logic completely. */
1347 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1348
1349 /* Sync with inflight packets. After this point:
1350 * TX: no non-encrypted packets will be passed to the driver.
1351 * RX: resync requests from the driver will be ignored.
1352 */
1353 synchronize_net();
1354
1355 /* Release the offload context on the driver side. */
1356 if (ctx->tx_conf == TLS_HW)
1357 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1358 TLS_OFFLOAD_CTX_DIR_TX);
1359 if (ctx->rx_conf == TLS_HW &&
1360 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1361 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1362 TLS_OFFLOAD_CTX_DIR_RX);
1363
1364 dev_put(netdev);
1365
1366 /* Move the context to a separate list for two reasons:
1367 * 1. When the context is deallocated, list_del is called.
1368 * 2. It's no longer an offloaded context, so we don't want to
1369 * run offload-specific code on this context.
1370 */
1371 spin_lock_irqsave(&tls_device_lock, flags);
1372 list_move_tail(&ctx->list, &tls_device_down_list);
1373 spin_unlock_irqrestore(&tls_device_lock, flags);
1374
1375 /* Device contexts for RX and TX will be freed in on sk_destruct
1376 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1377 * Now release the ref taken above.
1378 */
1379 if (refcount_dec_and_test(&ctx->refcount)) {
1380 /* sk_destruct ran after tls_device_down took a ref, and
1381 * it returned early. Complete the destruction here.
1382 */
1383 list_del(&ctx->list);
1384 tls_device_free_ctx(ctx);
1385 }
1386 }
1387
1388 up_write(&device_offload_lock);
1389
1390 flush_work(&tls_device_gc_work);
1391
1392 return NOTIFY_DONE;
1393 }
1394
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1395 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1396 void *ptr)
1397 {
1398 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1399
1400 if (!dev->tlsdev_ops &&
1401 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1402 return NOTIFY_DONE;
1403
1404 switch (event) {
1405 case NETDEV_REGISTER:
1406 case NETDEV_FEAT_CHANGE:
1407 if (netif_is_bond_master(dev))
1408 return NOTIFY_DONE;
1409 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1410 !dev->tlsdev_ops->tls_dev_resync)
1411 return NOTIFY_BAD;
1412
1413 if (dev->tlsdev_ops &&
1414 dev->tlsdev_ops->tls_dev_add &&
1415 dev->tlsdev_ops->tls_dev_del)
1416 return NOTIFY_DONE;
1417 else
1418 return NOTIFY_BAD;
1419 case NETDEV_DOWN:
1420 return tls_device_down(dev);
1421 }
1422 return NOTIFY_DONE;
1423 }
1424
1425 static struct notifier_block tls_dev_notifier = {
1426 .notifier_call = tls_dev_event,
1427 };
1428
tls_device_init(void)1429 int __init tls_device_init(void)
1430 {
1431 return register_netdevice_notifier(&tls_dev_notifier);
1432 }
1433
tls_device_cleanup(void)1434 void __exit tls_device_cleanup(void)
1435 {
1436 unregister_netdevice_notifier(&tls_dev_notifier);
1437 flush_work(&tls_device_gc_work);
1438 clean_acked_data_flush();
1439 }
1440