1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Exception handling for Microblaze
4 *
5 * Rewriten interrupt handling
6 *
7 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
8 * Copyright (C) 2008-2009 PetaLogix
9 *
10 * uClinux customisation (C) 2005 John Williams
11 *
12 * MMU code derived from arch/ppc/kernel/head_4xx.S:
13 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
14 *		Initial PowerPC version.
15 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
16 *		Rewritten for PReP
17 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
18 *		Low-level exception handers, MMU support, and rewrite.
19 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
20 *		PowerPC 8xx modifications.
21 *	Copyright (C) 1998-1999 TiVo, Inc.
22 *		PowerPC 403GCX modifications.
23 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
24 *		PowerPC 403GCX/405GP modifications.
25 *	Copyright 2000 MontaVista Software Inc.
26 *		PPC405 modifications
27 *	PowerPC 403GCX/405GP modifications.
28 *		Author: MontaVista Software, Inc.
29 *		frank_rowand@mvista.com or source@mvista.com
30 *		debbie_chu@mvista.com
31 *
32 * Original code
33 * Copyright (C) 2004 Xilinx, Inc.
34 */
35
36/*
37 * Here are the handlers which don't require enabling translation
38 * and calling other kernel code thus we can keep their design very simple
39 * and do all processing in real mode. All what they need is a valid current
40 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
41 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
42 * these registers are saved/restored
43 * The handlers which require translation are in entry.S --KAA
44 *
45 * Microblaze HW Exception Handler
46 * - Non self-modifying exception handler for the following exception conditions
47 *   - Unalignment
48 *   - Instruction bus error
49 *   - Data bus error
50 *   - Illegal instruction opcode
51 *   - Divide-by-zero
52 *
53 *   - Privileged instruction exception (MMU)
54 *   - Data storage exception (MMU)
55 *   - Instruction storage exception (MMU)
56 *   - Data TLB miss exception (MMU)
57 *   - Instruction TLB miss exception (MMU)
58 *
59 * Note we disable interrupts during exception handling, otherwise we will
60 * possibly get multiple re-entrancy if interrupt handles themselves cause
61 * exceptions. JW
62 */
63
64#include <asm/exceptions.h>
65#include <asm/unistd.h>
66#include <asm/page.h>
67
68#include <asm/entry.h>
69#include <asm/current.h>
70#include <linux/linkage.h>
71#include <linux/pgtable.h>
72
73#include <asm/mmu.h>
74#include <asm/signal.h>
75#include <asm/registers.h>
76#include <asm/asm-offsets.h>
77
78#undef DEBUG
79
80/* Helpful Macros */
81#define NUM_TO_REG(num)		r ## num
82
83	#define RESTORE_STATE			\
84		lwi	r5, r1, 0;		\
85		mts	rmsr, r5;		\
86		nop;				\
87		lwi	r3, r1, PT_R3;		\
88		lwi	r4, r1, PT_R4;		\
89		lwi	r5, r1, PT_R5;		\
90		lwi	r6, r1, PT_R6;		\
91		lwi	r11, r1, PT_R11;	\
92		lwi	r31, r1, PT_R31;	\
93		lwi	r1, r1, PT_R1;
94
95#define LWREG_NOP			\
96	bri	ex_handler_unhandled;	\
97	nop;
98
99#define SWREG_NOP			\
100	bri	ex_handler_unhandled;	\
101	nop;
102
103/* r3 is the source */
104#define R3_TO_LWREG_V(regnum)				\
105	swi	r3, r1, 4 * regnum;				\
106	bri	ex_handler_done;
107
108/* r3 is the source */
109#define R3_TO_LWREG(regnum)				\
110	or	NUM_TO_REG (regnum), r0, r3;		\
111	bri	ex_handler_done;
112
113/* r3 is the target */
114#define SWREG_TO_R3_V(regnum)				\
115	lwi	r3, r1, 4 * regnum;				\
116	bri	ex_sw_tail;
117
118/* r3 is the target */
119#define SWREG_TO_R3(regnum)				\
120	or	r3, r0, NUM_TO_REG (regnum);		\
121	bri	ex_sw_tail;
122
123	#define R3_TO_LWREG_VM_V(regnum)		\
124		brid	ex_lw_end_vm;			\
125		swi	r3, r7, 4 * regnum;
126
127	#define R3_TO_LWREG_VM(regnum)			\
128		brid	ex_lw_end_vm;			\
129		or	NUM_TO_REG (regnum), r0, r3;
130
131	#define SWREG_TO_R3_VM_V(regnum)		\
132		brid	ex_sw_tail_vm;			\
133		lwi	r3, r7, 4 * regnum;
134
135	#define SWREG_TO_R3_VM(regnum)			\
136		brid	ex_sw_tail_vm;			\
137		or	r3, r0, NUM_TO_REG (regnum);
138
139	/* Shift right instruction depending on available configuration */
140	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL == 0
141	/* Only the used shift constants defined here - add more if needed */
142	#define BSRLI2(rD, rA)				\
143		srl rD, rA;		/* << 1 */	\
144		srl rD, rD;		/* << 2 */
145	#define BSRLI4(rD, rA)		\
146		BSRLI2(rD, rA);		\
147		BSRLI2(rD, rD)
148	#define BSRLI10(rD, rA)				\
149		srl rD, rA;		/* << 1 */	\
150		srl rD, rD;		/* << 2 */	\
151		srl rD, rD;		/* << 3 */	\
152		srl rD, rD;		/* << 4 */	\
153		srl rD, rD;		/* << 5 */	\
154		srl rD, rD;		/* << 6 */	\
155		srl rD, rD;		/* << 7 */	\
156		srl rD, rD;		/* << 8 */	\
157		srl rD, rD;		/* << 9 */	\
158		srl rD, rD		/* << 10 */
159	#define BSRLI20(rD, rA)		\
160		BSRLI10(rD, rA);	\
161		BSRLI10(rD, rD)
162
163	.macro	bsrli, rD, rA, IMM
164	.if (\IMM) == 2
165		BSRLI2(\rD, \rA)
166	.elseif (\IMM) == 10
167		BSRLI10(\rD, \rA)
168	.elseif (\IMM) == 12
169		BSRLI2(\rD, \rA)
170		BSRLI10(\rD, \rD)
171	.elseif (\IMM) == 14
172		BSRLI4(\rD, \rA)
173		BSRLI10(\rD, \rD)
174	.elseif (\IMM) == 20
175		BSRLI20(\rD, \rA)
176	.elseif (\IMM) == 24
177		BSRLI4(\rD, \rA)
178		BSRLI20(\rD, \rD)
179	.elseif (\IMM) == 28
180		BSRLI4(\rD, \rA)
181		BSRLI4(\rD, \rD)
182		BSRLI20(\rD, \rD)
183	.else
184	.error "BSRLI shift macros \IMM"
185	.endif
186	.endm
187	#endif
188
189
190.extern other_exception_handler /* Defined in exception.c */
191
192/*
193 * hw_exception_handler - Handler for exceptions
194 *
195 * Exception handler notes:
196 * - Handles all exceptions
197 * - Does not handle unaligned exceptions during load into r17, r1, r0.
198 * - Does not handle unaligned exceptions during store from r17 (cannot be
199 *   done) and r1 (slows down common case)
200 *
201 *  Relevant register structures
202 *
203 *  EAR - |----|----|----|----|----|----|----|----|
204 *      - <  ##   32 bit faulting address     ##  >
205 *
206 *  ESR - |----|----|----|----|----| - | - |-----|-----|
207 *      -                            W   S   REG   EXC
208 *
209 *
210 * STACK FRAME STRUCTURE (for CONFIG_MMU=n)
211 * ----------------------------------------
212 *
213 *      +-------------+         + 0
214 *      |     MSR     |
215 *      +-------------+         + 4
216 *      |     r1      |
217 *      |      .      |
218 *      |      .      |
219 *      |      .      |
220 *      |      .      |
221 *      |     r18     |
222 *      +-------------+         + 76
223 *      |      .      |
224 *      |      .      |
225 *
226 * MMU kernel uses the same 'pt_pool_space' pointed space
227 * which is used for storing register values - noMMu style was, that values were
228 * stored in stack but in case of failure you lost information about register.
229 * Currently you can see register value in memory in specific place.
230 * In compare to with previous solution the speed should be the same.
231 *
232 * MMU exception handler has different handling compare to no MMU kernel.
233 * Exception handler use jump table for directing of what happen. For MMU kernel
234 * is this approach better because MMU relate exception are handled by asm code
235 * in this file. In compare to with MMU expect of unaligned exception
236 * is everything handled by C code.
237 */
238
239/*
240 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
241 * and clobbered so care should be taken to restore them if someone is going to
242 * return from exception
243 */
244
245/* wrappers to restore state before coming to entry.S */
246.section .data
247.align 4
248pt_pool_space:
249	.space	PT_SIZE
250
251#ifdef DEBUG
252/* Create space for exception counting. */
253.section .data
254.global exception_debug_table
255.align 4
256exception_debug_table:
257	/* Look at exception vector table. There is 32 exceptions * word size */
258	.space	(32 * 4)
259#endif /* DEBUG */
260
261.section .rodata
262.align 4
263_MB_HW_ExceptionVectorTable:
264/*  0 - Undefined */
265	.long	TOPHYS(ex_handler_unhandled)
266/*  1 - Unaligned data access exception */
267	.long	TOPHYS(handle_unaligned_ex)
268/*  2 - Illegal op-code exception */
269	.long	TOPHYS(full_exception_trapw)
270/*  3 - Instruction bus error exception */
271	.long	TOPHYS(full_exception_trapw)
272/*  4 - Data bus error exception */
273	.long	TOPHYS(full_exception_trapw)
274/*  5 - Divide by zero exception */
275	.long	TOPHYS(full_exception_trapw)
276/*  6 - Floating point unit exception */
277	.long	TOPHYS(full_exception_trapw)
278/*  7 - Privileged instruction exception */
279	.long	TOPHYS(full_exception_trapw)
280/*  8 - 15 - Undefined */
281	.long	TOPHYS(ex_handler_unhandled)
282	.long	TOPHYS(ex_handler_unhandled)
283	.long	TOPHYS(ex_handler_unhandled)
284	.long	TOPHYS(ex_handler_unhandled)
285	.long	TOPHYS(ex_handler_unhandled)
286	.long	TOPHYS(ex_handler_unhandled)
287	.long	TOPHYS(ex_handler_unhandled)
288	.long	TOPHYS(ex_handler_unhandled)
289/* 16 - Data storage exception */
290	.long	TOPHYS(handle_data_storage_exception)
291/* 17 - Instruction storage exception */
292	.long	TOPHYS(handle_instruction_storage_exception)
293/* 18 - Data TLB miss exception */
294	.long	TOPHYS(handle_data_tlb_miss_exception)
295/* 19 - Instruction TLB miss exception */
296	.long	TOPHYS(handle_instruction_tlb_miss_exception)
297/* 20 - 31 - Undefined */
298	.long	TOPHYS(ex_handler_unhandled)
299	.long	TOPHYS(ex_handler_unhandled)
300	.long	TOPHYS(ex_handler_unhandled)
301	.long	TOPHYS(ex_handler_unhandled)
302	.long	TOPHYS(ex_handler_unhandled)
303	.long	TOPHYS(ex_handler_unhandled)
304	.long	TOPHYS(ex_handler_unhandled)
305	.long	TOPHYS(ex_handler_unhandled)
306	.long	TOPHYS(ex_handler_unhandled)
307	.long	TOPHYS(ex_handler_unhandled)
308	.long	TOPHYS(ex_handler_unhandled)
309	.long	TOPHYS(ex_handler_unhandled)
310
311.global _hw_exception_handler
312.section .text
313.align 4
314.ent _hw_exception_handler
315_hw_exception_handler:
316	swi	r1, r0, TOPHYS(pt_pool_space + PT_R1); /* GET_SP */
317	/* Save date to kernel memory. Here is the problem
318	 * when you came from user space */
319	ori	r1, r0, TOPHYS(pt_pool_space);
320	swi	r3, r1, PT_R3
321	swi	r4, r1, PT_R4
322	swi	r5, r1, PT_R5
323	swi	r6, r1, PT_R6
324
325	swi	r11, r1, PT_R11
326	swi	r31, r1, PT_R31
327	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
328
329	mfs	r5, rmsr;
330	nop
331	swi	r5, r1, 0;
332	mfs	r4, resr
333	nop
334	mfs	r3, rear;
335	nop
336
337	andi	r5, r4, 0x1F;		/* Extract ESR[EXC] */
338
339	/* Calculate exception vector offset = r5 << 2 */
340	addk	r6, r5, r5; /* << 1 */
341	addk	r6, r6, r6; /* << 2 */
342
343#ifdef DEBUG
344/* counting which exception happen */
345	lwi	r5, r0, TOPHYS(exception_debug_table)
346	addi	r5, r5, 1
347	swi	r5, r0, TOPHYS(exception_debug_table)
348	lwi	r5, r6, TOPHYS(exception_debug_table)
349	addi	r5, r5, 1
350	swi	r5, r6, TOPHYS(exception_debug_table)
351#endif
352/* end */
353	/* Load the HW Exception vector */
354	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
355	bra	r6
356
357full_exception_trapw:
358	RESTORE_STATE
359	bri	full_exception_trap
360
361/* 0x01 - Unaligned data access exception
362 * This occurs when a word access is not aligned on a word boundary,
363 * or when a 16-bit access is not aligned on a 16-bit boundary.
364 * This handler perform the access, and returns, except for MMU when
365 * the unaligned address is last on a 4k page or the physical address is
366 * not found in the page table, in which case unaligned_data_trap is called.
367 */
368handle_unaligned_ex:
369	/* Working registers already saved: R3, R4, R5, R6
370	 *  R4 = ESR
371	 *  R3 = EAR
372	 */
373	andi	r6, r4, 0x1000			/* Check ESR[DS] */
374	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
375	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
376	nop
377_no_delayslot:
378	/* jump to high level unaligned handler */
379	RESTORE_STATE;
380	bri	unaligned_data_trap
381
382	andi	r6, r4, 0x3E0; /* Mask and extract the register operand */
383	srl	r6, r6; /* r6 >> 5 */
384	srl	r6, r6;
385	srl	r6, r6;
386	srl	r6, r6;
387	srl	r6, r6;
388	/* Store the register operand in a temporary location */
389	sbi	r6, r0, TOPHYS(ex_reg_op);
390
391	andi	r6, r4, 0x400; /* Extract ESR[S] */
392	bnei	r6, ex_sw;
393ex_lw:
394	andi	r6, r4, 0x800; /* Extract ESR[W] */
395	beqi	r6, ex_lhw;
396	lbui	r5, r3, 0; /* Exception address in r3 */
397	/* Load a word, byte-by-byte from destination address
398		and save it in tmp space */
399	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
400	lbui	r5, r3, 1;
401	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
402	lbui	r5, r3, 2;
403	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
404	lbui	r5, r3, 3;
405	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
406	/* Get the destination register value into r4 */
407	lwi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
408	bri	ex_lw_tail;
409ex_lhw:
410	lbui	r5, r3, 0; /* Exception address in r3 */
411	/* Load a half-word, byte-by-byte from destination
412		address and save it in tmp space */
413	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
414	lbui	r5, r3, 1;
415	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
416	/* Get the destination register value into r4 */
417	lhui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
418ex_lw_tail:
419	/* Get the destination register number into r5 */
420	lbui	r5, r0, TOPHYS(ex_reg_op);
421	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
422	addik	r6, r0, TOPHYS(lw_table);
423	addk	r5, r5, r5;
424	addk	r5, r5, r5;
425	addk	r5, r5, r5;
426	addk	r5, r5, r6;
427	bra	r5;
428ex_lw_end: /* Exception handling of load word, ends */
429ex_sw:
430	/* Get the destination register number into r5 */
431	lbui	r5, r0, TOPHYS(ex_reg_op);
432	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
433	addik	r6, r0, TOPHYS(sw_table);
434	add	r5, r5, r5;
435	add	r5, r5, r5;
436	add	r5, r5, r5;
437	add	r5, r5, r6;
438	bra	r5;
439ex_sw_tail:
440	mfs	r6, resr;
441	nop
442	andi	r6, r6, 0x800; /* Extract ESR[W] */
443	beqi	r6, ex_shw;
444	/* Get the word - delay slot */
445	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
446	/* Store the word, byte-by-byte into destination address */
447	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
448	sbi	r4, r3, 0;
449	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_1);
450	sbi	r4, r3, 1;
451	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
452	sbi	r4, r3, 2;
453	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
454	sbi	r4, r3, 3;
455	bri	ex_handler_done;
456
457ex_shw:
458	/* Store the lower half-word, byte-by-byte into destination address */
459	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
460	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
461	sbi	r4, r3, 0;
462	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
463	sbi	r4, r3, 1;
464ex_sw_end: /* Exception handling of store word, ends. */
465
466ex_handler_done:
467	RESTORE_STATE;
468	rted	r17, 0
469	nop
470
471	/* Exception vector entry code. This code runs with address translation
472	 * turned off (i.e. using physical addresses). */
473
474	/* Exception vectors. */
475
476	/* 0x10 - Data Storage Exception
477	 * This happens for just a few reasons. U0 set (but we don't do that),
478	 * or zone protection fault (user violation, write to protected page).
479	 * If this is just an update of modified status, we do that quickly
480	 * and exit. Otherwise, we call heavyweight functions to do the work.
481	 */
482	handle_data_storage_exception:
483		/* Working registers already saved: R3, R4, R5, R6
484		 * R3 = ESR
485		 */
486		mfs	r11, rpid
487		nop
488		/* If we are faulting a kernel address, we have to use the
489		 * kernel page tables.
490		 */
491		ori	r5, r0, CONFIG_KERNEL_START
492		cmpu	r5, r3, r5
493		bgti	r5, ex3
494		/* First, check if it was a zone fault (which means a user
495		 * tried to access a kernel or read-protected page - always
496		 * a SEGV). All other faults here must be stores, so no
497		 * need to check ESR_S as well. */
498		andi	r4, r4, ESR_DIZ		/* ESR_Z - zone protection */
499		bnei	r4, ex2
500
501		ori	r4, r0, swapper_pg_dir
502		mts	rpid, r0		/* TLB will have 0 TID */
503		nop
504		bri	ex4
505
506		/* Get the PGD for the current thread. */
507	ex3:
508		/* First, check if it was a zone fault (which means a user
509		 * tried to access a kernel or read-protected page - always
510		 * a SEGV). All other faults here must be stores, so no
511		 * need to check ESR_S as well. */
512		andi	r4, r4, ESR_DIZ		/* ESR_Z */
513		bnei	r4, ex2
514		/* get current task address */
515		addi	r4 ,CURRENT_TASK, TOPHYS(0);
516		lwi	r4, r4, TASK_THREAD+PGDIR
517	ex4:
518		tophys(r4,r4)
519		/* Create L1 (pgdir/pmd) address */
520		bsrli	r5, r3, PGDIR_SHIFT - 2
521		andi	r5, r5, PAGE_SIZE - 4
522/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
523		or	r4, r4, r5
524		lwi	r4, r4, 0		/* Get L1 entry */
525		andi	r5, r4, PAGE_MASK /* Extract L2 (pte) base address */
526		beqi	r5, ex2			/* Bail if no table */
527
528		tophys(r5,r5)
529		bsrli	r6, r3, PTE_SHIFT /* Compute PTE address */
530		andi	r6, r6, PAGE_SIZE - 4
531		or	r5, r5, r6
532		lwi	r4, r5, 0		/* Get Linux PTE */
533
534		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
535		beqi	r6, ex2			/* Bail if not */
536
537		/* Update 'changed' */
538		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
539		swi	r4, r5, 0		/* Update Linux page table */
540
541		/* Most of the Linux PTE is ready to load into the TLB LO.
542		 * We set ZSEL, where only the LS-bit determines user access.
543		 * We set execute, because we don't have the granularity to
544		 * properly set this at the page level (Linux problem).
545		 * If shared is set, we cause a zero PID->TID load.
546		 * Many of these bits are software only. Bits we don't set
547		 * here we (properly should) assume have the appropriate value.
548		 */
549/* Ignore memory coherent, just LSB on ZSEL is used + EX/WR */
550		andi	r4, r4, PAGE_MASK | TLB_EX | TLB_WR | \
551						TLB_ZSEL(1) | TLB_ATTR_MASK
552		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
553
554		/* find the TLB index that caused the fault. It has to be here*/
555		mts	rtlbsx, r3
556		nop
557		mfs	r5, rtlbx		/* DEBUG: TBD */
558		nop
559		mts	rtlblo, r4		/* Load TLB LO */
560		nop
561						/* Will sync shadow TLBs */
562
563		/* Done...restore registers and get out of here. */
564		mts	rpid, r11
565		nop
566		bri 4
567
568		RESTORE_STATE;
569		rted	r17, 0
570		nop
571	ex2:
572		/* The bailout. Restore registers to pre-exception conditions
573		 * and call the heavyweights to help us out. */
574		mts	rpid, r11
575		nop
576		bri 4
577		RESTORE_STATE;
578		bri	page_fault_data_trap
579
580
581	/* 0x11 - Instruction Storage Exception
582	 * This is caused by a fetch from non-execute or guarded pages. */
583	handle_instruction_storage_exception:
584		/* Working registers already saved: R3, R4, R5, R6
585		 * R3 = ESR
586		 */
587
588		RESTORE_STATE;
589		bri	page_fault_instr_trap
590
591	/* 0x12 - Data TLB Miss Exception
592	 * As the name implies, translation is not in the MMU, so search the
593	 * page tables and fix it. The only purpose of this function is to
594	 * load TLB entries from the page table if they exist.
595	 */
596	handle_data_tlb_miss_exception:
597		/* Working registers already saved: R3, R4, R5, R6
598		 * R3 = EAR, R4 = ESR
599		 */
600		mfs	r11, rpid
601		nop
602
603		/* If we are faulting a kernel address, we have to use the
604		 * kernel page tables. */
605		ori	r6, r0, CONFIG_KERNEL_START
606		cmpu	r4, r3, r6
607		bgti	r4, ex5
608		ori	r4, r0, swapper_pg_dir
609		mts	rpid, r0		/* TLB will have 0 TID */
610		nop
611		bri	ex6
612
613		/* Get the PGD for the current thread. */
614	ex5:
615		/* get current task address */
616		addi	r4 ,CURRENT_TASK, TOPHYS(0);
617		lwi	r4, r4, TASK_THREAD+PGDIR
618	ex6:
619		tophys(r4,r4)
620		/* Create L1 (pgdir/pmd) address */
621		bsrli	r5, r3, PGDIR_SHIFT - 2
622		andi	r5, r5, PAGE_SIZE - 4
623/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
624		or	r4, r4, r5
625		lwi	r4, r4, 0		/* Get L1 entry */
626		andi	r5, r4, PAGE_MASK /* Extract L2 (pte) base address */
627		beqi	r5, ex7			/* Bail if no table */
628
629		tophys(r5,r5)
630		bsrli	r6, r3, PTE_SHIFT /* Compute PTE address */
631		andi	r6, r6, PAGE_SIZE - 4
632		or	r5, r5, r6
633		lwi	r4, r5, 0		/* Get Linux PTE */
634
635		andi	r6, r4, _PAGE_PRESENT
636		beqi	r6, ex7
637
638		ori	r4, r4, _PAGE_ACCESSED
639		swi	r4, r5, 0
640
641		/* Most of the Linux PTE is ready to load into the TLB LO.
642		 * We set ZSEL, where only the LS-bit determines user access.
643		 * We set execute, because we don't have the granularity to
644		 * properly set this at the page level (Linux problem).
645		 * If shared is set, we cause a zero PID->TID load.
646		 * Many of these bits are software only. Bits we don't set
647		 * here we (properly should) assume have the appropriate value.
648		 */
649		brid	finish_tlb_load
650		andi	r4, r4, PAGE_MASK | TLB_EX | TLB_WR | \
651						TLB_ZSEL(1) | TLB_ATTR_MASK
652	ex7:
653		/* The bailout. Restore registers to pre-exception conditions
654		 * and call the heavyweights to help us out.
655		 */
656		mts	rpid, r11
657		nop
658		bri	4
659		RESTORE_STATE;
660		bri	page_fault_data_trap
661
662	/* 0x13 - Instruction TLB Miss Exception
663	 * Nearly the same as above, except we get our information from
664	 * different registers and bailout to a different point.
665	 */
666	handle_instruction_tlb_miss_exception:
667		/* Working registers already saved: R3, R4, R5, R6
668		 *  R3 = ESR
669		 */
670		mfs	r11, rpid
671		nop
672
673		/* If we are faulting a kernel address, we have to use the
674		 * kernel page tables.
675		 */
676		ori	r4, r0, CONFIG_KERNEL_START
677		cmpu	r4, r3, r4
678		bgti	r4, ex8
679		ori	r4, r0, swapper_pg_dir
680		mts	rpid, r0		/* TLB will have 0 TID */
681		nop
682		bri	ex9
683
684		/* Get the PGD for the current thread. */
685	ex8:
686		/* get current task address */
687		addi	r4 ,CURRENT_TASK, TOPHYS(0);
688		lwi	r4, r4, TASK_THREAD+PGDIR
689	ex9:
690		tophys(r4,r4)
691		/* Create L1 (pgdir/pmd) address */
692		bsrli	r5, r3, PGDIR_SHIFT - 2
693		andi	r5, r5, PAGE_SIZE - 4
694/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
695		or	r4, r4, r5
696		lwi	r4, r4, 0		/* Get L1 entry */
697		andi	r5, r4, PAGE_MASK /* Extract L2 (pte) base address */
698		beqi	r5, ex10		/* Bail if no table */
699
700		tophys(r5,r5)
701		bsrli	r6, r3, PTE_SHIFT /* Compute PTE address */
702		andi	r6, r6, PAGE_SIZE - 4
703		or	r5, r5, r6
704		lwi	r4, r5, 0		/* Get Linux PTE */
705
706		andi	r6, r4, _PAGE_PRESENT
707		beqi	r6, ex10
708
709		ori	r4, r4, _PAGE_ACCESSED
710		swi	r4, r5, 0
711
712		/* Most of the Linux PTE is ready to load into the TLB LO.
713		 * We set ZSEL, where only the LS-bit determines user access.
714		 * We set execute, because we don't have the granularity to
715		 * properly set this at the page level (Linux problem).
716		 * If shared is set, we cause a zero PID->TID load.
717		 * Many of these bits are software only. Bits we don't set
718		 * here we (properly should) assume have the appropriate value.
719		 */
720		brid	finish_tlb_load
721		andi	r4, r4, PAGE_MASK | TLB_EX | TLB_WR | \
722						TLB_ZSEL(1) | TLB_ATTR_MASK
723	ex10:
724		/* The bailout. Restore registers to pre-exception conditions
725		 * and call the heavyweights to help us out.
726		 */
727		mts	rpid, r11
728		nop
729		bri 4
730		RESTORE_STATE;
731		bri	page_fault_instr_trap
732
733/* Both the instruction and data TLB miss get to this point to load the TLB.
734 *	r3 - EA of fault
735 *	r4 - TLB LO (info from Linux PTE)
736 *	r5, r6 - available to use
737 *	PID - loaded with proper value when we get here
738 *	Upon exit, we reload everything and RFI.
739 * A common place to load the TLB.
740 */
741.section .data
742.align 4
743.global tlb_skip
744	tlb_skip:
745		.long	MICROBLAZE_TLB_SKIP
746	tlb_index:
747		/* MS: storing last used tlb index */
748		.long	MICROBLAZE_TLB_SIZE/2
749.previous
750	finish_tlb_load:
751		/* MS: load the last used TLB index. */
752		lwi	r5, r0, TOPHYS(tlb_index)
753		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
754
755/* MS: FIXME this is potential fault, because this is mask not count */
756		andi	r5, r5, MICROBLAZE_TLB_SIZE - 1
757		ori	r6, r0, 1
758		cmp	r31, r5, r6
759		blti	r31, ex12
760		lwi	r5, r0, TOPHYS(tlb_skip)
761	ex12:
762		/* MS: save back current TLB index */
763		swi	r5, r0, TOPHYS(tlb_index)
764
765		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
766		mts	rtlbx, r5		/* MS: save current TLB */
767		nop
768		mts	rtlblo,	r4		/* MS: save to TLB LO */
769		nop
770
771		/* Create EPN. This is the faulting address plus a static
772		 * set of bits. These are size, valid, E, U0, and ensure
773		 * bits 20 and 21 are zero.
774		 */
775		andi	r3, r3, PAGE_MASK
776		ori	r3, r3, TLB_VALID | TLB_PAGESZ(PAGESZ_4K)
777		mts	rtlbhi,	r3		/* Load TLB HI */
778		nop
779
780		/* Done...restore registers and get out of here. */
781		mts	rpid, r11
782		nop
783		bri 4
784		RESTORE_STATE;
785		rted	r17, 0
786		nop
787
788	/* extern void giveup_fpu(struct task_struct *prev)
789	 *
790	 * The MicroBlaze processor may have an FPU, so this should not just
791	 * return: TBD.
792	 */
793	.globl giveup_fpu;
794	.align 4;
795	giveup_fpu:
796		bralid	r15,0			/* TBD */
797		nop
798
799	/* At present, this routine just hangs. - extern void abort(void) */
800	.globl abort;
801	.align 4;
802	abort:
803		br	r0
804
805	.globl set_context;
806	.align 4;
807	set_context:
808		mts	rpid, r5	/* Shadow TLBs are automatically */
809		nop
810		bri	4		/* flushed by changing PID */
811		rtsd	r15,8
812		nop
813
814.end _hw_exception_handler
815
816/* Unaligned data access exception last on a 4k page for MMU.
817 * When this is called, we are in virtual mode with exceptions enabled
818 * and registers 1-13,15,17,18 saved.
819 *
820 * R3 = ESR
821 * R4 = EAR
822 * R7 = pointer to saved registers (struct pt_regs *regs)
823 *
824 * This handler perform the access, and returns via ret_from_exc.
825 */
826.global _unaligned_data_exception
827.ent _unaligned_data_exception
828_unaligned_data_exception:
829	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
830	bsrli   r8, r8, 2;		/* r8 >> 2 = register operand * 8 */
831	andi	r6, r3, 0x400;	/* Extract ESR[S] */
832	bneid	r6, ex_sw_vm;
833	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
834ex_lw_vm:
835	beqid	r6, ex_lhw_vm;
836load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
837/* Load a word, byte-by-byte from destination address and save it in tmp space*/
838	addik	r6, r0, ex_tmp_data_loc_0;
839	sbi	r5, r6, 0;
840load2:	lbui	r5, r4, 1;
841	sbi	r5, r6, 1;
842load3:	lbui	r5, r4, 2;
843	sbi	r5, r6, 2;
844load4:	lbui	r5, r4, 3;
845	sbi	r5, r6, 3;
846	brid	ex_lw_tail_vm;
847/* Get the destination register value into r3 - delay slot */
848	lwi	r3, r6, 0;
849ex_lhw_vm:
850	/* Load a half-word, byte-by-byte from destination address and
851	 * save it in tmp space */
852	addik	r6, r0, ex_tmp_data_loc_0;
853	sbi	r5, r6, 0;
854load5:	lbui	r5, r4, 1;
855	sbi	r5, r6, 1;
856	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
857ex_lw_tail_vm:
858	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
859	addik	r5, r8, lw_table_vm;
860	bra	r5;
861ex_lw_end_vm:			/* Exception handling of load word, ends */
862	brai	ret_from_exc;
863ex_sw_vm:
864/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
865	addik	r5, r8, sw_table_vm;
866	bra	r5;
867ex_sw_tail_vm:
868	addik	r5, r0, ex_tmp_data_loc_0;
869	beqid	r6, ex_shw_vm;
870	swi	r3, r5, 0;	/* Get the word - delay slot */
871	/* Store the word, byte-by-byte into destination address */
872	lbui	r3, r5, 0;
873store1:	sbi	r3, r4, 0;
874	lbui	r3, r5, 1;
875store2:	sbi	r3, r4, 1;
876	lbui	r3, r5, 2;
877store3:	sbi	r3, r4, 2;
878	lbui	r3, r5, 3;
879	brid	ret_from_exc;
880store4:	sbi	r3, r4, 3;	/* Delay slot */
881ex_shw_vm:
882	/* Store the lower half-word, byte-by-byte into destination address */
883#ifdef __MICROBLAZEEL__
884	lbui	r3, r5, 0;
885store5:	sbi	r3, r4, 0;
886	lbui	r3, r5, 1;
887	brid	ret_from_exc;
888store6:	sbi	r3, r4, 1;	/* Delay slot */
889#else
890	lbui	r3, r5, 2;
891store5:	sbi	r3, r4, 0;
892	lbui	r3, r5, 3;
893	brid	ret_from_exc;
894store6:	sbi	r3, r4, 1;	/* Delay slot */
895#endif
896
897ex_sw_end_vm:			/* Exception handling of store word, ends. */
898
899/* We have to prevent cases that get/put_user macros get unaligned pointer
900 * to bad page area. We have to find out which origin instruction caused it
901 * and called fixup for that origin instruction not instruction in unaligned
902 * handler */
903ex_unaligned_fixup:
904	ori	r5, r7, 0 /* setup pointer to pt_regs */
905	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
906	addik	r6, r6, -4 /* for finding proper fixup */
907	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
908	addik	r7, r0, SIGSEGV
909	/* call bad_page_fault for finding aligned fixup, fixup address is saved
910	 * in PT_PC which is used as return address from exception */
911	addik	r15, r0, ret_from_exc-8 /* setup return address */
912	brid	bad_page_fault
913	nop
914
915/* We prevent all load/store because it could failed any attempt to access */
916.section __ex_table,"a";
917	.word	load1,ex_unaligned_fixup;
918	.word	load2,ex_unaligned_fixup;
919	.word	load3,ex_unaligned_fixup;
920	.word	load4,ex_unaligned_fixup;
921	.word	load5,ex_unaligned_fixup;
922	.word	store1,ex_unaligned_fixup;
923	.word	store2,ex_unaligned_fixup;
924	.word	store3,ex_unaligned_fixup;
925	.word	store4,ex_unaligned_fixup;
926	.word	store5,ex_unaligned_fixup;
927	.word	store6,ex_unaligned_fixup;
928.previous;
929.end _unaligned_data_exception
930
931.global ex_handler_unhandled
932ex_handler_unhandled:
933/* FIXME add handle function for unhandled exception - dump register */
934	bri 0
935
936/*
937 * hw_exception_handler Jump Table
938 * - Contains code snippets for each register that caused the unalign exception
939 * - Hence exception handler is NOT self-modifying
940 * - Separate table for load exceptions and store exceptions.
941 * - Each table is of size: (8 * 32) = 256 bytes
942 */
943
944.section .text
945.align 4
946lw_table:
947lw_r0:		R3_TO_LWREG	(0);
948lw_r1:		LWREG_NOP;
949lw_r2:		R3_TO_LWREG	(2);
950lw_r3:		R3_TO_LWREG_V	(3);
951lw_r4:		R3_TO_LWREG_V	(4);
952lw_r5:		R3_TO_LWREG_V	(5);
953lw_r6:		R3_TO_LWREG_V	(6);
954lw_r7:		R3_TO_LWREG	(7);
955lw_r8:		R3_TO_LWREG	(8);
956lw_r9:		R3_TO_LWREG	(9);
957lw_r10:		R3_TO_LWREG	(10);
958lw_r11:		R3_TO_LWREG	(11);
959lw_r12:		R3_TO_LWREG	(12);
960lw_r13:		R3_TO_LWREG	(13);
961lw_r14:		R3_TO_LWREG	(14);
962lw_r15:		R3_TO_LWREG	(15);
963lw_r16:		R3_TO_LWREG	(16);
964lw_r17:		LWREG_NOP;
965lw_r18:		R3_TO_LWREG	(18);
966lw_r19:		R3_TO_LWREG	(19);
967lw_r20:		R3_TO_LWREG	(20);
968lw_r21:		R3_TO_LWREG	(21);
969lw_r22:		R3_TO_LWREG	(22);
970lw_r23:		R3_TO_LWREG	(23);
971lw_r24:		R3_TO_LWREG	(24);
972lw_r25:		R3_TO_LWREG	(25);
973lw_r26:		R3_TO_LWREG	(26);
974lw_r27:		R3_TO_LWREG	(27);
975lw_r28:		R3_TO_LWREG	(28);
976lw_r29:		R3_TO_LWREG	(29);
977lw_r30:		R3_TO_LWREG	(30);
978lw_r31: 	R3_TO_LWREG_V	(31);
979
980sw_table:
981sw_r0:		SWREG_TO_R3	(0);
982sw_r1:		SWREG_NOP;
983sw_r2:		SWREG_TO_R3	(2);
984sw_r3:		SWREG_TO_R3_V	(3);
985sw_r4:		SWREG_TO_R3_V	(4);
986sw_r5:		SWREG_TO_R3_V	(5);
987sw_r6:		SWREG_TO_R3_V	(6);
988sw_r7:		SWREG_TO_R3	(7);
989sw_r8:		SWREG_TO_R3	(8);
990sw_r9:		SWREG_TO_R3	(9);
991sw_r10:		SWREG_TO_R3	(10);
992sw_r11:		SWREG_TO_R3	(11);
993sw_r12:		SWREG_TO_R3	(12);
994sw_r13:		SWREG_TO_R3	(13);
995sw_r14:		SWREG_TO_R3	(14);
996sw_r15:		SWREG_TO_R3	(15);
997sw_r16:		SWREG_TO_R3	(16);
998sw_r17:		SWREG_NOP;
999sw_r18:		SWREG_TO_R3	(18);
1000sw_r19:		SWREG_TO_R3	(19);
1001sw_r20:		SWREG_TO_R3	(20);
1002sw_r21:		SWREG_TO_R3	(21);
1003sw_r22:		SWREG_TO_R3	(22);
1004sw_r23:		SWREG_TO_R3	(23);
1005sw_r24:		SWREG_TO_R3	(24);
1006sw_r25:		SWREG_TO_R3	(25);
1007sw_r26:		SWREG_TO_R3	(26);
1008sw_r27:		SWREG_TO_R3	(27);
1009sw_r28:		SWREG_TO_R3	(28);
1010sw_r29:		SWREG_TO_R3	(29);
1011sw_r30:		SWREG_TO_R3	(30);
1012sw_r31:		SWREG_TO_R3_V	(31);
1013
1014lw_table_vm:
1015lw_r0_vm:	R3_TO_LWREG_VM		(0);
1016lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
1017lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
1018lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
1019lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
1020lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
1021lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
1022lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
1023lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
1024lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
1025lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
1026lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
1027lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
1028lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
1029lw_r14_vm:	R3_TO_LWREG_VM_V	(14);
1030lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
1031lw_r16_vm:	R3_TO_LWREG_VM_V	(16);
1032lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
1033lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
1034lw_r19_vm:	R3_TO_LWREG_VM_V	(19);
1035lw_r20_vm:	R3_TO_LWREG_VM_V	(20);
1036lw_r21_vm:	R3_TO_LWREG_VM_V	(21);
1037lw_r22_vm:	R3_TO_LWREG_VM_V	(22);
1038lw_r23_vm:	R3_TO_LWREG_VM_V	(23);
1039lw_r24_vm:	R3_TO_LWREG_VM_V	(24);
1040lw_r25_vm:	R3_TO_LWREG_VM_V	(25);
1041lw_r26_vm:	R3_TO_LWREG_VM_V	(26);
1042lw_r27_vm:	R3_TO_LWREG_VM_V	(27);
1043lw_r28_vm:	R3_TO_LWREG_VM_V	(28);
1044lw_r29_vm:	R3_TO_LWREG_VM_V	(29);
1045lw_r30_vm:	R3_TO_LWREG_VM_V	(30);
1046lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
1047
1048sw_table_vm:
1049sw_r0_vm:	SWREG_TO_R3_VM		(0);
1050sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
1051sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
1052sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
1053sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
1054sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
1055sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
1056sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
1057sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
1058sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
1059sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
1060sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
1061sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
1062sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
1063sw_r14_vm:	SWREG_TO_R3_VM_V	(14);
1064sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
1065sw_r16_vm:	SWREG_TO_R3_VM_V	(16);
1066sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
1067sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
1068sw_r19_vm:	SWREG_TO_R3_VM_V	(19);
1069sw_r20_vm:	SWREG_TO_R3_VM_V	(20);
1070sw_r21_vm:	SWREG_TO_R3_VM_V	(21);
1071sw_r22_vm:	SWREG_TO_R3_VM_V	(22);
1072sw_r23_vm:	SWREG_TO_R3_VM_V	(23);
1073sw_r24_vm:	SWREG_TO_R3_VM_V	(24);
1074sw_r25_vm:	SWREG_TO_R3_VM_V	(25);
1075sw_r26_vm:	SWREG_TO_R3_VM_V	(26);
1076sw_r27_vm:	SWREG_TO_R3_VM_V	(27);
1077sw_r28_vm:	SWREG_TO_R3_VM_V	(28);
1078sw_r29_vm:	SWREG_TO_R3_VM_V	(29);
1079sw_r30_vm:	SWREG_TO_R3_VM_V	(30);
1080sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
1081
1082/* Temporary data structures used in the handler */
1083.section .data
1084.align 4
1085ex_tmp_data_loc_0:
1086	.byte 0
1087ex_tmp_data_loc_1:
1088	.byte 0
1089ex_tmp_data_loc_2:
1090	.byte 0
1091ex_tmp_data_loc_3:
1092	.byte 0
1093ex_reg_op:
1094	.byte 0
1095