1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DMM IOMMU driver support functions for TI OMAP processors.
4 *
5 * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/
6 * Author: Rob Clark <rob@ti.com>
7 * Andy Gross <andy.gross@ti.com>
8 */
9
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h> /* platform_device() */
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <linux/vmalloc.h>
27 #include <linux/wait.h>
28
29 #include "omap_dmm_tiler.h"
30 #include "omap_dmm_priv.h"
31
32 #define DMM_DRIVER_NAME "dmm"
33
34 /* mappings for associating views to luts */
35 static struct tcm *containers[TILFMT_NFORMATS];
36 static struct dmm *omap_dmm;
37
38 #if defined(CONFIG_OF)
39 static const struct of_device_id dmm_of_match[];
40 #endif
41
42 /* global spinlock for protecting lists */
43 static DEFINE_SPINLOCK(list_lock);
44
45 /* Geometry table */
46 #define GEOM(xshift, yshift, bytes_per_pixel) { \
47 .x_shft = (xshift), \
48 .y_shft = (yshift), \
49 .cpp = (bytes_per_pixel), \
50 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
51 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
52 }
53
54 static const struct {
55 u32 x_shft; /* unused X-bits (as part of bpp) */
56 u32 y_shft; /* unused Y-bits (as part of bpp) */
57 u32 cpp; /* bytes/chars per pixel */
58 u32 slot_w; /* width of each slot (in pixels) */
59 u32 slot_h; /* height of each slot (in pixels) */
60 } geom[TILFMT_NFORMATS] = {
61 [TILFMT_8BIT] = GEOM(0, 0, 1),
62 [TILFMT_16BIT] = GEOM(0, 1, 2),
63 [TILFMT_32BIT] = GEOM(1, 1, 4),
64 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
65 };
66
67
68 /* lookup table for registers w/ per-engine instances */
69 static const u32 reg[][4] = {
70 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
71 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
72 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
73 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
74 };
75
dmm_dma_copy(struct dmm * dmm,dma_addr_t src,dma_addr_t dst)76 static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst)
77 {
78 struct dma_async_tx_descriptor *tx;
79 enum dma_status status;
80 dma_cookie_t cookie;
81
82 tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0);
83 if (!tx) {
84 dev_err(dmm->dev, "Failed to prepare DMA memcpy\n");
85 return -EIO;
86 }
87
88 cookie = tx->tx_submit(tx);
89 if (dma_submit_error(cookie)) {
90 dev_err(dmm->dev, "Failed to do DMA tx_submit\n");
91 return -EIO;
92 }
93
94 status = dma_sync_wait(dmm->wa_dma_chan, cookie);
95 if (status != DMA_COMPLETE)
96 dev_err(dmm->dev, "i878 wa DMA copy failure\n");
97
98 dmaengine_terminate_all(dmm->wa_dma_chan);
99 return 0;
100 }
101
dmm_read_wa(struct dmm * dmm,u32 reg)102 static u32 dmm_read_wa(struct dmm *dmm, u32 reg)
103 {
104 dma_addr_t src, dst;
105 int r;
106
107 src = dmm->phys_base + reg;
108 dst = dmm->wa_dma_handle;
109
110 r = dmm_dma_copy(dmm, src, dst);
111 if (r) {
112 dev_err(dmm->dev, "sDMA read transfer timeout\n");
113 return readl(dmm->base + reg);
114 }
115
116 /*
117 * As per i878 workaround, the DMA is used to access the DMM registers.
118 * Make sure that the readl is not moved by the compiler or the CPU
119 * earlier than the DMA finished writing the value to memory.
120 */
121 rmb();
122 return readl(dmm->wa_dma_data);
123 }
124
dmm_write_wa(struct dmm * dmm,u32 val,u32 reg)125 static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg)
126 {
127 dma_addr_t src, dst;
128 int r;
129
130 writel(val, dmm->wa_dma_data);
131 /*
132 * As per i878 workaround, the DMA is used to access the DMM registers.
133 * Make sure that the writel is not moved by the compiler or the CPU, so
134 * the data will be in place before we start the DMA to do the actual
135 * register write.
136 */
137 wmb();
138
139 src = dmm->wa_dma_handle;
140 dst = dmm->phys_base + reg;
141
142 r = dmm_dma_copy(dmm, src, dst);
143 if (r) {
144 dev_err(dmm->dev, "sDMA write transfer timeout\n");
145 writel(val, dmm->base + reg);
146 }
147 }
148
dmm_read(struct dmm * dmm,u32 reg)149 static u32 dmm_read(struct dmm *dmm, u32 reg)
150 {
151 if (dmm->dmm_workaround) {
152 u32 v;
153 unsigned long flags;
154
155 spin_lock_irqsave(&dmm->wa_lock, flags);
156 v = dmm_read_wa(dmm, reg);
157 spin_unlock_irqrestore(&dmm->wa_lock, flags);
158
159 return v;
160 } else {
161 return readl(dmm->base + reg);
162 }
163 }
164
dmm_write(struct dmm * dmm,u32 val,u32 reg)165 static void dmm_write(struct dmm *dmm, u32 val, u32 reg)
166 {
167 if (dmm->dmm_workaround) {
168 unsigned long flags;
169
170 spin_lock_irqsave(&dmm->wa_lock, flags);
171 dmm_write_wa(dmm, val, reg);
172 spin_unlock_irqrestore(&dmm->wa_lock, flags);
173 } else {
174 writel(val, dmm->base + reg);
175 }
176 }
177
dmm_workaround_init(struct dmm * dmm)178 static int dmm_workaround_init(struct dmm *dmm)
179 {
180 dma_cap_mask_t mask;
181
182 spin_lock_init(&dmm->wa_lock);
183
184 dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32),
185 &dmm->wa_dma_handle, GFP_KERNEL);
186 if (!dmm->wa_dma_data)
187 return -ENOMEM;
188
189 dma_cap_zero(mask);
190 dma_cap_set(DMA_MEMCPY, mask);
191
192 dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL);
193 if (!dmm->wa_dma_chan) {
194 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
195 return -ENODEV;
196 }
197
198 return 0;
199 }
200
dmm_workaround_uninit(struct dmm * dmm)201 static void dmm_workaround_uninit(struct dmm *dmm)
202 {
203 dma_release_channel(dmm->wa_dma_chan);
204
205 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
206 }
207
208 /* simple allocator to grab next 16 byte aligned memory from txn */
alloc_dma(struct dmm_txn * txn,size_t sz,dma_addr_t * pa)209 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
210 {
211 void *ptr;
212 struct refill_engine *engine = txn->engine_handle;
213
214 /* dmm programming requires 16 byte aligned addresses */
215 txn->current_pa = round_up(txn->current_pa, 16);
216 txn->current_va = (void *)round_up((long)txn->current_va, 16);
217
218 ptr = txn->current_va;
219 *pa = txn->current_pa;
220
221 txn->current_pa += sz;
222 txn->current_va += sz;
223
224 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
225
226 return ptr;
227 }
228
229 /* check status and spin until wait_mask comes true */
wait_status(struct refill_engine * engine,u32 wait_mask)230 static int wait_status(struct refill_engine *engine, u32 wait_mask)
231 {
232 struct dmm *dmm = engine->dmm;
233 u32 r = 0, err, i;
234
235 i = DMM_FIXED_RETRY_COUNT;
236 while (true) {
237 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]);
238 err = r & DMM_PATSTATUS_ERR;
239 if (err) {
240 dev_err(dmm->dev,
241 "%s: error (engine%d). PAT_STATUS: 0x%08x\n",
242 __func__, engine->id, r);
243 return -EFAULT;
244 }
245
246 if ((r & wait_mask) == wait_mask)
247 break;
248
249 if (--i == 0) {
250 dev_err(dmm->dev,
251 "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n",
252 __func__, engine->id, r);
253 return -ETIMEDOUT;
254 }
255
256 udelay(1);
257 }
258
259 return 0;
260 }
261
release_engine(struct refill_engine * engine)262 static void release_engine(struct refill_engine *engine)
263 {
264 unsigned long flags;
265
266 spin_lock_irqsave(&list_lock, flags);
267 list_add(&engine->idle_node, &omap_dmm->idle_head);
268 spin_unlock_irqrestore(&list_lock, flags);
269
270 atomic_inc(&omap_dmm->engine_counter);
271 wake_up_interruptible(&omap_dmm->engine_queue);
272 }
273
omap_dmm_irq_handler(int irq,void * arg)274 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
275 {
276 struct dmm *dmm = arg;
277 u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS);
278 int i;
279
280 /* ack IRQ */
281 dmm_write(dmm, status, DMM_PAT_IRQSTATUS);
282
283 for (i = 0; i < dmm->num_engines; i++) {
284 if (status & DMM_IRQSTAT_ERR_MASK)
285 dev_err(dmm->dev,
286 "irq error(engine%d): IRQSTAT 0x%02x\n",
287 i, status & 0xff);
288
289 if (status & DMM_IRQSTAT_LST) {
290 if (dmm->engines[i].async)
291 release_engine(&dmm->engines[i]);
292
293 complete(&dmm->engines[i].compl);
294 }
295
296 status >>= 8;
297 }
298
299 return IRQ_HANDLED;
300 }
301
302 /*
303 * Get a handle for a DMM transaction
304 */
dmm_txn_init(struct dmm * dmm,struct tcm * tcm)305 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
306 {
307 struct dmm_txn *txn = NULL;
308 struct refill_engine *engine = NULL;
309 int ret;
310 unsigned long flags;
311
312
313 /* wait until an engine is available */
314 ret = wait_event_interruptible(omap_dmm->engine_queue,
315 atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
316 if (ret)
317 return ERR_PTR(ret);
318
319 /* grab an idle engine */
320 spin_lock_irqsave(&list_lock, flags);
321 if (!list_empty(&dmm->idle_head)) {
322 engine = list_entry(dmm->idle_head.next, struct refill_engine,
323 idle_node);
324 list_del(&engine->idle_node);
325 }
326 spin_unlock_irqrestore(&list_lock, flags);
327
328 BUG_ON(!engine);
329
330 txn = &engine->txn;
331 engine->tcm = tcm;
332 txn->engine_handle = engine;
333 txn->last_pat = NULL;
334 txn->current_va = engine->refill_va;
335 txn->current_pa = engine->refill_pa;
336
337 return txn;
338 }
339
340 /*
341 * Add region to DMM transaction. If pages or pages[i] is NULL, then the
342 * corresponding slot is cleared (ie. dummy_pa is programmed)
343 */
dmm_txn_append(struct dmm_txn * txn,struct pat_area * area,struct page ** pages,u32 npages,u32 roll)344 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
345 struct page **pages, u32 npages, u32 roll)
346 {
347 dma_addr_t pat_pa = 0, data_pa = 0;
348 u32 *data;
349 struct pat *pat;
350 struct refill_engine *engine = txn->engine_handle;
351 int columns = (1 + area->x1 - area->x0);
352 int rows = (1 + area->y1 - area->y0);
353 int i = columns*rows;
354
355 pat = alloc_dma(txn, sizeof(*pat), &pat_pa);
356
357 if (txn->last_pat)
358 txn->last_pat->next_pa = (u32)pat_pa;
359
360 pat->area = *area;
361
362 /* adjust Y coordinates based off of container parameters */
363 pat->area.y0 += engine->tcm->y_offset;
364 pat->area.y1 += engine->tcm->y_offset;
365
366 pat->ctrl = (struct pat_ctrl){
367 .start = 1,
368 .lut_id = engine->tcm->lut_id,
369 };
370
371 data = alloc_dma(txn, 4*i, &data_pa);
372 /* FIXME: what if data_pa is more than 32-bit ? */
373 pat->data_pa = data_pa;
374
375 while (i--) {
376 int n = i + roll;
377 if (n >= npages)
378 n -= npages;
379 data[i] = (pages && pages[n]) ?
380 page_to_phys(pages[n]) : engine->dmm->dummy_pa;
381 }
382
383 txn->last_pat = pat;
384
385 return;
386 }
387
388 /*
389 * Commit the DMM transaction.
390 */
dmm_txn_commit(struct dmm_txn * txn,bool wait)391 static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
392 {
393 int ret = 0;
394 struct refill_engine *engine = txn->engine_handle;
395 struct dmm *dmm = engine->dmm;
396
397 if (!txn->last_pat) {
398 dev_err(engine->dmm->dev, "need at least one txn\n");
399 ret = -EINVAL;
400 goto cleanup;
401 }
402
403 txn->last_pat->next_pa = 0;
404 /* ensure that the written descriptors are visible to DMM */
405 wmb();
406
407 /*
408 * NOTE: the wmb() above should be enough, but there seems to be a bug
409 * in OMAP's memory barrier implementation, which in some rare cases may
410 * cause the writes not to be observable after wmb().
411 */
412
413 /* read back to ensure the data is in RAM */
414 readl(&txn->last_pat->next_pa);
415
416 /* write to PAT_DESCR to clear out any pending transaction */
417 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]);
418
419 /* wait for engine ready: */
420 ret = wait_status(engine, DMM_PATSTATUS_READY);
421 if (ret) {
422 ret = -EFAULT;
423 goto cleanup;
424 }
425
426 /* mark whether it is async to denote list management in IRQ handler */
427 engine->async = wait ? false : true;
428 reinit_completion(&engine->compl);
429 /* verify that the irq handler sees the 'async' and completion value */
430 smp_mb();
431
432 /* kick reload */
433 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]);
434
435 if (wait) {
436 if (!wait_for_completion_timeout(&engine->compl,
437 msecs_to_jiffies(100))) {
438 dev_err(dmm->dev, "timed out waiting for done\n");
439 ret = -ETIMEDOUT;
440 goto cleanup;
441 }
442
443 /* Check the engine status before continue */
444 ret = wait_status(engine, DMM_PATSTATUS_READY |
445 DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE);
446 }
447
448 cleanup:
449 /* only place engine back on list if we are done with it */
450 if (ret || wait)
451 release_engine(engine);
452
453 return ret;
454 }
455
456 /*
457 * DMM programming
458 */
fill(struct tcm_area * area,struct page ** pages,u32 npages,u32 roll,bool wait)459 static int fill(struct tcm_area *area, struct page **pages,
460 u32 npages, u32 roll, bool wait)
461 {
462 int ret = 0;
463 struct tcm_area slice, area_s;
464 struct dmm_txn *txn;
465
466 /*
467 * FIXME
468 *
469 * Asynchronous fill does not work reliably, as the driver does not
470 * handle errors in the async code paths. The fill operation may
471 * silently fail, leading to leaking DMM engines, which may eventually
472 * lead to deadlock if we run out of DMM engines.
473 *
474 * For now, always set 'wait' so that we only use sync fills. Async
475 * fills should be fixed, or alternatively we could decide to only
476 * support sync fills and so the whole async code path could be removed.
477 */
478
479 wait = true;
480
481 txn = dmm_txn_init(omap_dmm, area->tcm);
482 if (IS_ERR_OR_NULL(txn))
483 return -ENOMEM;
484
485 tcm_for_each_slice(slice, *area, area_s) {
486 struct pat_area p_area = {
487 .x0 = slice.p0.x, .y0 = slice.p0.y,
488 .x1 = slice.p1.x, .y1 = slice.p1.y,
489 };
490
491 dmm_txn_append(txn, &p_area, pages, npages, roll);
492
493 roll += tcm_sizeof(slice);
494 }
495
496 ret = dmm_txn_commit(txn, wait);
497
498 return ret;
499 }
500
501 /*
502 * Pin/unpin
503 */
504
505 /* note: slots for which pages[i] == NULL are filled w/ dummy page
506 */
tiler_pin(struct tiler_block * block,struct page ** pages,u32 npages,u32 roll,bool wait)507 int tiler_pin(struct tiler_block *block, struct page **pages,
508 u32 npages, u32 roll, bool wait)
509 {
510 int ret;
511
512 ret = fill(&block->area, pages, npages, roll, wait);
513
514 if (ret)
515 tiler_unpin(block);
516
517 return ret;
518 }
519
tiler_unpin(struct tiler_block * block)520 int tiler_unpin(struct tiler_block *block)
521 {
522 return fill(&block->area, NULL, 0, 0, false);
523 }
524
525 /*
526 * Reserve/release
527 */
tiler_reserve_2d(enum tiler_fmt fmt,u16 w,u16 h,u16 align)528 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w,
529 u16 h, u16 align)
530 {
531 struct tiler_block *block;
532 u32 min_align = 128;
533 int ret;
534 unsigned long flags;
535 u32 slot_bytes;
536
537 block = kzalloc(sizeof(*block), GFP_KERNEL);
538 if (!block)
539 return ERR_PTR(-ENOMEM);
540
541 BUG_ON(!validfmt(fmt));
542
543 /* convert width/height to slots */
544 w = DIV_ROUND_UP(w, geom[fmt].slot_w);
545 h = DIV_ROUND_UP(h, geom[fmt].slot_h);
546
547 /* convert alignment to slots */
548 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp;
549 min_align = max(min_align, slot_bytes);
550 align = (align > min_align) ? ALIGN(align, min_align) : min_align;
551 align /= slot_bytes;
552
553 block->fmt = fmt;
554
555 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes,
556 &block->area);
557 if (ret) {
558 kfree(block);
559 return ERR_PTR(-ENOMEM);
560 }
561
562 /* add to allocation list */
563 spin_lock_irqsave(&list_lock, flags);
564 list_add(&block->alloc_node, &omap_dmm->alloc_head);
565 spin_unlock_irqrestore(&list_lock, flags);
566
567 return block;
568 }
569
tiler_reserve_1d(size_t size)570 struct tiler_block *tiler_reserve_1d(size_t size)
571 {
572 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
573 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
574 unsigned long flags;
575
576 if (!block)
577 return ERR_PTR(-ENOMEM);
578
579 block->fmt = TILFMT_PAGE;
580
581 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
582 &block->area)) {
583 kfree(block);
584 return ERR_PTR(-ENOMEM);
585 }
586
587 spin_lock_irqsave(&list_lock, flags);
588 list_add(&block->alloc_node, &omap_dmm->alloc_head);
589 spin_unlock_irqrestore(&list_lock, flags);
590
591 return block;
592 }
593
594 /* note: if you have pin'd pages, you should have already unpin'd first! */
tiler_release(struct tiler_block * block)595 int tiler_release(struct tiler_block *block)
596 {
597 int ret = tcm_free(&block->area);
598 unsigned long flags;
599
600 if (block->area.tcm)
601 dev_err(omap_dmm->dev, "failed to release block\n");
602
603 spin_lock_irqsave(&list_lock, flags);
604 list_del(&block->alloc_node);
605 spin_unlock_irqrestore(&list_lock, flags);
606
607 kfree(block);
608 return ret;
609 }
610
611 /*
612 * Utils
613 */
614
615 /* calculate the tiler space address of a pixel in a view orientation...
616 * below description copied from the display subsystem section of TRM:
617 *
618 * When the TILER is addressed, the bits:
619 * [28:27] = 0x0 for 8-bit tiled
620 * 0x1 for 16-bit tiled
621 * 0x2 for 32-bit tiled
622 * 0x3 for page mode
623 * [31:29] = 0x0 for 0-degree view
624 * 0x1 for 180-degree view + mirroring
625 * 0x2 for 0-degree view + mirroring
626 * 0x3 for 180-degree view
627 * 0x4 for 270-degree view + mirroring
628 * 0x5 for 270-degree view
629 * 0x6 for 90-degree view
630 * 0x7 for 90-degree view + mirroring
631 * Otherwise the bits indicated the corresponding bit address to access
632 * the SDRAM.
633 */
tiler_get_address(enum tiler_fmt fmt,u32 orient,u32 x,u32 y)634 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
635 {
636 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
637
638 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
639 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
640 alignment = geom[fmt].x_shft + geom[fmt].y_shft;
641
642 /* validate coordinate */
643 x_mask = MASK(x_bits);
644 y_mask = MASK(y_bits);
645
646 if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
647 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
648 x, x, x_mask, y, y, y_mask);
649 return 0;
650 }
651
652 /* account for mirroring */
653 if (orient & MASK_X_INVERT)
654 x ^= x_mask;
655 if (orient & MASK_Y_INVERT)
656 y ^= y_mask;
657
658 /* get coordinate address */
659 if (orient & MASK_XY_FLIP)
660 tmp = ((x << y_bits) + y);
661 else
662 tmp = ((y << x_bits) + x);
663
664 return TIL_ADDR((tmp << alignment), orient, fmt);
665 }
666
tiler_ssptr(struct tiler_block * block)667 dma_addr_t tiler_ssptr(struct tiler_block *block)
668 {
669 BUG_ON(!validfmt(block->fmt));
670
671 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
672 block->area.p0.x * geom[block->fmt].slot_w,
673 block->area.p0.y * geom[block->fmt].slot_h);
674 }
675
tiler_tsptr(struct tiler_block * block,u32 orient,u32 x,u32 y)676 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient,
677 u32 x, u32 y)
678 {
679 struct tcm_pt *p = &block->area.p0;
680 BUG_ON(!validfmt(block->fmt));
681
682 return tiler_get_address(block->fmt, orient,
683 (p->x * geom[block->fmt].slot_w) + x,
684 (p->y * geom[block->fmt].slot_h) + y);
685 }
686
tiler_align(enum tiler_fmt fmt,u16 * w,u16 * h)687 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h)
688 {
689 BUG_ON(!validfmt(fmt));
690 *w = round_up(*w, geom[fmt].slot_w);
691 *h = round_up(*h, geom[fmt].slot_h);
692 }
693
tiler_stride(enum tiler_fmt fmt,u32 orient)694 u32 tiler_stride(enum tiler_fmt fmt, u32 orient)
695 {
696 BUG_ON(!validfmt(fmt));
697
698 if (orient & MASK_XY_FLIP)
699 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
700 else
701 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
702 }
703
tiler_size(enum tiler_fmt fmt,u16 w,u16 h)704 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h)
705 {
706 tiler_align(fmt, &w, &h);
707 return geom[fmt].cpp * w * h;
708 }
709
tiler_vsize(enum tiler_fmt fmt,u16 w,u16 h)710 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h)
711 {
712 BUG_ON(!validfmt(fmt));
713 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
714 }
715
tiler_get_cpu_cache_flags(void)716 u32 tiler_get_cpu_cache_flags(void)
717 {
718 return omap_dmm->plat_data->cpu_cache_flags;
719 }
720
dmm_is_available(void)721 bool dmm_is_available(void)
722 {
723 return omap_dmm ? true : false;
724 }
725
omap_dmm_remove(struct platform_device * dev)726 static int omap_dmm_remove(struct platform_device *dev)
727 {
728 struct tiler_block *block, *_block;
729 int i;
730 unsigned long flags;
731
732 if (omap_dmm) {
733 /* Disable all enabled interrupts */
734 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR);
735 free_irq(omap_dmm->irq, omap_dmm);
736
737 /* free all area regions */
738 spin_lock_irqsave(&list_lock, flags);
739 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
740 alloc_node) {
741 list_del(&block->alloc_node);
742 kfree(block);
743 }
744 spin_unlock_irqrestore(&list_lock, flags);
745
746 for (i = 0; i < omap_dmm->num_lut; i++)
747 if (omap_dmm->tcm && omap_dmm->tcm[i])
748 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
749 kfree(omap_dmm->tcm);
750
751 kfree(omap_dmm->engines);
752 if (omap_dmm->refill_va)
753 dma_free_wc(omap_dmm->dev,
754 REFILL_BUFFER_SIZE * omap_dmm->num_engines,
755 omap_dmm->refill_va, omap_dmm->refill_pa);
756 if (omap_dmm->dummy_page)
757 __free_page(omap_dmm->dummy_page);
758
759 if (omap_dmm->dmm_workaround)
760 dmm_workaround_uninit(omap_dmm);
761
762 iounmap(omap_dmm->base);
763 kfree(omap_dmm);
764 omap_dmm = NULL;
765 }
766
767 return 0;
768 }
769
omap_dmm_probe(struct platform_device * dev)770 static int omap_dmm_probe(struct platform_device *dev)
771 {
772 int ret = -EFAULT, i;
773 struct tcm_area area = {0};
774 u32 hwinfo, pat_geom;
775 struct resource *mem;
776
777 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
778 if (!omap_dmm)
779 goto fail;
780
781 /* initialize lists */
782 INIT_LIST_HEAD(&omap_dmm->alloc_head);
783 INIT_LIST_HEAD(&omap_dmm->idle_head);
784
785 init_waitqueue_head(&omap_dmm->engine_queue);
786
787 if (dev->dev.of_node) {
788 const struct of_device_id *match;
789
790 match = of_match_node(dmm_of_match, dev->dev.of_node);
791 if (!match) {
792 dev_err(&dev->dev, "failed to find matching device node\n");
793 ret = -ENODEV;
794 goto fail;
795 }
796
797 omap_dmm->plat_data = match->data;
798 }
799
800 /* lookup hwmod data - base address and irq */
801 mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
802 if (!mem) {
803 dev_err(&dev->dev, "failed to get base address resource\n");
804 goto fail;
805 }
806
807 omap_dmm->phys_base = mem->start;
808 omap_dmm->base = ioremap(mem->start, SZ_2K);
809
810 if (!omap_dmm->base) {
811 dev_err(&dev->dev, "failed to get dmm base address\n");
812 goto fail;
813 }
814
815 omap_dmm->irq = platform_get_irq(dev, 0);
816 if (omap_dmm->irq < 0)
817 goto fail;
818
819 omap_dmm->dev = &dev->dev;
820
821 if (of_machine_is_compatible("ti,dra7")) {
822 /*
823 * DRA7 Errata i878 says that MPU should not be used to access
824 * RAM and DMM at the same time. As it's not possible to prevent
825 * MPU accessing RAM, we need to access DMM via a proxy.
826 */
827 if (!dmm_workaround_init(omap_dmm)) {
828 omap_dmm->dmm_workaround = true;
829 dev_info(&dev->dev,
830 "workaround for errata i878 in use\n");
831 } else {
832 dev_warn(&dev->dev,
833 "failed to initialize work-around for i878\n");
834 }
835 }
836
837 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO);
838 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
839 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
840 omap_dmm->container_width = 256;
841 omap_dmm->container_height = 128;
842
843 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
844
845 /* read out actual LUT width and height */
846 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY);
847 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
848 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
849
850 /* increment LUT by one if on OMAP5 */
851 /* LUT has twice the height, and is split into a separate container */
852 if (omap_dmm->lut_height != omap_dmm->container_height)
853 omap_dmm->num_lut++;
854
855 /* initialize DMM registers */
856 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0);
857 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1);
858 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0);
859 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE);
860 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0);
861 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1);
862
863 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
864 if (!omap_dmm->dummy_page) {
865 dev_err(&dev->dev, "could not allocate dummy page\n");
866 ret = -ENOMEM;
867 goto fail;
868 }
869
870 /* set dma mask for device */
871 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
872 if (ret)
873 goto fail;
874
875 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
876
877 /* alloc refill memory */
878 omap_dmm->refill_va = dma_alloc_wc(&dev->dev,
879 REFILL_BUFFER_SIZE * omap_dmm->num_engines,
880 &omap_dmm->refill_pa, GFP_KERNEL);
881 if (!omap_dmm->refill_va) {
882 dev_err(&dev->dev, "could not allocate refill memory\n");
883 ret = -ENOMEM;
884 goto fail;
885 }
886
887 /* alloc engines */
888 omap_dmm->engines = kcalloc(omap_dmm->num_engines,
889 sizeof(*omap_dmm->engines), GFP_KERNEL);
890 if (!omap_dmm->engines) {
891 ret = -ENOMEM;
892 goto fail;
893 }
894
895 for (i = 0; i < omap_dmm->num_engines; i++) {
896 omap_dmm->engines[i].id = i;
897 omap_dmm->engines[i].dmm = omap_dmm;
898 omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
899 (REFILL_BUFFER_SIZE * i);
900 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
901 (REFILL_BUFFER_SIZE * i);
902 init_completion(&omap_dmm->engines[i].compl);
903
904 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
905 }
906
907 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
908 GFP_KERNEL);
909 if (!omap_dmm->tcm) {
910 ret = -ENOMEM;
911 goto fail;
912 }
913
914 /* init containers */
915 /* Each LUT is associated with a TCM (container manager). We use the
916 lut_id to denote the lut_id used to identify the correct LUT for
917 programming during reill operations */
918 for (i = 0; i < omap_dmm->num_lut; i++) {
919 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
920 omap_dmm->container_height);
921
922 if (!omap_dmm->tcm[i]) {
923 dev_err(&dev->dev, "failed to allocate container\n");
924 ret = -ENOMEM;
925 goto fail;
926 }
927
928 omap_dmm->tcm[i]->lut_id = i;
929 }
930
931 /* assign access mode containers to applicable tcm container */
932 /* OMAP 4 has 1 container for all 4 views */
933 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
934 containers[TILFMT_8BIT] = omap_dmm->tcm[0];
935 containers[TILFMT_16BIT] = omap_dmm->tcm[0];
936 containers[TILFMT_32BIT] = omap_dmm->tcm[0];
937
938 if (omap_dmm->container_height != omap_dmm->lut_height) {
939 /* second LUT is used for PAGE mode. Programming must use
940 y offset that is added to all y coordinates. LUT id is still
941 0, because it is the same LUT, just the upper 128 lines */
942 containers[TILFMT_PAGE] = omap_dmm->tcm[1];
943 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
944 omap_dmm->tcm[1]->lut_id = 0;
945 } else {
946 containers[TILFMT_PAGE] = omap_dmm->tcm[0];
947 }
948
949 area = (struct tcm_area) {
950 .tcm = NULL,
951 .p1.x = omap_dmm->container_width - 1,
952 .p1.y = omap_dmm->container_height - 1,
953 };
954
955 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
956 "omap_dmm_irq_handler", omap_dmm);
957
958 if (ret) {
959 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
960 omap_dmm->irq, ret);
961 omap_dmm->irq = -1;
962 goto fail;
963 }
964
965 /* Enable all interrupts for each refill engine except
966 * ERR_LUT_MISS<n> (which is just advisory, and we don't care
967 * about because we want to be able to refill live scanout
968 * buffers for accelerated pan/scroll) and FILL_DSC<n> which
969 * we just generally don't care about.
970 */
971 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET);
972
973 /* initialize all LUTs to dummy page entries */
974 for (i = 0; i < omap_dmm->num_lut; i++) {
975 area.tcm = omap_dmm->tcm[i];
976 if (fill(&area, NULL, 0, 0, true))
977 dev_err(omap_dmm->dev, "refill failed");
978 }
979
980 dev_info(omap_dmm->dev, "initialized all PAT entries\n");
981
982 return 0;
983
984 fail:
985 if (omap_dmm_remove(dev))
986 dev_err(&dev->dev, "cleanup failed\n");
987 return ret;
988 }
989
990 /*
991 * debugfs support
992 */
993
994 #ifdef CONFIG_DEBUG_FS
995
996 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
997 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
998 static const char *special = ".,:;'\"`~!^-+";
999
fill_map(char ** map,int xdiv,int ydiv,struct tcm_area * a,char c,bool ovw)1000 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
1001 char c, bool ovw)
1002 {
1003 int x, y;
1004 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
1005 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
1006 if (map[y][x] == ' ' || ovw)
1007 map[y][x] = c;
1008 }
1009
fill_map_pt(char ** map,int xdiv,int ydiv,struct tcm_pt * p,char c)1010 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
1011 char c)
1012 {
1013 map[p->y / ydiv][p->x / xdiv] = c;
1014 }
1015
read_map_pt(char ** map,int xdiv,int ydiv,struct tcm_pt * p)1016 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
1017 {
1018 return map[p->y / ydiv][p->x / xdiv];
1019 }
1020
map_width(int xdiv,int x0,int x1)1021 static int map_width(int xdiv, int x0, int x1)
1022 {
1023 return (x1 / xdiv) - (x0 / xdiv) + 1;
1024 }
1025
text_map(char ** map,int xdiv,char * nice,int yd,int x0,int x1)1026 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
1027 {
1028 char *p = map[yd] + (x0 / xdiv);
1029 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
1030 if (w >= 0) {
1031 p += w;
1032 while (*nice)
1033 *p++ = *nice++;
1034 }
1035 }
1036
map_1d_info(char ** map,int xdiv,int ydiv,char * nice,struct tcm_area * a)1037 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
1038 struct tcm_area *a)
1039 {
1040 sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
1041 if (a->p0.y + 1 < a->p1.y) {
1042 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
1043 256 - 1);
1044 } else if (a->p0.y < a->p1.y) {
1045 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
1046 text_map(map, xdiv, nice, a->p0.y / ydiv,
1047 a->p0.x + xdiv, 256 - 1);
1048 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
1049 text_map(map, xdiv, nice, a->p1.y / ydiv,
1050 0, a->p1.y - xdiv);
1051 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
1052 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
1053 }
1054 }
1055
map_2d_info(char ** map,int xdiv,int ydiv,char * nice,struct tcm_area * a)1056 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
1057 struct tcm_area *a)
1058 {
1059 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
1060 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
1061 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
1062 a->p0.x, a->p1.x);
1063 }
1064
tiler_map_show(struct seq_file * s,void * arg)1065 int tiler_map_show(struct seq_file *s, void *arg)
1066 {
1067 int xdiv = 2, ydiv = 1;
1068 char **map = NULL, *global_map;
1069 struct tiler_block *block;
1070 struct tcm_area a, p;
1071 int i;
1072 const char *m2d = alphabet;
1073 const char *a2d = special;
1074 const char *m2dp = m2d, *a2dp = a2d;
1075 char nice[128];
1076 int h_adj;
1077 int w_adj;
1078 unsigned long flags;
1079 int lut_idx;
1080
1081
1082 if (!omap_dmm) {
1083 /* early return if dmm/tiler device is not initialized */
1084 return 0;
1085 }
1086
1087 h_adj = omap_dmm->container_height / ydiv;
1088 w_adj = omap_dmm->container_width / xdiv;
1089
1090 map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL);
1091 global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL);
1092
1093 if (!map || !global_map)
1094 goto error;
1095
1096 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
1097 memset(map, 0, h_adj * sizeof(*map));
1098 memset(global_map, ' ', (w_adj + 1) * h_adj);
1099
1100 for (i = 0; i < omap_dmm->container_height; i++) {
1101 map[i] = global_map + i * (w_adj + 1);
1102 map[i][w_adj] = 0;
1103 }
1104
1105 spin_lock_irqsave(&list_lock, flags);
1106
1107 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
1108 if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
1109 if (block->fmt != TILFMT_PAGE) {
1110 fill_map(map, xdiv, ydiv, &block->area,
1111 *m2dp, true);
1112 if (!*++a2dp)
1113 a2dp = a2d;
1114 if (!*++m2dp)
1115 m2dp = m2d;
1116 map_2d_info(map, xdiv, ydiv, nice,
1117 &block->area);
1118 } else {
1119 bool start = read_map_pt(map, xdiv,
1120 ydiv, &block->area.p0) == ' ';
1121 bool end = read_map_pt(map, xdiv, ydiv,
1122 &block->area.p1) == ' ';
1123
1124 tcm_for_each_slice(a, block->area, p)
1125 fill_map(map, xdiv, ydiv, &a,
1126 '=', true);
1127 fill_map_pt(map, xdiv, ydiv,
1128 &block->area.p0,
1129 start ? '<' : 'X');
1130 fill_map_pt(map, xdiv, ydiv,
1131 &block->area.p1,
1132 end ? '>' : 'X');
1133 map_1d_info(map, xdiv, ydiv, nice,
1134 &block->area);
1135 }
1136 }
1137 }
1138
1139 spin_unlock_irqrestore(&list_lock, flags);
1140
1141 if (s) {
1142 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
1143 for (i = 0; i < 128; i++)
1144 seq_printf(s, "%03d:%s\n", i, map[i]);
1145 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
1146 } else {
1147 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
1148 lut_idx);
1149 for (i = 0; i < 128; i++)
1150 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
1151 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
1152 lut_idx);
1153 }
1154 }
1155
1156 error:
1157 kfree(map);
1158 kfree(global_map);
1159
1160 return 0;
1161 }
1162 #endif
1163
1164 #ifdef CONFIG_PM_SLEEP
omap_dmm_resume(struct device * dev)1165 static int omap_dmm_resume(struct device *dev)
1166 {
1167 struct tcm_area area;
1168 int i;
1169
1170 if (!omap_dmm)
1171 return -ENODEV;
1172
1173 area = (struct tcm_area) {
1174 .tcm = NULL,
1175 .p1.x = omap_dmm->container_width - 1,
1176 .p1.y = omap_dmm->container_height - 1,
1177 };
1178
1179 /* initialize all LUTs to dummy page entries */
1180 for (i = 0; i < omap_dmm->num_lut; i++) {
1181 area.tcm = omap_dmm->tcm[i];
1182 if (fill(&area, NULL, 0, 0, true))
1183 dev_err(dev, "refill failed");
1184 }
1185
1186 return 0;
1187 }
1188 #endif
1189
1190 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
1191
1192 #if defined(CONFIG_OF)
1193 static const struct dmm_platform_data dmm_omap4_platform_data = {
1194 .cpu_cache_flags = OMAP_BO_WC,
1195 };
1196
1197 static const struct dmm_platform_data dmm_omap5_platform_data = {
1198 .cpu_cache_flags = OMAP_BO_UNCACHED,
1199 };
1200
1201 static const struct of_device_id dmm_of_match[] = {
1202 {
1203 .compatible = "ti,omap4-dmm",
1204 .data = &dmm_omap4_platform_data,
1205 },
1206 {
1207 .compatible = "ti,omap5-dmm",
1208 .data = &dmm_omap5_platform_data,
1209 },
1210 {},
1211 };
1212 #endif
1213
1214 struct platform_driver omap_dmm_driver = {
1215 .probe = omap_dmm_probe,
1216 .remove = omap_dmm_remove,
1217 .driver = {
1218 .owner = THIS_MODULE,
1219 .name = DMM_DRIVER_NAME,
1220 .of_match_table = of_match_ptr(dmm_of_match),
1221 .pm = &omap_dmm_pm_ops,
1222 },
1223 };
1224
1225 MODULE_LICENSE("GPL v2");
1226 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
1227 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");
1228