1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85 
86 /*
87  * Convert user-nice values [ -20 ... 0 ... 19 ]
88  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89  * and back.
90  */
91 #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
94 
95 /*
96  * 'User priority' is the nice value converted to something we
97  * can work with better when scaling various scheduler parameters,
98  * it's a [ 0 ... 39 ] range.
99  */
100 #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
103 
104 /*
105  * Helpers for converting nanosecond timing to jiffy resolution
106  */
107 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 
109 #define NICE_0_LOAD		SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
111 
112 /*
113  * These are the 'tuning knobs' of the scheduler:
114  *
115  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116  * Timeslices get refilled after they expire.
117  */
118 #define DEF_TIMESLICE		(100 * HZ / 1000)
119 
120 /*
121  * single value that denotes runtime == period, ie unlimited time.
122  */
123 #define RUNTIME_INF	((u64)~0ULL)
124 
rt_policy(int policy)125 static inline int rt_policy(int policy)
126 {
127 	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 		return 1;
129 	return 0;
130 }
131 
task_has_rt_policy(struct task_struct * p)132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 	return rt_policy(p->policy);
135 }
136 
137 /*
138  * This is the priority-queue data structure of the RT scheduling class:
139  */
140 struct rt_prio_array {
141 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 	struct list_head queue[MAX_RT_PRIO];
143 };
144 
145 struct rt_bandwidth {
146 	/* nests inside the rq lock: */
147 	raw_spinlock_t		rt_runtime_lock;
148 	ktime_t			rt_period;
149 	u64			rt_runtime;
150 	struct hrtimer		rt_period_timer;
151 };
152 
153 static struct rt_bandwidth def_rt_bandwidth;
154 
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 
sched_rt_period_timer(struct hrtimer * timer)157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 	struct rt_bandwidth *rt_b =
160 		container_of(timer, struct rt_bandwidth, rt_period_timer);
161 	ktime_t now;
162 	int overrun;
163 	int idle = 0;
164 
165 	for (;;) {
166 		now = hrtimer_cb_get_time(timer);
167 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 
169 		if (!overrun)
170 			break;
171 
172 		idle = do_sched_rt_period_timer(rt_b, overrun);
173 	}
174 
175 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177 
178 static
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 	rt_b->rt_period = ns_to_ktime(period);
182 	rt_b->rt_runtime = runtime;
183 
184 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 
186 	hrtimer_init(&rt_b->rt_period_timer,
187 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 	rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190 
rt_bandwidth_enabled(void)191 static inline int rt_bandwidth_enabled(void)
192 {
193 	return sysctl_sched_rt_runtime >= 0;
194 }
195 
start_rt_bandwidth(struct rt_bandwidth * rt_b)196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 	ktime_t now;
199 
200 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 		return;
202 
203 	if (hrtimer_active(&rt_b->rt_period_timer))
204 		return;
205 
206 	raw_spin_lock(&rt_b->rt_runtime_lock);
207 	for (;;) {
208 		unsigned long delta;
209 		ktime_t soft, hard;
210 
211 		if (hrtimer_active(&rt_b->rt_period_timer))
212 			break;
213 
214 		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 
217 		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 		delta = ktime_to_ns(ktime_sub(hard, soft));
220 		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 				HRTIMER_MODE_ABS_PINNED, 0);
222 	}
223 	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225 
226 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 	hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232 
233 /*
234  * sched_domains_mutex serializes calls to arch_init_sched_domains,
235  * detach_destroy_domains and partition_sched_domains.
236  */
237 static DEFINE_MUTEX(sched_domains_mutex);
238 
239 #ifdef CONFIG_CGROUP_SCHED
240 
241 #include <linux/cgroup.h>
242 
243 struct cfs_rq;
244 
245 static LIST_HEAD(task_groups);
246 
247 /* task group related information */
248 struct task_group {
249 	struct cgroup_subsys_state css;
250 
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 	/* schedulable entities of this group on each cpu */
253 	struct sched_entity **se;
254 	/* runqueue "owned" by this group on each cpu */
255 	struct cfs_rq **cfs_rq;
256 	unsigned long shares;
257 
258 	atomic_t load_weight;
259 #endif
260 
261 #ifdef CONFIG_RT_GROUP_SCHED
262 	struct sched_rt_entity **rt_se;
263 	struct rt_rq **rt_rq;
264 
265 	struct rt_bandwidth rt_bandwidth;
266 #endif
267 
268 	struct rcu_head rcu;
269 	struct list_head list;
270 
271 	struct task_group *parent;
272 	struct list_head siblings;
273 	struct list_head children;
274 
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 	struct autogroup *autogroup;
277 #endif
278 };
279 
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282 
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 
285 # define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
286 
287 /*
288  * A weight of 0 or 1 can cause arithmetics problems.
289  * A weight of a cfs_rq is the sum of weights of which entities
290  * are queued on this cfs_rq, so a weight of a entity should not be
291  * too large, so as the shares value of a task group.
292  * (The default weight is 1024 - so there's no practical
293  *  limitation from this.)
294  */
295 #define MIN_SHARES	2
296 #define MAX_SHARES	(1UL << 18)
297 
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300 
301 /* Default task group.
302  *	Every task in system belong to this group at bootup.
303  */
304 struct task_group root_task_group;
305 
306 #endif	/* CONFIG_CGROUP_SCHED */
307 
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 	struct load_weight load;
311 	unsigned long nr_running;
312 
313 	u64 exec_clock;
314 	u64 min_vruntime;
315 
316 	struct rb_root tasks_timeline;
317 	struct rb_node *rb_leftmost;
318 
319 	struct list_head tasks;
320 	struct list_head *balance_iterator;
321 
322 	/*
323 	 * 'curr' points to currently running entity on this cfs_rq.
324 	 * It is set to NULL otherwise (i.e when none are currently running).
325 	 */
326 	struct sched_entity *curr, *next, *last, *skip;
327 
328 	unsigned int nr_spread_over;
329 
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
332 
333 	/*
334 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 	 * (like users, containers etc.)
337 	 *
338 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 	 * list is used during load balance.
340 	 */
341 	int on_list;
342 	struct list_head leaf_cfs_rq_list;
343 	struct task_group *tg;	/* group that "owns" this runqueue */
344 
345 #ifdef CONFIG_SMP
346 	/*
347 	 * the part of load.weight contributed by tasks
348 	 */
349 	unsigned long task_weight;
350 
351 	/*
352 	 *   h_load = weight * f(tg)
353 	 *
354 	 * Where f(tg) is the recursive weight fraction assigned to
355 	 * this group.
356 	 */
357 	unsigned long h_load;
358 
359 	/*
360 	 * Maintaining per-cpu shares distribution for group scheduling
361 	 *
362 	 * load_stamp is the last time we updated the load average
363 	 * load_last is the last time we updated the load average and saw load
364 	 * load_unacc_exec_time is currently unaccounted execution time
365 	 */
366 	u64 load_avg;
367 	u64 load_period;
368 	u64 load_stamp, load_last, load_unacc_exec_time;
369 
370 	unsigned long load_contribution;
371 #endif
372 #endif
373 };
374 
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 	struct rt_prio_array active;
378 	unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 	struct {
381 		int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 		int next; /* next highest */
384 #endif
385 	} highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 	unsigned long rt_nr_migratory;
389 	unsigned long rt_nr_total;
390 	int overloaded;
391 	struct plist_head pushable_tasks;
392 #endif
393 	int rt_throttled;
394 	u64 rt_time;
395 	u64 rt_runtime;
396 	/* Nests inside the rq lock: */
397 	raw_spinlock_t rt_runtime_lock;
398 
399 #ifdef CONFIG_RT_GROUP_SCHED
400 	unsigned long rt_nr_boosted;
401 
402 	struct rq *rq;
403 	struct list_head leaf_rt_rq_list;
404 	struct task_group *tg;
405 #endif
406 };
407 
408 #ifdef CONFIG_SMP
409 
410 /*
411  * We add the notion of a root-domain which will be used to define per-domain
412  * variables. Each exclusive cpuset essentially defines an island domain by
413  * fully partitioning the member cpus from any other cpuset. Whenever a new
414  * exclusive cpuset is created, we also create and attach a new root-domain
415  * object.
416  *
417  */
418 struct root_domain {
419 	atomic_t refcount;
420 	cpumask_var_t span;
421 	cpumask_var_t online;
422 
423 	/*
424 	 * The "RT overload" flag: it gets set if a CPU has more than
425 	 * one runnable RT task.
426 	 */
427 	cpumask_var_t rto_mask;
428 	atomic_t rto_count;
429 	struct cpupri cpupri;
430 };
431 
432 /*
433  * By default the system creates a single root-domain with all cpus as
434  * members (mimicking the global state we have today).
435  */
436 static struct root_domain def_root_domain;
437 
438 #endif /* CONFIG_SMP */
439 
440 /*
441  * This is the main, per-CPU runqueue data structure.
442  *
443  * Locking rule: those places that want to lock multiple runqueues
444  * (such as the load balancing or the thread migration code), lock
445  * acquire operations must be ordered by ascending &runqueue.
446  */
447 struct rq {
448 	/* runqueue lock: */
449 	raw_spinlock_t lock;
450 
451 	/*
452 	 * nr_running and cpu_load should be in the same cacheline because
453 	 * remote CPUs use both these fields when doing load calculation.
454 	 */
455 	unsigned long nr_running;
456 	#define CPU_LOAD_IDX_MAX 5
457 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 	unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 	u64 nohz_stamp;
461 	unsigned char nohz_balance_kick;
462 #endif
463 	unsigned int skip_clock_update;
464 
465 	/* capture load from *all* tasks on this cpu: */
466 	struct load_weight load;
467 	unsigned long nr_load_updates;
468 	u64 nr_switches;
469 
470 	struct cfs_rq cfs;
471 	struct rt_rq rt;
472 
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 	/* list of leaf cfs_rq on this cpu: */
475 	struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 	struct list_head leaf_rt_rq_list;
479 #endif
480 
481 	/*
482 	 * This is part of a global counter where only the total sum
483 	 * over all CPUs matters. A task can increase this counter on
484 	 * one CPU and if it got migrated afterwards it may decrease
485 	 * it on another CPU. Always updated under the runqueue lock:
486 	 */
487 	unsigned long nr_uninterruptible;
488 
489 	struct task_struct *curr, *idle, *stop;
490 	unsigned long next_balance;
491 	struct mm_struct *prev_mm;
492 
493 	u64 clock;
494 	u64 clock_task;
495 
496 	atomic_t nr_iowait;
497 
498 #ifdef CONFIG_SMP
499 	struct root_domain *rd;
500 	struct sched_domain *sd;
501 
502 	unsigned long cpu_power;
503 
504 	unsigned char idle_at_tick;
505 	/* For active balancing */
506 	int post_schedule;
507 	int active_balance;
508 	int push_cpu;
509 	struct cpu_stop_work active_balance_work;
510 	/* cpu of this runqueue: */
511 	int cpu;
512 	int online;
513 
514 	unsigned long avg_load_per_task;
515 
516 	u64 rt_avg;
517 	u64 age_stamp;
518 	u64 idle_stamp;
519 	u64 avg_idle;
520 #endif
521 
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 	u64 prev_irq_time;
524 #endif
525 
526 	/* calc_load related fields */
527 	unsigned long calc_load_update;
528 	long calc_load_active;
529 
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 	int hrtick_csd_pending;
533 	struct call_single_data hrtick_csd;
534 #endif
535 	struct hrtimer hrtick_timer;
536 #endif
537 
538 #ifdef CONFIG_SCHEDSTATS
539 	/* latency stats */
540 	struct sched_info rq_sched_info;
541 	unsigned long long rq_cpu_time;
542 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543 
544 	/* sys_sched_yield() stats */
545 	unsigned int yld_count;
546 
547 	/* schedule() stats */
548 	unsigned int sched_switch;
549 	unsigned int sched_count;
550 	unsigned int sched_goidle;
551 
552 	/* try_to_wake_up() stats */
553 	unsigned int ttwu_count;
554 	unsigned int ttwu_local;
555 #endif
556 };
557 
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559 
560 
561 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
562 
cpu_of(struct rq * rq)563 static inline int cpu_of(struct rq *rq)
564 {
565 #ifdef CONFIG_SMP
566 	return rq->cpu;
567 #else
568 	return 0;
569 #endif
570 }
571 
572 #define rcu_dereference_check_sched_domain(p) \
573 	rcu_dereference_check((p), \
574 			      rcu_read_lock_sched_held() || \
575 			      lockdep_is_held(&sched_domains_mutex))
576 
577 /*
578  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579  * See detach_destroy_domains: synchronize_sched for details.
580  *
581  * The domain tree of any CPU may only be accessed from within
582  * preempt-disabled sections.
583  */
584 #define for_each_domain(cpu, __sd) \
585 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
586 
587 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
588 #define this_rq()		(&__get_cpu_var(runqueues))
589 #define task_rq(p)		cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
591 #define raw_rq()		(&__raw_get_cpu_var(runqueues))
592 
593 #ifdef CONFIG_CGROUP_SCHED
594 
595 /*
596  * Return the group to which this tasks belongs.
597  *
598  * We use task_subsys_state_check() and extend the RCU verification
599  * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600  * holds that lock for each task it moves into the cgroup. Therefore
601  * by holding that lock, we pin the task to the current cgroup.
602  */
task_group(struct task_struct * p)603 static inline struct task_group *task_group(struct task_struct *p)
604 {
605 	struct task_group *tg;
606 	struct cgroup_subsys_state *css;
607 
608 	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 			lockdep_is_held(&task_rq(p)->lock));
610 	tg = container_of(css, struct task_group, css);
611 
612 	return autogroup_task_group(p, tg);
613 }
614 
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617 {
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 	p->se.parent = task_group(p)->se[cpu];
621 #endif
622 
623 #ifdef CONFIG_RT_GROUP_SCHED
624 	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
625 	p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
627 }
628 
629 #else /* CONFIG_CGROUP_SCHED */
630 
set_task_rq(struct task_struct * p,unsigned int cpu)631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)632 static inline struct task_group *task_group(struct task_struct *p)
633 {
634 	return NULL;
635 }
636 
637 #endif /* CONFIG_CGROUP_SCHED */
638 
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
640 
update_rq_clock(struct rq * rq)641 static void update_rq_clock(struct rq *rq)
642 {
643 	s64 delta;
644 
645 	if (rq->skip_clock_update)
646 		return;
647 
648 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 	rq->clock += delta;
650 	update_rq_clock_task(rq, delta);
651 }
652 
653 /*
654  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655  */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661 
662 /**
663  * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664  * @cpu: the processor in question.
665  *
666  * This interface allows printk to be called with the runqueue lock
667  * held and know whether or not it is OK to wake up the klogd.
668  */
runqueue_is_locked(int cpu)669 int runqueue_is_locked(int cpu)
670 {
671 	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673 
674 /*
675  * Debugging: various feature bits
676  */
677 
678 #define SCHED_FEAT(name, enabled)	\
679 	__SCHED_FEAT_##name ,
680 
681 enum {
682 #include "sched_features.h"
683 };
684 
685 #undef SCHED_FEAT
686 
687 #define SCHED_FEAT(name, enabled)	\
688 	(1UL << __SCHED_FEAT_##name) * enabled |
689 
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 	0;
693 
694 #undef SCHED_FEAT
695 
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled)	\
698 	#name ,
699 
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 	NULL
703 };
704 
705 #undef SCHED_FEAT
706 
sched_feat_show(struct seq_file * m,void * v)707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 	int i;
710 
711 	for (i = 0; sched_feat_names[i]; i++) {
712 		if (!(sysctl_sched_features & (1UL << i)))
713 			seq_puts(m, "NO_");
714 		seq_printf(m, "%s ", sched_feat_names[i]);
715 	}
716 	seq_puts(m, "\n");
717 
718 	return 0;
719 }
720 
721 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 		size_t cnt, loff_t *ppos)
724 {
725 	char buf[64];
726 	char *cmp;
727 	int neg = 0;
728 	int i;
729 
730 	if (cnt > 63)
731 		cnt = 63;
732 
733 	if (copy_from_user(&buf, ubuf, cnt))
734 		return -EFAULT;
735 
736 	buf[cnt] = 0;
737 	cmp = strstrip(buf);
738 
739 	if (strncmp(cmp, "NO_", 3) == 0) {
740 		neg = 1;
741 		cmp += 3;
742 	}
743 
744 	for (i = 0; sched_feat_names[i]; i++) {
745 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 			if (neg)
747 				sysctl_sched_features &= ~(1UL << i);
748 			else
749 				sysctl_sched_features |= (1UL << i);
750 			break;
751 		}
752 	}
753 
754 	if (!sched_feat_names[i])
755 		return -EINVAL;
756 
757 	*ppos += cnt;
758 
759 	return cnt;
760 }
761 
sched_feat_open(struct inode * inode,struct file * filp)762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 	return single_open(filp, sched_feat_show, NULL);
765 }
766 
767 static const struct file_operations sched_feat_fops = {
768 	.open		= sched_feat_open,
769 	.write		= sched_feat_write,
770 	.read		= seq_read,
771 	.llseek		= seq_lseek,
772 	.release	= single_release,
773 };
774 
sched_init_debug(void)775 static __init int sched_init_debug(void)
776 {
777 	debugfs_create_file("sched_features", 0644, NULL, NULL,
778 			&sched_feat_fops);
779 
780 	return 0;
781 }
782 late_initcall(sched_init_debug);
783 
784 #endif
785 
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787 
788 /*
789  * Number of tasks to iterate in a single balance run.
790  * Limited because this is done with IRQs disabled.
791  */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793 
794 /*
795  * period over which we average the RT time consumption, measured
796  * in ms.
797  *
798  * default: 1s
799  */
800 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801 
802 /*
803  * period over which we measure -rt task cpu usage in us.
804  * default: 1s
805  */
806 unsigned int sysctl_sched_rt_period = 1000000;
807 
808 static __read_mostly int scheduler_running;
809 
810 /*
811  * part of the period that we allow rt tasks to run in us.
812  * default: 0.95s
813  */
814 int sysctl_sched_rt_runtime = 950000;
815 
global_rt_period(void)816 static inline u64 global_rt_period(void)
817 {
818 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819 }
820 
global_rt_runtime(void)821 static inline u64 global_rt_runtime(void)
822 {
823 	if (sysctl_sched_rt_runtime < 0)
824 		return RUNTIME_INF;
825 
826 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827 }
828 
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next)	do { } while (0)
831 #endif
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev)	do { } while (0)
834 #endif
835 
task_current(struct rq * rq,struct task_struct * p)836 static inline int task_current(struct rq *rq, struct task_struct *p)
837 {
838 	return rq->curr == p;
839 }
840 
841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
task_running(struct rq * rq,struct task_struct * p)842 static inline int task_running(struct rq *rq, struct task_struct *p)
843 {
844 	return task_current(rq, p);
845 }
846 
prepare_lock_switch(struct rq * rq,struct task_struct * next)847 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
848 {
849 }
850 
finish_lock_switch(struct rq * rq,struct task_struct * prev)851 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
852 {
853 #ifdef CONFIG_DEBUG_SPINLOCK
854 	/* this is a valid case when another task releases the spinlock */
855 	rq->lock.owner = current;
856 #endif
857 	/*
858 	 * If we are tracking spinlock dependencies then we have to
859 	 * fix up the runqueue lock - which gets 'carried over' from
860 	 * prev into current:
861 	 */
862 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
863 
864 	raw_spin_unlock_irq(&rq->lock);
865 }
866 
867 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
task_running(struct rq * rq,struct task_struct * p)868 static inline int task_running(struct rq *rq, struct task_struct *p)
869 {
870 #ifdef CONFIG_SMP
871 	return p->oncpu;
872 #else
873 	return task_current(rq, p);
874 #endif
875 }
876 
prepare_lock_switch(struct rq * rq,struct task_struct * next)877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 {
879 #ifdef CONFIG_SMP
880 	/*
881 	 * We can optimise this out completely for !SMP, because the
882 	 * SMP rebalancing from interrupt is the only thing that cares
883 	 * here.
884 	 */
885 	next->oncpu = 1;
886 #endif
887 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888 	raw_spin_unlock_irq(&rq->lock);
889 #else
890 	raw_spin_unlock(&rq->lock);
891 #endif
892 }
893 
finish_lock_switch(struct rq * rq,struct task_struct * prev)894 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
895 {
896 #ifdef CONFIG_SMP
897 	/*
898 	 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 	 * We must ensure this doesn't happen until the switch is completely
900 	 * finished.
901 	 */
902 	smp_wmb();
903 	prev->oncpu = 0;
904 #endif
905 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 	local_irq_enable();
907 #endif
908 }
909 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
910 
911 /*
912  * Check whether the task is waking, we use this to synchronize ->cpus_allowed
913  * against ttwu().
914  */
task_is_waking(struct task_struct * p)915 static inline int task_is_waking(struct task_struct *p)
916 {
917 	return unlikely(p->state == TASK_WAKING);
918 }
919 
920 /*
921  * __task_rq_lock - lock the runqueue a given task resides on.
922  * Must be called interrupts disabled.
923  */
__task_rq_lock(struct task_struct * p)924 static inline struct rq *__task_rq_lock(struct task_struct *p)
925 	__acquires(rq->lock)
926 {
927 	struct rq *rq;
928 
929 	for (;;) {
930 		rq = task_rq(p);
931 		raw_spin_lock(&rq->lock);
932 		if (likely(rq == task_rq(p)))
933 			return rq;
934 		raw_spin_unlock(&rq->lock);
935 	}
936 }
937 
938 /*
939  * task_rq_lock - lock the runqueue a given task resides on and disable
940  * interrupts. Note the ordering: we can safely lookup the task_rq without
941  * explicitly disabling preemption.
942  */
task_rq_lock(struct task_struct * p,unsigned long * flags)943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 	__acquires(rq->lock)
945 {
946 	struct rq *rq;
947 
948 	for (;;) {
949 		local_irq_save(*flags);
950 		rq = task_rq(p);
951 		raw_spin_lock(&rq->lock);
952 		if (likely(rq == task_rq(p)))
953 			return rq;
954 		raw_spin_unlock_irqrestore(&rq->lock, *flags);
955 	}
956 }
957 
__task_rq_unlock(struct rq * rq)958 static void __task_rq_unlock(struct rq *rq)
959 	__releases(rq->lock)
960 {
961 	raw_spin_unlock(&rq->lock);
962 }
963 
task_rq_unlock(struct rq * rq,unsigned long * flags)964 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
965 	__releases(rq->lock)
966 {
967 	raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969 
970 /*
971  * this_rq_lock - lock this runqueue and disable interrupts.
972  */
this_rq_lock(void)973 static struct rq *this_rq_lock(void)
974 	__acquires(rq->lock)
975 {
976 	struct rq *rq;
977 
978 	local_irq_disable();
979 	rq = this_rq();
980 	raw_spin_lock(&rq->lock);
981 
982 	return rq;
983 }
984 
985 #ifdef CONFIG_SCHED_HRTICK
986 /*
987  * Use HR-timers to deliver accurate preemption points.
988  *
989  * Its all a bit involved since we cannot program an hrt while holding the
990  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
991  * reschedule event.
992  *
993  * When we get rescheduled we reprogram the hrtick_timer outside of the
994  * rq->lock.
995  */
996 
997 /*
998  * Use hrtick when:
999  *  - enabled by features
1000  *  - hrtimer is actually high res
1001  */
hrtick_enabled(struct rq * rq)1002 static inline int hrtick_enabled(struct rq *rq)
1003 {
1004 	if (!sched_feat(HRTICK))
1005 		return 0;
1006 	if (!cpu_active(cpu_of(rq)))
1007 		return 0;
1008 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1009 }
1010 
hrtick_clear(struct rq * rq)1011 static void hrtick_clear(struct rq *rq)
1012 {
1013 	if (hrtimer_active(&rq->hrtick_timer))
1014 		hrtimer_cancel(&rq->hrtick_timer);
1015 }
1016 
1017 /*
1018  * High-resolution timer tick.
1019  * Runs from hardirq context with interrupts disabled.
1020  */
hrtick(struct hrtimer * timer)1021 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1022 {
1023 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1024 
1025 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1026 
1027 	raw_spin_lock(&rq->lock);
1028 	update_rq_clock(rq);
1029 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1030 	raw_spin_unlock(&rq->lock);
1031 
1032 	return HRTIMER_NORESTART;
1033 }
1034 
1035 #ifdef CONFIG_SMP
1036 /*
1037  * called from hardirq (IPI) context
1038  */
__hrtick_start(void * arg)1039 static void __hrtick_start(void *arg)
1040 {
1041 	struct rq *rq = arg;
1042 
1043 	raw_spin_lock(&rq->lock);
1044 	hrtimer_restart(&rq->hrtick_timer);
1045 	rq->hrtick_csd_pending = 0;
1046 	raw_spin_unlock(&rq->lock);
1047 }
1048 
1049 /*
1050  * Called to set the hrtick timer state.
1051  *
1052  * called with rq->lock held and irqs disabled
1053  */
hrtick_start(struct rq * rq,u64 delay)1054 static void hrtick_start(struct rq *rq, u64 delay)
1055 {
1056 	struct hrtimer *timer = &rq->hrtick_timer;
1057 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1058 
1059 	hrtimer_set_expires(timer, time);
1060 
1061 	if (rq == this_rq()) {
1062 		hrtimer_restart(timer);
1063 	} else if (!rq->hrtick_csd_pending) {
1064 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1065 		rq->hrtick_csd_pending = 1;
1066 	}
1067 }
1068 
1069 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)1070 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1071 {
1072 	int cpu = (int)(long)hcpu;
1073 
1074 	switch (action) {
1075 	case CPU_UP_CANCELED:
1076 	case CPU_UP_CANCELED_FROZEN:
1077 	case CPU_DOWN_PREPARE:
1078 	case CPU_DOWN_PREPARE_FROZEN:
1079 	case CPU_DEAD:
1080 	case CPU_DEAD_FROZEN:
1081 		hrtick_clear(cpu_rq(cpu));
1082 		return NOTIFY_OK;
1083 	}
1084 
1085 	return NOTIFY_DONE;
1086 }
1087 
init_hrtick(void)1088 static __init void init_hrtick(void)
1089 {
1090 	hotcpu_notifier(hotplug_hrtick, 0);
1091 }
1092 #else
1093 /*
1094  * Called to set the hrtick timer state.
1095  *
1096  * called with rq->lock held and irqs disabled
1097  */
hrtick_start(struct rq * rq,u64 delay)1098 static void hrtick_start(struct rq *rq, u64 delay)
1099 {
1100 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1101 			HRTIMER_MODE_REL_PINNED, 0);
1102 }
1103 
init_hrtick(void)1104 static inline void init_hrtick(void)
1105 {
1106 }
1107 #endif /* CONFIG_SMP */
1108 
init_rq_hrtick(struct rq * rq)1109 static void init_rq_hrtick(struct rq *rq)
1110 {
1111 #ifdef CONFIG_SMP
1112 	rq->hrtick_csd_pending = 0;
1113 
1114 	rq->hrtick_csd.flags = 0;
1115 	rq->hrtick_csd.func = __hrtick_start;
1116 	rq->hrtick_csd.info = rq;
1117 #endif
1118 
1119 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1120 	rq->hrtick_timer.function = hrtick;
1121 }
1122 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)1123 static inline void hrtick_clear(struct rq *rq)
1124 {
1125 }
1126 
init_rq_hrtick(struct rq * rq)1127 static inline void init_rq_hrtick(struct rq *rq)
1128 {
1129 }
1130 
init_hrtick(void)1131 static inline void init_hrtick(void)
1132 {
1133 }
1134 #endif	/* CONFIG_SCHED_HRTICK */
1135 
1136 /*
1137  * resched_task - mark a task 'to be rescheduled now'.
1138  *
1139  * On UP this means the setting of the need_resched flag, on SMP it
1140  * might also involve a cross-CPU call to trigger the scheduler on
1141  * the target CPU.
1142  */
1143 #ifdef CONFIG_SMP
1144 
1145 #ifndef tsk_is_polling
1146 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1147 #endif
1148 
resched_task(struct task_struct * p)1149 static void resched_task(struct task_struct *p)
1150 {
1151 	int cpu;
1152 
1153 	assert_raw_spin_locked(&task_rq(p)->lock);
1154 
1155 	if (test_tsk_need_resched(p))
1156 		return;
1157 
1158 	set_tsk_need_resched(p);
1159 
1160 	cpu = task_cpu(p);
1161 	if (cpu == smp_processor_id())
1162 		return;
1163 
1164 	/* NEED_RESCHED must be visible before we test polling */
1165 	smp_mb();
1166 	if (!tsk_is_polling(p))
1167 		smp_send_reschedule(cpu);
1168 }
1169 
resched_cpu(int cpu)1170 static void resched_cpu(int cpu)
1171 {
1172 	struct rq *rq = cpu_rq(cpu);
1173 	unsigned long flags;
1174 
1175 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1176 		return;
1177 	resched_task(cpu_curr(cpu));
1178 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1179 }
1180 
1181 #ifdef CONFIG_NO_HZ
1182 /*
1183  * In the semi idle case, use the nearest busy cpu for migrating timers
1184  * from an idle cpu.  This is good for power-savings.
1185  *
1186  * We don't do similar optimization for completely idle system, as
1187  * selecting an idle cpu will add more delays to the timers than intended
1188  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1189  */
get_nohz_timer_target(void)1190 int get_nohz_timer_target(void)
1191 {
1192 	int cpu = smp_processor_id();
1193 	int i;
1194 	struct sched_domain *sd;
1195 
1196 	for_each_domain(cpu, sd) {
1197 		for_each_cpu(i, sched_domain_span(sd))
1198 			if (!idle_cpu(i))
1199 				return i;
1200 	}
1201 	return cpu;
1202 }
1203 /*
1204  * When add_timer_on() enqueues a timer into the timer wheel of an
1205  * idle CPU then this timer might expire before the next timer event
1206  * which is scheduled to wake up that CPU. In case of a completely
1207  * idle system the next event might even be infinite time into the
1208  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209  * leaves the inner idle loop so the newly added timer is taken into
1210  * account when the CPU goes back to idle and evaluates the timer
1211  * wheel for the next timer event.
1212  */
wake_up_idle_cpu(int cpu)1213 void wake_up_idle_cpu(int cpu)
1214 {
1215 	struct rq *rq = cpu_rq(cpu);
1216 
1217 	if (cpu == smp_processor_id())
1218 		return;
1219 
1220 	/*
1221 	 * This is safe, as this function is called with the timer
1222 	 * wheel base lock of (cpu) held. When the CPU is on the way
1223 	 * to idle and has not yet set rq->curr to idle then it will
1224 	 * be serialized on the timer wheel base lock and take the new
1225 	 * timer into account automatically.
1226 	 */
1227 	if (rq->curr != rq->idle)
1228 		return;
1229 
1230 	/*
1231 	 * We can set TIF_RESCHED on the idle task of the other CPU
1232 	 * lockless. The worst case is that the other CPU runs the
1233 	 * idle task through an additional NOOP schedule()
1234 	 */
1235 	set_tsk_need_resched(rq->idle);
1236 
1237 	/* NEED_RESCHED must be visible before we test polling */
1238 	smp_mb();
1239 	if (!tsk_is_polling(rq->idle))
1240 		smp_send_reschedule(cpu);
1241 }
1242 
1243 #endif /* CONFIG_NO_HZ */
1244 
sched_avg_period(void)1245 static u64 sched_avg_period(void)
1246 {
1247 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248 }
1249 
sched_avg_update(struct rq * rq)1250 static void sched_avg_update(struct rq *rq)
1251 {
1252 	s64 period = sched_avg_period();
1253 
1254 	while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 		/*
1256 		 * Inline assembly required to prevent the compiler
1257 		 * optimising this loop into a divmod call.
1258 		 * See __iter_div_u64_rem() for another example of this.
1259 		 */
1260 		asm("" : "+rm" (rq->age_stamp));
1261 		rq->age_stamp += period;
1262 		rq->rt_avg /= 2;
1263 	}
1264 }
1265 
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 {
1268 	rq->rt_avg += rt_delta;
1269 	sched_avg_update(rq);
1270 }
1271 
1272 #else /* !CONFIG_SMP */
resched_task(struct task_struct * p)1273 static void resched_task(struct task_struct *p)
1274 {
1275 	assert_raw_spin_locked(&task_rq(p)->lock);
1276 	set_tsk_need_resched(p);
1277 }
1278 
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 }
1282 
sched_avg_update(struct rq * rq)1283 static void sched_avg_update(struct rq *rq)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287 
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST	(~0UL)
1290 #else
1291 # define WMULT_CONST	(1UL << 32)
1292 #endif
1293 
1294 #define WMULT_SHIFT	32
1295 
1296 /*
1297  * Shift right and round:
1298  */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300 
1301 /*
1302  * delta *= weight / lw
1303  */
1304 static unsigned long
calc_delta_mine(unsigned long delta_exec,unsigned long weight,struct load_weight * lw)1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 		struct load_weight *lw)
1307 {
1308 	u64 tmp;
1309 
1310 	if (!lw->inv_weight) {
1311 		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 			lw->inv_weight = 1;
1313 		else
1314 			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 				/ (lw->weight+1);
1316 	}
1317 
1318 	tmp = (u64)delta_exec * weight;
1319 	/*
1320 	 * Check whether we'd overflow the 64-bit multiplication:
1321 	 */
1322 	if (unlikely(tmp > WMULT_CONST))
1323 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 			WMULT_SHIFT/2);
1325 	else
1326 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 
1328 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330 
update_load_add(struct load_weight * lw,unsigned long inc)1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 	lw->weight += inc;
1334 	lw->inv_weight = 0;
1335 }
1336 
update_load_sub(struct load_weight * lw,unsigned long dec)1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 	lw->weight -= dec;
1340 	lw->inv_weight = 0;
1341 }
1342 
update_load_set(struct load_weight * lw,unsigned long w)1343 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1344 {
1345 	lw->weight = w;
1346 	lw->inv_weight = 0;
1347 }
1348 
1349 /*
1350  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351  * of tasks with abnormal "nice" values across CPUs the contribution that
1352  * each task makes to its run queue's load is weighted according to its
1353  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354  * scaled version of the new time slice allocation that they receive on time
1355  * slice expiry etc.
1356  */
1357 
1358 #define WEIGHT_IDLEPRIO                3
1359 #define WMULT_IDLEPRIO         1431655765
1360 
1361 /*
1362  * Nice levels are multiplicative, with a gentle 10% change for every
1363  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365  * that remained on nice 0.
1366  *
1367  * The "10% effect" is relative and cumulative: from _any_ nice level,
1368  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370  * If a task goes up by ~10% and another task goes down by ~10% then
1371  * the relative distance between them is ~25%.)
1372  */
1373 static const int prio_to_weight[40] = {
1374  /* -20 */     88761,     71755,     56483,     46273,     36291,
1375  /* -15 */     29154,     23254,     18705,     14949,     11916,
1376  /* -10 */      9548,      7620,      6100,      4904,      3906,
1377  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1378  /*   0 */      1024,       820,       655,       526,       423,
1379  /*   5 */       335,       272,       215,       172,       137,
1380  /*  10 */       110,        87,        70,        56,        45,
1381  /*  15 */        36,        29,        23,        18,        15,
1382 };
1383 
1384 /*
1385  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386  *
1387  * In cases where the weight does not change often, we can use the
1388  * precalculated inverse to speed up arithmetics by turning divisions
1389  * into multiplications:
1390  */
1391 static const u32 prio_to_wmult[40] = {
1392  /* -20 */     48388,     59856,     76040,     92818,    118348,
1393  /* -15 */    147320,    184698,    229616,    287308,    360437,
1394  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1395  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1396  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1397  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1398  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1399  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401 
1402 /* Time spent by the tasks of the cpu accounting group executing in ... */
1403 enum cpuacct_stat_index {
1404 	CPUACCT_STAT_USER,	/* ... user mode */
1405 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
1406 
1407 	CPUACCT_STAT_NSTATS,
1408 };
1409 
1410 #ifdef CONFIG_CGROUP_CPUACCT
1411 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1412 static void cpuacct_update_stats(struct task_struct *tsk,
1413 		enum cpuacct_stat_index idx, cputime_t val);
1414 #else
cpuacct_charge(struct task_struct * tsk,u64 cputime)1415 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
cpuacct_update_stats(struct task_struct * tsk,enum cpuacct_stat_index idx,cputime_t val)1416 static inline void cpuacct_update_stats(struct task_struct *tsk,
1417 		enum cpuacct_stat_index idx, cputime_t val) {}
1418 #endif
1419 
inc_cpu_load(struct rq * rq,unsigned long load)1420 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 {
1422 	update_load_add(&rq->load, load);
1423 }
1424 
dec_cpu_load(struct rq * rq,unsigned long load)1425 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 	update_load_sub(&rq->load, load);
1428 }
1429 
1430 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1431 typedef int (*tg_visitor)(struct task_group *, void *);
1432 
1433 /*
1434  * Iterate the full tree, calling @down when first entering a node and @up when
1435  * leaving it for the final time.
1436  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)1437 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 {
1439 	struct task_group *parent, *child;
1440 	int ret;
1441 
1442 	rcu_read_lock();
1443 	parent = &root_task_group;
1444 down:
1445 	ret = (*down)(parent, data);
1446 	if (ret)
1447 		goto out_unlock;
1448 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1449 		parent = child;
1450 		goto down;
1451 
1452 up:
1453 		continue;
1454 	}
1455 	ret = (*up)(parent, data);
1456 	if (ret)
1457 		goto out_unlock;
1458 
1459 	child = parent;
1460 	parent = parent->parent;
1461 	if (parent)
1462 		goto up;
1463 out_unlock:
1464 	rcu_read_unlock();
1465 
1466 	return ret;
1467 }
1468 
tg_nop(struct task_group * tg,void * data)1469 static int tg_nop(struct task_group *tg, void *data)
1470 {
1471 	return 0;
1472 }
1473 #endif
1474 
1475 #ifdef CONFIG_SMP
1476 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(const int cpu)1477 static unsigned long weighted_cpuload(const int cpu)
1478 {
1479 	return cpu_rq(cpu)->load.weight;
1480 }
1481 
1482 /*
1483  * Return a low guess at the load of a migration-source cpu weighted
1484  * according to the scheduling class and "nice" value.
1485  *
1486  * We want to under-estimate the load of migration sources, to
1487  * balance conservatively.
1488  */
source_load(int cpu,int type)1489 static unsigned long source_load(int cpu, int type)
1490 {
1491 	struct rq *rq = cpu_rq(cpu);
1492 	unsigned long total = weighted_cpuload(cpu);
1493 
1494 	if (type == 0 || !sched_feat(LB_BIAS))
1495 		return total;
1496 
1497 	return min(rq->cpu_load[type-1], total);
1498 }
1499 
1500 /*
1501  * Return a high guess at the load of a migration-target cpu weighted
1502  * according to the scheduling class and "nice" value.
1503  */
target_load(int cpu,int type)1504 static unsigned long target_load(int cpu, int type)
1505 {
1506 	struct rq *rq = cpu_rq(cpu);
1507 	unsigned long total = weighted_cpuload(cpu);
1508 
1509 	if (type == 0 || !sched_feat(LB_BIAS))
1510 		return total;
1511 
1512 	return max(rq->cpu_load[type-1], total);
1513 }
1514 
power_of(int cpu)1515 static unsigned long power_of(int cpu)
1516 {
1517 	return cpu_rq(cpu)->cpu_power;
1518 }
1519 
1520 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1521 
cpu_avg_load_per_task(int cpu)1522 static unsigned long cpu_avg_load_per_task(int cpu)
1523 {
1524 	struct rq *rq = cpu_rq(cpu);
1525 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1526 
1527 	if (nr_running)
1528 		rq->avg_load_per_task = rq->load.weight / nr_running;
1529 	else
1530 		rq->avg_load_per_task = 0;
1531 
1532 	return rq->avg_load_per_task;
1533 }
1534 
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1536 
1537 /*
1538  * Compute the cpu's hierarchical load factor for each task group.
1539  * This needs to be done in a top-down fashion because the load of a child
1540  * group is a fraction of its parents load.
1541  */
tg_load_down(struct task_group * tg,void * data)1542 static int tg_load_down(struct task_group *tg, void *data)
1543 {
1544 	unsigned long load;
1545 	long cpu = (long)data;
1546 
1547 	if (!tg->parent) {
1548 		load = cpu_rq(cpu)->load.weight;
1549 	} else {
1550 		load = tg->parent->cfs_rq[cpu]->h_load;
1551 		load *= tg->se[cpu]->load.weight;
1552 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1553 	}
1554 
1555 	tg->cfs_rq[cpu]->h_load = load;
1556 
1557 	return 0;
1558 }
1559 
update_h_load(long cpu)1560 static void update_h_load(long cpu)
1561 {
1562 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1563 }
1564 
1565 #endif
1566 
1567 #ifdef CONFIG_PREEMPT
1568 
1569 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1570 
1571 /*
1572  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573  * way at the expense of forcing extra atomic operations in all
1574  * invocations.  This assures that the double_lock is acquired using the
1575  * same underlying policy as the spinlock_t on this architecture, which
1576  * reduces latency compared to the unfair variant below.  However, it
1577  * also adds more overhead and therefore may reduce throughput.
1578  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1579 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1580 	__releases(this_rq->lock)
1581 	__acquires(busiest->lock)
1582 	__acquires(this_rq->lock)
1583 {
1584 	raw_spin_unlock(&this_rq->lock);
1585 	double_rq_lock(this_rq, busiest);
1586 
1587 	return 1;
1588 }
1589 
1590 #else
1591 /*
1592  * Unfair double_lock_balance: Optimizes throughput at the expense of
1593  * latency by eliminating extra atomic operations when the locks are
1594  * already in proper order on entry.  This favors lower cpu-ids and will
1595  * grant the double lock to lower cpus over higher ids under contention,
1596  * regardless of entry order into the function.
1597  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1598 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1599 	__releases(this_rq->lock)
1600 	__acquires(busiest->lock)
1601 	__acquires(this_rq->lock)
1602 {
1603 	int ret = 0;
1604 
1605 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1606 		if (busiest < this_rq) {
1607 			raw_spin_unlock(&this_rq->lock);
1608 			raw_spin_lock(&busiest->lock);
1609 			raw_spin_lock_nested(&this_rq->lock,
1610 					      SINGLE_DEPTH_NESTING);
1611 			ret = 1;
1612 		} else
1613 			raw_spin_lock_nested(&busiest->lock,
1614 					      SINGLE_DEPTH_NESTING);
1615 	}
1616 	return ret;
1617 }
1618 
1619 #endif /* CONFIG_PREEMPT */
1620 
1621 /*
1622  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1623  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1624 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1625 {
1626 	if (unlikely(!irqs_disabled())) {
1627 		/* printk() doesn't work good under rq->lock */
1628 		raw_spin_unlock(&this_rq->lock);
1629 		BUG_ON(1);
1630 	}
1631 
1632 	return _double_lock_balance(this_rq, busiest);
1633 }
1634 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1635 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 	__releases(busiest->lock)
1637 {
1638 	raw_spin_unlock(&busiest->lock);
1639 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1640 }
1641 
1642 /*
1643  * double_rq_lock - safely lock two runqueues
1644  *
1645  * Note this does not disable interrupts like task_rq_lock,
1646  * you need to do so manually before calling.
1647  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1648 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1649 	__acquires(rq1->lock)
1650 	__acquires(rq2->lock)
1651 {
1652 	BUG_ON(!irqs_disabled());
1653 	if (rq1 == rq2) {
1654 		raw_spin_lock(&rq1->lock);
1655 		__acquire(rq2->lock);	/* Fake it out ;) */
1656 	} else {
1657 		if (rq1 < rq2) {
1658 			raw_spin_lock(&rq1->lock);
1659 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1660 		} else {
1661 			raw_spin_lock(&rq2->lock);
1662 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1663 		}
1664 	}
1665 }
1666 
1667 /*
1668  * double_rq_unlock - safely unlock two runqueues
1669  *
1670  * Note this does not restore interrupts like task_rq_unlock,
1671  * you need to do so manually after calling.
1672  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1673 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1674 	__releases(rq1->lock)
1675 	__releases(rq2->lock)
1676 {
1677 	raw_spin_unlock(&rq1->lock);
1678 	if (rq1 != rq2)
1679 		raw_spin_unlock(&rq2->lock);
1680 	else
1681 		__release(rq2->lock);
1682 }
1683 
1684 #else /* CONFIG_SMP */
1685 
1686 /*
1687  * double_rq_lock - safely lock two runqueues
1688  *
1689  * Note this does not disable interrupts like task_rq_lock,
1690  * you need to do so manually before calling.
1691  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1693 	__acquires(rq1->lock)
1694 	__acquires(rq2->lock)
1695 {
1696 	BUG_ON(!irqs_disabled());
1697 	BUG_ON(rq1 != rq2);
1698 	raw_spin_lock(&rq1->lock);
1699 	__acquire(rq2->lock);	/* Fake it out ;) */
1700 }
1701 
1702 /*
1703  * double_rq_unlock - safely unlock two runqueues
1704  *
1705  * Note this does not restore interrupts like task_rq_unlock,
1706  * you need to do so manually after calling.
1707  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 	__releases(rq1->lock)
1710 	__releases(rq2->lock)
1711 {
1712 	BUG_ON(rq1 != rq2);
1713 	raw_spin_unlock(&rq1->lock);
1714 	__release(rq2->lock);
1715 }
1716 
1717 #endif
1718 
1719 static void calc_load_account_idle(struct rq *this_rq);
1720 static void update_sysctl(void);
1721 static int get_update_sysctl_factor(void);
1722 static void update_cpu_load(struct rq *this_rq);
1723 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1724 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1725 {
1726 	set_task_rq(p, cpu);
1727 #ifdef CONFIG_SMP
1728 	/*
1729 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 	 * successfuly executed on another CPU. We must ensure that updates of
1731 	 * per-task data have been completed by this moment.
1732 	 */
1733 	smp_wmb();
1734 	task_thread_info(p)->cpu = cpu;
1735 #endif
1736 }
1737 
1738 static const struct sched_class rt_sched_class;
1739 
1740 #define sched_class_highest (&stop_sched_class)
1741 #define for_each_class(class) \
1742    for (class = sched_class_highest; class; class = class->next)
1743 
1744 #include "sched_stats.h"
1745 
inc_nr_running(struct rq * rq)1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 	rq->nr_running++;
1749 }
1750 
dec_nr_running(struct rq * rq)1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 	rq->nr_running--;
1754 }
1755 
set_load_weight(struct task_struct * p)1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 	/*
1759 	 * SCHED_IDLE tasks get minimal weight:
1760 	 */
1761 	if (p->policy == SCHED_IDLE) {
1762 		p->se.load.weight = WEIGHT_IDLEPRIO;
1763 		p->se.load.inv_weight = WMULT_IDLEPRIO;
1764 		return;
1765 	}
1766 
1767 	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1768 	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1769 }
1770 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1771 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1772 {
1773 	update_rq_clock(rq);
1774 	sched_info_queued(p);
1775 	p->sched_class->enqueue_task(rq, p, flags);
1776 	p->se.on_rq = 1;
1777 }
1778 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1779 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1780 {
1781 	update_rq_clock(rq);
1782 	sched_info_dequeued(p);
1783 	p->sched_class->dequeue_task(rq, p, flags);
1784 	p->se.on_rq = 0;
1785 }
1786 
1787 /*
1788  * activate_task - move a task to the runqueue.
1789  */
activate_task(struct rq * rq,struct task_struct * p,int flags)1790 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1791 {
1792 	if (task_contributes_to_load(p))
1793 		rq->nr_uninterruptible--;
1794 
1795 	enqueue_task(rq, p, flags);
1796 	inc_nr_running(rq);
1797 }
1798 
1799 /*
1800  * deactivate_task - remove a task from the runqueue.
1801  */
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1802 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1803 {
1804 	if (task_contributes_to_load(p))
1805 		rq->nr_uninterruptible++;
1806 
1807 	dequeue_task(rq, p, flags);
1808 	dec_nr_running(rq);
1809 }
1810 
1811 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812 
1813 /*
1814  * There are no locks covering percpu hardirq/softirq time.
1815  * They are only modified in account_system_vtime, on corresponding CPU
1816  * with interrupts disabled. So, writes are safe.
1817  * They are read and saved off onto struct rq in update_rq_clock().
1818  * This may result in other CPU reading this CPU's irq time and can
1819  * race with irq/account_system_vtime on this CPU. We would either get old
1820  * or new value with a side effect of accounting a slice of irq time to wrong
1821  * task when irq is in progress while we read rq->clock. That is a worthy
1822  * compromise in place of having locks on each irq in account_system_time.
1823  */
1824 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1825 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1826 
1827 static DEFINE_PER_CPU(u64, irq_start_time);
1828 static int sched_clock_irqtime;
1829 
enable_sched_clock_irqtime(void)1830 void enable_sched_clock_irqtime(void)
1831 {
1832 	sched_clock_irqtime = 1;
1833 }
1834 
disable_sched_clock_irqtime(void)1835 void disable_sched_clock_irqtime(void)
1836 {
1837 	sched_clock_irqtime = 0;
1838 }
1839 
1840 #ifndef CONFIG_64BIT
1841 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1842 
irq_time_write_begin(void)1843 static inline void irq_time_write_begin(void)
1844 {
1845 	__this_cpu_inc(irq_time_seq.sequence);
1846 	smp_wmb();
1847 }
1848 
irq_time_write_end(void)1849 static inline void irq_time_write_end(void)
1850 {
1851 	smp_wmb();
1852 	__this_cpu_inc(irq_time_seq.sequence);
1853 }
1854 
irq_time_read(int cpu)1855 static inline u64 irq_time_read(int cpu)
1856 {
1857 	u64 irq_time;
1858 	unsigned seq;
1859 
1860 	do {
1861 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1862 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1863 			   per_cpu(cpu_hardirq_time, cpu);
1864 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1865 
1866 	return irq_time;
1867 }
1868 #else /* CONFIG_64BIT */
irq_time_write_begin(void)1869 static inline void irq_time_write_begin(void)
1870 {
1871 }
1872 
irq_time_write_end(void)1873 static inline void irq_time_write_end(void)
1874 {
1875 }
1876 
irq_time_read(int cpu)1877 static inline u64 irq_time_read(int cpu)
1878 {
1879 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1880 }
1881 #endif /* CONFIG_64BIT */
1882 
1883 /*
1884  * Called before incrementing preempt_count on {soft,}irq_enter
1885  * and before decrementing preempt_count on {soft,}irq_exit.
1886  */
account_system_vtime(struct task_struct * curr)1887 void account_system_vtime(struct task_struct *curr)
1888 {
1889 	unsigned long flags;
1890 	s64 delta;
1891 	int cpu;
1892 
1893 	if (!sched_clock_irqtime)
1894 		return;
1895 
1896 	local_irq_save(flags);
1897 
1898 	cpu = smp_processor_id();
1899 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1900 	__this_cpu_add(irq_start_time, delta);
1901 
1902 	irq_time_write_begin();
1903 	/*
1904 	 * We do not account for softirq time from ksoftirqd here.
1905 	 * We want to continue accounting softirq time to ksoftirqd thread
1906 	 * in that case, so as not to confuse scheduler with a special task
1907 	 * that do not consume any time, but still wants to run.
1908 	 */
1909 	if (hardirq_count())
1910 		__this_cpu_add(cpu_hardirq_time, delta);
1911 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1912 		__this_cpu_add(cpu_softirq_time, delta);
1913 
1914 	irq_time_write_end();
1915 	local_irq_restore(flags);
1916 }
1917 EXPORT_SYMBOL_GPL(account_system_vtime);
1918 
update_rq_clock_task(struct rq * rq,s64 delta)1919 static void update_rq_clock_task(struct rq *rq, s64 delta)
1920 {
1921 	s64 irq_delta;
1922 
1923 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1924 
1925 	/*
1926 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 	 * this case when a previous update_rq_clock() happened inside a
1928 	 * {soft,}irq region.
1929 	 *
1930 	 * When this happens, we stop ->clock_task and only update the
1931 	 * prev_irq_time stamp to account for the part that fit, so that a next
1932 	 * update will consume the rest. This ensures ->clock_task is
1933 	 * monotonic.
1934 	 *
1935 	 * It does however cause some slight miss-attribution of {soft,}irq
1936 	 * time, a more accurate solution would be to update the irq_time using
1937 	 * the current rq->clock timestamp, except that would require using
1938 	 * atomic ops.
1939 	 */
1940 	if (irq_delta > delta)
1941 		irq_delta = delta;
1942 
1943 	rq->prev_irq_time += irq_delta;
1944 	delta -= irq_delta;
1945 	rq->clock_task += delta;
1946 
1947 	if (irq_delta && sched_feat(NONIRQ_POWER))
1948 		sched_rt_avg_update(rq, irq_delta);
1949 }
1950 
irqtime_account_hi_update(void)1951 static int irqtime_account_hi_update(void)
1952 {
1953 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1954 	unsigned long flags;
1955 	u64 latest_ns;
1956 	int ret = 0;
1957 
1958 	local_irq_save(flags);
1959 	latest_ns = this_cpu_read(cpu_hardirq_time);
1960 	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1961 		ret = 1;
1962 	local_irq_restore(flags);
1963 	return ret;
1964 }
1965 
irqtime_account_si_update(void)1966 static int irqtime_account_si_update(void)
1967 {
1968 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1969 	unsigned long flags;
1970 	u64 latest_ns;
1971 	int ret = 0;
1972 
1973 	local_irq_save(flags);
1974 	latest_ns = this_cpu_read(cpu_softirq_time);
1975 	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1976 		ret = 1;
1977 	local_irq_restore(flags);
1978 	return ret;
1979 }
1980 
1981 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1982 
1983 #define sched_clock_irqtime	(0)
1984 
update_rq_clock_task(struct rq * rq,s64 delta)1985 static void update_rq_clock_task(struct rq *rq, s64 delta)
1986 {
1987 	rq->clock_task += delta;
1988 }
1989 
1990 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1991 
1992 #include "sched_idletask.c"
1993 #include "sched_fair.c"
1994 #include "sched_rt.c"
1995 #include "sched_autogroup.c"
1996 #include "sched_stoptask.c"
1997 #ifdef CONFIG_SCHED_DEBUG
1998 # include "sched_debug.c"
1999 #endif
2000 
sched_set_stop_task(int cpu,struct task_struct * stop)2001 void sched_set_stop_task(int cpu, struct task_struct *stop)
2002 {
2003 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2004 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2005 
2006 	if (stop) {
2007 		/*
2008 		 * Make it appear like a SCHED_FIFO task, its something
2009 		 * userspace knows about and won't get confused about.
2010 		 *
2011 		 * Also, it will make PI more or less work without too
2012 		 * much confusion -- but then, stop work should not
2013 		 * rely on PI working anyway.
2014 		 */
2015 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2016 
2017 		stop->sched_class = &stop_sched_class;
2018 	}
2019 
2020 	cpu_rq(cpu)->stop = stop;
2021 
2022 	if (old_stop) {
2023 		/*
2024 		 * Reset it back to a normal scheduling class so that
2025 		 * it can die in pieces.
2026 		 */
2027 		old_stop->sched_class = &rt_sched_class;
2028 	}
2029 }
2030 
2031 /*
2032  * __normal_prio - return the priority that is based on the static prio
2033  */
__normal_prio(struct task_struct * p)2034 static inline int __normal_prio(struct task_struct *p)
2035 {
2036 	return p->static_prio;
2037 }
2038 
2039 /*
2040  * Calculate the expected normal priority: i.e. priority
2041  * without taking RT-inheritance into account. Might be
2042  * boosted by interactivity modifiers. Changes upon fork,
2043  * setprio syscalls, and whenever the interactivity
2044  * estimator recalculates.
2045  */
normal_prio(struct task_struct * p)2046 static inline int normal_prio(struct task_struct *p)
2047 {
2048 	int prio;
2049 
2050 	if (task_has_rt_policy(p))
2051 		prio = MAX_RT_PRIO-1 - p->rt_priority;
2052 	else
2053 		prio = __normal_prio(p);
2054 	return prio;
2055 }
2056 
2057 /*
2058  * Calculate the current priority, i.e. the priority
2059  * taken into account by the scheduler. This value might
2060  * be boosted by RT tasks, or might be boosted by
2061  * interactivity modifiers. Will be RT if the task got
2062  * RT-boosted. If not then it returns p->normal_prio.
2063  */
effective_prio(struct task_struct * p)2064 static int effective_prio(struct task_struct *p)
2065 {
2066 	p->normal_prio = normal_prio(p);
2067 	/*
2068 	 * If we are RT tasks or we were boosted to RT priority,
2069 	 * keep the priority unchanged. Otherwise, update priority
2070 	 * to the normal priority:
2071 	 */
2072 	if (!rt_prio(p->prio))
2073 		return p->normal_prio;
2074 	return p->prio;
2075 }
2076 
2077 /**
2078  * task_curr - is this task currently executing on a CPU?
2079  * @p: the task in question.
2080  */
task_curr(const struct task_struct * p)2081 inline int task_curr(const struct task_struct *p)
2082 {
2083 	return cpu_curr(task_cpu(p)) == p;
2084 }
2085 
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2086 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2087 				       const struct sched_class *prev_class,
2088 				       int oldprio)
2089 {
2090 	if (prev_class != p->sched_class) {
2091 		if (prev_class->switched_from)
2092 			prev_class->switched_from(rq, p);
2093 		p->sched_class->switched_to(rq, p);
2094 	} else if (oldprio != p->prio)
2095 		p->sched_class->prio_changed(rq, p, oldprio);
2096 }
2097 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2098 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 	const struct sched_class *class;
2101 
2102 	if (p->sched_class == rq->curr->sched_class) {
2103 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2104 	} else {
2105 		for_each_class(class) {
2106 			if (class == rq->curr->sched_class)
2107 				break;
2108 			if (class == p->sched_class) {
2109 				resched_task(rq->curr);
2110 				break;
2111 			}
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * A queue event has occurred, and we're going to schedule.  In
2117 	 * this case, we can save a useless back to back clock update.
2118 	 */
2119 	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2120 		rq->skip_clock_update = 1;
2121 }
2122 
2123 #ifdef CONFIG_SMP
2124 /*
2125  * Is this task likely cache-hot:
2126  */
2127 static int
task_hot(struct task_struct * p,u64 now,struct sched_domain * sd)2128 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2129 {
2130 	s64 delta;
2131 
2132 	if (p->sched_class != &fair_sched_class)
2133 		return 0;
2134 
2135 	if (unlikely(p->policy == SCHED_IDLE))
2136 		return 0;
2137 
2138 	/*
2139 	 * Buddy candidates are cache hot:
2140 	 */
2141 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2142 			(&p->se == cfs_rq_of(&p->se)->next ||
2143 			 &p->se == cfs_rq_of(&p->se)->last))
2144 		return 1;
2145 
2146 	if (sysctl_sched_migration_cost == -1)
2147 		return 1;
2148 	if (sysctl_sched_migration_cost == 0)
2149 		return 0;
2150 
2151 	delta = now - p->se.exec_start;
2152 
2153 	return delta < (s64)sysctl_sched_migration_cost;
2154 }
2155 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2156 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2157 {
2158 #ifdef CONFIG_SCHED_DEBUG
2159 	/*
2160 	 * We should never call set_task_cpu() on a blocked task,
2161 	 * ttwu() will sort out the placement.
2162 	 */
2163 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2164 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2165 #endif
2166 
2167 	trace_sched_migrate_task(p, new_cpu);
2168 
2169 	if (task_cpu(p) != new_cpu) {
2170 		p->se.nr_migrations++;
2171 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2172 	}
2173 
2174 	__set_task_cpu(p, new_cpu);
2175 }
2176 
2177 struct migration_arg {
2178 	struct task_struct *task;
2179 	int dest_cpu;
2180 };
2181 
2182 static int migration_cpu_stop(void *data);
2183 
2184 /*
2185  * The task's runqueue lock must be held.
2186  * Returns true if you have to wait for migration thread.
2187  */
migrate_task(struct task_struct * p,struct rq * rq)2188 static bool migrate_task(struct task_struct *p, struct rq *rq)
2189 {
2190 	/*
2191 	 * If the task is not on a runqueue (and not running), then
2192 	 * the next wake-up will properly place the task.
2193 	 */
2194 	return p->se.on_rq || task_running(rq, p);
2195 }
2196 
2197 /*
2198  * wait_task_inactive - wait for a thread to unschedule.
2199  *
2200  * If @match_state is nonzero, it's the @p->state value just checked and
2201  * not expected to change.  If it changes, i.e. @p might have woken up,
2202  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2203  * we return a positive number (its total switch count).  If a second call
2204  * a short while later returns the same number, the caller can be sure that
2205  * @p has remained unscheduled the whole time.
2206  *
2207  * The caller must ensure that the task *will* unschedule sometime soon,
2208  * else this function might spin for a *long* time. This function can't
2209  * be called with interrupts off, or it may introduce deadlock with
2210  * smp_call_function() if an IPI is sent by the same process we are
2211  * waiting to become inactive.
2212  */
wait_task_inactive(struct task_struct * p,long match_state)2213 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2214 {
2215 	unsigned long flags;
2216 	int running, on_rq;
2217 	unsigned long ncsw;
2218 	struct rq *rq;
2219 
2220 	for (;;) {
2221 		/*
2222 		 * We do the initial early heuristics without holding
2223 		 * any task-queue locks at all. We'll only try to get
2224 		 * the runqueue lock when things look like they will
2225 		 * work out!
2226 		 */
2227 		rq = task_rq(p);
2228 
2229 		/*
2230 		 * If the task is actively running on another CPU
2231 		 * still, just relax and busy-wait without holding
2232 		 * any locks.
2233 		 *
2234 		 * NOTE! Since we don't hold any locks, it's not
2235 		 * even sure that "rq" stays as the right runqueue!
2236 		 * But we don't care, since "task_running()" will
2237 		 * return false if the runqueue has changed and p
2238 		 * is actually now running somewhere else!
2239 		 */
2240 		while (task_running(rq, p)) {
2241 			if (match_state && unlikely(p->state != match_state))
2242 				return 0;
2243 			cpu_relax();
2244 		}
2245 
2246 		/*
2247 		 * Ok, time to look more closely! We need the rq
2248 		 * lock now, to be *sure*. If we're wrong, we'll
2249 		 * just go back and repeat.
2250 		 */
2251 		rq = task_rq_lock(p, &flags);
2252 		trace_sched_wait_task(p);
2253 		running = task_running(rq, p);
2254 		on_rq = p->se.on_rq;
2255 		ncsw = 0;
2256 		if (!match_state || p->state == match_state)
2257 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258 		task_rq_unlock(rq, &flags);
2259 
2260 		/*
2261 		 * If it changed from the expected state, bail out now.
2262 		 */
2263 		if (unlikely(!ncsw))
2264 			break;
2265 
2266 		/*
2267 		 * Was it really running after all now that we
2268 		 * checked with the proper locks actually held?
2269 		 *
2270 		 * Oops. Go back and try again..
2271 		 */
2272 		if (unlikely(running)) {
2273 			cpu_relax();
2274 			continue;
2275 		}
2276 
2277 		/*
2278 		 * It's not enough that it's not actively running,
2279 		 * it must be off the runqueue _entirely_, and not
2280 		 * preempted!
2281 		 *
2282 		 * So if it was still runnable (but just not actively
2283 		 * running right now), it's preempted, and we should
2284 		 * yield - it could be a while.
2285 		 */
2286 		if (unlikely(on_rq)) {
2287 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2288 
2289 			set_current_state(TASK_UNINTERRUPTIBLE);
2290 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2291 			continue;
2292 		}
2293 
2294 		/*
2295 		 * Ahh, all good. It wasn't running, and it wasn't
2296 		 * runnable, which means that it will never become
2297 		 * running in the future either. We're all done!
2298 		 */
2299 		break;
2300 	}
2301 
2302 	return ncsw;
2303 }
2304 
2305 /***
2306  * kick_process - kick a running thread to enter/exit the kernel
2307  * @p: the to-be-kicked thread
2308  *
2309  * Cause a process which is running on another CPU to enter
2310  * kernel-mode, without any delay. (to get signals handled.)
2311  *
2312  * NOTE: this function doesn't have to take the runqueue lock,
2313  * because all it wants to ensure is that the remote task enters
2314  * the kernel. If the IPI races and the task has been migrated
2315  * to another CPU then no harm is done and the purpose has been
2316  * achieved as well.
2317  */
kick_process(struct task_struct * p)2318 void kick_process(struct task_struct *p)
2319 {
2320 	int cpu;
2321 
2322 	preempt_disable();
2323 	cpu = task_cpu(p);
2324 	if ((cpu != smp_processor_id()) && task_curr(p))
2325 		smp_send_reschedule(cpu);
2326 	preempt_enable();
2327 }
2328 EXPORT_SYMBOL_GPL(kick_process);
2329 #endif /* CONFIG_SMP */
2330 
2331 #ifdef CONFIG_SMP
2332 /*
2333  * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2334  */
select_fallback_rq(int cpu,struct task_struct * p)2335 static int select_fallback_rq(int cpu, struct task_struct *p)
2336 {
2337 	int dest_cpu;
2338 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2339 
2340 	/* Look for allowed, online CPU in same node. */
2341 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2342 		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2343 			return dest_cpu;
2344 
2345 	/* Any allowed, online CPU? */
2346 	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2347 	if (dest_cpu < nr_cpu_ids)
2348 		return dest_cpu;
2349 
2350 	/* No more Mr. Nice Guy. */
2351 	dest_cpu = cpuset_cpus_allowed_fallback(p);
2352 	/*
2353 	 * Don't tell them about moving exiting tasks or
2354 	 * kernel threads (both mm NULL), since they never
2355 	 * leave kernel.
2356 	 */
2357 	if (p->mm && printk_ratelimit()) {
2358 		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2359 				task_pid_nr(p), p->comm, cpu);
2360 	}
2361 
2362 	return dest_cpu;
2363 }
2364 
2365 /*
2366  * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2367  */
2368 static inline
select_task_rq(struct rq * rq,struct task_struct * p,int sd_flags,int wake_flags)2369 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2370 {
2371 	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2372 
2373 	/*
2374 	 * In order not to call set_task_cpu() on a blocking task we need
2375 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2376 	 * cpu.
2377 	 *
2378 	 * Since this is common to all placement strategies, this lives here.
2379 	 *
2380 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 	 *   not worry about this generic constraint ]
2382 	 */
2383 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2384 		     !cpu_online(cpu)))
2385 		cpu = select_fallback_rq(task_cpu(p), p);
2386 
2387 	return cpu;
2388 }
2389 
update_avg(u64 * avg,u64 sample)2390 static void update_avg(u64 *avg, u64 sample)
2391 {
2392 	s64 diff = sample - *avg;
2393 	*avg += diff >> 3;
2394 }
2395 #endif
2396 
ttwu_activate(struct task_struct * p,struct rq * rq,bool is_sync,bool is_migrate,bool is_local,unsigned long en_flags)2397 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2398 				 bool is_sync, bool is_migrate, bool is_local,
2399 				 unsigned long en_flags)
2400 {
2401 	schedstat_inc(p, se.statistics.nr_wakeups);
2402 	if (is_sync)
2403 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2404 	if (is_migrate)
2405 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2406 	if (is_local)
2407 		schedstat_inc(p, se.statistics.nr_wakeups_local);
2408 	else
2409 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2410 
2411 	activate_task(rq, p, en_flags);
2412 }
2413 
ttwu_post_activation(struct task_struct * p,struct rq * rq,int wake_flags,bool success)2414 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2415 					int wake_flags, bool success)
2416 {
2417 	trace_sched_wakeup(p, success);
2418 	check_preempt_curr(rq, p, wake_flags);
2419 
2420 	p->state = TASK_RUNNING;
2421 #ifdef CONFIG_SMP
2422 	if (p->sched_class->task_woken)
2423 		p->sched_class->task_woken(rq, p);
2424 
2425 	if (unlikely(rq->idle_stamp)) {
2426 		u64 delta = rq->clock - rq->idle_stamp;
2427 		u64 max = 2*sysctl_sched_migration_cost;
2428 
2429 		if (delta > max)
2430 			rq->avg_idle = max;
2431 		else
2432 			update_avg(&rq->avg_idle, delta);
2433 		rq->idle_stamp = 0;
2434 	}
2435 #endif
2436 	/* if a worker is waking up, notify workqueue */
2437 	if ((p->flags & PF_WQ_WORKER) && success)
2438 		wq_worker_waking_up(p, cpu_of(rq));
2439 }
2440 
2441 /**
2442  * try_to_wake_up - wake up a thread
2443  * @p: the thread to be awakened
2444  * @state: the mask of task states that can be woken
2445  * @wake_flags: wake modifier flags (WF_*)
2446  *
2447  * Put it on the run-queue if it's not already there. The "current"
2448  * thread is always on the run-queue (except when the actual
2449  * re-schedule is in progress), and as such you're allowed to do
2450  * the simpler "current->state = TASK_RUNNING" to mark yourself
2451  * runnable without the overhead of this.
2452  *
2453  * Returns %true if @p was woken up, %false if it was already running
2454  * or @state didn't match @p's state.
2455  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2456 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2457 			  int wake_flags)
2458 {
2459 	int cpu, orig_cpu, this_cpu, success = 0;
2460 	unsigned long flags;
2461 	unsigned long en_flags = ENQUEUE_WAKEUP;
2462 	struct rq *rq;
2463 
2464 	this_cpu = get_cpu();
2465 
2466 	smp_wmb();
2467 	rq = task_rq_lock(p, &flags);
2468 	if (!(p->state & state))
2469 		goto out;
2470 
2471 	if (p->se.on_rq)
2472 		goto out_running;
2473 
2474 	cpu = task_cpu(p);
2475 	orig_cpu = cpu;
2476 
2477 #ifdef CONFIG_SMP
2478 	if (unlikely(task_running(rq, p)))
2479 		goto out_activate;
2480 
2481 	/*
2482 	 * In order to handle concurrent wakeups and release the rq->lock
2483 	 * we put the task in TASK_WAKING state.
2484 	 *
2485 	 * First fix up the nr_uninterruptible count:
2486 	 */
2487 	if (task_contributes_to_load(p)) {
2488 		if (likely(cpu_online(orig_cpu)))
2489 			rq->nr_uninterruptible--;
2490 		else
2491 			this_rq()->nr_uninterruptible--;
2492 	}
2493 	p->state = TASK_WAKING;
2494 
2495 	if (p->sched_class->task_waking) {
2496 		p->sched_class->task_waking(rq, p);
2497 		en_flags |= ENQUEUE_WAKING;
2498 	}
2499 
2500 	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2501 	if (cpu != orig_cpu)
2502 		set_task_cpu(p, cpu);
2503 	__task_rq_unlock(rq);
2504 
2505 	rq = cpu_rq(cpu);
2506 	raw_spin_lock(&rq->lock);
2507 
2508 	/*
2509 	 * We migrated the task without holding either rq->lock, however
2510 	 * since the task is not on the task list itself, nobody else
2511 	 * will try and migrate the task, hence the rq should match the
2512 	 * cpu we just moved it to.
2513 	 */
2514 	WARN_ON(task_cpu(p) != cpu);
2515 	WARN_ON(p->state != TASK_WAKING);
2516 
2517 #ifdef CONFIG_SCHEDSTATS
2518 	schedstat_inc(rq, ttwu_count);
2519 	if (cpu == this_cpu)
2520 		schedstat_inc(rq, ttwu_local);
2521 	else {
2522 		struct sched_domain *sd;
2523 		for_each_domain(this_cpu, sd) {
2524 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2525 				schedstat_inc(sd, ttwu_wake_remote);
2526 				break;
2527 			}
2528 		}
2529 	}
2530 #endif /* CONFIG_SCHEDSTATS */
2531 
2532 out_activate:
2533 #endif /* CONFIG_SMP */
2534 	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2535 		      cpu == this_cpu, en_flags);
2536 	success = 1;
2537 out_running:
2538 	ttwu_post_activation(p, rq, wake_flags, success);
2539 out:
2540 	task_rq_unlock(rq, &flags);
2541 	put_cpu();
2542 
2543 	return success;
2544 }
2545 
2546 /**
2547  * try_to_wake_up_local - try to wake up a local task with rq lock held
2548  * @p: the thread to be awakened
2549  *
2550  * Put @p on the run-queue if it's not already there.  The caller must
2551  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552  * the current task.  this_rq() stays locked over invocation.
2553  */
try_to_wake_up_local(struct task_struct * p)2554 static void try_to_wake_up_local(struct task_struct *p)
2555 {
2556 	struct rq *rq = task_rq(p);
2557 	bool success = false;
2558 
2559 	BUG_ON(rq != this_rq());
2560 	BUG_ON(p == current);
2561 	lockdep_assert_held(&rq->lock);
2562 
2563 	if (!(p->state & TASK_NORMAL))
2564 		return;
2565 
2566 	if (!p->se.on_rq) {
2567 		if (likely(!task_running(rq, p))) {
2568 			schedstat_inc(rq, ttwu_count);
2569 			schedstat_inc(rq, ttwu_local);
2570 		}
2571 		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2572 		success = true;
2573 	}
2574 	ttwu_post_activation(p, rq, 0, success);
2575 }
2576 
2577 /**
2578  * wake_up_process - Wake up a specific process
2579  * @p: The process to be woken up.
2580  *
2581  * Attempt to wake up the nominated process and move it to the set of runnable
2582  * processes.  Returns 1 if the process was woken up, 0 if it was already
2583  * running.
2584  *
2585  * It may be assumed that this function implies a write memory barrier before
2586  * changing the task state if and only if any tasks are woken up.
2587  */
wake_up_process(struct task_struct * p)2588 int wake_up_process(struct task_struct *p)
2589 {
2590 	return try_to_wake_up(p, TASK_ALL, 0);
2591 }
2592 EXPORT_SYMBOL(wake_up_process);
2593 
wake_up_state(struct task_struct * p,unsigned int state)2594 int wake_up_state(struct task_struct *p, unsigned int state)
2595 {
2596 	return try_to_wake_up(p, state, 0);
2597 }
2598 
2599 /*
2600  * Perform scheduler related setup for a newly forked process p.
2601  * p is forked by current.
2602  *
2603  * __sched_fork() is basic setup used by init_idle() too:
2604  */
__sched_fork(struct task_struct * p)2605 static void __sched_fork(struct task_struct *p)
2606 {
2607 	p->se.exec_start		= 0;
2608 	p->se.sum_exec_runtime		= 0;
2609 	p->se.prev_sum_exec_runtime	= 0;
2610 	p->se.nr_migrations		= 0;
2611 	p->se.vruntime			= 0;
2612 
2613 #ifdef CONFIG_SCHEDSTATS
2614 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2615 #endif
2616 
2617 	INIT_LIST_HEAD(&p->rt.run_list);
2618 	p->se.on_rq = 0;
2619 	INIT_LIST_HEAD(&p->se.group_node);
2620 
2621 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2623 #endif
2624 }
2625 
2626 /*
2627  * fork()/clone()-time setup:
2628  */
sched_fork(struct task_struct * p,int clone_flags)2629 void sched_fork(struct task_struct *p, int clone_flags)
2630 {
2631 	int cpu = get_cpu();
2632 
2633 	__sched_fork(p);
2634 	/*
2635 	 * We mark the process as running here. This guarantees that
2636 	 * nobody will actually run it, and a signal or other external
2637 	 * event cannot wake it up and insert it on the runqueue either.
2638 	 */
2639 	p->state = TASK_RUNNING;
2640 
2641 	/*
2642 	 * Revert to default priority/policy on fork if requested.
2643 	 */
2644 	if (unlikely(p->sched_reset_on_fork)) {
2645 		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2646 			p->policy = SCHED_NORMAL;
2647 			p->normal_prio = p->static_prio;
2648 		}
2649 
2650 		if (PRIO_TO_NICE(p->static_prio) < 0) {
2651 			p->static_prio = NICE_TO_PRIO(0);
2652 			p->normal_prio = p->static_prio;
2653 			set_load_weight(p);
2654 		}
2655 
2656 		/*
2657 		 * We don't need the reset flag anymore after the fork. It has
2658 		 * fulfilled its duty:
2659 		 */
2660 		p->sched_reset_on_fork = 0;
2661 	}
2662 
2663 	/*
2664 	 * Make sure we do not leak PI boosting priority to the child.
2665 	 */
2666 	p->prio = current->normal_prio;
2667 
2668 	if (!rt_prio(p->prio))
2669 		p->sched_class = &fair_sched_class;
2670 
2671 	if (p->sched_class->task_fork)
2672 		p->sched_class->task_fork(p);
2673 
2674 	/*
2675 	 * The child is not yet in the pid-hash so no cgroup attach races,
2676 	 * and the cgroup is pinned to this child due to cgroup_fork()
2677 	 * is ran before sched_fork().
2678 	 *
2679 	 * Silence PROVE_RCU.
2680 	 */
2681 	rcu_read_lock();
2682 	set_task_cpu(p, cpu);
2683 	rcu_read_unlock();
2684 
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 	if (likely(sched_info_on()))
2687 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2688 #endif
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2690 	p->oncpu = 0;
2691 #endif
2692 #ifdef CONFIG_PREEMPT
2693 	/* Want to start with kernel preemption disabled. */
2694 	task_thread_info(p)->preempt_count = 1;
2695 #endif
2696 #ifdef CONFIG_SMP
2697 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2698 #endif
2699 
2700 	put_cpu();
2701 }
2702 
2703 /*
2704  * wake_up_new_task - wake up a newly created task for the first time.
2705  *
2706  * This function will do some initial scheduler statistics housekeeping
2707  * that must be done for every newly created context, then puts the task
2708  * on the runqueue and wakes it.
2709  */
wake_up_new_task(struct task_struct * p,unsigned long clone_flags)2710 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2711 {
2712 	unsigned long flags;
2713 	struct rq *rq;
2714 	int cpu __maybe_unused = get_cpu();
2715 
2716 #ifdef CONFIG_SMP
2717 	rq = task_rq_lock(p, &flags);
2718 	p->state = TASK_WAKING;
2719 
2720 	/*
2721 	 * Fork balancing, do it here and not earlier because:
2722 	 *  - cpus_allowed can change in the fork path
2723 	 *  - any previously selected cpu might disappear through hotplug
2724 	 *
2725 	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 	 * without people poking at ->cpus_allowed.
2727 	 */
2728 	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2729 	set_task_cpu(p, cpu);
2730 
2731 	p->state = TASK_RUNNING;
2732 	task_rq_unlock(rq, &flags);
2733 #endif
2734 
2735 	rq = task_rq_lock(p, &flags);
2736 	activate_task(rq, p, 0);
2737 	trace_sched_wakeup_new(p, 1);
2738 	check_preempt_curr(rq, p, WF_FORK);
2739 #ifdef CONFIG_SMP
2740 	if (p->sched_class->task_woken)
2741 		p->sched_class->task_woken(rq, p);
2742 #endif
2743 	task_rq_unlock(rq, &flags);
2744 	put_cpu();
2745 }
2746 
2747 #ifdef CONFIG_PREEMPT_NOTIFIERS
2748 
2749 /**
2750  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2751  * @notifier: notifier struct to register
2752  */
preempt_notifier_register(struct preempt_notifier * notifier)2753 void preempt_notifier_register(struct preempt_notifier *notifier)
2754 {
2755 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756 }
2757 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758 
2759 /**
2760  * preempt_notifier_unregister - no longer interested in preemption notifications
2761  * @notifier: notifier struct to unregister
2762  *
2763  * This is safe to call from within a preemption notifier.
2764  */
preempt_notifier_unregister(struct preempt_notifier * notifier)2765 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766 {
2767 	hlist_del(&notifier->link);
2768 }
2769 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2771 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772 {
2773 	struct preempt_notifier *notifier;
2774 	struct hlist_node *node;
2775 
2776 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778 }
2779 
2780 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2781 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 				 struct task_struct *next)
2783 {
2784 	struct preempt_notifier *notifier;
2785 	struct hlist_node *node;
2786 
2787 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 		notifier->ops->sched_out(notifier, next);
2789 }
2790 
2791 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2792 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2793 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794 {
2795 }
2796 
2797 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2798 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 				 struct task_struct *next)
2800 {
2801 }
2802 
2803 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2804 
2805 /**
2806  * prepare_task_switch - prepare to switch tasks
2807  * @rq: the runqueue preparing to switch
2808  * @prev: the current task that is being switched out
2809  * @next: the task we are going to switch to.
2810  *
2811  * This is called with the rq lock held and interrupts off. It must
2812  * be paired with a subsequent finish_task_switch after the context
2813  * switch.
2814  *
2815  * prepare_task_switch sets up locking and calls architecture specific
2816  * hooks.
2817  */
2818 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2819 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 		    struct task_struct *next)
2821 {
2822 	sched_info_switch(prev, next);
2823 	perf_event_task_sched_out(prev, next);
2824 	fire_sched_out_preempt_notifiers(prev, next);
2825 	prepare_lock_switch(rq, next);
2826 	prepare_arch_switch(next);
2827 	trace_sched_switch(prev, next);
2828 }
2829 
2830 /**
2831  * finish_task_switch - clean up after a task-switch
2832  * @rq: runqueue associated with task-switch
2833  * @prev: the thread we just switched away from.
2834  *
2835  * finish_task_switch must be called after the context switch, paired
2836  * with a prepare_task_switch call before the context switch.
2837  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838  * and do any other architecture-specific cleanup actions.
2839  *
2840  * Note that we may have delayed dropping an mm in context_switch(). If
2841  * so, we finish that here outside of the runqueue lock. (Doing it
2842  * with the lock held can cause deadlocks; see schedule() for
2843  * details.)
2844  */
finish_task_switch(struct rq * rq,struct task_struct * prev)2845 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2846 	__releases(rq->lock)
2847 {
2848 	struct mm_struct *mm = rq->prev_mm;
2849 	long prev_state;
2850 
2851 	rq->prev_mm = NULL;
2852 
2853 	/*
2854 	 * A task struct has one reference for the use as "current".
2855 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2856 	 * schedule one last time. The schedule call will never return, and
2857 	 * the scheduled task must drop that reference.
2858 	 * The test for TASK_DEAD must occur while the runqueue locks are
2859 	 * still held, otherwise prev could be scheduled on another cpu, die
2860 	 * there before we look at prev->state, and then the reference would
2861 	 * be dropped twice.
2862 	 *		Manfred Spraul <manfred@colorfullife.com>
2863 	 */
2864 	prev_state = prev->state;
2865 	finish_arch_switch(prev);
2866 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 	local_irq_disable();
2868 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869 	perf_event_task_sched_in(current);
2870 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2871 	local_irq_enable();
2872 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873 	finish_lock_switch(rq, prev);
2874 
2875 	fire_sched_in_preempt_notifiers(current);
2876 	if (mm)
2877 		mmdrop(mm);
2878 	if (unlikely(prev_state == TASK_DEAD)) {
2879 		/*
2880 		 * Remove function-return probe instances associated with this
2881 		 * task and put them back on the free list.
2882 		 */
2883 		kprobe_flush_task(prev);
2884 		put_task_struct(prev);
2885 	}
2886 }
2887 
2888 #ifdef CONFIG_SMP
2889 
2890 /* assumes rq->lock is held */
pre_schedule(struct rq * rq,struct task_struct * prev)2891 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2892 {
2893 	if (prev->sched_class->pre_schedule)
2894 		prev->sched_class->pre_schedule(rq, prev);
2895 }
2896 
2897 /* rq->lock is NOT held, but preemption is disabled */
post_schedule(struct rq * rq)2898 static inline void post_schedule(struct rq *rq)
2899 {
2900 	if (rq->post_schedule) {
2901 		unsigned long flags;
2902 
2903 		raw_spin_lock_irqsave(&rq->lock, flags);
2904 		if (rq->curr->sched_class->post_schedule)
2905 			rq->curr->sched_class->post_schedule(rq);
2906 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2907 
2908 		rq->post_schedule = 0;
2909 	}
2910 }
2911 
2912 #else
2913 
pre_schedule(struct rq * rq,struct task_struct * p)2914 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2915 {
2916 }
2917 
post_schedule(struct rq * rq)2918 static inline void post_schedule(struct rq *rq)
2919 {
2920 }
2921 
2922 #endif
2923 
2924 /**
2925  * schedule_tail - first thing a freshly forked thread must call.
2926  * @prev: the thread we just switched away from.
2927  */
schedule_tail(struct task_struct * prev)2928 asmlinkage void schedule_tail(struct task_struct *prev)
2929 	__releases(rq->lock)
2930 {
2931 	struct rq *rq = this_rq();
2932 
2933 	finish_task_switch(rq, prev);
2934 
2935 	/*
2936 	 * FIXME: do we need to worry about rq being invalidated by the
2937 	 * task_switch?
2938 	 */
2939 	post_schedule(rq);
2940 
2941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 	/* In this case, finish_task_switch does not reenable preemption */
2943 	preempt_enable();
2944 #endif
2945 	if (current->set_child_tid)
2946 		put_user(task_pid_vnr(current), current->set_child_tid);
2947 }
2948 
2949 /*
2950  * context_switch - switch to the new MM and the new
2951  * thread's register state.
2952  */
2953 static inline void
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2954 context_switch(struct rq *rq, struct task_struct *prev,
2955 	       struct task_struct *next)
2956 {
2957 	struct mm_struct *mm, *oldmm;
2958 
2959 	prepare_task_switch(rq, prev, next);
2960 
2961 	mm = next->mm;
2962 	oldmm = prev->active_mm;
2963 	/*
2964 	 * For paravirt, this is coupled with an exit in switch_to to
2965 	 * combine the page table reload and the switch backend into
2966 	 * one hypercall.
2967 	 */
2968 	arch_start_context_switch(prev);
2969 
2970 	if (!mm) {
2971 		next->active_mm = oldmm;
2972 		atomic_inc(&oldmm->mm_count);
2973 		enter_lazy_tlb(oldmm, next);
2974 	} else
2975 		switch_mm(oldmm, mm, next);
2976 
2977 	if (!prev->mm) {
2978 		prev->active_mm = NULL;
2979 		rq->prev_mm = oldmm;
2980 	}
2981 	/*
2982 	 * Since the runqueue lock will be released by the next
2983 	 * task (which is an invalid locking op but in the case
2984 	 * of the scheduler it's an obvious special-case), so we
2985 	 * do an early lockdep release here:
2986 	 */
2987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2989 #endif
2990 
2991 	/* Here we just switch the register state and the stack. */
2992 	switch_to(prev, next, prev);
2993 
2994 	barrier();
2995 	/*
2996 	 * this_rq must be evaluated again because prev may have moved
2997 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 	 * frame will be invalid.
2999 	 */
3000 	finish_task_switch(this_rq(), prev);
3001 }
3002 
3003 /*
3004  * nr_running, nr_uninterruptible and nr_context_switches:
3005  *
3006  * externally visible scheduler statistics: current number of runnable
3007  * threads, current number of uninterruptible-sleeping threads, total
3008  * number of context switches performed since bootup.
3009  */
nr_running(void)3010 unsigned long nr_running(void)
3011 {
3012 	unsigned long i, sum = 0;
3013 
3014 	for_each_online_cpu(i)
3015 		sum += cpu_rq(i)->nr_running;
3016 
3017 	return sum;
3018 }
3019 
nr_uninterruptible(void)3020 unsigned long nr_uninterruptible(void)
3021 {
3022 	unsigned long i, sum = 0;
3023 
3024 	for_each_possible_cpu(i)
3025 		sum += cpu_rq(i)->nr_uninterruptible;
3026 
3027 	/*
3028 	 * Since we read the counters lockless, it might be slightly
3029 	 * inaccurate. Do not allow it to go below zero though:
3030 	 */
3031 	if (unlikely((long)sum < 0))
3032 		sum = 0;
3033 
3034 	return sum;
3035 }
3036 
nr_context_switches(void)3037 unsigned long long nr_context_switches(void)
3038 {
3039 	int i;
3040 	unsigned long long sum = 0;
3041 
3042 	for_each_possible_cpu(i)
3043 		sum += cpu_rq(i)->nr_switches;
3044 
3045 	return sum;
3046 }
3047 
nr_iowait(void)3048 unsigned long nr_iowait(void)
3049 {
3050 	unsigned long i, sum = 0;
3051 
3052 	for_each_possible_cpu(i)
3053 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3054 
3055 	return sum;
3056 }
3057 
nr_iowait_cpu(int cpu)3058 unsigned long nr_iowait_cpu(int cpu)
3059 {
3060 	struct rq *this = cpu_rq(cpu);
3061 	return atomic_read(&this->nr_iowait);
3062 }
3063 
this_cpu_load(void)3064 unsigned long this_cpu_load(void)
3065 {
3066 	struct rq *this = this_rq();
3067 	return this->cpu_load[0];
3068 }
3069 
3070 
3071 /* Variables and functions for calc_load */
3072 static atomic_long_t calc_load_tasks;
3073 static unsigned long calc_load_update;
3074 unsigned long avenrun[3];
3075 EXPORT_SYMBOL(avenrun);
3076 
calc_load_fold_active(struct rq * this_rq)3077 static long calc_load_fold_active(struct rq *this_rq)
3078 {
3079 	long nr_active, delta = 0;
3080 
3081 	nr_active = this_rq->nr_running;
3082 	nr_active += (long) this_rq->nr_uninterruptible;
3083 
3084 	if (nr_active != this_rq->calc_load_active) {
3085 		delta = nr_active - this_rq->calc_load_active;
3086 		this_rq->calc_load_active = nr_active;
3087 	}
3088 
3089 	return delta;
3090 }
3091 
3092 static unsigned long
calc_load(unsigned long load,unsigned long exp,unsigned long active)3093 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3094 {
3095 	load *= exp;
3096 	load += active * (FIXED_1 - exp);
3097 	load += 1UL << (FSHIFT - 1);
3098 	return load >> FSHIFT;
3099 }
3100 
3101 #ifdef CONFIG_NO_HZ
3102 /*
3103  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3104  *
3105  * When making the ILB scale, we should try to pull this in as well.
3106  */
3107 static atomic_long_t calc_load_tasks_idle;
3108 
calc_load_account_idle(struct rq * this_rq)3109 static void calc_load_account_idle(struct rq *this_rq)
3110 {
3111 	long delta;
3112 
3113 	delta = calc_load_fold_active(this_rq);
3114 	if (delta)
3115 		atomic_long_add(delta, &calc_load_tasks_idle);
3116 }
3117 
calc_load_fold_idle(void)3118 static long calc_load_fold_idle(void)
3119 {
3120 	long delta = 0;
3121 
3122 	/*
3123 	 * Its got a race, we don't care...
3124 	 */
3125 	if (atomic_long_read(&calc_load_tasks_idle))
3126 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3127 
3128 	return delta;
3129 }
3130 
3131 /**
3132  * fixed_power_int - compute: x^n, in O(log n) time
3133  *
3134  * @x:         base of the power
3135  * @frac_bits: fractional bits of @x
3136  * @n:         power to raise @x to.
3137  *
3138  * By exploiting the relation between the definition of the natural power
3139  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141  * (where: n_i \elem {0, 1}, the binary vector representing n),
3142  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143  * of course trivially computable in O(log_2 n), the length of our binary
3144  * vector.
3145  */
3146 static unsigned long
fixed_power_int(unsigned long x,unsigned int frac_bits,unsigned int n)3147 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3148 {
3149 	unsigned long result = 1UL << frac_bits;
3150 
3151 	if (n) for (;;) {
3152 		if (n & 1) {
3153 			result *= x;
3154 			result += 1UL << (frac_bits - 1);
3155 			result >>= frac_bits;
3156 		}
3157 		n >>= 1;
3158 		if (!n)
3159 			break;
3160 		x *= x;
3161 		x += 1UL << (frac_bits - 1);
3162 		x >>= frac_bits;
3163 	}
3164 
3165 	return result;
3166 }
3167 
3168 /*
3169  * a1 = a0 * e + a * (1 - e)
3170  *
3171  * a2 = a1 * e + a * (1 - e)
3172  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173  *    = a0 * e^2 + a * (1 - e) * (1 + e)
3174  *
3175  * a3 = a2 * e + a * (1 - e)
3176  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3178  *
3179  *  ...
3180  *
3181  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183  *    = a0 * e^n + a * (1 - e^n)
3184  *
3185  * [1] application of the geometric series:
3186  *
3187  *              n         1 - x^(n+1)
3188  *     S_n := \Sum x^i = -------------
3189  *             i=0          1 - x
3190  */
3191 static unsigned long
calc_load_n(unsigned long load,unsigned long exp,unsigned long active,unsigned int n)3192 calc_load_n(unsigned long load, unsigned long exp,
3193 	    unsigned long active, unsigned int n)
3194 {
3195 
3196 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3197 }
3198 
3199 /*
3200  * NO_HZ can leave us missing all per-cpu ticks calling
3201  * calc_load_account_active(), but since an idle CPU folds its delta into
3202  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203  * in the pending idle delta if our idle period crossed a load cycle boundary.
3204  *
3205  * Once we've updated the global active value, we need to apply the exponential
3206  * weights adjusted to the number of cycles missed.
3207  */
calc_global_nohz(unsigned long ticks)3208 static void calc_global_nohz(unsigned long ticks)
3209 {
3210 	long delta, active, n;
3211 
3212 	if (time_before(jiffies, calc_load_update))
3213 		return;
3214 
3215 	/*
3216 	 * If we crossed a calc_load_update boundary, make sure to fold
3217 	 * any pending idle changes, the respective CPUs might have
3218 	 * missed the tick driven calc_load_account_active() update
3219 	 * due to NO_HZ.
3220 	 */
3221 	delta = calc_load_fold_idle();
3222 	if (delta)
3223 		atomic_long_add(delta, &calc_load_tasks);
3224 
3225 	/*
3226 	 * If we were idle for multiple load cycles, apply them.
3227 	 */
3228 	if (ticks >= LOAD_FREQ) {
3229 		n = ticks / LOAD_FREQ;
3230 
3231 		active = atomic_long_read(&calc_load_tasks);
3232 		active = active > 0 ? active * FIXED_1 : 0;
3233 
3234 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3235 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3236 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3237 
3238 		calc_load_update += n * LOAD_FREQ;
3239 	}
3240 
3241 	/*
3242 	 * Its possible the remainder of the above division also crosses
3243 	 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 	 * which comes after this will take care of that.
3245 	 *
3246 	 * Consider us being 11 ticks before a cycle completion, and us
3247 	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 	 * age us 4 cycles, and the test in calc_global_load() will
3249 	 * pick up the final one.
3250 	 */
3251 }
3252 #else
calc_load_account_idle(struct rq * this_rq)3253 static void calc_load_account_idle(struct rq *this_rq)
3254 {
3255 }
3256 
calc_load_fold_idle(void)3257 static inline long calc_load_fold_idle(void)
3258 {
3259 	return 0;
3260 }
3261 
calc_global_nohz(unsigned long ticks)3262 static void calc_global_nohz(unsigned long ticks)
3263 {
3264 }
3265 #endif
3266 
3267 /**
3268  * get_avenrun - get the load average array
3269  * @loads:	pointer to dest load array
3270  * @offset:	offset to add
3271  * @shift:	shift count to shift the result left
3272  *
3273  * These values are estimates at best, so no need for locking.
3274  */
get_avenrun(unsigned long * loads,unsigned long offset,int shift)3275 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3276 {
3277 	loads[0] = (avenrun[0] + offset) << shift;
3278 	loads[1] = (avenrun[1] + offset) << shift;
3279 	loads[2] = (avenrun[2] + offset) << shift;
3280 }
3281 
3282 /*
3283  * calc_load - update the avenrun load estimates 10 ticks after the
3284  * CPUs have updated calc_load_tasks.
3285  */
calc_global_load(unsigned long ticks)3286 void calc_global_load(unsigned long ticks)
3287 {
3288 	long active;
3289 
3290 	calc_global_nohz(ticks);
3291 
3292 	if (time_before(jiffies, calc_load_update + 10))
3293 		return;
3294 
3295 	active = atomic_long_read(&calc_load_tasks);
3296 	active = active > 0 ? active * FIXED_1 : 0;
3297 
3298 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3299 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3300 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3301 
3302 	calc_load_update += LOAD_FREQ;
3303 }
3304 
3305 /*
3306  * Called from update_cpu_load() to periodically update this CPU's
3307  * active count.
3308  */
calc_load_account_active(struct rq * this_rq)3309 static void calc_load_account_active(struct rq *this_rq)
3310 {
3311 	long delta;
3312 
3313 	if (time_before(jiffies, this_rq->calc_load_update))
3314 		return;
3315 
3316 	delta  = calc_load_fold_active(this_rq);
3317 	delta += calc_load_fold_idle();
3318 	if (delta)
3319 		atomic_long_add(delta, &calc_load_tasks);
3320 
3321 	this_rq->calc_load_update += LOAD_FREQ;
3322 }
3323 
3324 /*
3325  * The exact cpuload at various idx values, calculated at every tick would be
3326  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3327  *
3328  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329  * on nth tick when cpu may be busy, then we have:
3330  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3332  *
3333  * decay_load_missed() below does efficient calculation of
3334  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3336  *
3337  * The calculation is approximated on a 128 point scale.
3338  * degrade_zero_ticks is the number of ticks after which load at any
3339  * particular idx is approximated to be zero.
3340  * degrade_factor is a precomputed table, a row for each load idx.
3341  * Each column corresponds to degradation factor for a power of two ticks,
3342  * based on 128 point scale.
3343  * Example:
3344  * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3346  *
3347  * With this power of 2 load factors, we can degrade the load n times
3348  * by looking at 1 bits in n and doing as many mult/shift instead of
3349  * n mult/shifts needed by the exact degradation.
3350  */
3351 #define DEGRADE_SHIFT		7
3352 static const unsigned char
3353 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3354 static const unsigned char
3355 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3356 					{0, 0, 0, 0, 0, 0, 0, 0},
3357 					{64, 32, 8, 0, 0, 0, 0, 0},
3358 					{96, 72, 40, 12, 1, 0, 0},
3359 					{112, 98, 75, 43, 15, 1, 0},
3360 					{120, 112, 98, 76, 45, 16, 2} };
3361 
3362 /*
3363  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364  * would be when CPU is idle and so we just decay the old load without
3365  * adding any new load.
3366  */
3367 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)3368 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3369 {
3370 	int j = 0;
3371 
3372 	if (!missed_updates)
3373 		return load;
3374 
3375 	if (missed_updates >= degrade_zero_ticks[idx])
3376 		return 0;
3377 
3378 	if (idx == 1)
3379 		return load >> missed_updates;
3380 
3381 	while (missed_updates) {
3382 		if (missed_updates % 2)
3383 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3384 
3385 		missed_updates >>= 1;
3386 		j++;
3387 	}
3388 	return load;
3389 }
3390 
3391 /*
3392  * Update rq->cpu_load[] statistics. This function is usually called every
3393  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394  * every tick. We fix it up based on jiffies.
3395  */
update_cpu_load(struct rq * this_rq)3396 static void update_cpu_load(struct rq *this_rq)
3397 {
3398 	unsigned long this_load = this_rq->load.weight;
3399 	unsigned long curr_jiffies = jiffies;
3400 	unsigned long pending_updates;
3401 	int i, scale;
3402 
3403 	this_rq->nr_load_updates++;
3404 
3405 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 	if (curr_jiffies == this_rq->last_load_update_tick)
3407 		return;
3408 
3409 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3410 	this_rq->last_load_update_tick = curr_jiffies;
3411 
3412 	/* Update our load: */
3413 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3414 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3415 		unsigned long old_load, new_load;
3416 
3417 		/* scale is effectively 1 << i now, and >> i divides by scale */
3418 
3419 		old_load = this_rq->cpu_load[i];
3420 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
3421 		new_load = this_load;
3422 		/*
3423 		 * Round up the averaging division if load is increasing. This
3424 		 * prevents us from getting stuck on 9 if the load is 10, for
3425 		 * example.
3426 		 */
3427 		if (new_load > old_load)
3428 			new_load += scale - 1;
3429 
3430 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3431 	}
3432 
3433 	sched_avg_update(this_rq);
3434 }
3435 
update_cpu_load_active(struct rq * this_rq)3436 static void update_cpu_load_active(struct rq *this_rq)
3437 {
3438 	update_cpu_load(this_rq);
3439 
3440 	calc_load_account_active(this_rq);
3441 }
3442 
3443 #ifdef CONFIG_SMP
3444 
3445 /*
3446  * sched_exec - execve() is a valuable balancing opportunity, because at
3447  * this point the task has the smallest effective memory and cache footprint.
3448  */
sched_exec(void)3449 void sched_exec(void)
3450 {
3451 	struct task_struct *p = current;
3452 	unsigned long flags;
3453 	struct rq *rq;
3454 	int dest_cpu;
3455 
3456 	rq = task_rq_lock(p, &flags);
3457 	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3458 	if (dest_cpu == smp_processor_id())
3459 		goto unlock;
3460 
3461 	/*
3462 	 * select_task_rq() can race against ->cpus_allowed
3463 	 */
3464 	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3465 	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3466 		struct migration_arg arg = { p, dest_cpu };
3467 
3468 		task_rq_unlock(rq, &flags);
3469 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3470 		return;
3471 	}
3472 unlock:
3473 	task_rq_unlock(rq, &flags);
3474 }
3475 
3476 #endif
3477 
3478 DEFINE_PER_CPU(struct kernel_stat, kstat);
3479 
3480 EXPORT_PER_CPU_SYMBOL(kstat);
3481 
3482 /*
3483  * Return any ns on the sched_clock that have not yet been accounted in
3484  * @p in case that task is currently running.
3485  *
3486  * Called with task_rq_lock() held on @rq.
3487  */
do_task_delta_exec(struct task_struct * p,struct rq * rq)3488 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3489 {
3490 	u64 ns = 0;
3491 
3492 	if (task_current(rq, p)) {
3493 		update_rq_clock(rq);
3494 		ns = rq->clock_task - p->se.exec_start;
3495 		if ((s64)ns < 0)
3496 			ns = 0;
3497 	}
3498 
3499 	return ns;
3500 }
3501 
task_delta_exec(struct task_struct * p)3502 unsigned long long task_delta_exec(struct task_struct *p)
3503 {
3504 	unsigned long flags;
3505 	struct rq *rq;
3506 	u64 ns = 0;
3507 
3508 	rq = task_rq_lock(p, &flags);
3509 	ns = do_task_delta_exec(p, rq);
3510 	task_rq_unlock(rq, &flags);
3511 
3512 	return ns;
3513 }
3514 
3515 /*
3516  * Return accounted runtime for the task.
3517  * In case the task is currently running, return the runtime plus current's
3518  * pending runtime that have not been accounted yet.
3519  */
task_sched_runtime(struct task_struct * p)3520 unsigned long long task_sched_runtime(struct task_struct *p)
3521 {
3522 	unsigned long flags;
3523 	struct rq *rq;
3524 	u64 ns = 0;
3525 
3526 	rq = task_rq_lock(p, &flags);
3527 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3528 	task_rq_unlock(rq, &flags);
3529 
3530 	return ns;
3531 }
3532 
3533 /*
3534  * Return sum_exec_runtime for the thread group.
3535  * In case the task is currently running, return the sum plus current's
3536  * pending runtime that have not been accounted yet.
3537  *
3538  * Note that the thread group might have other running tasks as well,
3539  * so the return value not includes other pending runtime that other
3540  * running tasks might have.
3541  */
thread_group_sched_runtime(struct task_struct * p)3542 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3543 {
3544 	struct task_cputime totals;
3545 	unsigned long flags;
3546 	struct rq *rq;
3547 	u64 ns;
3548 
3549 	rq = task_rq_lock(p, &flags);
3550 	thread_group_cputime(p, &totals);
3551 	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3552 	task_rq_unlock(rq, &flags);
3553 
3554 	return ns;
3555 }
3556 
3557 /*
3558  * Account user cpu time to a process.
3559  * @p: the process that the cpu time gets accounted to
3560  * @cputime: the cpu time spent in user space since the last update
3561  * @cputime_scaled: cputime scaled by cpu frequency
3562  */
account_user_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)3563 void account_user_time(struct task_struct *p, cputime_t cputime,
3564 		       cputime_t cputime_scaled)
3565 {
3566 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3567 	cputime64_t tmp;
3568 
3569 	/* Add user time to process. */
3570 	p->utime = cputime_add(p->utime, cputime);
3571 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3572 	account_group_user_time(p, cputime);
3573 
3574 	/* Add user time to cpustat. */
3575 	tmp = cputime_to_cputime64(cputime);
3576 	if (TASK_NICE(p) > 0)
3577 		cpustat->nice = cputime64_add(cpustat->nice, tmp);
3578 	else
3579 		cpustat->user = cputime64_add(cpustat->user, tmp);
3580 
3581 	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3582 	/* Account for user time used */
3583 	acct_update_integrals(p);
3584 }
3585 
3586 /*
3587  * Account guest cpu time to a process.
3588  * @p: the process that the cpu time gets accounted to
3589  * @cputime: the cpu time spent in virtual machine since the last update
3590  * @cputime_scaled: cputime scaled by cpu frequency
3591  */
account_guest_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)3592 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3593 			       cputime_t cputime_scaled)
3594 {
3595 	cputime64_t tmp;
3596 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597 
3598 	tmp = cputime_to_cputime64(cputime);
3599 
3600 	/* Add guest time to process. */
3601 	p->utime = cputime_add(p->utime, cputime);
3602 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3603 	account_group_user_time(p, cputime);
3604 	p->gtime = cputime_add(p->gtime, cputime);
3605 
3606 	/* Add guest time to cpustat. */
3607 	if (TASK_NICE(p) > 0) {
3608 		cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3610 	} else {
3611 		cpustat->user = cputime64_add(cpustat->user, tmp);
3612 		cpustat->guest = cputime64_add(cpustat->guest, tmp);
3613 	}
3614 }
3615 
3616 /*
3617  * Account system cpu time to a process and desired cpustat field
3618  * @p: the process that the cpu time gets accounted to
3619  * @cputime: the cpu time spent in kernel space since the last update
3620  * @cputime_scaled: cputime scaled by cpu frequency
3621  * @target_cputime64: pointer to cpustat field that has to be updated
3622  */
3623 static inline
__account_system_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled,cputime64_t * target_cputime64)3624 void __account_system_time(struct task_struct *p, cputime_t cputime,
3625 			cputime_t cputime_scaled, cputime64_t *target_cputime64)
3626 {
3627 	cputime64_t tmp = cputime_to_cputime64(cputime);
3628 
3629 	/* Add system time to process. */
3630 	p->stime = cputime_add(p->stime, cputime);
3631 	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3632 	account_group_system_time(p, cputime);
3633 
3634 	/* Add system time to cpustat. */
3635 	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
3636 	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3637 
3638 	/* Account for system time used */
3639 	acct_update_integrals(p);
3640 }
3641 
3642 /*
3643  * Account system cpu time to a process.
3644  * @p: the process that the cpu time gets accounted to
3645  * @hardirq_offset: the offset to subtract from hardirq_count()
3646  * @cputime: the cpu time spent in kernel space since the last update
3647  * @cputime_scaled: cputime scaled by cpu frequency
3648  */
account_system_time(struct task_struct * p,int hardirq_offset,cputime_t cputime,cputime_t cputime_scaled)3649 void account_system_time(struct task_struct *p, int hardirq_offset,
3650 			 cputime_t cputime, cputime_t cputime_scaled)
3651 {
3652 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3653 	cputime64_t *target_cputime64;
3654 
3655 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3656 		account_guest_time(p, cputime, cputime_scaled);
3657 		return;
3658 	}
3659 
3660 	if (hardirq_count() - hardirq_offset)
3661 		target_cputime64 = &cpustat->irq;
3662 	else if (in_serving_softirq())
3663 		target_cputime64 = &cpustat->softirq;
3664 	else
3665 		target_cputime64 = &cpustat->system;
3666 
3667 	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
3668 }
3669 
3670 /*
3671  * Account for involuntary wait time.
3672  * @cputime: the cpu time spent in involuntary wait
3673  */
account_steal_time(cputime_t cputime)3674 void account_steal_time(cputime_t cputime)
3675 {
3676 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3677 	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3678 
3679 	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3680 }
3681 
3682 /*
3683  * Account for idle time.
3684  * @cputime: the cpu time spent in idle wait
3685  */
account_idle_time(cputime_t cputime)3686 void account_idle_time(cputime_t cputime)
3687 {
3688 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690 	struct rq *rq = this_rq();
3691 
3692 	if (atomic_read(&rq->nr_iowait) > 0)
3693 		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3694 	else
3695 		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3696 }
3697 
3698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3699 
3700 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3701 /*
3702  * Account a tick to a process and cpustat
3703  * @p: the process that the cpu time gets accounted to
3704  * @user_tick: is the tick from userspace
3705  * @rq: the pointer to rq
3706  *
3707  * Tick demultiplexing follows the order
3708  * - pending hardirq update
3709  * - pending softirq update
3710  * - user_time
3711  * - idle_time
3712  * - system time
3713  *   - check for guest_time
3714  *   - else account as system_time
3715  *
3716  * Check for hardirq is done both for system and user time as there is
3717  * no timer going off while we are on hardirq and hence we may never get an
3718  * opportunity to update it solely in system time.
3719  * p->stime and friends are only updated on system time and not on irq
3720  * softirq as those do not count in task exec_runtime any more.
3721  */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq)3722 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3723 						struct rq *rq)
3724 {
3725 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3726 	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3727 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3728 
3729 	if (irqtime_account_hi_update()) {
3730 		cpustat->irq = cputime64_add(cpustat->irq, tmp);
3731 	} else if (irqtime_account_si_update()) {
3732 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3733 	} else if (this_cpu_ksoftirqd() == p) {
3734 		/*
3735 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 		 * So, we have to handle it separately here.
3737 		 * Also, p->stime needs to be updated for ksoftirqd.
3738 		 */
3739 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3740 					&cpustat->softirq);
3741 	} else if (user_tick) {
3742 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3743 	} else if (p == rq->idle) {
3744 		account_idle_time(cputime_one_jiffy);
3745 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
3746 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3747 	} else {
3748 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3749 					&cpustat->system);
3750 	}
3751 }
3752 
irqtime_account_idle_ticks(int ticks)3753 static void irqtime_account_idle_ticks(int ticks)
3754 {
3755 	int i;
3756 	struct rq *rq = this_rq();
3757 
3758 	for (i = 0; i < ticks; i++)
3759 		irqtime_account_process_tick(current, 0, rq);
3760 }
3761 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)3762 static void irqtime_account_idle_ticks(int ticks) {}
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq)3763 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3764 						struct rq *rq) {}
3765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3766 
3767 /*
3768  * Account a single tick of cpu time.
3769  * @p: the process that the cpu time gets accounted to
3770  * @user_tick: indicates if the tick is a user or a system tick
3771  */
account_process_tick(struct task_struct * p,int user_tick)3772 void account_process_tick(struct task_struct *p, int user_tick)
3773 {
3774 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3775 	struct rq *rq = this_rq();
3776 
3777 	if (sched_clock_irqtime) {
3778 		irqtime_account_process_tick(p, user_tick, rq);
3779 		return;
3780 	}
3781 
3782 	if (user_tick)
3783 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3784 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3785 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3786 				    one_jiffy_scaled);
3787 	else
3788 		account_idle_time(cputime_one_jiffy);
3789 }
3790 
3791 /*
3792  * Account multiple ticks of steal time.
3793  * @p: the process from which the cpu time has been stolen
3794  * @ticks: number of stolen ticks
3795  */
account_steal_ticks(unsigned long ticks)3796 void account_steal_ticks(unsigned long ticks)
3797 {
3798 	account_steal_time(jiffies_to_cputime(ticks));
3799 }
3800 
3801 /*
3802  * Account multiple ticks of idle time.
3803  * @ticks: number of stolen ticks
3804  */
account_idle_ticks(unsigned long ticks)3805 void account_idle_ticks(unsigned long ticks)
3806 {
3807 
3808 	if (sched_clock_irqtime) {
3809 		irqtime_account_idle_ticks(ticks);
3810 		return;
3811 	}
3812 
3813 	account_idle_time(jiffies_to_cputime(ticks));
3814 }
3815 
3816 #endif
3817 
3818 /*
3819  * Use precise platform statistics if available:
3820  */
3821 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
task_times(struct task_struct * p,cputime_t * ut,cputime_t * st)3822 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3823 {
3824 	*ut = p->utime;
3825 	*st = p->stime;
3826 }
3827 
thread_group_times(struct task_struct * p,cputime_t * ut,cputime_t * st)3828 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3829 {
3830 	struct task_cputime cputime;
3831 
3832 	thread_group_cputime(p, &cputime);
3833 
3834 	*ut = cputime.utime;
3835 	*st = cputime.stime;
3836 }
3837 #else
3838 
3839 #ifndef nsecs_to_cputime
3840 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3841 #endif
3842 
task_times(struct task_struct * p,cputime_t * ut,cputime_t * st)3843 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3844 {
3845 	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3846 
3847 	/*
3848 	 * Use CFS's precise accounting:
3849 	 */
3850 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3851 
3852 	if (total) {
3853 		u64 temp = rtime;
3854 
3855 		temp *= utime;
3856 		do_div(temp, total);
3857 		utime = (cputime_t)temp;
3858 	} else
3859 		utime = rtime;
3860 
3861 	/*
3862 	 * Compare with previous values, to keep monotonicity:
3863 	 */
3864 	p->prev_utime = max(p->prev_utime, utime);
3865 	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3866 
3867 	*ut = p->prev_utime;
3868 	*st = p->prev_stime;
3869 }
3870 
3871 /*
3872  * Must be called with siglock held.
3873  */
thread_group_times(struct task_struct * p,cputime_t * ut,cputime_t * st)3874 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3875 {
3876 	struct signal_struct *sig = p->signal;
3877 	struct task_cputime cputime;
3878 	cputime_t rtime, utime, total;
3879 
3880 	thread_group_cputime(p, &cputime);
3881 
3882 	total = cputime_add(cputime.utime, cputime.stime);
3883 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3884 
3885 	if (total) {
3886 		u64 temp = rtime;
3887 
3888 		temp *= cputime.utime;
3889 		do_div(temp, total);
3890 		utime = (cputime_t)temp;
3891 	} else
3892 		utime = rtime;
3893 
3894 	sig->prev_utime = max(sig->prev_utime, utime);
3895 	sig->prev_stime = max(sig->prev_stime,
3896 			      cputime_sub(rtime, sig->prev_utime));
3897 
3898 	*ut = sig->prev_utime;
3899 	*st = sig->prev_stime;
3900 }
3901 #endif
3902 
3903 /*
3904  * This function gets called by the timer code, with HZ frequency.
3905  * We call it with interrupts disabled.
3906  *
3907  * It also gets called by the fork code, when changing the parent's
3908  * timeslices.
3909  */
scheduler_tick(void)3910 void scheduler_tick(void)
3911 {
3912 	int cpu = smp_processor_id();
3913 	struct rq *rq = cpu_rq(cpu);
3914 	struct task_struct *curr = rq->curr;
3915 
3916 	sched_clock_tick();
3917 
3918 	raw_spin_lock(&rq->lock);
3919 	update_rq_clock(rq);
3920 	update_cpu_load_active(rq);
3921 	curr->sched_class->task_tick(rq, curr, 0);
3922 	raw_spin_unlock(&rq->lock);
3923 
3924 	perf_event_task_tick();
3925 
3926 #ifdef CONFIG_SMP
3927 	rq->idle_at_tick = idle_cpu(cpu);
3928 	trigger_load_balance(rq, cpu);
3929 #endif
3930 }
3931 
get_parent_ip(unsigned long addr)3932 notrace unsigned long get_parent_ip(unsigned long addr)
3933 {
3934 	if (in_lock_functions(addr)) {
3935 		addr = CALLER_ADDR2;
3936 		if (in_lock_functions(addr))
3937 			addr = CALLER_ADDR3;
3938 	}
3939 	return addr;
3940 }
3941 
3942 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 				defined(CONFIG_PREEMPT_TRACER))
3944 
add_preempt_count(int val)3945 void __kprobes add_preempt_count(int val)
3946 {
3947 #ifdef CONFIG_DEBUG_PREEMPT
3948 	/*
3949 	 * Underflow?
3950 	 */
3951 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3952 		return;
3953 #endif
3954 	preempt_count() += val;
3955 #ifdef CONFIG_DEBUG_PREEMPT
3956 	/*
3957 	 * Spinlock count overflowing soon?
3958 	 */
3959 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3960 				PREEMPT_MASK - 10);
3961 #endif
3962 	if (preempt_count() == val)
3963 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3964 }
3965 EXPORT_SYMBOL(add_preempt_count);
3966 
sub_preempt_count(int val)3967 void __kprobes sub_preempt_count(int val)
3968 {
3969 #ifdef CONFIG_DEBUG_PREEMPT
3970 	/*
3971 	 * Underflow?
3972 	 */
3973 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3974 		return;
3975 	/*
3976 	 * Is the spinlock portion underflowing?
3977 	 */
3978 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3979 			!(preempt_count() & PREEMPT_MASK)))
3980 		return;
3981 #endif
3982 
3983 	if (preempt_count() == val)
3984 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3985 	preempt_count() -= val;
3986 }
3987 EXPORT_SYMBOL(sub_preempt_count);
3988 
3989 #endif
3990 
3991 /*
3992  * Print scheduling while atomic bug:
3993  */
__schedule_bug(struct task_struct * prev)3994 static noinline void __schedule_bug(struct task_struct *prev)
3995 {
3996 	struct pt_regs *regs = get_irq_regs();
3997 
3998 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 		prev->comm, prev->pid, preempt_count());
4000 
4001 	debug_show_held_locks(prev);
4002 	print_modules();
4003 	if (irqs_disabled())
4004 		print_irqtrace_events(prev);
4005 
4006 	if (regs)
4007 		show_regs(regs);
4008 	else
4009 		dump_stack();
4010 }
4011 
4012 /*
4013  * Various schedule()-time debugging checks and statistics:
4014  */
schedule_debug(struct task_struct * prev)4015 static inline void schedule_debug(struct task_struct *prev)
4016 {
4017 	/*
4018 	 * Test if we are atomic. Since do_exit() needs to call into
4019 	 * schedule() atomically, we ignore that path for now.
4020 	 * Otherwise, whine if we are scheduling when we should not be.
4021 	 */
4022 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4023 		__schedule_bug(prev);
4024 
4025 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4026 
4027 	schedstat_inc(this_rq(), sched_count);
4028 #ifdef CONFIG_SCHEDSTATS
4029 	if (unlikely(prev->lock_depth >= 0)) {
4030 		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4031 		schedstat_inc(prev, sched_info.bkl_count);
4032 	}
4033 #endif
4034 }
4035 
put_prev_task(struct rq * rq,struct task_struct * prev)4036 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4037 {
4038 	if (prev->se.on_rq)
4039 		update_rq_clock(rq);
4040 	prev->sched_class->put_prev_task(rq, prev);
4041 }
4042 
4043 /*
4044  * Pick up the highest-prio task:
4045  */
4046 static inline struct task_struct *
pick_next_task(struct rq * rq)4047 pick_next_task(struct rq *rq)
4048 {
4049 	const struct sched_class *class;
4050 	struct task_struct *p;
4051 
4052 	/*
4053 	 * Optimization: we know that if all tasks are in
4054 	 * the fair class we can call that function directly:
4055 	 */
4056 	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4057 		p = fair_sched_class.pick_next_task(rq);
4058 		if (likely(p))
4059 			return p;
4060 	}
4061 
4062 	for_each_class(class) {
4063 		p = class->pick_next_task(rq);
4064 		if (p)
4065 			return p;
4066 	}
4067 
4068 	BUG(); /* the idle class will always have a runnable task */
4069 }
4070 
4071 /*
4072  * schedule() is the main scheduler function.
4073  */
schedule(void)4074 asmlinkage void __sched schedule(void)
4075 {
4076 	struct task_struct *prev, *next;
4077 	unsigned long *switch_count;
4078 	struct rq *rq;
4079 	int cpu;
4080 
4081 need_resched:
4082 	preempt_disable();
4083 	cpu = smp_processor_id();
4084 	rq = cpu_rq(cpu);
4085 	rcu_note_context_switch(cpu);
4086 	prev = rq->curr;
4087 
4088 	schedule_debug(prev);
4089 
4090 	if (sched_feat(HRTICK))
4091 		hrtick_clear(rq);
4092 
4093 	raw_spin_lock_irq(&rq->lock);
4094 
4095 	switch_count = &prev->nivcsw;
4096 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4097 		if (unlikely(signal_pending_state(prev->state, prev))) {
4098 			prev->state = TASK_RUNNING;
4099 		} else {
4100 			/*
4101 			 * If a worker is going to sleep, notify and
4102 			 * ask workqueue whether it wants to wake up a
4103 			 * task to maintain concurrency.  If so, wake
4104 			 * up the task.
4105 			 */
4106 			if (prev->flags & PF_WQ_WORKER) {
4107 				struct task_struct *to_wakeup;
4108 
4109 				to_wakeup = wq_worker_sleeping(prev, cpu);
4110 				if (to_wakeup)
4111 					try_to_wake_up_local(to_wakeup);
4112 			}
4113 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
4114 
4115 			/*
4116 			 * If we are going to sleep and we have plugged IO queued, make
4117 			 * sure to submit it to avoid deadlocks.
4118 			 */
4119 			if (blk_needs_flush_plug(prev)) {
4120 				raw_spin_unlock(&rq->lock);
4121 				blk_schedule_flush_plug(prev);
4122 				raw_spin_lock(&rq->lock);
4123 			}
4124 		}
4125 		switch_count = &prev->nvcsw;
4126 	}
4127 
4128 	pre_schedule(rq, prev);
4129 
4130 	if (unlikely(!rq->nr_running))
4131 		idle_balance(cpu, rq);
4132 
4133 	put_prev_task(rq, prev);
4134 	next = pick_next_task(rq);
4135 	clear_tsk_need_resched(prev);
4136 	rq->skip_clock_update = 0;
4137 
4138 	if (likely(prev != next)) {
4139 		rq->nr_switches++;
4140 		rq->curr = next;
4141 		++*switch_count;
4142 
4143 		context_switch(rq, prev, next); /* unlocks the rq */
4144 		/*
4145 		 * The context switch have flipped the stack from under us
4146 		 * and restored the local variables which were saved when
4147 		 * this task called schedule() in the past. prev == current
4148 		 * is still correct, but it can be moved to another cpu/rq.
4149 		 */
4150 		cpu = smp_processor_id();
4151 		rq = cpu_rq(cpu);
4152 	} else
4153 		raw_spin_unlock_irq(&rq->lock);
4154 
4155 	post_schedule(rq);
4156 
4157 	preempt_enable_no_resched();
4158 	if (need_resched())
4159 		goto need_resched;
4160 }
4161 EXPORT_SYMBOL(schedule);
4162 
4163 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4164 /*
4165  * Look out! "owner" is an entirely speculative pointer
4166  * access and not reliable.
4167  */
mutex_spin_on_owner(struct mutex * lock,struct thread_info * owner)4168 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4169 {
4170 	unsigned int cpu;
4171 	struct rq *rq;
4172 
4173 	if (!sched_feat(OWNER_SPIN))
4174 		return 0;
4175 
4176 #ifdef CONFIG_DEBUG_PAGEALLOC
4177 	/*
4178 	 * Need to access the cpu field knowing that
4179 	 * DEBUG_PAGEALLOC could have unmapped it if
4180 	 * the mutex owner just released it and exited.
4181 	 */
4182 	if (probe_kernel_address(&owner->cpu, cpu))
4183 		return 0;
4184 #else
4185 	cpu = owner->cpu;
4186 #endif
4187 
4188 	/*
4189 	 * Even if the access succeeded (likely case),
4190 	 * the cpu field may no longer be valid.
4191 	 */
4192 	if (cpu >= nr_cpumask_bits)
4193 		return 0;
4194 
4195 	/*
4196 	 * We need to validate that we can do a
4197 	 * get_cpu() and that we have the percpu area.
4198 	 */
4199 	if (!cpu_online(cpu))
4200 		return 0;
4201 
4202 	rq = cpu_rq(cpu);
4203 
4204 	for (;;) {
4205 		/*
4206 		 * Owner changed, break to re-assess state.
4207 		 */
4208 		if (lock->owner != owner) {
4209 			/*
4210 			 * If the lock has switched to a different owner,
4211 			 * we likely have heavy contention. Return 0 to quit
4212 			 * optimistic spinning and not contend further:
4213 			 */
4214 			if (lock->owner)
4215 				return 0;
4216 			break;
4217 		}
4218 
4219 		/*
4220 		 * Is that owner really running on that cpu?
4221 		 */
4222 		if (task_thread_info(rq->curr) != owner || need_resched())
4223 			return 0;
4224 
4225 		arch_mutex_cpu_relax();
4226 	}
4227 
4228 	return 1;
4229 }
4230 #endif
4231 
4232 #ifdef CONFIG_PREEMPT
4233 /*
4234  * this is the entry point to schedule() from in-kernel preemption
4235  * off of preempt_enable. Kernel preemptions off return from interrupt
4236  * occur there and call schedule directly.
4237  */
preempt_schedule(void)4238 asmlinkage void __sched notrace preempt_schedule(void)
4239 {
4240 	struct thread_info *ti = current_thread_info();
4241 
4242 	/*
4243 	 * If there is a non-zero preempt_count or interrupts are disabled,
4244 	 * we do not want to preempt the current task. Just return..
4245 	 */
4246 	if (likely(ti->preempt_count || irqs_disabled()))
4247 		return;
4248 
4249 	do {
4250 		add_preempt_count_notrace(PREEMPT_ACTIVE);
4251 		schedule();
4252 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
4253 
4254 		/*
4255 		 * Check again in case we missed a preemption opportunity
4256 		 * between schedule and now.
4257 		 */
4258 		barrier();
4259 	} while (need_resched());
4260 }
4261 EXPORT_SYMBOL(preempt_schedule);
4262 
4263 /*
4264  * this is the entry point to schedule() from kernel preemption
4265  * off of irq context.
4266  * Note, that this is called and return with irqs disabled. This will
4267  * protect us against recursive calling from irq.
4268  */
preempt_schedule_irq(void)4269 asmlinkage void __sched preempt_schedule_irq(void)
4270 {
4271 	struct thread_info *ti = current_thread_info();
4272 
4273 	/* Catch callers which need to be fixed */
4274 	BUG_ON(ti->preempt_count || !irqs_disabled());
4275 
4276 	do {
4277 		add_preempt_count(PREEMPT_ACTIVE);
4278 		local_irq_enable();
4279 		schedule();
4280 		local_irq_disable();
4281 		sub_preempt_count(PREEMPT_ACTIVE);
4282 
4283 		/*
4284 		 * Check again in case we missed a preemption opportunity
4285 		 * between schedule and now.
4286 		 */
4287 		barrier();
4288 	} while (need_resched());
4289 }
4290 
4291 #endif /* CONFIG_PREEMPT */
4292 
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)4293 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4294 			  void *key)
4295 {
4296 	return try_to_wake_up(curr->private, mode, wake_flags);
4297 }
4298 EXPORT_SYMBOL(default_wake_function);
4299 
4300 /*
4301  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4302  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4303  * number) then we wake all the non-exclusive tasks and one exclusive task.
4304  *
4305  * There are circumstances in which we can try to wake a task which has already
4306  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4307  * zero in this (rare) case, and we handle it by continuing to scan the queue.
4308  */
__wake_up_common(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,int wake_flags,void * key)4309 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4310 			int nr_exclusive, int wake_flags, void *key)
4311 {
4312 	wait_queue_t *curr, *next;
4313 
4314 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4315 		unsigned flags = curr->flags;
4316 
4317 		if (curr->func(curr, mode, wake_flags, key) &&
4318 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4319 			break;
4320 	}
4321 }
4322 
4323 /**
4324  * __wake_up - wake up threads blocked on a waitqueue.
4325  * @q: the waitqueue
4326  * @mode: which threads
4327  * @nr_exclusive: how many wake-one or wake-many threads to wake up
4328  * @key: is directly passed to the wakeup function
4329  *
4330  * It may be assumed that this function implies a write memory barrier before
4331  * changing the task state if and only if any tasks are woken up.
4332  */
__wake_up(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,void * key)4333 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4334 			int nr_exclusive, void *key)
4335 {
4336 	unsigned long flags;
4337 
4338 	spin_lock_irqsave(&q->lock, flags);
4339 	__wake_up_common(q, mode, nr_exclusive, 0, key);
4340 	spin_unlock_irqrestore(&q->lock, flags);
4341 }
4342 EXPORT_SYMBOL(__wake_up);
4343 
4344 /*
4345  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4346  */
__wake_up_locked(wait_queue_head_t * q,unsigned int mode)4347 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4348 {
4349 	__wake_up_common(q, mode, 1, 0, NULL);
4350 }
4351 EXPORT_SYMBOL_GPL(__wake_up_locked);
4352 
__wake_up_locked_key(wait_queue_head_t * q,unsigned int mode,void * key)4353 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4354 {
4355 	__wake_up_common(q, mode, 1, 0, key);
4356 }
4357 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4358 
4359 /**
4360  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4361  * @q: the waitqueue
4362  * @mode: which threads
4363  * @nr_exclusive: how many wake-one or wake-many threads to wake up
4364  * @key: opaque value to be passed to wakeup targets
4365  *
4366  * The sync wakeup differs that the waker knows that it will schedule
4367  * away soon, so while the target thread will be woken up, it will not
4368  * be migrated to another CPU - ie. the two threads are 'synchronized'
4369  * with each other. This can prevent needless bouncing between CPUs.
4370  *
4371  * On UP it can prevent extra preemption.
4372  *
4373  * It may be assumed that this function implies a write memory barrier before
4374  * changing the task state if and only if any tasks are woken up.
4375  */
__wake_up_sync_key(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,void * key)4376 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4377 			int nr_exclusive, void *key)
4378 {
4379 	unsigned long flags;
4380 	int wake_flags = WF_SYNC;
4381 
4382 	if (unlikely(!q))
4383 		return;
4384 
4385 	if (unlikely(!nr_exclusive))
4386 		wake_flags = 0;
4387 
4388 	spin_lock_irqsave(&q->lock, flags);
4389 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4390 	spin_unlock_irqrestore(&q->lock, flags);
4391 }
4392 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4393 
4394 /*
4395  * __wake_up_sync - see __wake_up_sync_key()
4396  */
__wake_up_sync(wait_queue_head_t * q,unsigned int mode,int nr_exclusive)4397 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4398 {
4399 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
4400 }
4401 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
4402 
4403 /**
4404  * complete: - signals a single thread waiting on this completion
4405  * @x:  holds the state of this particular completion
4406  *
4407  * This will wake up a single thread waiting on this completion. Threads will be
4408  * awakened in the same order in which they were queued.
4409  *
4410  * See also complete_all(), wait_for_completion() and related routines.
4411  *
4412  * It may be assumed that this function implies a write memory barrier before
4413  * changing the task state if and only if any tasks are woken up.
4414  */
complete(struct completion * x)4415 void complete(struct completion *x)
4416 {
4417 	unsigned long flags;
4418 
4419 	spin_lock_irqsave(&x->wait.lock, flags);
4420 	x->done++;
4421 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4422 	spin_unlock_irqrestore(&x->wait.lock, flags);
4423 }
4424 EXPORT_SYMBOL(complete);
4425 
4426 /**
4427  * complete_all: - signals all threads waiting on this completion
4428  * @x:  holds the state of this particular completion
4429  *
4430  * This will wake up all threads waiting on this particular completion event.
4431  *
4432  * It may be assumed that this function implies a write memory barrier before
4433  * changing the task state if and only if any tasks are woken up.
4434  */
complete_all(struct completion * x)4435 void complete_all(struct completion *x)
4436 {
4437 	unsigned long flags;
4438 
4439 	spin_lock_irqsave(&x->wait.lock, flags);
4440 	x->done += UINT_MAX/2;
4441 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4442 	spin_unlock_irqrestore(&x->wait.lock, flags);
4443 }
4444 EXPORT_SYMBOL(complete_all);
4445 
4446 static inline long __sched
do_wait_for_common(struct completion * x,long timeout,int state)4447 do_wait_for_common(struct completion *x, long timeout, int state)
4448 {
4449 	if (!x->done) {
4450 		DECLARE_WAITQUEUE(wait, current);
4451 
4452 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
4453 		do {
4454 			if (signal_pending_state(state, current)) {
4455 				timeout = -ERESTARTSYS;
4456 				break;
4457 			}
4458 			__set_current_state(state);
4459 			spin_unlock_irq(&x->wait.lock);
4460 			timeout = schedule_timeout(timeout);
4461 			spin_lock_irq(&x->wait.lock);
4462 		} while (!x->done && timeout);
4463 		__remove_wait_queue(&x->wait, &wait);
4464 		if (!x->done)
4465 			return timeout;
4466 	}
4467 	x->done--;
4468 	return timeout ?: 1;
4469 }
4470 
4471 static long __sched
wait_for_common(struct completion * x,long timeout,int state)4472 wait_for_common(struct completion *x, long timeout, int state)
4473 {
4474 	might_sleep();
4475 
4476 	spin_lock_irq(&x->wait.lock);
4477 	timeout = do_wait_for_common(x, timeout, state);
4478 	spin_unlock_irq(&x->wait.lock);
4479 	return timeout;
4480 }
4481 
4482 /**
4483  * wait_for_completion: - waits for completion of a task
4484  * @x:  holds the state of this particular completion
4485  *
4486  * This waits to be signaled for completion of a specific task. It is NOT
4487  * interruptible and there is no timeout.
4488  *
4489  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4490  * and interrupt capability. Also see complete().
4491  */
wait_for_completion(struct completion * x)4492 void __sched wait_for_completion(struct completion *x)
4493 {
4494 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4495 }
4496 EXPORT_SYMBOL(wait_for_completion);
4497 
4498 /**
4499  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4500  * @x:  holds the state of this particular completion
4501  * @timeout:  timeout value in jiffies
4502  *
4503  * This waits for either a completion of a specific task to be signaled or for a
4504  * specified timeout to expire. The timeout is in jiffies. It is not
4505  * interruptible.
4506  */
4507 unsigned long __sched
wait_for_completion_timeout(struct completion * x,unsigned long timeout)4508 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4509 {
4510 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4511 }
4512 EXPORT_SYMBOL(wait_for_completion_timeout);
4513 
4514 /**
4515  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4516  * @x:  holds the state of this particular completion
4517  *
4518  * This waits for completion of a specific task to be signaled. It is
4519  * interruptible.
4520  */
wait_for_completion_interruptible(struct completion * x)4521 int __sched wait_for_completion_interruptible(struct completion *x)
4522 {
4523 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4524 	if (t == -ERESTARTSYS)
4525 		return t;
4526 	return 0;
4527 }
4528 EXPORT_SYMBOL(wait_for_completion_interruptible);
4529 
4530 /**
4531  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4532  * @x:  holds the state of this particular completion
4533  * @timeout:  timeout value in jiffies
4534  *
4535  * This waits for either a completion of a specific task to be signaled or for a
4536  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4537  */
4538 long __sched
wait_for_completion_interruptible_timeout(struct completion * x,unsigned long timeout)4539 wait_for_completion_interruptible_timeout(struct completion *x,
4540 					  unsigned long timeout)
4541 {
4542 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4543 }
4544 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4545 
4546 /**
4547  * wait_for_completion_killable: - waits for completion of a task (killable)
4548  * @x:  holds the state of this particular completion
4549  *
4550  * This waits to be signaled for completion of a specific task. It can be
4551  * interrupted by a kill signal.
4552  */
wait_for_completion_killable(struct completion * x)4553 int __sched wait_for_completion_killable(struct completion *x)
4554 {
4555 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4556 	if (t == -ERESTARTSYS)
4557 		return t;
4558 	return 0;
4559 }
4560 EXPORT_SYMBOL(wait_for_completion_killable);
4561 
4562 /**
4563  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4564  * @x:  holds the state of this particular completion
4565  * @timeout:  timeout value in jiffies
4566  *
4567  * This waits for either a completion of a specific task to be
4568  * signaled or for a specified timeout to expire. It can be
4569  * interrupted by a kill signal. The timeout is in jiffies.
4570  */
4571 long __sched
wait_for_completion_killable_timeout(struct completion * x,unsigned long timeout)4572 wait_for_completion_killable_timeout(struct completion *x,
4573 				     unsigned long timeout)
4574 {
4575 	return wait_for_common(x, timeout, TASK_KILLABLE);
4576 }
4577 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4578 
4579 /**
4580  *	try_wait_for_completion - try to decrement a completion without blocking
4581  *	@x:	completion structure
4582  *
4583  *	Returns: 0 if a decrement cannot be done without blocking
4584  *		 1 if a decrement succeeded.
4585  *
4586  *	If a completion is being used as a counting completion,
4587  *	attempt to decrement the counter without blocking. This
4588  *	enables us to avoid waiting if the resource the completion
4589  *	is protecting is not available.
4590  */
try_wait_for_completion(struct completion * x)4591 bool try_wait_for_completion(struct completion *x)
4592 {
4593 	unsigned long flags;
4594 	int ret = 1;
4595 
4596 	spin_lock_irqsave(&x->wait.lock, flags);
4597 	if (!x->done)
4598 		ret = 0;
4599 	else
4600 		x->done--;
4601 	spin_unlock_irqrestore(&x->wait.lock, flags);
4602 	return ret;
4603 }
4604 EXPORT_SYMBOL(try_wait_for_completion);
4605 
4606 /**
4607  *	completion_done - Test to see if a completion has any waiters
4608  *	@x:	completion structure
4609  *
4610  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
4611  *		 1 if there are no waiters.
4612  *
4613  */
completion_done(struct completion * x)4614 bool completion_done(struct completion *x)
4615 {
4616 	unsigned long flags;
4617 	int ret = 1;
4618 
4619 	spin_lock_irqsave(&x->wait.lock, flags);
4620 	if (!x->done)
4621 		ret = 0;
4622 	spin_unlock_irqrestore(&x->wait.lock, flags);
4623 	return ret;
4624 }
4625 EXPORT_SYMBOL(completion_done);
4626 
4627 static long __sched
sleep_on_common(wait_queue_head_t * q,int state,long timeout)4628 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4629 {
4630 	unsigned long flags;
4631 	wait_queue_t wait;
4632 
4633 	init_waitqueue_entry(&wait, current);
4634 
4635 	__set_current_state(state);
4636 
4637 	spin_lock_irqsave(&q->lock, flags);
4638 	__add_wait_queue(q, &wait);
4639 	spin_unlock(&q->lock);
4640 	timeout = schedule_timeout(timeout);
4641 	spin_lock_irq(&q->lock);
4642 	__remove_wait_queue(q, &wait);
4643 	spin_unlock_irqrestore(&q->lock, flags);
4644 
4645 	return timeout;
4646 }
4647 
interruptible_sleep_on(wait_queue_head_t * q)4648 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4649 {
4650 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4651 }
4652 EXPORT_SYMBOL(interruptible_sleep_on);
4653 
4654 long __sched
interruptible_sleep_on_timeout(wait_queue_head_t * q,long timeout)4655 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4656 {
4657 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4658 }
4659 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4660 
sleep_on(wait_queue_head_t * q)4661 void __sched sleep_on(wait_queue_head_t *q)
4662 {
4663 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4664 }
4665 EXPORT_SYMBOL(sleep_on);
4666 
sleep_on_timeout(wait_queue_head_t * q,long timeout)4667 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4668 {
4669 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4670 }
4671 EXPORT_SYMBOL(sleep_on_timeout);
4672 
4673 #ifdef CONFIG_RT_MUTEXES
4674 
4675 /*
4676  * rt_mutex_setprio - set the current priority of a task
4677  * @p: task
4678  * @prio: prio value (kernel-internal form)
4679  *
4680  * This function changes the 'effective' priority of a task. It does
4681  * not touch ->normal_prio like __setscheduler().
4682  *
4683  * Used by the rt_mutex code to implement priority inheritance logic.
4684  */
rt_mutex_setprio(struct task_struct * p,int prio)4685 void rt_mutex_setprio(struct task_struct *p, int prio)
4686 {
4687 	unsigned long flags;
4688 	int oldprio, on_rq, running;
4689 	struct rq *rq;
4690 	const struct sched_class *prev_class;
4691 
4692 	BUG_ON(prio < 0 || prio > MAX_PRIO);
4693 
4694 	rq = task_rq_lock(p, &flags);
4695 
4696 	trace_sched_pi_setprio(p, prio);
4697 	oldprio = p->prio;
4698 	prev_class = p->sched_class;
4699 	on_rq = p->se.on_rq;
4700 	running = task_current(rq, p);
4701 	if (on_rq)
4702 		dequeue_task(rq, p, 0);
4703 	if (running)
4704 		p->sched_class->put_prev_task(rq, p);
4705 
4706 	if (rt_prio(prio))
4707 		p->sched_class = &rt_sched_class;
4708 	else
4709 		p->sched_class = &fair_sched_class;
4710 
4711 	p->prio = prio;
4712 
4713 	if (running)
4714 		p->sched_class->set_curr_task(rq);
4715 	if (on_rq)
4716 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4717 
4718 	check_class_changed(rq, p, prev_class, oldprio);
4719 	task_rq_unlock(rq, &flags);
4720 }
4721 
4722 #endif
4723 
set_user_nice(struct task_struct * p,long nice)4724 void set_user_nice(struct task_struct *p, long nice)
4725 {
4726 	int old_prio, delta, on_rq;
4727 	unsigned long flags;
4728 	struct rq *rq;
4729 
4730 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4731 		return;
4732 	/*
4733 	 * We have to be careful, if called from sys_setpriority(),
4734 	 * the task might be in the middle of scheduling on another CPU.
4735 	 */
4736 	rq = task_rq_lock(p, &flags);
4737 	/*
4738 	 * The RT priorities are set via sched_setscheduler(), but we still
4739 	 * allow the 'normal' nice value to be set - but as expected
4740 	 * it wont have any effect on scheduling until the task is
4741 	 * SCHED_FIFO/SCHED_RR:
4742 	 */
4743 	if (task_has_rt_policy(p)) {
4744 		p->static_prio = NICE_TO_PRIO(nice);
4745 		goto out_unlock;
4746 	}
4747 	on_rq = p->se.on_rq;
4748 	if (on_rq)
4749 		dequeue_task(rq, p, 0);
4750 
4751 	p->static_prio = NICE_TO_PRIO(nice);
4752 	set_load_weight(p);
4753 	old_prio = p->prio;
4754 	p->prio = effective_prio(p);
4755 	delta = p->prio - old_prio;
4756 
4757 	if (on_rq) {
4758 		enqueue_task(rq, p, 0);
4759 		/*
4760 		 * If the task increased its priority or is running and
4761 		 * lowered its priority, then reschedule its CPU:
4762 		 */
4763 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4764 			resched_task(rq->curr);
4765 	}
4766 out_unlock:
4767 	task_rq_unlock(rq, &flags);
4768 }
4769 EXPORT_SYMBOL(set_user_nice);
4770 
4771 /*
4772  * can_nice - check if a task can reduce its nice value
4773  * @p: task
4774  * @nice: nice value
4775  */
can_nice(const struct task_struct * p,const int nice)4776 int can_nice(const struct task_struct *p, const int nice)
4777 {
4778 	/* convert nice value [19,-20] to rlimit style value [1,40] */
4779 	int nice_rlim = 20 - nice;
4780 
4781 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4782 		capable(CAP_SYS_NICE));
4783 }
4784 
4785 #ifdef __ARCH_WANT_SYS_NICE
4786 
4787 /*
4788  * sys_nice - change the priority of the current process.
4789  * @increment: priority increment
4790  *
4791  * sys_setpriority is a more generic, but much slower function that
4792  * does similar things.
4793  */
SYSCALL_DEFINE1(nice,int,increment)4794 SYSCALL_DEFINE1(nice, int, increment)
4795 {
4796 	long nice, retval;
4797 
4798 	/*
4799 	 * Setpriority might change our priority at the same moment.
4800 	 * We don't have to worry. Conceptually one call occurs first
4801 	 * and we have a single winner.
4802 	 */
4803 	if (increment < -40)
4804 		increment = -40;
4805 	if (increment > 40)
4806 		increment = 40;
4807 
4808 	nice = TASK_NICE(current) + increment;
4809 	if (nice < -20)
4810 		nice = -20;
4811 	if (nice > 19)
4812 		nice = 19;
4813 
4814 	if (increment < 0 && !can_nice(current, nice))
4815 		return -EPERM;
4816 
4817 	retval = security_task_setnice(current, nice);
4818 	if (retval)
4819 		return retval;
4820 
4821 	set_user_nice(current, nice);
4822 	return 0;
4823 }
4824 
4825 #endif
4826 
4827 /**
4828  * task_prio - return the priority value of a given task.
4829  * @p: the task in question.
4830  *
4831  * This is the priority value as seen by users in /proc.
4832  * RT tasks are offset by -200. Normal tasks are centered
4833  * around 0, value goes from -16 to +15.
4834  */
task_prio(const struct task_struct * p)4835 int task_prio(const struct task_struct *p)
4836 {
4837 	return p->prio - MAX_RT_PRIO;
4838 }
4839 
4840 /**
4841  * task_nice - return the nice value of a given task.
4842  * @p: the task in question.
4843  */
task_nice(const struct task_struct * p)4844 int task_nice(const struct task_struct *p)
4845 {
4846 	return TASK_NICE(p);
4847 }
4848 EXPORT_SYMBOL(task_nice);
4849 
4850 /**
4851  * idle_cpu - is a given cpu idle currently?
4852  * @cpu: the processor in question.
4853  */
idle_cpu(int cpu)4854 int idle_cpu(int cpu)
4855 {
4856 	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4857 }
4858 
4859 /**
4860  * idle_task - return the idle task for a given cpu.
4861  * @cpu: the processor in question.
4862  */
idle_task(int cpu)4863 struct task_struct *idle_task(int cpu)
4864 {
4865 	return cpu_rq(cpu)->idle;
4866 }
4867 
4868 /**
4869  * find_process_by_pid - find a process with a matching PID value.
4870  * @pid: the pid in question.
4871  */
find_process_by_pid(pid_t pid)4872 static struct task_struct *find_process_by_pid(pid_t pid)
4873 {
4874 	return pid ? find_task_by_vpid(pid) : current;
4875 }
4876 
4877 /* Actually do priority change: must hold rq lock. */
4878 static void
__setscheduler(struct rq * rq,struct task_struct * p,int policy,int prio)4879 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4880 {
4881 	BUG_ON(p->se.on_rq);
4882 
4883 	p->policy = policy;
4884 	p->rt_priority = prio;
4885 	p->normal_prio = normal_prio(p);
4886 	/* we are holding p->pi_lock already */
4887 	p->prio = rt_mutex_getprio(p);
4888 	if (rt_prio(p->prio))
4889 		p->sched_class = &rt_sched_class;
4890 	else
4891 		p->sched_class = &fair_sched_class;
4892 	set_load_weight(p);
4893 }
4894 
4895 /*
4896  * check the target process has a UID that matches the current process's
4897  */
check_same_owner(struct task_struct * p)4898 static bool check_same_owner(struct task_struct *p)
4899 {
4900 	const struct cred *cred = current_cred(), *pcred;
4901 	bool match;
4902 
4903 	rcu_read_lock();
4904 	pcred = __task_cred(p);
4905 	if (cred->user->user_ns == pcred->user->user_ns)
4906 		match = (cred->euid == pcred->euid ||
4907 			 cred->euid == pcred->uid);
4908 	else
4909 		match = false;
4910 	rcu_read_unlock();
4911 	return match;
4912 }
4913 
__sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool user)4914 static int __sched_setscheduler(struct task_struct *p, int policy,
4915 				const struct sched_param *param, bool user)
4916 {
4917 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4918 	unsigned long flags;
4919 	const struct sched_class *prev_class;
4920 	struct rq *rq;
4921 	int reset_on_fork;
4922 
4923 	/* may grab non-irq protected spin_locks */
4924 	BUG_ON(in_interrupt());
4925 recheck:
4926 	/* double check policy once rq lock held */
4927 	if (policy < 0) {
4928 		reset_on_fork = p->sched_reset_on_fork;
4929 		policy = oldpolicy = p->policy;
4930 	} else {
4931 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4932 		policy &= ~SCHED_RESET_ON_FORK;
4933 
4934 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4935 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4936 				policy != SCHED_IDLE)
4937 			return -EINVAL;
4938 	}
4939 
4940 	/*
4941 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4942 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4943 	 * SCHED_BATCH and SCHED_IDLE is 0.
4944 	 */
4945 	if (param->sched_priority < 0 ||
4946 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4947 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4948 		return -EINVAL;
4949 	if (rt_policy(policy) != (param->sched_priority != 0))
4950 		return -EINVAL;
4951 
4952 	/*
4953 	 * Allow unprivileged RT tasks to decrease priority:
4954 	 */
4955 	if (user && !capable(CAP_SYS_NICE)) {
4956 		if (rt_policy(policy)) {
4957 			unsigned long rlim_rtprio =
4958 					task_rlimit(p, RLIMIT_RTPRIO);
4959 
4960 			/* can't set/change the rt policy */
4961 			if (policy != p->policy && !rlim_rtprio)
4962 				return -EPERM;
4963 
4964 			/* can't increase priority */
4965 			if (param->sched_priority > p->rt_priority &&
4966 			    param->sched_priority > rlim_rtprio)
4967 				return -EPERM;
4968 		}
4969 
4970 		/*
4971 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4972 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4973 		 */
4974 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4975 			if (!can_nice(p, TASK_NICE(p)))
4976 				return -EPERM;
4977 		}
4978 
4979 		/* can't change other user's priorities */
4980 		if (!check_same_owner(p))
4981 			return -EPERM;
4982 
4983 		/* Normal users shall not reset the sched_reset_on_fork flag */
4984 		if (p->sched_reset_on_fork && !reset_on_fork)
4985 			return -EPERM;
4986 	}
4987 
4988 	if (user) {
4989 		retval = security_task_setscheduler(p);
4990 		if (retval)
4991 			return retval;
4992 	}
4993 
4994 	/*
4995 	 * make sure no PI-waiters arrive (or leave) while we are
4996 	 * changing the priority of the task:
4997 	 */
4998 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4999 	/*
5000 	 * To be able to change p->policy safely, the appropriate
5001 	 * runqueue lock must be held.
5002 	 */
5003 	rq = __task_rq_lock(p);
5004 
5005 	/*
5006 	 * Changing the policy of the stop threads its a very bad idea
5007 	 */
5008 	if (p == rq->stop) {
5009 		__task_rq_unlock(rq);
5010 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5011 		return -EINVAL;
5012 	}
5013 
5014 	/*
5015 	 * If not changing anything there's no need to proceed further:
5016 	 */
5017 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5018 			param->sched_priority == p->rt_priority))) {
5019 
5020 		__task_rq_unlock(rq);
5021 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5022 		return 0;
5023 	}
5024 
5025 #ifdef CONFIG_RT_GROUP_SCHED
5026 	if (user) {
5027 		/*
5028 		 * Do not allow realtime tasks into groups that have no runtime
5029 		 * assigned.
5030 		 */
5031 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5032 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5033 				!task_group_is_autogroup(task_group(p))) {
5034 			__task_rq_unlock(rq);
5035 			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5036 			return -EPERM;
5037 		}
5038 	}
5039 #endif
5040 
5041 	/* recheck policy now with rq lock held */
5042 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5043 		policy = oldpolicy = -1;
5044 		__task_rq_unlock(rq);
5045 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5046 		goto recheck;
5047 	}
5048 	on_rq = p->se.on_rq;
5049 	running = task_current(rq, p);
5050 	if (on_rq)
5051 		deactivate_task(rq, p, 0);
5052 	if (running)
5053 		p->sched_class->put_prev_task(rq, p);
5054 
5055 	p->sched_reset_on_fork = reset_on_fork;
5056 
5057 	oldprio = p->prio;
5058 	prev_class = p->sched_class;
5059 	__setscheduler(rq, p, policy, param->sched_priority);
5060 
5061 	if (running)
5062 		p->sched_class->set_curr_task(rq);
5063 	if (on_rq)
5064 		activate_task(rq, p, 0);
5065 
5066 	check_class_changed(rq, p, prev_class, oldprio);
5067 	__task_rq_unlock(rq);
5068 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5069 
5070 	rt_mutex_adjust_pi(p);
5071 
5072 	return 0;
5073 }
5074 
5075 /**
5076  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5077  * @p: the task in question.
5078  * @policy: new policy.
5079  * @param: structure containing the new RT priority.
5080  *
5081  * NOTE that the task may be already dead.
5082  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5083 int sched_setscheduler(struct task_struct *p, int policy,
5084 		       const struct sched_param *param)
5085 {
5086 	return __sched_setscheduler(p, policy, param, true);
5087 }
5088 EXPORT_SYMBOL_GPL(sched_setscheduler);
5089 
5090 /**
5091  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5092  * @p: the task in question.
5093  * @policy: new policy.
5094  * @param: structure containing the new RT priority.
5095  *
5096  * Just like sched_setscheduler, only don't bother checking if the
5097  * current context has permission.  For example, this is needed in
5098  * stop_machine(): we create temporary high priority worker threads,
5099  * but our caller might not have that capability.
5100  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5101 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5102 			       const struct sched_param *param)
5103 {
5104 	return __sched_setscheduler(p, policy, param, false);
5105 }
5106 
5107 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5108 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5109 {
5110 	struct sched_param lparam;
5111 	struct task_struct *p;
5112 	int retval;
5113 
5114 	if (!param || pid < 0)
5115 		return -EINVAL;
5116 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5117 		return -EFAULT;
5118 
5119 	rcu_read_lock();
5120 	retval = -ESRCH;
5121 	p = find_process_by_pid(pid);
5122 	if (p != NULL)
5123 		retval = sched_setscheduler(p, policy, &lparam);
5124 	rcu_read_unlock();
5125 
5126 	return retval;
5127 }
5128 
5129 /**
5130  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5131  * @pid: the pid in question.
5132  * @policy: new policy.
5133  * @param: structure containing the new RT priority.
5134  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5135 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5136 		struct sched_param __user *, param)
5137 {
5138 	/* negative values for policy are not valid */
5139 	if (policy < 0)
5140 		return -EINVAL;
5141 
5142 	return do_sched_setscheduler(pid, policy, param);
5143 }
5144 
5145 /**
5146  * sys_sched_setparam - set/change the RT priority of a thread
5147  * @pid: the pid in question.
5148  * @param: structure containing the new RT priority.
5149  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5150 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5151 {
5152 	return do_sched_setscheduler(pid, -1, param);
5153 }
5154 
5155 /**
5156  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5157  * @pid: the pid in question.
5158  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5159 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5160 {
5161 	struct task_struct *p;
5162 	int retval;
5163 
5164 	if (pid < 0)
5165 		return -EINVAL;
5166 
5167 	retval = -ESRCH;
5168 	rcu_read_lock();
5169 	p = find_process_by_pid(pid);
5170 	if (p) {
5171 		retval = security_task_getscheduler(p);
5172 		if (!retval)
5173 			retval = p->policy
5174 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5175 	}
5176 	rcu_read_unlock();
5177 	return retval;
5178 }
5179 
5180 /**
5181  * sys_sched_getparam - get the RT priority of a thread
5182  * @pid: the pid in question.
5183  * @param: structure containing the RT priority.
5184  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5185 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5186 {
5187 	struct sched_param lp;
5188 	struct task_struct *p;
5189 	int retval;
5190 
5191 	if (!param || pid < 0)
5192 		return -EINVAL;
5193 
5194 	rcu_read_lock();
5195 	p = find_process_by_pid(pid);
5196 	retval = -ESRCH;
5197 	if (!p)
5198 		goto out_unlock;
5199 
5200 	retval = security_task_getscheduler(p);
5201 	if (retval)
5202 		goto out_unlock;
5203 
5204 	lp.sched_priority = p->rt_priority;
5205 	rcu_read_unlock();
5206 
5207 	/*
5208 	 * This one might sleep, we cannot do it with a spinlock held ...
5209 	 */
5210 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5211 
5212 	return retval;
5213 
5214 out_unlock:
5215 	rcu_read_unlock();
5216 	return retval;
5217 }
5218 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)5219 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5220 {
5221 	cpumask_var_t cpus_allowed, new_mask;
5222 	struct task_struct *p;
5223 	int retval;
5224 
5225 	get_online_cpus();
5226 	rcu_read_lock();
5227 
5228 	p = find_process_by_pid(pid);
5229 	if (!p) {
5230 		rcu_read_unlock();
5231 		put_online_cpus();
5232 		return -ESRCH;
5233 	}
5234 
5235 	/* Prevent p going away */
5236 	get_task_struct(p);
5237 	rcu_read_unlock();
5238 
5239 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5240 		retval = -ENOMEM;
5241 		goto out_put_task;
5242 	}
5243 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5244 		retval = -ENOMEM;
5245 		goto out_free_cpus_allowed;
5246 	}
5247 	retval = -EPERM;
5248 	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5249 		goto out_unlock;
5250 
5251 	retval = security_task_setscheduler(p);
5252 	if (retval)
5253 		goto out_unlock;
5254 
5255 	cpuset_cpus_allowed(p, cpus_allowed);
5256 	cpumask_and(new_mask, in_mask, cpus_allowed);
5257 again:
5258 	retval = set_cpus_allowed_ptr(p, new_mask);
5259 
5260 	if (!retval) {
5261 		cpuset_cpus_allowed(p, cpus_allowed);
5262 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5263 			/*
5264 			 * We must have raced with a concurrent cpuset
5265 			 * update. Just reset the cpus_allowed to the
5266 			 * cpuset's cpus_allowed
5267 			 */
5268 			cpumask_copy(new_mask, cpus_allowed);
5269 			goto again;
5270 		}
5271 	}
5272 out_unlock:
5273 	free_cpumask_var(new_mask);
5274 out_free_cpus_allowed:
5275 	free_cpumask_var(cpus_allowed);
5276 out_put_task:
5277 	put_task_struct(p);
5278 	put_online_cpus();
5279 	return retval;
5280 }
5281 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)5282 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5283 			     struct cpumask *new_mask)
5284 {
5285 	if (len < cpumask_size())
5286 		cpumask_clear(new_mask);
5287 	else if (len > cpumask_size())
5288 		len = cpumask_size();
5289 
5290 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5291 }
5292 
5293 /**
5294  * sys_sched_setaffinity - set the cpu affinity of a process
5295  * @pid: pid of the process
5296  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5297  * @user_mask_ptr: user-space pointer to the new cpu mask
5298  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5299 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5300 		unsigned long __user *, user_mask_ptr)
5301 {
5302 	cpumask_var_t new_mask;
5303 	int retval;
5304 
5305 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5306 		return -ENOMEM;
5307 
5308 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5309 	if (retval == 0)
5310 		retval = sched_setaffinity(pid, new_mask);
5311 	free_cpumask_var(new_mask);
5312 	return retval;
5313 }
5314 
sched_getaffinity(pid_t pid,struct cpumask * mask)5315 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5316 {
5317 	struct task_struct *p;
5318 	unsigned long flags;
5319 	struct rq *rq;
5320 	int retval;
5321 
5322 	get_online_cpus();
5323 	rcu_read_lock();
5324 
5325 	retval = -ESRCH;
5326 	p = find_process_by_pid(pid);
5327 	if (!p)
5328 		goto out_unlock;
5329 
5330 	retval = security_task_getscheduler(p);
5331 	if (retval)
5332 		goto out_unlock;
5333 
5334 	rq = task_rq_lock(p, &flags);
5335 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5336 	task_rq_unlock(rq, &flags);
5337 
5338 out_unlock:
5339 	rcu_read_unlock();
5340 	put_online_cpus();
5341 
5342 	return retval;
5343 }
5344 
5345 /**
5346  * sys_sched_getaffinity - get the cpu affinity of a process
5347  * @pid: pid of the process
5348  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5349  * @user_mask_ptr: user-space pointer to hold the current cpu mask
5350  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5351 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5352 		unsigned long __user *, user_mask_ptr)
5353 {
5354 	int ret;
5355 	cpumask_var_t mask;
5356 
5357 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5358 		return -EINVAL;
5359 	if (len & (sizeof(unsigned long)-1))
5360 		return -EINVAL;
5361 
5362 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5363 		return -ENOMEM;
5364 
5365 	ret = sched_getaffinity(pid, mask);
5366 	if (ret == 0) {
5367 		size_t retlen = min_t(size_t, len, cpumask_size());
5368 
5369 		if (copy_to_user(user_mask_ptr, mask, retlen))
5370 			ret = -EFAULT;
5371 		else
5372 			ret = retlen;
5373 	}
5374 	free_cpumask_var(mask);
5375 
5376 	return ret;
5377 }
5378 
5379 /**
5380  * sys_sched_yield - yield the current processor to other threads.
5381  *
5382  * This function yields the current CPU to other tasks. If there are no
5383  * other threads running on this CPU then this function will return.
5384  */
SYSCALL_DEFINE0(sched_yield)5385 SYSCALL_DEFINE0(sched_yield)
5386 {
5387 	struct rq *rq = this_rq_lock();
5388 
5389 	schedstat_inc(rq, yld_count);
5390 	current->sched_class->yield_task(rq);
5391 
5392 	/*
5393 	 * Since we are going to call schedule() anyway, there's
5394 	 * no need to preempt or enable interrupts:
5395 	 */
5396 	__release(rq->lock);
5397 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5398 	do_raw_spin_unlock(&rq->lock);
5399 	preempt_enable_no_resched();
5400 
5401 	schedule();
5402 
5403 	return 0;
5404 }
5405 
should_resched(void)5406 static inline int should_resched(void)
5407 {
5408 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5409 }
5410 
__cond_resched(void)5411 static void __cond_resched(void)
5412 {
5413 	add_preempt_count(PREEMPT_ACTIVE);
5414 	schedule();
5415 	sub_preempt_count(PREEMPT_ACTIVE);
5416 }
5417 
_cond_resched(void)5418 int __sched _cond_resched(void)
5419 {
5420 	if (should_resched()) {
5421 		__cond_resched();
5422 		return 1;
5423 	}
5424 	return 0;
5425 }
5426 EXPORT_SYMBOL(_cond_resched);
5427 
5428 /*
5429  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5430  * call schedule, and on return reacquire the lock.
5431  *
5432  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5433  * operations here to prevent schedule() from being called twice (once via
5434  * spin_unlock(), once by hand).
5435  */
__cond_resched_lock(spinlock_t * lock)5436 int __cond_resched_lock(spinlock_t *lock)
5437 {
5438 	int resched = should_resched();
5439 	int ret = 0;
5440 
5441 	lockdep_assert_held(lock);
5442 
5443 	if (spin_needbreak(lock) || resched) {
5444 		spin_unlock(lock);
5445 		if (resched)
5446 			__cond_resched();
5447 		else
5448 			cpu_relax();
5449 		ret = 1;
5450 		spin_lock(lock);
5451 	}
5452 	return ret;
5453 }
5454 EXPORT_SYMBOL(__cond_resched_lock);
5455 
__cond_resched_softirq(void)5456 int __sched __cond_resched_softirq(void)
5457 {
5458 	BUG_ON(!in_softirq());
5459 
5460 	if (should_resched()) {
5461 		local_bh_enable();
5462 		__cond_resched();
5463 		local_bh_disable();
5464 		return 1;
5465 	}
5466 	return 0;
5467 }
5468 EXPORT_SYMBOL(__cond_resched_softirq);
5469 
5470 /**
5471  * yield - yield the current processor to other threads.
5472  *
5473  * This is a shortcut for kernel-space yielding - it marks the
5474  * thread runnable and calls sys_sched_yield().
5475  */
yield(void)5476 void __sched yield(void)
5477 {
5478 	set_current_state(TASK_RUNNING);
5479 	sys_sched_yield();
5480 }
5481 EXPORT_SYMBOL(yield);
5482 
5483 /**
5484  * yield_to - yield the current processor to another thread in
5485  * your thread group, or accelerate that thread toward the
5486  * processor it's on.
5487  * @p: target task
5488  * @preempt: whether task preemption is allowed or not
5489  *
5490  * It's the caller's job to ensure that the target task struct
5491  * can't go away on us before we can do any checks.
5492  *
5493  * Returns true if we indeed boosted the target task.
5494  */
yield_to(struct task_struct * p,bool preempt)5495 bool __sched yield_to(struct task_struct *p, bool preempt)
5496 {
5497 	struct task_struct *curr = current;
5498 	struct rq *rq, *p_rq;
5499 	unsigned long flags;
5500 	bool yielded = 0;
5501 
5502 	local_irq_save(flags);
5503 	rq = this_rq();
5504 
5505 again:
5506 	p_rq = task_rq(p);
5507 	double_rq_lock(rq, p_rq);
5508 	while (task_rq(p) != p_rq) {
5509 		double_rq_unlock(rq, p_rq);
5510 		goto again;
5511 	}
5512 
5513 	if (!curr->sched_class->yield_to_task)
5514 		goto out;
5515 
5516 	if (curr->sched_class != p->sched_class)
5517 		goto out;
5518 
5519 	if (task_running(p_rq, p) || p->state)
5520 		goto out;
5521 
5522 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5523 	if (yielded) {
5524 		schedstat_inc(rq, yld_count);
5525 		/*
5526 		 * Make p's CPU reschedule; pick_next_entity takes care of
5527 		 * fairness.
5528 		 */
5529 		if (preempt && rq != p_rq)
5530 			resched_task(p_rq->curr);
5531 	}
5532 
5533 out:
5534 	double_rq_unlock(rq, p_rq);
5535 	local_irq_restore(flags);
5536 
5537 	if (yielded)
5538 		schedule();
5539 
5540 	return yielded;
5541 }
5542 EXPORT_SYMBOL_GPL(yield_to);
5543 
5544 /*
5545  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5546  * that process accounting knows that this is a task in IO wait state.
5547  */
io_schedule(void)5548 void __sched io_schedule(void)
5549 {
5550 	struct rq *rq = raw_rq();
5551 
5552 	delayacct_blkio_start();
5553 	atomic_inc(&rq->nr_iowait);
5554 	blk_flush_plug(current);
5555 	current->in_iowait = 1;
5556 	schedule();
5557 	current->in_iowait = 0;
5558 	atomic_dec(&rq->nr_iowait);
5559 	delayacct_blkio_end();
5560 }
5561 EXPORT_SYMBOL(io_schedule);
5562 
io_schedule_timeout(long timeout)5563 long __sched io_schedule_timeout(long timeout)
5564 {
5565 	struct rq *rq = raw_rq();
5566 	long ret;
5567 
5568 	delayacct_blkio_start();
5569 	atomic_inc(&rq->nr_iowait);
5570 	blk_flush_plug(current);
5571 	current->in_iowait = 1;
5572 	ret = schedule_timeout(timeout);
5573 	current->in_iowait = 0;
5574 	atomic_dec(&rq->nr_iowait);
5575 	delayacct_blkio_end();
5576 	return ret;
5577 }
5578 
5579 /**
5580  * sys_sched_get_priority_max - return maximum RT priority.
5581  * @policy: scheduling class.
5582  *
5583  * this syscall returns the maximum rt_priority that can be used
5584  * by a given scheduling class.
5585  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5586 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5587 {
5588 	int ret = -EINVAL;
5589 
5590 	switch (policy) {
5591 	case SCHED_FIFO:
5592 	case SCHED_RR:
5593 		ret = MAX_USER_RT_PRIO-1;
5594 		break;
5595 	case SCHED_NORMAL:
5596 	case SCHED_BATCH:
5597 	case SCHED_IDLE:
5598 		ret = 0;
5599 		break;
5600 	}
5601 	return ret;
5602 }
5603 
5604 /**
5605  * sys_sched_get_priority_min - return minimum RT priority.
5606  * @policy: scheduling class.
5607  *
5608  * this syscall returns the minimum rt_priority that can be used
5609  * by a given scheduling class.
5610  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5611 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5612 {
5613 	int ret = -EINVAL;
5614 
5615 	switch (policy) {
5616 	case SCHED_FIFO:
5617 	case SCHED_RR:
5618 		ret = 1;
5619 		break;
5620 	case SCHED_NORMAL:
5621 	case SCHED_BATCH:
5622 	case SCHED_IDLE:
5623 		ret = 0;
5624 	}
5625 	return ret;
5626 }
5627 
5628 /**
5629  * sys_sched_rr_get_interval - return the default timeslice of a process.
5630  * @pid: pid of the process.
5631  * @interval: userspace pointer to the timeslice value.
5632  *
5633  * this syscall writes the default timeslice value of a given process
5634  * into the user-space timespec buffer. A value of '0' means infinity.
5635  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5636 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5637 		struct timespec __user *, interval)
5638 {
5639 	struct task_struct *p;
5640 	unsigned int time_slice;
5641 	unsigned long flags;
5642 	struct rq *rq;
5643 	int retval;
5644 	struct timespec t;
5645 
5646 	if (pid < 0)
5647 		return -EINVAL;
5648 
5649 	retval = -ESRCH;
5650 	rcu_read_lock();
5651 	p = find_process_by_pid(pid);
5652 	if (!p)
5653 		goto out_unlock;
5654 
5655 	retval = security_task_getscheduler(p);
5656 	if (retval)
5657 		goto out_unlock;
5658 
5659 	rq = task_rq_lock(p, &flags);
5660 	time_slice = p->sched_class->get_rr_interval(rq, p);
5661 	task_rq_unlock(rq, &flags);
5662 
5663 	rcu_read_unlock();
5664 	jiffies_to_timespec(time_slice, &t);
5665 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5666 	return retval;
5667 
5668 out_unlock:
5669 	rcu_read_unlock();
5670 	return retval;
5671 }
5672 
5673 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5674 
sched_show_task(struct task_struct * p)5675 void sched_show_task(struct task_struct *p)
5676 {
5677 	unsigned long free = 0;
5678 	unsigned state;
5679 
5680 	state = p->state ? __ffs(p->state) + 1 : 0;
5681 	printk(KERN_INFO "%-15.15s %c", p->comm,
5682 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5683 #if BITS_PER_LONG == 32
5684 	if (state == TASK_RUNNING)
5685 		printk(KERN_CONT " running  ");
5686 	else
5687 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5688 #else
5689 	if (state == TASK_RUNNING)
5690 		printk(KERN_CONT "  running task    ");
5691 	else
5692 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5693 #endif
5694 #ifdef CONFIG_DEBUG_STACK_USAGE
5695 	free = stack_not_used(p);
5696 #endif
5697 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5698 		task_pid_nr(p), task_pid_nr(p->real_parent),
5699 		(unsigned long)task_thread_info(p)->flags);
5700 
5701 	show_stack(p, NULL);
5702 }
5703 
show_state_filter(unsigned long state_filter)5704 void show_state_filter(unsigned long state_filter)
5705 {
5706 	struct task_struct *g, *p;
5707 
5708 #if BITS_PER_LONG == 32
5709 	printk(KERN_INFO
5710 		"  task                PC stack   pid father\n");
5711 #else
5712 	printk(KERN_INFO
5713 		"  task                        PC stack   pid father\n");
5714 #endif
5715 	read_lock(&tasklist_lock);
5716 	do_each_thread(g, p) {
5717 		/*
5718 		 * reset the NMI-timeout, listing all files on a slow
5719 		 * console might take a lot of time:
5720 		 */
5721 		touch_nmi_watchdog();
5722 		if (!state_filter || (p->state & state_filter))
5723 			sched_show_task(p);
5724 	} while_each_thread(g, p);
5725 
5726 	touch_all_softlockup_watchdogs();
5727 
5728 #ifdef CONFIG_SCHED_DEBUG
5729 	sysrq_sched_debug_show();
5730 #endif
5731 	read_unlock(&tasklist_lock);
5732 	/*
5733 	 * Only show locks if all tasks are dumped:
5734 	 */
5735 	if (!state_filter)
5736 		debug_show_all_locks();
5737 }
5738 
init_idle_bootup_task(struct task_struct * idle)5739 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5740 {
5741 	idle->sched_class = &idle_sched_class;
5742 }
5743 
5744 /**
5745  * init_idle - set up an idle thread for a given CPU
5746  * @idle: task in question
5747  * @cpu: cpu the idle task belongs to
5748  *
5749  * NOTE: this function does not set the idle thread's NEED_RESCHED
5750  * flag, to make booting more robust.
5751  */
init_idle(struct task_struct * idle,int cpu)5752 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5753 {
5754 	struct rq *rq = cpu_rq(cpu);
5755 	unsigned long flags;
5756 
5757 	raw_spin_lock_irqsave(&rq->lock, flags);
5758 
5759 	__sched_fork(idle);
5760 	idle->state = TASK_RUNNING;
5761 	idle->se.exec_start = sched_clock();
5762 
5763 	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5764 	/*
5765 	 * We're having a chicken and egg problem, even though we are
5766 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5767 	 * lockdep check in task_group() will fail.
5768 	 *
5769 	 * Similar case to sched_fork(). / Alternatively we could
5770 	 * use task_rq_lock() here and obtain the other rq->lock.
5771 	 *
5772 	 * Silence PROVE_RCU
5773 	 */
5774 	rcu_read_lock();
5775 	__set_task_cpu(idle, cpu);
5776 	rcu_read_unlock();
5777 
5778 	rq->curr = rq->idle = idle;
5779 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5780 	idle->oncpu = 1;
5781 #endif
5782 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5783 
5784 	/* Set the preempt count _outside_ the spinlocks! */
5785 #if defined(CONFIG_PREEMPT)
5786 	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5787 #else
5788 	task_thread_info(idle)->preempt_count = 0;
5789 #endif
5790 	/*
5791 	 * The idle tasks have their own, simple scheduling class:
5792 	 */
5793 	idle->sched_class = &idle_sched_class;
5794 	ftrace_graph_init_idle_task(idle, cpu);
5795 }
5796 
5797 /*
5798  * In a system that switches off the HZ timer nohz_cpu_mask
5799  * indicates which cpus entered this state. This is used
5800  * in the rcu update to wait only for active cpus. For system
5801  * which do not switch off the HZ timer nohz_cpu_mask should
5802  * always be CPU_BITS_NONE.
5803  */
5804 cpumask_var_t nohz_cpu_mask;
5805 
5806 /*
5807  * Increase the granularity value when there are more CPUs,
5808  * because with more CPUs the 'effective latency' as visible
5809  * to users decreases. But the relationship is not linear,
5810  * so pick a second-best guess by going with the log2 of the
5811  * number of CPUs.
5812  *
5813  * This idea comes from the SD scheduler of Con Kolivas:
5814  */
get_update_sysctl_factor(void)5815 static int get_update_sysctl_factor(void)
5816 {
5817 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5818 	unsigned int factor;
5819 
5820 	switch (sysctl_sched_tunable_scaling) {
5821 	case SCHED_TUNABLESCALING_NONE:
5822 		factor = 1;
5823 		break;
5824 	case SCHED_TUNABLESCALING_LINEAR:
5825 		factor = cpus;
5826 		break;
5827 	case SCHED_TUNABLESCALING_LOG:
5828 	default:
5829 		factor = 1 + ilog2(cpus);
5830 		break;
5831 	}
5832 
5833 	return factor;
5834 }
5835 
update_sysctl(void)5836 static void update_sysctl(void)
5837 {
5838 	unsigned int factor = get_update_sysctl_factor();
5839 
5840 #define SET_SYSCTL(name) \
5841 	(sysctl_##name = (factor) * normalized_sysctl_##name)
5842 	SET_SYSCTL(sched_min_granularity);
5843 	SET_SYSCTL(sched_latency);
5844 	SET_SYSCTL(sched_wakeup_granularity);
5845 #undef SET_SYSCTL
5846 }
5847 
sched_init_granularity(void)5848 static inline void sched_init_granularity(void)
5849 {
5850 	update_sysctl();
5851 }
5852 
5853 #ifdef CONFIG_SMP
5854 /*
5855  * This is how migration works:
5856  *
5857  * 1) we invoke migration_cpu_stop() on the target CPU using
5858  *    stop_one_cpu().
5859  * 2) stopper starts to run (implicitly forcing the migrated thread
5860  *    off the CPU)
5861  * 3) it checks whether the migrated task is still in the wrong runqueue.
5862  * 4) if it's in the wrong runqueue then the migration thread removes
5863  *    it and puts it into the right queue.
5864  * 5) stopper completes and stop_one_cpu() returns and the migration
5865  *    is done.
5866  */
5867 
5868 /*
5869  * Change a given task's CPU affinity. Migrate the thread to a
5870  * proper CPU and schedule it away if the CPU it's executing on
5871  * is removed from the allowed bitmask.
5872  *
5873  * NOTE: the caller must have a valid reference to the task, the
5874  * task must not exit() & deallocate itself prematurely. The
5875  * call is not atomic; no spinlocks may be held.
5876  */
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)5877 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5878 {
5879 	unsigned long flags;
5880 	struct rq *rq;
5881 	unsigned int dest_cpu;
5882 	int ret = 0;
5883 
5884 	/*
5885 	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5886 	 * drop the rq->lock and still rely on ->cpus_allowed.
5887 	 */
5888 again:
5889 	while (task_is_waking(p))
5890 		cpu_relax();
5891 	rq = task_rq_lock(p, &flags);
5892 	if (task_is_waking(p)) {
5893 		task_rq_unlock(rq, &flags);
5894 		goto again;
5895 	}
5896 
5897 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5898 		ret = -EINVAL;
5899 		goto out;
5900 	}
5901 
5902 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5903 		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5904 		ret = -EINVAL;
5905 		goto out;
5906 	}
5907 
5908 	if (p->sched_class->set_cpus_allowed)
5909 		p->sched_class->set_cpus_allowed(p, new_mask);
5910 	else {
5911 		cpumask_copy(&p->cpus_allowed, new_mask);
5912 		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5913 	}
5914 
5915 	/* Can the task run on the task's current CPU? If so, we're done */
5916 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5917 		goto out;
5918 
5919 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5920 	if (migrate_task(p, rq)) {
5921 		struct migration_arg arg = { p, dest_cpu };
5922 		/* Need help from migration thread: drop lock and wait. */
5923 		task_rq_unlock(rq, &flags);
5924 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5925 		tlb_migrate_finish(p->mm);
5926 		return 0;
5927 	}
5928 out:
5929 	task_rq_unlock(rq, &flags);
5930 
5931 	return ret;
5932 }
5933 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5934 
5935 /*
5936  * Move (not current) task off this cpu, onto dest cpu. We're doing
5937  * this because either it can't run here any more (set_cpus_allowed()
5938  * away from this CPU, or CPU going down), or because we're
5939  * attempting to rebalance this task on exec (sched_exec).
5940  *
5941  * So we race with normal scheduler movements, but that's OK, as long
5942  * as the task is no longer on this CPU.
5943  *
5944  * Returns non-zero if task was successfully migrated.
5945  */
__migrate_task(struct task_struct * p,int src_cpu,int dest_cpu)5946 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5947 {
5948 	struct rq *rq_dest, *rq_src;
5949 	int ret = 0;
5950 
5951 	if (unlikely(!cpu_active(dest_cpu)))
5952 		return ret;
5953 
5954 	rq_src = cpu_rq(src_cpu);
5955 	rq_dest = cpu_rq(dest_cpu);
5956 
5957 	double_rq_lock(rq_src, rq_dest);
5958 	/* Already moved. */
5959 	if (task_cpu(p) != src_cpu)
5960 		goto done;
5961 	/* Affinity changed (again). */
5962 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5963 		goto fail;
5964 
5965 	/*
5966 	 * If we're not on a rq, the next wake-up will ensure we're
5967 	 * placed properly.
5968 	 */
5969 	if (p->se.on_rq) {
5970 		deactivate_task(rq_src, p, 0);
5971 		set_task_cpu(p, dest_cpu);
5972 		activate_task(rq_dest, p, 0);
5973 		check_preempt_curr(rq_dest, p, 0);
5974 	}
5975 done:
5976 	ret = 1;
5977 fail:
5978 	double_rq_unlock(rq_src, rq_dest);
5979 	return ret;
5980 }
5981 
5982 /*
5983  * migration_cpu_stop - this will be executed by a highprio stopper thread
5984  * and performs thread migration by bumping thread off CPU then
5985  * 'pushing' onto another runqueue.
5986  */
migration_cpu_stop(void * data)5987 static int migration_cpu_stop(void *data)
5988 {
5989 	struct migration_arg *arg = data;
5990 
5991 	/*
5992 	 * The original target cpu might have gone down and we might
5993 	 * be on another cpu but it doesn't matter.
5994 	 */
5995 	local_irq_disable();
5996 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5997 	local_irq_enable();
5998 	return 0;
5999 }
6000 
6001 #ifdef CONFIG_HOTPLUG_CPU
6002 
6003 /*
6004  * Ensures that the idle task is using init_mm right before its cpu goes
6005  * offline.
6006  */
idle_task_exit(void)6007 void idle_task_exit(void)
6008 {
6009 	struct mm_struct *mm = current->active_mm;
6010 
6011 	BUG_ON(cpu_online(smp_processor_id()));
6012 
6013 	if (mm != &init_mm)
6014 		switch_mm(mm, &init_mm, current);
6015 	mmdrop(mm);
6016 }
6017 
6018 /*
6019  * While a dead CPU has no uninterruptible tasks queued at this point,
6020  * it might still have a nonzero ->nr_uninterruptible counter, because
6021  * for performance reasons the counter is not stricly tracking tasks to
6022  * their home CPUs. So we just add the counter to another CPU's counter,
6023  * to keep the global sum constant after CPU-down:
6024  */
migrate_nr_uninterruptible(struct rq * rq_src)6025 static void migrate_nr_uninterruptible(struct rq *rq_src)
6026 {
6027 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6028 
6029 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6030 	rq_src->nr_uninterruptible = 0;
6031 }
6032 
6033 /*
6034  * remove the tasks which were accounted by rq from calc_load_tasks.
6035  */
calc_global_load_remove(struct rq * rq)6036 static void calc_global_load_remove(struct rq *rq)
6037 {
6038 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6039 	rq->calc_load_active = 0;
6040 }
6041 
6042 /*
6043  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6044  * try_to_wake_up()->select_task_rq().
6045  *
6046  * Called with rq->lock held even though we'er in stop_machine() and
6047  * there's no concurrency possible, we hold the required locks anyway
6048  * because of lock validation efforts.
6049  */
migrate_tasks(unsigned int dead_cpu)6050 static void migrate_tasks(unsigned int dead_cpu)
6051 {
6052 	struct rq *rq = cpu_rq(dead_cpu);
6053 	struct task_struct *next, *stop = rq->stop;
6054 	int dest_cpu;
6055 
6056 	/*
6057 	 * Fudge the rq selection such that the below task selection loop
6058 	 * doesn't get stuck on the currently eligible stop task.
6059 	 *
6060 	 * We're currently inside stop_machine() and the rq is either stuck
6061 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6062 	 * either way we should never end up calling schedule() until we're
6063 	 * done here.
6064 	 */
6065 	rq->stop = NULL;
6066 
6067 	for ( ; ; ) {
6068 		/*
6069 		 * There's this thread running, bail when that's the only
6070 		 * remaining thread.
6071 		 */
6072 		if (rq->nr_running == 1)
6073 			break;
6074 
6075 		next = pick_next_task(rq);
6076 		BUG_ON(!next);
6077 		next->sched_class->put_prev_task(rq, next);
6078 
6079 		/* Find suitable destination for @next, with force if needed. */
6080 		dest_cpu = select_fallback_rq(dead_cpu, next);
6081 		raw_spin_unlock(&rq->lock);
6082 
6083 		__migrate_task(next, dead_cpu, dest_cpu);
6084 
6085 		raw_spin_lock(&rq->lock);
6086 	}
6087 
6088 	rq->stop = stop;
6089 }
6090 
6091 #endif /* CONFIG_HOTPLUG_CPU */
6092 
6093 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6094 
6095 static struct ctl_table sd_ctl_dir[] = {
6096 	{
6097 		.procname	= "sched_domain",
6098 		.mode		= 0555,
6099 	},
6100 	{}
6101 };
6102 
6103 static struct ctl_table sd_ctl_root[] = {
6104 	{
6105 		.procname	= "kernel",
6106 		.mode		= 0555,
6107 		.child		= sd_ctl_dir,
6108 	},
6109 	{}
6110 };
6111 
sd_alloc_ctl_entry(int n)6112 static struct ctl_table *sd_alloc_ctl_entry(int n)
6113 {
6114 	struct ctl_table *entry =
6115 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6116 
6117 	return entry;
6118 }
6119 
sd_free_ctl_entry(struct ctl_table ** tablep)6120 static void sd_free_ctl_entry(struct ctl_table **tablep)
6121 {
6122 	struct ctl_table *entry;
6123 
6124 	/*
6125 	 * In the intermediate directories, both the child directory and
6126 	 * procname are dynamically allocated and could fail but the mode
6127 	 * will always be set. In the lowest directory the names are
6128 	 * static strings and all have proc handlers.
6129 	 */
6130 	for (entry = *tablep; entry->mode; entry++) {
6131 		if (entry->child)
6132 			sd_free_ctl_entry(&entry->child);
6133 		if (entry->proc_handler == NULL)
6134 			kfree(entry->procname);
6135 	}
6136 
6137 	kfree(*tablep);
6138 	*tablep = NULL;
6139 }
6140 
6141 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,mode_t mode,proc_handler * proc_handler)6142 set_table_entry(struct ctl_table *entry,
6143 		const char *procname, void *data, int maxlen,
6144 		mode_t mode, proc_handler *proc_handler)
6145 {
6146 	entry->procname = procname;
6147 	entry->data = data;
6148 	entry->maxlen = maxlen;
6149 	entry->mode = mode;
6150 	entry->proc_handler = proc_handler;
6151 }
6152 
6153 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)6154 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6155 {
6156 	struct ctl_table *table = sd_alloc_ctl_entry(13);
6157 
6158 	if (table == NULL)
6159 		return NULL;
6160 
6161 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6162 		sizeof(long), 0644, proc_doulongvec_minmax);
6163 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6164 		sizeof(long), 0644, proc_doulongvec_minmax);
6165 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6166 		sizeof(int), 0644, proc_dointvec_minmax);
6167 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6168 		sizeof(int), 0644, proc_dointvec_minmax);
6169 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6170 		sizeof(int), 0644, proc_dointvec_minmax);
6171 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6172 		sizeof(int), 0644, proc_dointvec_minmax);
6173 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6174 		sizeof(int), 0644, proc_dointvec_minmax);
6175 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6176 		sizeof(int), 0644, proc_dointvec_minmax);
6177 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6178 		sizeof(int), 0644, proc_dointvec_minmax);
6179 	set_table_entry(&table[9], "cache_nice_tries",
6180 		&sd->cache_nice_tries,
6181 		sizeof(int), 0644, proc_dointvec_minmax);
6182 	set_table_entry(&table[10], "flags", &sd->flags,
6183 		sizeof(int), 0644, proc_dointvec_minmax);
6184 	set_table_entry(&table[11], "name", sd->name,
6185 		CORENAME_MAX_SIZE, 0444, proc_dostring);
6186 	/* &table[12] is terminator */
6187 
6188 	return table;
6189 }
6190 
sd_alloc_ctl_cpu_table(int cpu)6191 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6192 {
6193 	struct ctl_table *entry, *table;
6194 	struct sched_domain *sd;
6195 	int domain_num = 0, i;
6196 	char buf[32];
6197 
6198 	for_each_domain(cpu, sd)
6199 		domain_num++;
6200 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6201 	if (table == NULL)
6202 		return NULL;
6203 
6204 	i = 0;
6205 	for_each_domain(cpu, sd) {
6206 		snprintf(buf, 32, "domain%d", i);
6207 		entry->procname = kstrdup(buf, GFP_KERNEL);
6208 		entry->mode = 0555;
6209 		entry->child = sd_alloc_ctl_domain_table(sd);
6210 		entry++;
6211 		i++;
6212 	}
6213 	return table;
6214 }
6215 
6216 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)6217 static void register_sched_domain_sysctl(void)
6218 {
6219 	int i, cpu_num = num_possible_cpus();
6220 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6221 	char buf[32];
6222 
6223 	WARN_ON(sd_ctl_dir[0].child);
6224 	sd_ctl_dir[0].child = entry;
6225 
6226 	if (entry == NULL)
6227 		return;
6228 
6229 	for_each_possible_cpu(i) {
6230 		snprintf(buf, 32, "cpu%d", i);
6231 		entry->procname = kstrdup(buf, GFP_KERNEL);
6232 		entry->mode = 0555;
6233 		entry->child = sd_alloc_ctl_cpu_table(i);
6234 		entry++;
6235 	}
6236 
6237 	WARN_ON(sd_sysctl_header);
6238 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6239 }
6240 
6241 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)6242 static void unregister_sched_domain_sysctl(void)
6243 {
6244 	if (sd_sysctl_header)
6245 		unregister_sysctl_table(sd_sysctl_header);
6246 	sd_sysctl_header = NULL;
6247 	if (sd_ctl_dir[0].child)
6248 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6249 }
6250 #else
register_sched_domain_sysctl(void)6251 static void register_sched_domain_sysctl(void)
6252 {
6253 }
unregister_sched_domain_sysctl(void)6254 static void unregister_sched_domain_sysctl(void)
6255 {
6256 }
6257 #endif
6258 
set_rq_online(struct rq * rq)6259 static void set_rq_online(struct rq *rq)
6260 {
6261 	if (!rq->online) {
6262 		const struct sched_class *class;
6263 
6264 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6265 		rq->online = 1;
6266 
6267 		for_each_class(class) {
6268 			if (class->rq_online)
6269 				class->rq_online(rq);
6270 		}
6271 	}
6272 }
6273 
set_rq_offline(struct rq * rq)6274 static void set_rq_offline(struct rq *rq)
6275 {
6276 	if (rq->online) {
6277 		const struct sched_class *class;
6278 
6279 		for_each_class(class) {
6280 			if (class->rq_offline)
6281 				class->rq_offline(rq);
6282 		}
6283 
6284 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6285 		rq->online = 0;
6286 	}
6287 }
6288 
6289 /*
6290  * migration_call - callback that gets triggered when a CPU is added.
6291  * Here we can start up the necessary migration thread for the new CPU.
6292  */
6293 static int __cpuinit
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)6294 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6295 {
6296 	int cpu = (long)hcpu;
6297 	unsigned long flags;
6298 	struct rq *rq = cpu_rq(cpu);
6299 
6300 	switch (action & ~CPU_TASKS_FROZEN) {
6301 
6302 	case CPU_UP_PREPARE:
6303 		rq->calc_load_update = calc_load_update;
6304 		break;
6305 
6306 	case CPU_ONLINE:
6307 		/* Update our root-domain */
6308 		raw_spin_lock_irqsave(&rq->lock, flags);
6309 		if (rq->rd) {
6310 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6311 
6312 			set_rq_online(rq);
6313 		}
6314 		raw_spin_unlock_irqrestore(&rq->lock, flags);
6315 		break;
6316 
6317 #ifdef CONFIG_HOTPLUG_CPU
6318 	case CPU_DYING:
6319 		/* Update our root-domain */
6320 		raw_spin_lock_irqsave(&rq->lock, flags);
6321 		if (rq->rd) {
6322 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6323 			set_rq_offline(rq);
6324 		}
6325 		migrate_tasks(cpu);
6326 		BUG_ON(rq->nr_running != 1); /* the migration thread */
6327 		raw_spin_unlock_irqrestore(&rq->lock, flags);
6328 
6329 		migrate_nr_uninterruptible(rq);
6330 		calc_global_load_remove(rq);
6331 		break;
6332 #endif
6333 	}
6334 
6335 	update_max_interval();
6336 
6337 	return NOTIFY_OK;
6338 }
6339 
6340 /*
6341  * Register at high priority so that task migration (migrate_all_tasks)
6342  * happens before everything else.  This has to be lower priority than
6343  * the notifier in the perf_event subsystem, though.
6344  */
6345 static struct notifier_block __cpuinitdata migration_notifier = {
6346 	.notifier_call = migration_call,
6347 	.priority = CPU_PRI_MIGRATION,
6348 };
6349 
sched_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)6350 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6351 				      unsigned long action, void *hcpu)
6352 {
6353 	switch (action & ~CPU_TASKS_FROZEN) {
6354 	case CPU_ONLINE:
6355 	case CPU_DOWN_FAILED:
6356 		set_cpu_active((long)hcpu, true);
6357 		return NOTIFY_OK;
6358 	default:
6359 		return NOTIFY_DONE;
6360 	}
6361 }
6362 
sched_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)6363 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6364 					unsigned long action, void *hcpu)
6365 {
6366 	switch (action & ~CPU_TASKS_FROZEN) {
6367 	case CPU_DOWN_PREPARE:
6368 		set_cpu_active((long)hcpu, false);
6369 		return NOTIFY_OK;
6370 	default:
6371 		return NOTIFY_DONE;
6372 	}
6373 }
6374 
migration_init(void)6375 static int __init migration_init(void)
6376 {
6377 	void *cpu = (void *)(long)smp_processor_id();
6378 	int err;
6379 
6380 	/* Initialize migration for the boot CPU */
6381 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6382 	BUG_ON(err == NOTIFY_BAD);
6383 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
6384 	register_cpu_notifier(&migration_notifier);
6385 
6386 	/* Register cpu active notifiers */
6387 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6388 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6389 
6390 	return 0;
6391 }
6392 early_initcall(migration_init);
6393 #endif
6394 
6395 #ifdef CONFIG_SMP
6396 
6397 #ifdef CONFIG_SCHED_DEBUG
6398 
6399 static __read_mostly int sched_domain_debug_enabled;
6400 
sched_domain_debug_setup(char * str)6401 static int __init sched_domain_debug_setup(char *str)
6402 {
6403 	sched_domain_debug_enabled = 1;
6404 
6405 	return 0;
6406 }
6407 early_param("sched_debug", sched_domain_debug_setup);
6408 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)6409 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6410 				  struct cpumask *groupmask)
6411 {
6412 	struct sched_group *group = sd->groups;
6413 	char str[256];
6414 
6415 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6416 	cpumask_clear(groupmask);
6417 
6418 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6419 
6420 	if (!(sd->flags & SD_LOAD_BALANCE)) {
6421 		printk("does not load-balance\n");
6422 		if (sd->parent)
6423 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6424 					" has parent");
6425 		return -1;
6426 	}
6427 
6428 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
6429 
6430 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6431 		printk(KERN_ERR "ERROR: domain->span does not contain "
6432 				"CPU%d\n", cpu);
6433 	}
6434 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6435 		printk(KERN_ERR "ERROR: domain->groups does not contain"
6436 				" CPU%d\n", cpu);
6437 	}
6438 
6439 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
6440 	do {
6441 		if (!group) {
6442 			printk("\n");
6443 			printk(KERN_ERR "ERROR: group is NULL\n");
6444 			break;
6445 		}
6446 
6447 		if (!group->cpu_power) {
6448 			printk(KERN_CONT "\n");
6449 			printk(KERN_ERR "ERROR: domain->cpu_power not "
6450 					"set\n");
6451 			break;
6452 		}
6453 
6454 		if (!cpumask_weight(sched_group_cpus(group))) {
6455 			printk(KERN_CONT "\n");
6456 			printk(KERN_ERR "ERROR: empty group\n");
6457 			break;
6458 		}
6459 
6460 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6461 			printk(KERN_CONT "\n");
6462 			printk(KERN_ERR "ERROR: repeated CPUs\n");
6463 			break;
6464 		}
6465 
6466 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6467 
6468 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6469 
6470 		printk(KERN_CONT " %s", str);
6471 		if (group->cpu_power != SCHED_LOAD_SCALE) {
6472 			printk(KERN_CONT " (cpu_power = %d)",
6473 				group->cpu_power);
6474 		}
6475 
6476 		group = group->next;
6477 	} while (group != sd->groups);
6478 	printk(KERN_CONT "\n");
6479 
6480 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
6481 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6482 
6483 	if (sd->parent &&
6484 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6485 		printk(KERN_ERR "ERROR: parent span is not a superset "
6486 			"of domain->span\n");
6487 	return 0;
6488 }
6489 
sched_domain_debug(struct sched_domain * sd,int cpu)6490 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6491 {
6492 	cpumask_var_t groupmask;
6493 	int level = 0;
6494 
6495 	if (!sched_domain_debug_enabled)
6496 		return;
6497 
6498 	if (!sd) {
6499 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6500 		return;
6501 	}
6502 
6503 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6504 
6505 	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6506 		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6507 		return;
6508 	}
6509 
6510 	for (;;) {
6511 		if (sched_domain_debug_one(sd, cpu, level, groupmask))
6512 			break;
6513 		level++;
6514 		sd = sd->parent;
6515 		if (!sd)
6516 			break;
6517 	}
6518 	free_cpumask_var(groupmask);
6519 }
6520 #else /* !CONFIG_SCHED_DEBUG */
6521 # define sched_domain_debug(sd, cpu) do { } while (0)
6522 #endif /* CONFIG_SCHED_DEBUG */
6523 
sd_degenerate(struct sched_domain * sd)6524 static int sd_degenerate(struct sched_domain *sd)
6525 {
6526 	if (cpumask_weight(sched_domain_span(sd)) == 1)
6527 		return 1;
6528 
6529 	/* Following flags need at least 2 groups */
6530 	if (sd->flags & (SD_LOAD_BALANCE |
6531 			 SD_BALANCE_NEWIDLE |
6532 			 SD_BALANCE_FORK |
6533 			 SD_BALANCE_EXEC |
6534 			 SD_SHARE_CPUPOWER |
6535 			 SD_SHARE_PKG_RESOURCES)) {
6536 		if (sd->groups != sd->groups->next)
6537 			return 0;
6538 	}
6539 
6540 	/* Following flags don't use groups */
6541 	if (sd->flags & (SD_WAKE_AFFINE))
6542 		return 0;
6543 
6544 	return 1;
6545 }
6546 
6547 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)6548 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6549 {
6550 	unsigned long cflags = sd->flags, pflags = parent->flags;
6551 
6552 	if (sd_degenerate(parent))
6553 		return 1;
6554 
6555 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6556 		return 0;
6557 
6558 	/* Flags needing groups don't count if only 1 group in parent */
6559 	if (parent->groups == parent->groups->next) {
6560 		pflags &= ~(SD_LOAD_BALANCE |
6561 				SD_BALANCE_NEWIDLE |
6562 				SD_BALANCE_FORK |
6563 				SD_BALANCE_EXEC |
6564 				SD_SHARE_CPUPOWER |
6565 				SD_SHARE_PKG_RESOURCES);
6566 		if (nr_node_ids == 1)
6567 			pflags &= ~SD_SERIALIZE;
6568 	}
6569 	if (~cflags & pflags)
6570 		return 0;
6571 
6572 	return 1;
6573 }
6574 
free_rootdomain(struct root_domain * rd)6575 static void free_rootdomain(struct root_domain *rd)
6576 {
6577 	synchronize_sched();
6578 
6579 	cpupri_cleanup(&rd->cpupri);
6580 
6581 	free_cpumask_var(rd->rto_mask);
6582 	free_cpumask_var(rd->online);
6583 	free_cpumask_var(rd->span);
6584 	kfree(rd);
6585 }
6586 
rq_attach_root(struct rq * rq,struct root_domain * rd)6587 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6588 {
6589 	struct root_domain *old_rd = NULL;
6590 	unsigned long flags;
6591 
6592 	raw_spin_lock_irqsave(&rq->lock, flags);
6593 
6594 	if (rq->rd) {
6595 		old_rd = rq->rd;
6596 
6597 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6598 			set_rq_offline(rq);
6599 
6600 		cpumask_clear_cpu(rq->cpu, old_rd->span);
6601 
6602 		/*
6603 		 * If we dont want to free the old_rt yet then
6604 		 * set old_rd to NULL to skip the freeing later
6605 		 * in this function:
6606 		 */
6607 		if (!atomic_dec_and_test(&old_rd->refcount))
6608 			old_rd = NULL;
6609 	}
6610 
6611 	atomic_inc(&rd->refcount);
6612 	rq->rd = rd;
6613 
6614 	cpumask_set_cpu(rq->cpu, rd->span);
6615 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6616 		set_rq_online(rq);
6617 
6618 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6619 
6620 	if (old_rd)
6621 		free_rootdomain(old_rd);
6622 }
6623 
init_rootdomain(struct root_domain * rd)6624 static int init_rootdomain(struct root_domain *rd)
6625 {
6626 	memset(rd, 0, sizeof(*rd));
6627 
6628 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6629 		goto out;
6630 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6631 		goto free_span;
6632 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6633 		goto free_online;
6634 
6635 	if (cpupri_init(&rd->cpupri) != 0)
6636 		goto free_rto_mask;
6637 	return 0;
6638 
6639 free_rto_mask:
6640 	free_cpumask_var(rd->rto_mask);
6641 free_online:
6642 	free_cpumask_var(rd->online);
6643 free_span:
6644 	free_cpumask_var(rd->span);
6645 out:
6646 	return -ENOMEM;
6647 }
6648 
init_defrootdomain(void)6649 static void init_defrootdomain(void)
6650 {
6651 	init_rootdomain(&def_root_domain);
6652 
6653 	atomic_set(&def_root_domain.refcount, 1);
6654 }
6655 
alloc_rootdomain(void)6656 static struct root_domain *alloc_rootdomain(void)
6657 {
6658 	struct root_domain *rd;
6659 
6660 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6661 	if (!rd)
6662 		return NULL;
6663 
6664 	if (init_rootdomain(rd) != 0) {
6665 		kfree(rd);
6666 		return NULL;
6667 	}
6668 
6669 	return rd;
6670 }
6671 
6672 /*
6673  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6674  * hold the hotplug lock.
6675  */
6676 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)6677 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6678 {
6679 	struct rq *rq = cpu_rq(cpu);
6680 	struct sched_domain *tmp;
6681 
6682 	for (tmp = sd; tmp; tmp = tmp->parent)
6683 		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6684 
6685 	/* Remove the sched domains which do not contribute to scheduling. */
6686 	for (tmp = sd; tmp; ) {
6687 		struct sched_domain *parent = tmp->parent;
6688 		if (!parent)
6689 			break;
6690 
6691 		if (sd_parent_degenerate(tmp, parent)) {
6692 			tmp->parent = parent->parent;
6693 			if (parent->parent)
6694 				parent->parent->child = tmp;
6695 		} else
6696 			tmp = tmp->parent;
6697 	}
6698 
6699 	if (sd && sd_degenerate(sd)) {
6700 		sd = sd->parent;
6701 		if (sd)
6702 			sd->child = NULL;
6703 	}
6704 
6705 	sched_domain_debug(sd, cpu);
6706 
6707 	rq_attach_root(rq, rd);
6708 	rcu_assign_pointer(rq->sd, sd);
6709 }
6710 
6711 /* cpus with isolated domains */
6712 static cpumask_var_t cpu_isolated_map;
6713 
6714 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)6715 static int __init isolated_cpu_setup(char *str)
6716 {
6717 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6718 	cpulist_parse(str, cpu_isolated_map);
6719 	return 1;
6720 }
6721 
6722 __setup("isolcpus=", isolated_cpu_setup);
6723 
6724 /*
6725  * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6726  * to a function which identifies what group(along with sched group) a CPU
6727  * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6728  * (due to the fact that we keep track of groups covered with a struct cpumask).
6729  *
6730  * init_sched_build_groups will build a circular linked list of the groups
6731  * covered by the given span, and will set each group's ->cpumask correctly,
6732  * and ->cpu_power to 0.
6733  */
6734 static void
init_sched_build_groups(const struct cpumask * span,const struct cpumask * cpu_map,int (* group_fn)(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * tmpmask),struct cpumask * covered,struct cpumask * tmpmask)6735 init_sched_build_groups(const struct cpumask *span,
6736 			const struct cpumask *cpu_map,
6737 			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6738 					struct sched_group **sg,
6739 					struct cpumask *tmpmask),
6740 			struct cpumask *covered, struct cpumask *tmpmask)
6741 {
6742 	struct sched_group *first = NULL, *last = NULL;
6743 	int i;
6744 
6745 	cpumask_clear(covered);
6746 
6747 	for_each_cpu(i, span) {
6748 		struct sched_group *sg;
6749 		int group = group_fn(i, cpu_map, &sg, tmpmask);
6750 		int j;
6751 
6752 		if (cpumask_test_cpu(i, covered))
6753 			continue;
6754 
6755 		cpumask_clear(sched_group_cpus(sg));
6756 		sg->cpu_power = 0;
6757 
6758 		for_each_cpu(j, span) {
6759 			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6760 				continue;
6761 
6762 			cpumask_set_cpu(j, covered);
6763 			cpumask_set_cpu(j, sched_group_cpus(sg));
6764 		}
6765 		if (!first)
6766 			first = sg;
6767 		if (last)
6768 			last->next = sg;
6769 		last = sg;
6770 	}
6771 	last->next = first;
6772 }
6773 
6774 #define SD_NODES_PER_DOMAIN 16
6775 
6776 #ifdef CONFIG_NUMA
6777 
6778 /**
6779  * find_next_best_node - find the next node to include in a sched_domain
6780  * @node: node whose sched_domain we're building
6781  * @used_nodes: nodes already in the sched_domain
6782  *
6783  * Find the next node to include in a given scheduling domain. Simply
6784  * finds the closest node not already in the @used_nodes map.
6785  *
6786  * Should use nodemask_t.
6787  */
find_next_best_node(int node,nodemask_t * used_nodes)6788 static int find_next_best_node(int node, nodemask_t *used_nodes)
6789 {
6790 	int i, n, val, min_val, best_node = 0;
6791 
6792 	min_val = INT_MAX;
6793 
6794 	for (i = 0; i < nr_node_ids; i++) {
6795 		/* Start at @node */
6796 		n = (node + i) % nr_node_ids;
6797 
6798 		if (!nr_cpus_node(n))
6799 			continue;
6800 
6801 		/* Skip already used nodes */
6802 		if (node_isset(n, *used_nodes))
6803 			continue;
6804 
6805 		/* Simple min distance search */
6806 		val = node_distance(node, n);
6807 
6808 		if (val < min_val) {
6809 			min_val = val;
6810 			best_node = n;
6811 		}
6812 	}
6813 
6814 	node_set(best_node, *used_nodes);
6815 	return best_node;
6816 }
6817 
6818 /**
6819  * sched_domain_node_span - get a cpumask for a node's sched_domain
6820  * @node: node whose cpumask we're constructing
6821  * @span: resulting cpumask
6822  *
6823  * Given a node, construct a good cpumask for its sched_domain to span. It
6824  * should be one that prevents unnecessary balancing, but also spreads tasks
6825  * out optimally.
6826  */
sched_domain_node_span(int node,struct cpumask * span)6827 static void sched_domain_node_span(int node, struct cpumask *span)
6828 {
6829 	nodemask_t used_nodes;
6830 	int i;
6831 
6832 	cpumask_clear(span);
6833 	nodes_clear(used_nodes);
6834 
6835 	cpumask_or(span, span, cpumask_of_node(node));
6836 	node_set(node, used_nodes);
6837 
6838 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6839 		int next_node = find_next_best_node(node, &used_nodes);
6840 
6841 		cpumask_or(span, span, cpumask_of_node(next_node));
6842 	}
6843 }
6844 #endif /* CONFIG_NUMA */
6845 
6846 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6847 
6848 /*
6849  * The cpus mask in sched_group and sched_domain hangs off the end.
6850  *
6851  * ( See the the comments in include/linux/sched.h:struct sched_group
6852  *   and struct sched_domain. )
6853  */
6854 struct static_sched_group {
6855 	struct sched_group sg;
6856 	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6857 };
6858 
6859 struct static_sched_domain {
6860 	struct sched_domain sd;
6861 	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6862 };
6863 
6864 struct s_data {
6865 #ifdef CONFIG_NUMA
6866 	int			sd_allnodes;
6867 	cpumask_var_t		domainspan;
6868 	cpumask_var_t		covered;
6869 	cpumask_var_t		notcovered;
6870 #endif
6871 	cpumask_var_t		nodemask;
6872 	cpumask_var_t		this_sibling_map;
6873 	cpumask_var_t		this_core_map;
6874 	cpumask_var_t		this_book_map;
6875 	cpumask_var_t		send_covered;
6876 	cpumask_var_t		tmpmask;
6877 	struct sched_group	**sched_group_nodes;
6878 	struct root_domain	*rd;
6879 };
6880 
6881 enum s_alloc {
6882 	sa_sched_groups = 0,
6883 	sa_rootdomain,
6884 	sa_tmpmask,
6885 	sa_send_covered,
6886 	sa_this_book_map,
6887 	sa_this_core_map,
6888 	sa_this_sibling_map,
6889 	sa_nodemask,
6890 	sa_sched_group_nodes,
6891 #ifdef CONFIG_NUMA
6892 	sa_notcovered,
6893 	sa_covered,
6894 	sa_domainspan,
6895 #endif
6896 	sa_none,
6897 };
6898 
6899 /*
6900  * SMT sched-domains:
6901  */
6902 #ifdef CONFIG_SCHED_SMT
6903 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6904 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6905 
6906 static int
cpu_to_cpu_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * unused)6907 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6908 		 struct sched_group **sg, struct cpumask *unused)
6909 {
6910 	if (sg)
6911 		*sg = &per_cpu(sched_groups, cpu).sg;
6912 	return cpu;
6913 }
6914 #endif /* CONFIG_SCHED_SMT */
6915 
6916 /*
6917  * multi-core sched-domains:
6918  */
6919 #ifdef CONFIG_SCHED_MC
6920 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6921 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6922 
6923 static int
cpu_to_core_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * mask)6924 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6925 		  struct sched_group **sg, struct cpumask *mask)
6926 {
6927 	int group;
6928 #ifdef CONFIG_SCHED_SMT
6929 	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6930 	group = cpumask_first(mask);
6931 #else
6932 	group = cpu;
6933 #endif
6934 	if (sg)
6935 		*sg = &per_cpu(sched_group_core, group).sg;
6936 	return group;
6937 }
6938 #endif /* CONFIG_SCHED_MC */
6939 
6940 /*
6941  * book sched-domains:
6942  */
6943 #ifdef CONFIG_SCHED_BOOK
6944 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6945 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6946 
6947 static int
cpu_to_book_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * mask)6948 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6949 		  struct sched_group **sg, struct cpumask *mask)
6950 {
6951 	int group = cpu;
6952 #ifdef CONFIG_SCHED_MC
6953 	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6954 	group = cpumask_first(mask);
6955 #elif defined(CONFIG_SCHED_SMT)
6956 	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6957 	group = cpumask_first(mask);
6958 #endif
6959 	if (sg)
6960 		*sg = &per_cpu(sched_group_book, group).sg;
6961 	return group;
6962 }
6963 #endif /* CONFIG_SCHED_BOOK */
6964 
6965 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6966 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6967 
6968 static int
cpu_to_phys_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * mask)6969 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6970 		  struct sched_group **sg, struct cpumask *mask)
6971 {
6972 	int group;
6973 #ifdef CONFIG_SCHED_BOOK
6974 	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6975 	group = cpumask_first(mask);
6976 #elif defined(CONFIG_SCHED_MC)
6977 	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6978 	group = cpumask_first(mask);
6979 #elif defined(CONFIG_SCHED_SMT)
6980 	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6981 	group = cpumask_first(mask);
6982 #else
6983 	group = cpu;
6984 #endif
6985 	if (sg)
6986 		*sg = &per_cpu(sched_group_phys, group).sg;
6987 	return group;
6988 }
6989 
6990 #ifdef CONFIG_NUMA
6991 /*
6992  * The init_sched_build_groups can't handle what we want to do with node
6993  * groups, so roll our own. Now each node has its own list of groups which
6994  * gets dynamically allocated.
6995  */
6996 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6997 static struct sched_group ***sched_group_nodes_bycpu;
6998 
6999 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7000 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7001 
cpu_to_allnodes_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * nodemask)7002 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7003 				 struct sched_group **sg,
7004 				 struct cpumask *nodemask)
7005 {
7006 	int group;
7007 
7008 	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7009 	group = cpumask_first(nodemask);
7010 
7011 	if (sg)
7012 		*sg = &per_cpu(sched_group_allnodes, group).sg;
7013 	return group;
7014 }
7015 
init_numa_sched_groups_power(struct sched_group * group_head)7016 static void init_numa_sched_groups_power(struct sched_group *group_head)
7017 {
7018 	struct sched_group *sg = group_head;
7019 	int j;
7020 
7021 	if (!sg)
7022 		return;
7023 	do {
7024 		for_each_cpu(j, sched_group_cpus(sg)) {
7025 			struct sched_domain *sd;
7026 
7027 			sd = &per_cpu(phys_domains, j).sd;
7028 			if (j != group_first_cpu(sd->groups)) {
7029 				/*
7030 				 * Only add "power" once for each
7031 				 * physical package.
7032 				 */
7033 				continue;
7034 			}
7035 
7036 			sg->cpu_power += sd->groups->cpu_power;
7037 		}
7038 		sg = sg->next;
7039 	} while (sg != group_head);
7040 }
7041 
build_numa_sched_groups(struct s_data * d,const struct cpumask * cpu_map,int num)7042 static int build_numa_sched_groups(struct s_data *d,
7043 				   const struct cpumask *cpu_map, int num)
7044 {
7045 	struct sched_domain *sd;
7046 	struct sched_group *sg, *prev;
7047 	int n, j;
7048 
7049 	cpumask_clear(d->covered);
7050 	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7051 	if (cpumask_empty(d->nodemask)) {
7052 		d->sched_group_nodes[num] = NULL;
7053 		goto out;
7054 	}
7055 
7056 	sched_domain_node_span(num, d->domainspan);
7057 	cpumask_and(d->domainspan, d->domainspan, cpu_map);
7058 
7059 	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7060 			  GFP_KERNEL, num);
7061 	if (!sg) {
7062 		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7063 		       num);
7064 		return -ENOMEM;
7065 	}
7066 	d->sched_group_nodes[num] = sg;
7067 
7068 	for_each_cpu(j, d->nodemask) {
7069 		sd = &per_cpu(node_domains, j).sd;
7070 		sd->groups = sg;
7071 	}
7072 
7073 	sg->cpu_power = 0;
7074 	cpumask_copy(sched_group_cpus(sg), d->nodemask);
7075 	sg->next = sg;
7076 	cpumask_or(d->covered, d->covered, d->nodemask);
7077 
7078 	prev = sg;
7079 	for (j = 0; j < nr_node_ids; j++) {
7080 		n = (num + j) % nr_node_ids;
7081 		cpumask_complement(d->notcovered, d->covered);
7082 		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7083 		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7084 		if (cpumask_empty(d->tmpmask))
7085 			break;
7086 		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7087 		if (cpumask_empty(d->tmpmask))
7088 			continue;
7089 		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7090 				  GFP_KERNEL, num);
7091 		if (!sg) {
7092 			printk(KERN_WARNING
7093 			       "Can not alloc domain group for node %d\n", j);
7094 			return -ENOMEM;
7095 		}
7096 		sg->cpu_power = 0;
7097 		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7098 		sg->next = prev->next;
7099 		cpumask_or(d->covered, d->covered, d->tmpmask);
7100 		prev->next = sg;
7101 		prev = sg;
7102 	}
7103 out:
7104 	return 0;
7105 }
7106 #endif /* CONFIG_NUMA */
7107 
7108 #ifdef CONFIG_NUMA
7109 /* Free memory allocated for various sched_group structures */
free_sched_groups(const struct cpumask * cpu_map,struct cpumask * nodemask)7110 static void free_sched_groups(const struct cpumask *cpu_map,
7111 			      struct cpumask *nodemask)
7112 {
7113 	int cpu, i;
7114 
7115 	for_each_cpu(cpu, cpu_map) {
7116 		struct sched_group **sched_group_nodes
7117 			= sched_group_nodes_bycpu[cpu];
7118 
7119 		if (!sched_group_nodes)
7120 			continue;
7121 
7122 		for (i = 0; i < nr_node_ids; i++) {
7123 			struct sched_group *oldsg, *sg = sched_group_nodes[i];
7124 
7125 			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7126 			if (cpumask_empty(nodemask))
7127 				continue;
7128 
7129 			if (sg == NULL)
7130 				continue;
7131 			sg = sg->next;
7132 next_sg:
7133 			oldsg = sg;
7134 			sg = sg->next;
7135 			kfree(oldsg);
7136 			if (oldsg != sched_group_nodes[i])
7137 				goto next_sg;
7138 		}
7139 		kfree(sched_group_nodes);
7140 		sched_group_nodes_bycpu[cpu] = NULL;
7141 	}
7142 }
7143 #else /* !CONFIG_NUMA */
free_sched_groups(const struct cpumask * cpu_map,struct cpumask * nodemask)7144 static void free_sched_groups(const struct cpumask *cpu_map,
7145 			      struct cpumask *nodemask)
7146 {
7147 }
7148 #endif /* CONFIG_NUMA */
7149 
7150 /*
7151  * Initialize sched groups cpu_power.
7152  *
7153  * cpu_power indicates the capacity of sched group, which is used while
7154  * distributing the load between different sched groups in a sched domain.
7155  * Typically cpu_power for all the groups in a sched domain will be same unless
7156  * there are asymmetries in the topology. If there are asymmetries, group
7157  * having more cpu_power will pickup more load compared to the group having
7158  * less cpu_power.
7159  */
init_sched_groups_power(int cpu,struct sched_domain * sd)7160 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7161 {
7162 	struct sched_domain *child;
7163 	struct sched_group *group;
7164 	long power;
7165 	int weight;
7166 
7167 	WARN_ON(!sd || !sd->groups);
7168 
7169 	if (cpu != group_first_cpu(sd->groups))
7170 		return;
7171 
7172 	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7173 
7174 	child = sd->child;
7175 
7176 	sd->groups->cpu_power = 0;
7177 
7178 	if (!child) {
7179 		power = SCHED_LOAD_SCALE;
7180 		weight = cpumask_weight(sched_domain_span(sd));
7181 		/*
7182 		 * SMT siblings share the power of a single core.
7183 		 * Usually multiple threads get a better yield out of
7184 		 * that one core than a single thread would have,
7185 		 * reflect that in sd->smt_gain.
7186 		 */
7187 		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7188 			power *= sd->smt_gain;
7189 			power /= weight;
7190 			power >>= SCHED_LOAD_SHIFT;
7191 		}
7192 		sd->groups->cpu_power += power;
7193 		return;
7194 	}
7195 
7196 	/*
7197 	 * Add cpu_power of each child group to this groups cpu_power.
7198 	 */
7199 	group = child->groups;
7200 	do {
7201 		sd->groups->cpu_power += group->cpu_power;
7202 		group = group->next;
7203 	} while (group != child->groups);
7204 }
7205 
7206 /*
7207  * Initializers for schedule domains
7208  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7209  */
7210 
7211 #ifdef CONFIG_SCHED_DEBUG
7212 # define SD_INIT_NAME(sd, type)		sd->name = #type
7213 #else
7214 # define SD_INIT_NAME(sd, type)		do { } while (0)
7215 #endif
7216 
7217 #define	SD_INIT(sd, type)	sd_init_##type(sd)
7218 
7219 #define SD_INIT_FUNC(type)	\
7220 static noinline void sd_init_##type(struct sched_domain *sd)	\
7221 {								\
7222 	memset(sd, 0, sizeof(*sd));				\
7223 	*sd = SD_##type##_INIT;					\
7224 	sd->level = SD_LV_##type;				\
7225 	SD_INIT_NAME(sd, type);					\
7226 }
7227 
7228 SD_INIT_FUNC(CPU)
7229 #ifdef CONFIG_NUMA
7230  SD_INIT_FUNC(ALLNODES)
7231  SD_INIT_FUNC(NODE)
7232 #endif
7233 #ifdef CONFIG_SCHED_SMT
7234  SD_INIT_FUNC(SIBLING)
7235 #endif
7236 #ifdef CONFIG_SCHED_MC
7237  SD_INIT_FUNC(MC)
7238 #endif
7239 #ifdef CONFIG_SCHED_BOOK
7240  SD_INIT_FUNC(BOOK)
7241 #endif
7242 
7243 static int default_relax_domain_level = -1;
7244 
setup_relax_domain_level(char * str)7245 static int __init setup_relax_domain_level(char *str)
7246 {
7247 	unsigned long val;
7248 
7249 	val = simple_strtoul(str, NULL, 0);
7250 	if (val < SD_LV_MAX)
7251 		default_relax_domain_level = val;
7252 
7253 	return 1;
7254 }
7255 __setup("relax_domain_level=", setup_relax_domain_level);
7256 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)7257 static void set_domain_attribute(struct sched_domain *sd,
7258 				 struct sched_domain_attr *attr)
7259 {
7260 	int request;
7261 
7262 	if (!attr || attr->relax_domain_level < 0) {
7263 		if (default_relax_domain_level < 0)
7264 			return;
7265 		else
7266 			request = default_relax_domain_level;
7267 	} else
7268 		request = attr->relax_domain_level;
7269 	if (request < sd->level) {
7270 		/* turn off idle balance on this domain */
7271 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7272 	} else {
7273 		/* turn on idle balance on this domain */
7274 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7275 	}
7276 }
7277 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)7278 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7279 				 const struct cpumask *cpu_map)
7280 {
7281 	switch (what) {
7282 	case sa_sched_groups:
7283 		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7284 		d->sched_group_nodes = NULL;
7285 	case sa_rootdomain:
7286 		free_rootdomain(d->rd); /* fall through */
7287 	case sa_tmpmask:
7288 		free_cpumask_var(d->tmpmask); /* fall through */
7289 	case sa_send_covered:
7290 		free_cpumask_var(d->send_covered); /* fall through */
7291 	case sa_this_book_map:
7292 		free_cpumask_var(d->this_book_map); /* fall through */
7293 	case sa_this_core_map:
7294 		free_cpumask_var(d->this_core_map); /* fall through */
7295 	case sa_this_sibling_map:
7296 		free_cpumask_var(d->this_sibling_map); /* fall through */
7297 	case sa_nodemask:
7298 		free_cpumask_var(d->nodemask); /* fall through */
7299 	case sa_sched_group_nodes:
7300 #ifdef CONFIG_NUMA
7301 		kfree(d->sched_group_nodes); /* fall through */
7302 	case sa_notcovered:
7303 		free_cpumask_var(d->notcovered); /* fall through */
7304 	case sa_covered:
7305 		free_cpumask_var(d->covered); /* fall through */
7306 	case sa_domainspan:
7307 		free_cpumask_var(d->domainspan); /* fall through */
7308 #endif
7309 	case sa_none:
7310 		break;
7311 	}
7312 }
7313 
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)7314 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7315 						   const struct cpumask *cpu_map)
7316 {
7317 #ifdef CONFIG_NUMA
7318 	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7319 		return sa_none;
7320 	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7321 		return sa_domainspan;
7322 	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7323 		return sa_covered;
7324 	/* Allocate the per-node list of sched groups */
7325 	d->sched_group_nodes = kcalloc(nr_node_ids,
7326 				      sizeof(struct sched_group *), GFP_KERNEL);
7327 	if (!d->sched_group_nodes) {
7328 		printk(KERN_WARNING "Can not alloc sched group node list\n");
7329 		return sa_notcovered;
7330 	}
7331 	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7332 #endif
7333 	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7334 		return sa_sched_group_nodes;
7335 	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7336 		return sa_nodemask;
7337 	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7338 		return sa_this_sibling_map;
7339 	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7340 		return sa_this_core_map;
7341 	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7342 		return sa_this_book_map;
7343 	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7344 		return sa_send_covered;
7345 	d->rd = alloc_rootdomain();
7346 	if (!d->rd) {
7347 		printk(KERN_WARNING "Cannot alloc root domain\n");
7348 		return sa_tmpmask;
7349 	}
7350 	return sa_rootdomain;
7351 }
7352 
__build_numa_sched_domains(struct s_data * d,const struct cpumask * cpu_map,struct sched_domain_attr * attr,int i)7353 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7354 	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7355 {
7356 	struct sched_domain *sd = NULL;
7357 #ifdef CONFIG_NUMA
7358 	struct sched_domain *parent;
7359 
7360 	d->sd_allnodes = 0;
7361 	if (cpumask_weight(cpu_map) >
7362 	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7363 		sd = &per_cpu(allnodes_domains, i).sd;
7364 		SD_INIT(sd, ALLNODES);
7365 		set_domain_attribute(sd, attr);
7366 		cpumask_copy(sched_domain_span(sd), cpu_map);
7367 		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7368 		d->sd_allnodes = 1;
7369 	}
7370 	parent = sd;
7371 
7372 	sd = &per_cpu(node_domains, i).sd;
7373 	SD_INIT(sd, NODE);
7374 	set_domain_attribute(sd, attr);
7375 	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7376 	sd->parent = parent;
7377 	if (parent)
7378 		parent->child = sd;
7379 	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7380 #endif
7381 	return sd;
7382 }
7383 
__build_cpu_sched_domain(struct s_data * d,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * parent,int i)7384 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7385 	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7386 	struct sched_domain *parent, int i)
7387 {
7388 	struct sched_domain *sd;
7389 	sd = &per_cpu(phys_domains, i).sd;
7390 	SD_INIT(sd, CPU);
7391 	set_domain_attribute(sd, attr);
7392 	cpumask_copy(sched_domain_span(sd), d->nodemask);
7393 	sd->parent = parent;
7394 	if (parent)
7395 		parent->child = sd;
7396 	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7397 	return sd;
7398 }
7399 
__build_book_sched_domain(struct s_data * d,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * parent,int i)7400 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7401 	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7402 	struct sched_domain *parent, int i)
7403 {
7404 	struct sched_domain *sd = parent;
7405 #ifdef CONFIG_SCHED_BOOK
7406 	sd = &per_cpu(book_domains, i).sd;
7407 	SD_INIT(sd, BOOK);
7408 	set_domain_attribute(sd, attr);
7409 	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7410 	sd->parent = parent;
7411 	parent->child = sd;
7412 	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7413 #endif
7414 	return sd;
7415 }
7416 
__build_mc_sched_domain(struct s_data * d,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * parent,int i)7417 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7418 	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7419 	struct sched_domain *parent, int i)
7420 {
7421 	struct sched_domain *sd = parent;
7422 #ifdef CONFIG_SCHED_MC
7423 	sd = &per_cpu(core_domains, i).sd;
7424 	SD_INIT(sd, MC);
7425 	set_domain_attribute(sd, attr);
7426 	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7427 	sd->parent = parent;
7428 	parent->child = sd;
7429 	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7430 #endif
7431 	return sd;
7432 }
7433 
__build_smt_sched_domain(struct s_data * d,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * parent,int i)7434 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7435 	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7436 	struct sched_domain *parent, int i)
7437 {
7438 	struct sched_domain *sd = parent;
7439 #ifdef CONFIG_SCHED_SMT
7440 	sd = &per_cpu(cpu_domains, i).sd;
7441 	SD_INIT(sd, SIBLING);
7442 	set_domain_attribute(sd, attr);
7443 	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7444 	sd->parent = parent;
7445 	parent->child = sd;
7446 	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7447 #endif
7448 	return sd;
7449 }
7450 
build_sched_groups(struct s_data * d,enum sched_domain_level l,const struct cpumask * cpu_map,int cpu)7451 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7452 			       const struct cpumask *cpu_map, int cpu)
7453 {
7454 	switch (l) {
7455 #ifdef CONFIG_SCHED_SMT
7456 	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7457 		cpumask_and(d->this_sibling_map, cpu_map,
7458 			    topology_thread_cpumask(cpu));
7459 		if (cpu == cpumask_first(d->this_sibling_map))
7460 			init_sched_build_groups(d->this_sibling_map, cpu_map,
7461 						&cpu_to_cpu_group,
7462 						d->send_covered, d->tmpmask);
7463 		break;
7464 #endif
7465 #ifdef CONFIG_SCHED_MC
7466 	case SD_LV_MC: /* set up multi-core groups */
7467 		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7468 		if (cpu == cpumask_first(d->this_core_map))
7469 			init_sched_build_groups(d->this_core_map, cpu_map,
7470 						&cpu_to_core_group,
7471 						d->send_covered, d->tmpmask);
7472 		break;
7473 #endif
7474 #ifdef CONFIG_SCHED_BOOK
7475 	case SD_LV_BOOK: /* set up book groups */
7476 		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7477 		if (cpu == cpumask_first(d->this_book_map))
7478 			init_sched_build_groups(d->this_book_map, cpu_map,
7479 						&cpu_to_book_group,
7480 						d->send_covered, d->tmpmask);
7481 		break;
7482 #endif
7483 	case SD_LV_CPU: /* set up physical groups */
7484 		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7485 		if (!cpumask_empty(d->nodemask))
7486 			init_sched_build_groups(d->nodemask, cpu_map,
7487 						&cpu_to_phys_group,
7488 						d->send_covered, d->tmpmask);
7489 		break;
7490 #ifdef CONFIG_NUMA
7491 	case SD_LV_ALLNODES:
7492 		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7493 					d->send_covered, d->tmpmask);
7494 		break;
7495 #endif
7496 	default:
7497 		break;
7498 	}
7499 }
7500 
7501 /*
7502  * Build sched domains for a given set of cpus and attach the sched domains
7503  * to the individual cpus
7504  */
__build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)7505 static int __build_sched_domains(const struct cpumask *cpu_map,
7506 				 struct sched_domain_attr *attr)
7507 {
7508 	enum s_alloc alloc_state = sa_none;
7509 	struct s_data d;
7510 	struct sched_domain *sd;
7511 	int i;
7512 #ifdef CONFIG_NUMA
7513 	d.sd_allnodes = 0;
7514 #endif
7515 
7516 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7517 	if (alloc_state != sa_rootdomain)
7518 		goto error;
7519 	alloc_state = sa_sched_groups;
7520 
7521 	/*
7522 	 * Set up domains for cpus specified by the cpu_map.
7523 	 */
7524 	for_each_cpu(i, cpu_map) {
7525 		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7526 			    cpu_map);
7527 
7528 		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7529 		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7530 		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7531 		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7532 		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7533 	}
7534 
7535 	for_each_cpu(i, cpu_map) {
7536 		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7537 		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7538 		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7539 	}
7540 
7541 	/* Set up physical groups */
7542 	for (i = 0; i < nr_node_ids; i++)
7543 		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7544 
7545 #ifdef CONFIG_NUMA
7546 	/* Set up node groups */
7547 	if (d.sd_allnodes)
7548 		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7549 
7550 	for (i = 0; i < nr_node_ids; i++)
7551 		if (build_numa_sched_groups(&d, cpu_map, i))
7552 			goto error;
7553 #endif
7554 
7555 	/* Calculate CPU power for physical packages and nodes */
7556 #ifdef CONFIG_SCHED_SMT
7557 	for_each_cpu(i, cpu_map) {
7558 		sd = &per_cpu(cpu_domains, i).sd;
7559 		init_sched_groups_power(i, sd);
7560 	}
7561 #endif
7562 #ifdef CONFIG_SCHED_MC
7563 	for_each_cpu(i, cpu_map) {
7564 		sd = &per_cpu(core_domains, i).sd;
7565 		init_sched_groups_power(i, sd);
7566 	}
7567 #endif
7568 #ifdef CONFIG_SCHED_BOOK
7569 	for_each_cpu(i, cpu_map) {
7570 		sd = &per_cpu(book_domains, i).sd;
7571 		init_sched_groups_power(i, sd);
7572 	}
7573 #endif
7574 
7575 	for_each_cpu(i, cpu_map) {
7576 		sd = &per_cpu(phys_domains, i).sd;
7577 		init_sched_groups_power(i, sd);
7578 	}
7579 
7580 #ifdef CONFIG_NUMA
7581 	for (i = 0; i < nr_node_ids; i++)
7582 		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7583 
7584 	if (d.sd_allnodes) {
7585 		struct sched_group *sg;
7586 
7587 		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7588 								d.tmpmask);
7589 		init_numa_sched_groups_power(sg);
7590 	}
7591 #endif
7592 
7593 	/* Attach the domains */
7594 	for_each_cpu(i, cpu_map) {
7595 #ifdef CONFIG_SCHED_SMT
7596 		sd = &per_cpu(cpu_domains, i).sd;
7597 #elif defined(CONFIG_SCHED_MC)
7598 		sd = &per_cpu(core_domains, i).sd;
7599 #elif defined(CONFIG_SCHED_BOOK)
7600 		sd = &per_cpu(book_domains, i).sd;
7601 #else
7602 		sd = &per_cpu(phys_domains, i).sd;
7603 #endif
7604 		cpu_attach_domain(sd, d.rd, i);
7605 	}
7606 
7607 	d.sched_group_nodes = NULL; /* don't free this we still need it */
7608 	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
7609 	return 0;
7610 
7611 error:
7612 	__free_domain_allocs(&d, alloc_state, cpu_map);
7613 	return -ENOMEM;
7614 }
7615 
build_sched_domains(const struct cpumask * cpu_map)7616 static int build_sched_domains(const struct cpumask *cpu_map)
7617 {
7618 	return __build_sched_domains(cpu_map, NULL);
7619 }
7620 
7621 static cpumask_var_t *doms_cur;	/* current sched domains */
7622 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7623 static struct sched_domain_attr *dattr_cur;
7624 				/* attribues of custom domains in 'doms_cur' */
7625 
7626 /*
7627  * Special case: If a kmalloc of a doms_cur partition (array of
7628  * cpumask) fails, then fallback to a single sched domain,
7629  * as determined by the single cpumask fallback_doms.
7630  */
7631 static cpumask_var_t fallback_doms;
7632 
7633 /*
7634  * arch_update_cpu_topology lets virtualized architectures update the
7635  * cpu core maps. It is supposed to return 1 if the topology changed
7636  * or 0 if it stayed the same.
7637  */
arch_update_cpu_topology(void)7638 int __attribute__((weak)) arch_update_cpu_topology(void)
7639 {
7640 	return 0;
7641 }
7642 
alloc_sched_domains(unsigned int ndoms)7643 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7644 {
7645 	int i;
7646 	cpumask_var_t *doms;
7647 
7648 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7649 	if (!doms)
7650 		return NULL;
7651 	for (i = 0; i < ndoms; i++) {
7652 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7653 			free_sched_domains(doms, i);
7654 			return NULL;
7655 		}
7656 	}
7657 	return doms;
7658 }
7659 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)7660 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7661 {
7662 	unsigned int i;
7663 	for (i = 0; i < ndoms; i++)
7664 		free_cpumask_var(doms[i]);
7665 	kfree(doms);
7666 }
7667 
7668 /*
7669  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7670  * For now this just excludes isolated cpus, but could be used to
7671  * exclude other special cases in the future.
7672  */
arch_init_sched_domains(const struct cpumask * cpu_map)7673 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7674 {
7675 	int err;
7676 
7677 	arch_update_cpu_topology();
7678 	ndoms_cur = 1;
7679 	doms_cur = alloc_sched_domains(ndoms_cur);
7680 	if (!doms_cur)
7681 		doms_cur = &fallback_doms;
7682 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7683 	dattr_cur = NULL;
7684 	err = build_sched_domains(doms_cur[0]);
7685 	register_sched_domain_sysctl();
7686 
7687 	return err;
7688 }
7689 
arch_destroy_sched_domains(const struct cpumask * cpu_map,struct cpumask * tmpmask)7690 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7691 				       struct cpumask *tmpmask)
7692 {
7693 	free_sched_groups(cpu_map, tmpmask);
7694 }
7695 
7696 /*
7697  * Detach sched domains from a group of cpus specified in cpu_map
7698  * These cpus will now be attached to the NULL domain
7699  */
detach_destroy_domains(const struct cpumask * cpu_map)7700 static void detach_destroy_domains(const struct cpumask *cpu_map)
7701 {
7702 	/* Save because hotplug lock held. */
7703 	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7704 	int i;
7705 
7706 	for_each_cpu(i, cpu_map)
7707 		cpu_attach_domain(NULL, &def_root_domain, i);
7708 	synchronize_sched();
7709 	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7710 }
7711 
7712 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7713 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7714 			struct sched_domain_attr *new, int idx_new)
7715 {
7716 	struct sched_domain_attr tmp;
7717 
7718 	/* fast path */
7719 	if (!new && !cur)
7720 		return 1;
7721 
7722 	tmp = SD_ATTR_INIT;
7723 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7724 			new ? (new + idx_new) : &tmp,
7725 			sizeof(struct sched_domain_attr));
7726 }
7727 
7728 /*
7729  * Partition sched domains as specified by the 'ndoms_new'
7730  * cpumasks in the array doms_new[] of cpumasks. This compares
7731  * doms_new[] to the current sched domain partitioning, doms_cur[].
7732  * It destroys each deleted domain and builds each new domain.
7733  *
7734  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7735  * The masks don't intersect (don't overlap.) We should setup one
7736  * sched domain for each mask. CPUs not in any of the cpumasks will
7737  * not be load balanced. If the same cpumask appears both in the
7738  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7739  * it as it is.
7740  *
7741  * The passed in 'doms_new' should be allocated using
7742  * alloc_sched_domains.  This routine takes ownership of it and will
7743  * free_sched_domains it when done with it. If the caller failed the
7744  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7745  * and partition_sched_domains() will fallback to the single partition
7746  * 'fallback_doms', it also forces the domains to be rebuilt.
7747  *
7748  * If doms_new == NULL it will be replaced with cpu_online_mask.
7749  * ndoms_new == 0 is a special case for destroying existing domains,
7750  * and it will not create the default domain.
7751  *
7752  * Call with hotplug lock held
7753  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)7754 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7755 			     struct sched_domain_attr *dattr_new)
7756 {
7757 	int i, j, n;
7758 	int new_topology;
7759 
7760 	mutex_lock(&sched_domains_mutex);
7761 
7762 	/* always unregister in case we don't destroy any domains */
7763 	unregister_sched_domain_sysctl();
7764 
7765 	/* Let architecture update cpu core mappings. */
7766 	new_topology = arch_update_cpu_topology();
7767 
7768 	n = doms_new ? ndoms_new : 0;
7769 
7770 	/* Destroy deleted domains */
7771 	for (i = 0; i < ndoms_cur; i++) {
7772 		for (j = 0; j < n && !new_topology; j++) {
7773 			if (cpumask_equal(doms_cur[i], doms_new[j])
7774 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7775 				goto match1;
7776 		}
7777 		/* no match - a current sched domain not in new doms_new[] */
7778 		detach_destroy_domains(doms_cur[i]);
7779 match1:
7780 		;
7781 	}
7782 
7783 	if (doms_new == NULL) {
7784 		ndoms_cur = 0;
7785 		doms_new = &fallback_doms;
7786 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7787 		WARN_ON_ONCE(dattr_new);
7788 	}
7789 
7790 	/* Build new domains */
7791 	for (i = 0; i < ndoms_new; i++) {
7792 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7793 			if (cpumask_equal(doms_new[i], doms_cur[j])
7794 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7795 				goto match2;
7796 		}
7797 		/* no match - add a new doms_new */
7798 		__build_sched_domains(doms_new[i],
7799 					dattr_new ? dattr_new + i : NULL);
7800 match2:
7801 		;
7802 	}
7803 
7804 	/* Remember the new sched domains */
7805 	if (doms_cur != &fallback_doms)
7806 		free_sched_domains(doms_cur, ndoms_cur);
7807 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7808 	doms_cur = doms_new;
7809 	dattr_cur = dattr_new;
7810 	ndoms_cur = ndoms_new;
7811 
7812 	register_sched_domain_sysctl();
7813 
7814 	mutex_unlock(&sched_domains_mutex);
7815 }
7816 
7817 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
arch_reinit_sched_domains(void)7818 static void arch_reinit_sched_domains(void)
7819 {
7820 	get_online_cpus();
7821 
7822 	/* Destroy domains first to force the rebuild */
7823 	partition_sched_domains(0, NULL, NULL);
7824 
7825 	rebuild_sched_domains();
7826 	put_online_cpus();
7827 }
7828 
sched_power_savings_store(const char * buf,size_t count,int smt)7829 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7830 {
7831 	unsigned int level = 0;
7832 
7833 	if (sscanf(buf, "%u", &level) != 1)
7834 		return -EINVAL;
7835 
7836 	/*
7837 	 * level is always be positive so don't check for
7838 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
7839 	 * What happens on 0 or 1 byte write,
7840 	 * need to check for count as well?
7841 	 */
7842 
7843 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7844 		return -EINVAL;
7845 
7846 	if (smt)
7847 		sched_smt_power_savings = level;
7848 	else
7849 		sched_mc_power_savings = level;
7850 
7851 	arch_reinit_sched_domains();
7852 
7853 	return count;
7854 }
7855 
7856 #ifdef CONFIG_SCHED_MC
sched_mc_power_savings_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * page)7857 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7858 					   struct sysdev_class_attribute *attr,
7859 					   char *page)
7860 {
7861 	return sprintf(page, "%u\n", sched_mc_power_savings);
7862 }
sched_mc_power_savings_store(struct sysdev_class * class,struct sysdev_class_attribute * attr,const char * buf,size_t count)7863 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7864 					    struct sysdev_class_attribute *attr,
7865 					    const char *buf, size_t count)
7866 {
7867 	return sched_power_savings_store(buf, count, 0);
7868 }
7869 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7870 			 sched_mc_power_savings_show,
7871 			 sched_mc_power_savings_store);
7872 #endif
7873 
7874 #ifdef CONFIG_SCHED_SMT
sched_smt_power_savings_show(struct sysdev_class * dev,struct sysdev_class_attribute * attr,char * page)7875 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7876 					    struct sysdev_class_attribute *attr,
7877 					    char *page)
7878 {
7879 	return sprintf(page, "%u\n", sched_smt_power_savings);
7880 }
sched_smt_power_savings_store(struct sysdev_class * dev,struct sysdev_class_attribute * attr,const char * buf,size_t count)7881 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7882 					     struct sysdev_class_attribute *attr,
7883 					     const char *buf, size_t count)
7884 {
7885 	return sched_power_savings_store(buf, count, 1);
7886 }
7887 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7888 		   sched_smt_power_savings_show,
7889 		   sched_smt_power_savings_store);
7890 #endif
7891 
sched_create_sysfs_power_savings_entries(struct sysdev_class * cls)7892 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7893 {
7894 	int err = 0;
7895 
7896 #ifdef CONFIG_SCHED_SMT
7897 	if (smt_capable())
7898 		err = sysfs_create_file(&cls->kset.kobj,
7899 					&attr_sched_smt_power_savings.attr);
7900 #endif
7901 #ifdef CONFIG_SCHED_MC
7902 	if (!err && mc_capable())
7903 		err = sysfs_create_file(&cls->kset.kobj,
7904 					&attr_sched_mc_power_savings.attr);
7905 #endif
7906 	return err;
7907 }
7908 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7909 
7910 /*
7911  * Update cpusets according to cpu_active mask.  If cpusets are
7912  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7913  * around partition_sched_domains().
7914  */
cpuset_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)7915 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7916 			     void *hcpu)
7917 {
7918 	switch (action & ~CPU_TASKS_FROZEN) {
7919 	case CPU_ONLINE:
7920 	case CPU_DOWN_FAILED:
7921 		cpuset_update_active_cpus();
7922 		return NOTIFY_OK;
7923 	default:
7924 		return NOTIFY_DONE;
7925 	}
7926 }
7927 
cpuset_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)7928 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7929 			       void *hcpu)
7930 {
7931 	switch (action & ~CPU_TASKS_FROZEN) {
7932 	case CPU_DOWN_PREPARE:
7933 		cpuset_update_active_cpus();
7934 		return NOTIFY_OK;
7935 	default:
7936 		return NOTIFY_DONE;
7937 	}
7938 }
7939 
update_runtime(struct notifier_block * nfb,unsigned long action,void * hcpu)7940 static int update_runtime(struct notifier_block *nfb,
7941 				unsigned long action, void *hcpu)
7942 {
7943 	int cpu = (int)(long)hcpu;
7944 
7945 	switch (action) {
7946 	case CPU_DOWN_PREPARE:
7947 	case CPU_DOWN_PREPARE_FROZEN:
7948 		disable_runtime(cpu_rq(cpu));
7949 		return NOTIFY_OK;
7950 
7951 	case CPU_DOWN_FAILED:
7952 	case CPU_DOWN_FAILED_FROZEN:
7953 	case CPU_ONLINE:
7954 	case CPU_ONLINE_FROZEN:
7955 		enable_runtime(cpu_rq(cpu));
7956 		return NOTIFY_OK;
7957 
7958 	default:
7959 		return NOTIFY_DONE;
7960 	}
7961 }
7962 
sched_init_smp(void)7963 void __init sched_init_smp(void)
7964 {
7965 	cpumask_var_t non_isolated_cpus;
7966 
7967 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7968 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7969 
7970 #if defined(CONFIG_NUMA)
7971 	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7972 								GFP_KERNEL);
7973 	BUG_ON(sched_group_nodes_bycpu == NULL);
7974 #endif
7975 	get_online_cpus();
7976 	mutex_lock(&sched_domains_mutex);
7977 	arch_init_sched_domains(cpu_active_mask);
7978 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7979 	if (cpumask_empty(non_isolated_cpus))
7980 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7981 	mutex_unlock(&sched_domains_mutex);
7982 	put_online_cpus();
7983 
7984 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7985 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7986 
7987 	/* RT runtime code needs to handle some hotplug events */
7988 	hotcpu_notifier(update_runtime, 0);
7989 
7990 	init_hrtick();
7991 
7992 	/* Move init over to a non-isolated CPU */
7993 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7994 		BUG();
7995 	sched_init_granularity();
7996 	free_cpumask_var(non_isolated_cpus);
7997 
7998 	init_sched_rt_class();
7999 }
8000 #else
sched_init_smp(void)8001 void __init sched_init_smp(void)
8002 {
8003 	sched_init_granularity();
8004 }
8005 #endif /* CONFIG_SMP */
8006 
8007 const_debug unsigned int sysctl_timer_migration = 1;
8008 
in_sched_functions(unsigned long addr)8009 int in_sched_functions(unsigned long addr)
8010 {
8011 	return in_lock_functions(addr) ||
8012 		(addr >= (unsigned long)__sched_text_start
8013 		&& addr < (unsigned long)__sched_text_end);
8014 }
8015 
init_cfs_rq(struct cfs_rq * cfs_rq,struct rq * rq)8016 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8017 {
8018 	cfs_rq->tasks_timeline = RB_ROOT;
8019 	INIT_LIST_HEAD(&cfs_rq->tasks);
8020 #ifdef CONFIG_FAIR_GROUP_SCHED
8021 	cfs_rq->rq = rq;
8022 	/* allow initial update_cfs_load() to truncate */
8023 #ifdef CONFIG_SMP
8024 	cfs_rq->load_stamp = 1;
8025 #endif
8026 #endif
8027 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8028 }
8029 
init_rt_rq(struct rt_rq * rt_rq,struct rq * rq)8030 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8031 {
8032 	struct rt_prio_array *array;
8033 	int i;
8034 
8035 	array = &rt_rq->active;
8036 	for (i = 0; i < MAX_RT_PRIO; i++) {
8037 		INIT_LIST_HEAD(array->queue + i);
8038 		__clear_bit(i, array->bitmap);
8039 	}
8040 	/* delimiter for bitsearch: */
8041 	__set_bit(MAX_RT_PRIO, array->bitmap);
8042 
8043 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8044 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8045 #ifdef CONFIG_SMP
8046 	rt_rq->highest_prio.next = MAX_RT_PRIO;
8047 #endif
8048 #endif
8049 #ifdef CONFIG_SMP
8050 	rt_rq->rt_nr_migratory = 0;
8051 	rt_rq->overloaded = 0;
8052 	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8053 #endif
8054 
8055 	rt_rq->rt_time = 0;
8056 	rt_rq->rt_throttled = 0;
8057 	rt_rq->rt_runtime = 0;
8058 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8059 
8060 #ifdef CONFIG_RT_GROUP_SCHED
8061 	rt_rq->rt_nr_boosted = 0;
8062 	rt_rq->rq = rq;
8063 #endif
8064 }
8065 
8066 #ifdef CONFIG_FAIR_GROUP_SCHED
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)8067 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8068 				struct sched_entity *se, int cpu,
8069 				struct sched_entity *parent)
8070 {
8071 	struct rq *rq = cpu_rq(cpu);
8072 	tg->cfs_rq[cpu] = cfs_rq;
8073 	init_cfs_rq(cfs_rq, rq);
8074 	cfs_rq->tg = tg;
8075 
8076 	tg->se[cpu] = se;
8077 	/* se could be NULL for root_task_group */
8078 	if (!se)
8079 		return;
8080 
8081 	if (!parent)
8082 		se->cfs_rq = &rq->cfs;
8083 	else
8084 		se->cfs_rq = parent->my_q;
8085 
8086 	se->my_q = cfs_rq;
8087 	update_load_set(&se->load, 0);
8088 	se->parent = parent;
8089 }
8090 #endif
8091 
8092 #ifdef CONFIG_RT_GROUP_SCHED
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)8093 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8094 		struct sched_rt_entity *rt_se, int cpu,
8095 		struct sched_rt_entity *parent)
8096 {
8097 	struct rq *rq = cpu_rq(cpu);
8098 
8099 	tg->rt_rq[cpu] = rt_rq;
8100 	init_rt_rq(rt_rq, rq);
8101 	rt_rq->tg = tg;
8102 	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8103 
8104 	tg->rt_se[cpu] = rt_se;
8105 	if (!rt_se)
8106 		return;
8107 
8108 	if (!parent)
8109 		rt_se->rt_rq = &rq->rt;
8110 	else
8111 		rt_se->rt_rq = parent->my_q;
8112 
8113 	rt_se->my_q = rt_rq;
8114 	rt_se->parent = parent;
8115 	INIT_LIST_HEAD(&rt_se->run_list);
8116 }
8117 #endif
8118 
sched_init(void)8119 void __init sched_init(void)
8120 {
8121 	int i, j;
8122 	unsigned long alloc_size = 0, ptr;
8123 
8124 #ifdef CONFIG_FAIR_GROUP_SCHED
8125 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8126 #endif
8127 #ifdef CONFIG_RT_GROUP_SCHED
8128 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8129 #endif
8130 #ifdef CONFIG_CPUMASK_OFFSTACK
8131 	alloc_size += num_possible_cpus() * cpumask_size();
8132 #endif
8133 	if (alloc_size) {
8134 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8135 
8136 #ifdef CONFIG_FAIR_GROUP_SCHED
8137 		root_task_group.se = (struct sched_entity **)ptr;
8138 		ptr += nr_cpu_ids * sizeof(void **);
8139 
8140 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8141 		ptr += nr_cpu_ids * sizeof(void **);
8142 
8143 #endif /* CONFIG_FAIR_GROUP_SCHED */
8144 #ifdef CONFIG_RT_GROUP_SCHED
8145 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8146 		ptr += nr_cpu_ids * sizeof(void **);
8147 
8148 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8149 		ptr += nr_cpu_ids * sizeof(void **);
8150 
8151 #endif /* CONFIG_RT_GROUP_SCHED */
8152 #ifdef CONFIG_CPUMASK_OFFSTACK
8153 		for_each_possible_cpu(i) {
8154 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8155 			ptr += cpumask_size();
8156 		}
8157 #endif /* CONFIG_CPUMASK_OFFSTACK */
8158 	}
8159 
8160 #ifdef CONFIG_SMP
8161 	init_defrootdomain();
8162 #endif
8163 
8164 	init_rt_bandwidth(&def_rt_bandwidth,
8165 			global_rt_period(), global_rt_runtime());
8166 
8167 #ifdef CONFIG_RT_GROUP_SCHED
8168 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8169 			global_rt_period(), global_rt_runtime());
8170 #endif /* CONFIG_RT_GROUP_SCHED */
8171 
8172 #ifdef CONFIG_CGROUP_SCHED
8173 	list_add(&root_task_group.list, &task_groups);
8174 	INIT_LIST_HEAD(&root_task_group.children);
8175 	autogroup_init(&init_task);
8176 #endif /* CONFIG_CGROUP_SCHED */
8177 
8178 	for_each_possible_cpu(i) {
8179 		struct rq *rq;
8180 
8181 		rq = cpu_rq(i);
8182 		raw_spin_lock_init(&rq->lock);
8183 		rq->nr_running = 0;
8184 		rq->calc_load_active = 0;
8185 		rq->calc_load_update = jiffies + LOAD_FREQ;
8186 		init_cfs_rq(&rq->cfs, rq);
8187 		init_rt_rq(&rq->rt, rq);
8188 #ifdef CONFIG_FAIR_GROUP_SCHED
8189 		root_task_group.shares = root_task_group_load;
8190 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8191 		/*
8192 		 * How much cpu bandwidth does root_task_group get?
8193 		 *
8194 		 * In case of task-groups formed thr' the cgroup filesystem, it
8195 		 * gets 100% of the cpu resources in the system. This overall
8196 		 * system cpu resource is divided among the tasks of
8197 		 * root_task_group and its child task-groups in a fair manner,
8198 		 * based on each entity's (task or task-group's) weight
8199 		 * (se->load.weight).
8200 		 *
8201 		 * In other words, if root_task_group has 10 tasks of weight
8202 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8203 		 * then A0's share of the cpu resource is:
8204 		 *
8205 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8206 		 *
8207 		 * We achieve this by letting root_task_group's tasks sit
8208 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8209 		 */
8210 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8211 #endif /* CONFIG_FAIR_GROUP_SCHED */
8212 
8213 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8214 #ifdef CONFIG_RT_GROUP_SCHED
8215 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8216 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8217 #endif
8218 
8219 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8220 			rq->cpu_load[j] = 0;
8221 
8222 		rq->last_load_update_tick = jiffies;
8223 
8224 #ifdef CONFIG_SMP
8225 		rq->sd = NULL;
8226 		rq->rd = NULL;
8227 		rq->cpu_power = SCHED_LOAD_SCALE;
8228 		rq->post_schedule = 0;
8229 		rq->active_balance = 0;
8230 		rq->next_balance = jiffies;
8231 		rq->push_cpu = 0;
8232 		rq->cpu = i;
8233 		rq->online = 0;
8234 		rq->idle_stamp = 0;
8235 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8236 		rq_attach_root(rq, &def_root_domain);
8237 #ifdef CONFIG_NO_HZ
8238 		rq->nohz_balance_kick = 0;
8239 		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8240 #endif
8241 #endif
8242 		init_rq_hrtick(rq);
8243 		atomic_set(&rq->nr_iowait, 0);
8244 	}
8245 
8246 	set_load_weight(&init_task);
8247 
8248 #ifdef CONFIG_PREEMPT_NOTIFIERS
8249 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8250 #endif
8251 
8252 #ifdef CONFIG_SMP
8253 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8254 #endif
8255 
8256 #ifdef CONFIG_RT_MUTEXES
8257 	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8258 #endif
8259 
8260 	/*
8261 	 * The boot idle thread does lazy MMU switching as well:
8262 	 */
8263 	atomic_inc(&init_mm.mm_count);
8264 	enter_lazy_tlb(&init_mm, current);
8265 
8266 	/*
8267 	 * Make us the idle thread. Technically, schedule() should not be
8268 	 * called from this thread, however somewhere below it might be,
8269 	 * but because we are the idle thread, we just pick up running again
8270 	 * when this runqueue becomes "idle".
8271 	 */
8272 	init_idle(current, smp_processor_id());
8273 
8274 	calc_load_update = jiffies + LOAD_FREQ;
8275 
8276 	/*
8277 	 * During early bootup we pretend to be a normal task:
8278 	 */
8279 	current->sched_class = &fair_sched_class;
8280 
8281 	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8282 	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8283 #ifdef CONFIG_SMP
8284 #ifdef CONFIG_NO_HZ
8285 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8286 	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8287 	atomic_set(&nohz.load_balancer, nr_cpu_ids);
8288 	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8289 	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8290 #endif
8291 	/* May be allocated at isolcpus cmdline parse time */
8292 	if (cpu_isolated_map == NULL)
8293 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8294 #endif /* SMP */
8295 
8296 	scheduler_running = 1;
8297 }
8298 
8299 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
preempt_count_equals(int preempt_offset)8300 static inline int preempt_count_equals(int preempt_offset)
8301 {
8302 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8303 
8304 	return (nested == preempt_offset);
8305 }
8306 
__might_sleep(const char * file,int line,int preempt_offset)8307 void __might_sleep(const char *file, int line, int preempt_offset)
8308 {
8309 #ifdef in_atomic
8310 	static unsigned long prev_jiffy;	/* ratelimiting */
8311 
8312 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8313 	    system_state != SYSTEM_RUNNING || oops_in_progress)
8314 		return;
8315 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8316 		return;
8317 	prev_jiffy = jiffies;
8318 
8319 	printk(KERN_ERR
8320 		"BUG: sleeping function called from invalid context at %s:%d\n",
8321 			file, line);
8322 	printk(KERN_ERR
8323 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8324 			in_atomic(), irqs_disabled(),
8325 			current->pid, current->comm);
8326 
8327 	debug_show_held_locks(current);
8328 	if (irqs_disabled())
8329 		print_irqtrace_events(current);
8330 	dump_stack();
8331 #endif
8332 }
8333 EXPORT_SYMBOL(__might_sleep);
8334 #endif
8335 
8336 #ifdef CONFIG_MAGIC_SYSRQ
normalize_task(struct rq * rq,struct task_struct * p)8337 static void normalize_task(struct rq *rq, struct task_struct *p)
8338 {
8339 	const struct sched_class *prev_class = p->sched_class;
8340 	int old_prio = p->prio;
8341 	int on_rq;
8342 
8343 	on_rq = p->se.on_rq;
8344 	if (on_rq)
8345 		deactivate_task(rq, p, 0);
8346 	__setscheduler(rq, p, SCHED_NORMAL, 0);
8347 	if (on_rq) {
8348 		activate_task(rq, p, 0);
8349 		resched_task(rq->curr);
8350 	}
8351 
8352 	check_class_changed(rq, p, prev_class, old_prio);
8353 }
8354 
normalize_rt_tasks(void)8355 void normalize_rt_tasks(void)
8356 {
8357 	struct task_struct *g, *p;
8358 	unsigned long flags;
8359 	struct rq *rq;
8360 
8361 	read_lock_irqsave(&tasklist_lock, flags);
8362 	do_each_thread(g, p) {
8363 		/*
8364 		 * Only normalize user tasks:
8365 		 */
8366 		if (!p->mm)
8367 			continue;
8368 
8369 		p->se.exec_start		= 0;
8370 #ifdef CONFIG_SCHEDSTATS
8371 		p->se.statistics.wait_start	= 0;
8372 		p->se.statistics.sleep_start	= 0;
8373 		p->se.statistics.block_start	= 0;
8374 #endif
8375 
8376 		if (!rt_task(p)) {
8377 			/*
8378 			 * Renice negative nice level userspace
8379 			 * tasks back to 0:
8380 			 */
8381 			if (TASK_NICE(p) < 0 && p->mm)
8382 				set_user_nice(p, 0);
8383 			continue;
8384 		}
8385 
8386 		raw_spin_lock(&p->pi_lock);
8387 		rq = __task_rq_lock(p);
8388 
8389 		normalize_task(rq, p);
8390 
8391 		__task_rq_unlock(rq);
8392 		raw_spin_unlock(&p->pi_lock);
8393 	} while_each_thread(g, p);
8394 
8395 	read_unlock_irqrestore(&tasklist_lock, flags);
8396 }
8397 
8398 #endif /* CONFIG_MAGIC_SYSRQ */
8399 
8400 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8401 /*
8402  * These functions are only useful for the IA64 MCA handling, or kdb.
8403  *
8404  * They can only be called when the whole system has been
8405  * stopped - every CPU needs to be quiescent, and no scheduling
8406  * activity can take place. Using them for anything else would
8407  * be a serious bug, and as a result, they aren't even visible
8408  * under any other configuration.
8409  */
8410 
8411 /**
8412  * curr_task - return the current task for a given cpu.
8413  * @cpu: the processor in question.
8414  *
8415  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8416  */
curr_task(int cpu)8417 struct task_struct *curr_task(int cpu)
8418 {
8419 	return cpu_curr(cpu);
8420 }
8421 
8422 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8423 
8424 #ifdef CONFIG_IA64
8425 /**
8426  * set_curr_task - set the current task for a given cpu.
8427  * @cpu: the processor in question.
8428  * @p: the task pointer to set.
8429  *
8430  * Description: This function must only be used when non-maskable interrupts
8431  * are serviced on a separate stack. It allows the architecture to switch the
8432  * notion of the current task on a cpu in a non-blocking manner. This function
8433  * must be called with all CPU's synchronized, and interrupts disabled, the
8434  * and caller must save the original value of the current task (see
8435  * curr_task() above) and restore that value before reenabling interrupts and
8436  * re-starting the system.
8437  *
8438  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8439  */
set_curr_task(int cpu,struct task_struct * p)8440 void set_curr_task(int cpu, struct task_struct *p)
8441 {
8442 	cpu_curr(cpu) = p;
8443 }
8444 
8445 #endif
8446 
8447 #ifdef CONFIG_FAIR_GROUP_SCHED
free_fair_sched_group(struct task_group * tg)8448 static void free_fair_sched_group(struct task_group *tg)
8449 {
8450 	int i;
8451 
8452 	for_each_possible_cpu(i) {
8453 		if (tg->cfs_rq)
8454 			kfree(tg->cfs_rq[i]);
8455 		if (tg->se)
8456 			kfree(tg->se[i]);
8457 	}
8458 
8459 	kfree(tg->cfs_rq);
8460 	kfree(tg->se);
8461 }
8462 
8463 static
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)8464 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8465 {
8466 	struct cfs_rq *cfs_rq;
8467 	struct sched_entity *se;
8468 	int i;
8469 
8470 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8471 	if (!tg->cfs_rq)
8472 		goto err;
8473 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8474 	if (!tg->se)
8475 		goto err;
8476 
8477 	tg->shares = NICE_0_LOAD;
8478 
8479 	for_each_possible_cpu(i) {
8480 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8481 				      GFP_KERNEL, cpu_to_node(i));
8482 		if (!cfs_rq)
8483 			goto err;
8484 
8485 		se = kzalloc_node(sizeof(struct sched_entity),
8486 				  GFP_KERNEL, cpu_to_node(i));
8487 		if (!se)
8488 			goto err_free_rq;
8489 
8490 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8491 	}
8492 
8493 	return 1;
8494 
8495 err_free_rq:
8496 	kfree(cfs_rq);
8497 err:
8498 	return 0;
8499 }
8500 
unregister_fair_sched_group(struct task_group * tg,int cpu)8501 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8502 {
8503 	struct rq *rq = cpu_rq(cpu);
8504 	unsigned long flags;
8505 
8506 	/*
8507 	* Only empty task groups can be destroyed; so we can speculatively
8508 	* check on_list without danger of it being re-added.
8509 	*/
8510 	if (!tg->cfs_rq[cpu]->on_list)
8511 		return;
8512 
8513 	raw_spin_lock_irqsave(&rq->lock, flags);
8514 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8515 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8516 }
8517 #else /* !CONFG_FAIR_GROUP_SCHED */
free_fair_sched_group(struct task_group * tg)8518 static inline void free_fair_sched_group(struct task_group *tg)
8519 {
8520 }
8521 
8522 static inline
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)8523 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8524 {
8525 	return 1;
8526 }
8527 
unregister_fair_sched_group(struct task_group * tg,int cpu)8528 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8529 {
8530 }
8531 #endif /* CONFIG_FAIR_GROUP_SCHED */
8532 
8533 #ifdef CONFIG_RT_GROUP_SCHED
free_rt_sched_group(struct task_group * tg)8534 static void free_rt_sched_group(struct task_group *tg)
8535 {
8536 	int i;
8537 
8538 	destroy_rt_bandwidth(&tg->rt_bandwidth);
8539 
8540 	for_each_possible_cpu(i) {
8541 		if (tg->rt_rq)
8542 			kfree(tg->rt_rq[i]);
8543 		if (tg->rt_se)
8544 			kfree(tg->rt_se[i]);
8545 	}
8546 
8547 	kfree(tg->rt_rq);
8548 	kfree(tg->rt_se);
8549 }
8550 
8551 static
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)8552 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8553 {
8554 	struct rt_rq *rt_rq;
8555 	struct sched_rt_entity *rt_se;
8556 	struct rq *rq;
8557 	int i;
8558 
8559 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8560 	if (!tg->rt_rq)
8561 		goto err;
8562 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8563 	if (!tg->rt_se)
8564 		goto err;
8565 
8566 	init_rt_bandwidth(&tg->rt_bandwidth,
8567 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8568 
8569 	for_each_possible_cpu(i) {
8570 		rq = cpu_rq(i);
8571 
8572 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
8573 				     GFP_KERNEL, cpu_to_node(i));
8574 		if (!rt_rq)
8575 			goto err;
8576 
8577 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8578 				     GFP_KERNEL, cpu_to_node(i));
8579 		if (!rt_se)
8580 			goto err_free_rq;
8581 
8582 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8583 	}
8584 
8585 	return 1;
8586 
8587 err_free_rq:
8588 	kfree(rt_rq);
8589 err:
8590 	return 0;
8591 }
8592 #else /* !CONFIG_RT_GROUP_SCHED */
free_rt_sched_group(struct task_group * tg)8593 static inline void free_rt_sched_group(struct task_group *tg)
8594 {
8595 }
8596 
8597 static inline
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)8598 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8599 {
8600 	return 1;
8601 }
8602 #endif /* CONFIG_RT_GROUP_SCHED */
8603 
8604 #ifdef CONFIG_CGROUP_SCHED
free_sched_group(struct task_group * tg)8605 static void free_sched_group(struct task_group *tg)
8606 {
8607 	free_fair_sched_group(tg);
8608 	free_rt_sched_group(tg);
8609 	autogroup_free(tg);
8610 	kfree(tg);
8611 }
8612 
8613 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8614 struct task_group *sched_create_group(struct task_group *parent)
8615 {
8616 	struct task_group *tg;
8617 	unsigned long flags;
8618 
8619 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8620 	if (!tg)
8621 		return ERR_PTR(-ENOMEM);
8622 
8623 	if (!alloc_fair_sched_group(tg, parent))
8624 		goto err;
8625 
8626 	if (!alloc_rt_sched_group(tg, parent))
8627 		goto err;
8628 
8629 	spin_lock_irqsave(&task_group_lock, flags);
8630 	list_add_rcu(&tg->list, &task_groups);
8631 
8632 	WARN_ON(!parent); /* root should already exist */
8633 
8634 	tg->parent = parent;
8635 	INIT_LIST_HEAD(&tg->children);
8636 	list_add_rcu(&tg->siblings, &parent->children);
8637 	spin_unlock_irqrestore(&task_group_lock, flags);
8638 
8639 	return tg;
8640 
8641 err:
8642 	free_sched_group(tg);
8643 	return ERR_PTR(-ENOMEM);
8644 }
8645 
8646 /* rcu callback to free various structures associated with a task group */
free_sched_group_rcu(struct rcu_head * rhp)8647 static void free_sched_group_rcu(struct rcu_head *rhp)
8648 {
8649 	/* now it should be safe to free those cfs_rqs */
8650 	free_sched_group(container_of(rhp, struct task_group, rcu));
8651 }
8652 
8653 /* Destroy runqueue etc associated with a task group */
sched_destroy_group(struct task_group * tg)8654 void sched_destroy_group(struct task_group *tg)
8655 {
8656 	unsigned long flags;
8657 	int i;
8658 
8659 	/* end participation in shares distribution */
8660 	for_each_possible_cpu(i)
8661 		unregister_fair_sched_group(tg, i);
8662 
8663 	spin_lock_irqsave(&task_group_lock, flags);
8664 	list_del_rcu(&tg->list);
8665 	list_del_rcu(&tg->siblings);
8666 	spin_unlock_irqrestore(&task_group_lock, flags);
8667 
8668 	/* wait for possible concurrent references to cfs_rqs complete */
8669 	call_rcu(&tg->rcu, free_sched_group_rcu);
8670 }
8671 
8672 /* change task's runqueue when it moves between groups.
8673  *	The caller of this function should have put the task in its new group
8674  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8675  *	reflect its new group.
8676  */
sched_move_task(struct task_struct * tsk)8677 void sched_move_task(struct task_struct *tsk)
8678 {
8679 	int on_rq, running;
8680 	unsigned long flags;
8681 	struct rq *rq;
8682 
8683 	rq = task_rq_lock(tsk, &flags);
8684 
8685 	running = task_current(rq, tsk);
8686 	on_rq = tsk->se.on_rq;
8687 
8688 	if (on_rq)
8689 		dequeue_task(rq, tsk, 0);
8690 	if (unlikely(running))
8691 		tsk->sched_class->put_prev_task(rq, tsk);
8692 
8693 #ifdef CONFIG_FAIR_GROUP_SCHED
8694 	if (tsk->sched_class->task_move_group)
8695 		tsk->sched_class->task_move_group(tsk, on_rq);
8696 	else
8697 #endif
8698 		set_task_rq(tsk, task_cpu(tsk));
8699 
8700 	if (unlikely(running))
8701 		tsk->sched_class->set_curr_task(rq);
8702 	if (on_rq)
8703 		enqueue_task(rq, tsk, 0);
8704 
8705 	task_rq_unlock(rq, &flags);
8706 }
8707 #endif /* CONFIG_CGROUP_SCHED */
8708 
8709 #ifdef CONFIG_FAIR_GROUP_SCHED
8710 static DEFINE_MUTEX(shares_mutex);
8711 
sched_group_set_shares(struct task_group * tg,unsigned long shares)8712 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8713 {
8714 	int i;
8715 	unsigned long flags;
8716 
8717 	/*
8718 	 * We can't change the weight of the root cgroup.
8719 	 */
8720 	if (!tg->se[0])
8721 		return -EINVAL;
8722 
8723 	if (shares < MIN_SHARES)
8724 		shares = MIN_SHARES;
8725 	else if (shares > MAX_SHARES)
8726 		shares = MAX_SHARES;
8727 
8728 	mutex_lock(&shares_mutex);
8729 	if (tg->shares == shares)
8730 		goto done;
8731 
8732 	tg->shares = shares;
8733 	for_each_possible_cpu(i) {
8734 		struct rq *rq = cpu_rq(i);
8735 		struct sched_entity *se;
8736 
8737 		se = tg->se[i];
8738 		/* Propagate contribution to hierarchy */
8739 		raw_spin_lock_irqsave(&rq->lock, flags);
8740 		for_each_sched_entity(se)
8741 			update_cfs_shares(group_cfs_rq(se));
8742 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8743 	}
8744 
8745 done:
8746 	mutex_unlock(&shares_mutex);
8747 	return 0;
8748 }
8749 
sched_group_shares(struct task_group * tg)8750 unsigned long sched_group_shares(struct task_group *tg)
8751 {
8752 	return tg->shares;
8753 }
8754 #endif
8755 
8756 #ifdef CONFIG_RT_GROUP_SCHED
8757 /*
8758  * Ensure that the real time constraints are schedulable.
8759  */
8760 static DEFINE_MUTEX(rt_constraints_mutex);
8761 
to_ratio(u64 period,u64 runtime)8762 static unsigned long to_ratio(u64 period, u64 runtime)
8763 {
8764 	if (runtime == RUNTIME_INF)
8765 		return 1ULL << 20;
8766 
8767 	return div64_u64(runtime << 20, period);
8768 }
8769 
8770 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)8771 static inline int tg_has_rt_tasks(struct task_group *tg)
8772 {
8773 	struct task_struct *g, *p;
8774 
8775 	do_each_thread(g, p) {
8776 		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8777 			return 1;
8778 	} while_each_thread(g, p);
8779 
8780 	return 0;
8781 }
8782 
8783 struct rt_schedulable_data {
8784 	struct task_group *tg;
8785 	u64 rt_period;
8786 	u64 rt_runtime;
8787 };
8788 
tg_schedulable(struct task_group * tg,void * data)8789 static int tg_schedulable(struct task_group *tg, void *data)
8790 {
8791 	struct rt_schedulable_data *d = data;
8792 	struct task_group *child;
8793 	unsigned long total, sum = 0;
8794 	u64 period, runtime;
8795 
8796 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8797 	runtime = tg->rt_bandwidth.rt_runtime;
8798 
8799 	if (tg == d->tg) {
8800 		period = d->rt_period;
8801 		runtime = d->rt_runtime;
8802 	}
8803 
8804 	/*
8805 	 * Cannot have more runtime than the period.
8806 	 */
8807 	if (runtime > period && runtime != RUNTIME_INF)
8808 		return -EINVAL;
8809 
8810 	/*
8811 	 * Ensure we don't starve existing RT tasks.
8812 	 */
8813 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8814 		return -EBUSY;
8815 
8816 	total = to_ratio(period, runtime);
8817 
8818 	/*
8819 	 * Nobody can have more than the global setting allows.
8820 	 */
8821 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8822 		return -EINVAL;
8823 
8824 	/*
8825 	 * The sum of our children's runtime should not exceed our own.
8826 	 */
8827 	list_for_each_entry_rcu(child, &tg->children, siblings) {
8828 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
8829 		runtime = child->rt_bandwidth.rt_runtime;
8830 
8831 		if (child == d->tg) {
8832 			period = d->rt_period;
8833 			runtime = d->rt_runtime;
8834 		}
8835 
8836 		sum += to_ratio(period, runtime);
8837 	}
8838 
8839 	if (sum > total)
8840 		return -EINVAL;
8841 
8842 	return 0;
8843 }
8844 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)8845 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8846 {
8847 	struct rt_schedulable_data data = {
8848 		.tg = tg,
8849 		.rt_period = period,
8850 		.rt_runtime = runtime,
8851 	};
8852 
8853 	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8854 }
8855 
tg_set_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)8856 static int tg_set_bandwidth(struct task_group *tg,
8857 		u64 rt_period, u64 rt_runtime)
8858 {
8859 	int i, err = 0;
8860 
8861 	mutex_lock(&rt_constraints_mutex);
8862 	read_lock(&tasklist_lock);
8863 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8864 	if (err)
8865 		goto unlock;
8866 
8867 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8868 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8869 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8870 
8871 	for_each_possible_cpu(i) {
8872 		struct rt_rq *rt_rq = tg->rt_rq[i];
8873 
8874 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8875 		rt_rq->rt_runtime = rt_runtime;
8876 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8877 	}
8878 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8879 unlock:
8880 	read_unlock(&tasklist_lock);
8881 	mutex_unlock(&rt_constraints_mutex);
8882 
8883 	return err;
8884 }
8885 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)8886 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8887 {
8888 	u64 rt_runtime, rt_period;
8889 
8890 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8891 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8892 	if (rt_runtime_us < 0)
8893 		rt_runtime = RUNTIME_INF;
8894 
8895 	return tg_set_bandwidth(tg, rt_period, rt_runtime);
8896 }
8897 
sched_group_rt_runtime(struct task_group * tg)8898 long sched_group_rt_runtime(struct task_group *tg)
8899 {
8900 	u64 rt_runtime_us;
8901 
8902 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8903 		return -1;
8904 
8905 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8906 	do_div(rt_runtime_us, NSEC_PER_USEC);
8907 	return rt_runtime_us;
8908 }
8909 
sched_group_set_rt_period(struct task_group * tg,long rt_period_us)8910 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8911 {
8912 	u64 rt_runtime, rt_period;
8913 
8914 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8915 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8916 
8917 	if (rt_period == 0)
8918 		return -EINVAL;
8919 
8920 	return tg_set_bandwidth(tg, rt_period, rt_runtime);
8921 }
8922 
sched_group_rt_period(struct task_group * tg)8923 long sched_group_rt_period(struct task_group *tg)
8924 {
8925 	u64 rt_period_us;
8926 
8927 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8928 	do_div(rt_period_us, NSEC_PER_USEC);
8929 	return rt_period_us;
8930 }
8931 
sched_rt_global_constraints(void)8932 static int sched_rt_global_constraints(void)
8933 {
8934 	u64 runtime, period;
8935 	int ret = 0;
8936 
8937 	if (sysctl_sched_rt_period <= 0)
8938 		return -EINVAL;
8939 
8940 	runtime = global_rt_runtime();
8941 	period = global_rt_period();
8942 
8943 	/*
8944 	 * Sanity check on the sysctl variables.
8945 	 */
8946 	if (runtime > period && runtime != RUNTIME_INF)
8947 		return -EINVAL;
8948 
8949 	mutex_lock(&rt_constraints_mutex);
8950 	read_lock(&tasklist_lock);
8951 	ret = __rt_schedulable(NULL, 0, 0);
8952 	read_unlock(&tasklist_lock);
8953 	mutex_unlock(&rt_constraints_mutex);
8954 
8955 	return ret;
8956 }
8957 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)8958 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8959 {
8960 	/* Don't accept realtime tasks when there is no way for them to run */
8961 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8962 		return 0;
8963 
8964 	return 1;
8965 }
8966 
8967 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)8968 static int sched_rt_global_constraints(void)
8969 {
8970 	unsigned long flags;
8971 	int i;
8972 
8973 	if (sysctl_sched_rt_period <= 0)
8974 		return -EINVAL;
8975 
8976 	/*
8977 	 * There's always some RT tasks in the root group
8978 	 * -- migration, kstopmachine etc..
8979 	 */
8980 	if (sysctl_sched_rt_runtime == 0)
8981 		return -EBUSY;
8982 
8983 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8984 	for_each_possible_cpu(i) {
8985 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8986 
8987 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8988 		rt_rq->rt_runtime = global_rt_runtime();
8989 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8990 	}
8991 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8992 
8993 	return 0;
8994 }
8995 #endif /* CONFIG_RT_GROUP_SCHED */
8996 
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8997 int sched_rt_handler(struct ctl_table *table, int write,
8998 		void __user *buffer, size_t *lenp,
8999 		loff_t *ppos)
9000 {
9001 	int ret;
9002 	int old_period, old_runtime;
9003 	static DEFINE_MUTEX(mutex);
9004 
9005 	mutex_lock(&mutex);
9006 	old_period = sysctl_sched_rt_period;
9007 	old_runtime = sysctl_sched_rt_runtime;
9008 
9009 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
9010 
9011 	if (!ret && write) {
9012 		ret = sched_rt_global_constraints();
9013 		if (ret) {
9014 			sysctl_sched_rt_period = old_period;
9015 			sysctl_sched_rt_runtime = old_runtime;
9016 		} else {
9017 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
9018 			def_rt_bandwidth.rt_period =
9019 				ns_to_ktime(global_rt_period());
9020 		}
9021 	}
9022 	mutex_unlock(&mutex);
9023 
9024 	return ret;
9025 }
9026 
9027 #ifdef CONFIG_CGROUP_SCHED
9028 
9029 /* return corresponding task_group object of a cgroup */
cgroup_tg(struct cgroup * cgrp)9030 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9031 {
9032 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9033 			    struct task_group, css);
9034 }
9035 
9036 static struct cgroup_subsys_state *
cpu_cgroup_create(struct cgroup_subsys * ss,struct cgroup * cgrp)9037 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9038 {
9039 	struct task_group *tg, *parent;
9040 
9041 	if (!cgrp->parent) {
9042 		/* This is early initialization for the top cgroup */
9043 		return &root_task_group.css;
9044 	}
9045 
9046 	parent = cgroup_tg(cgrp->parent);
9047 	tg = sched_create_group(parent);
9048 	if (IS_ERR(tg))
9049 		return ERR_PTR(-ENOMEM);
9050 
9051 	return &tg->css;
9052 }
9053 
9054 static void
cpu_cgroup_destroy(struct cgroup_subsys * ss,struct cgroup * cgrp)9055 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9056 {
9057 	struct task_group *tg = cgroup_tg(cgrp);
9058 
9059 	sched_destroy_group(tg);
9060 }
9061 
9062 static int
cpu_cgroup_can_attach_task(struct cgroup * cgrp,struct task_struct * tsk)9063 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9064 {
9065 #ifdef CONFIG_RT_GROUP_SCHED
9066 	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9067 		return -EINVAL;
9068 #else
9069 	/* We don't support RT-tasks being in separate groups */
9070 	if (tsk->sched_class != &fair_sched_class)
9071 		return -EINVAL;
9072 #endif
9073 	return 0;
9074 }
9075 
9076 static int
cpu_cgroup_can_attach(struct cgroup_subsys * ss,struct cgroup * cgrp,struct task_struct * tsk,bool threadgroup)9077 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9078 		      struct task_struct *tsk, bool threadgroup)
9079 {
9080 	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9081 	if (retval)
9082 		return retval;
9083 	if (threadgroup) {
9084 		struct task_struct *c;
9085 		rcu_read_lock();
9086 		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9087 			retval = cpu_cgroup_can_attach_task(cgrp, c);
9088 			if (retval) {
9089 				rcu_read_unlock();
9090 				return retval;
9091 			}
9092 		}
9093 		rcu_read_unlock();
9094 	}
9095 	return 0;
9096 }
9097 
9098 static void
cpu_cgroup_attach(struct cgroup_subsys * ss,struct cgroup * cgrp,struct cgroup * old_cont,struct task_struct * tsk,bool threadgroup)9099 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9100 		  struct cgroup *old_cont, struct task_struct *tsk,
9101 		  bool threadgroup)
9102 {
9103 	sched_move_task(tsk);
9104 	if (threadgroup) {
9105 		struct task_struct *c;
9106 		rcu_read_lock();
9107 		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9108 			sched_move_task(c);
9109 		}
9110 		rcu_read_unlock();
9111 	}
9112 }
9113 
9114 static void
cpu_cgroup_exit(struct cgroup_subsys * ss,struct cgroup * cgrp,struct cgroup * old_cgrp,struct task_struct * task)9115 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9116 		struct cgroup *old_cgrp, struct task_struct *task)
9117 {
9118 	/*
9119 	 * cgroup_exit() is called in the copy_process() failure path.
9120 	 * Ignore this case since the task hasn't ran yet, this avoids
9121 	 * trying to poke a half freed task state from generic code.
9122 	 */
9123 	if (!(task->flags & PF_EXITING))
9124 		return;
9125 
9126 	sched_move_task(task);
9127 }
9128 
9129 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup * cgrp,struct cftype * cftype,u64 shareval)9130 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9131 				u64 shareval)
9132 {
9133 	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9134 }
9135 
cpu_shares_read_u64(struct cgroup * cgrp,struct cftype * cft)9136 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9137 {
9138 	struct task_group *tg = cgroup_tg(cgrp);
9139 
9140 	return (u64) tg->shares;
9141 }
9142 #endif /* CONFIG_FAIR_GROUP_SCHED */
9143 
9144 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup * cgrp,struct cftype * cft,s64 val)9145 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9146 				s64 val)
9147 {
9148 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9149 }
9150 
cpu_rt_runtime_read(struct cgroup * cgrp,struct cftype * cft)9151 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9152 {
9153 	return sched_group_rt_runtime(cgroup_tg(cgrp));
9154 }
9155 
cpu_rt_period_write_uint(struct cgroup * cgrp,struct cftype * cftype,u64 rt_period_us)9156 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9157 		u64 rt_period_us)
9158 {
9159 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9160 }
9161 
cpu_rt_period_read_uint(struct cgroup * cgrp,struct cftype * cft)9162 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9163 {
9164 	return sched_group_rt_period(cgroup_tg(cgrp));
9165 }
9166 #endif /* CONFIG_RT_GROUP_SCHED */
9167 
9168 static struct cftype cpu_files[] = {
9169 #ifdef CONFIG_FAIR_GROUP_SCHED
9170 	{
9171 		.name = "shares",
9172 		.read_u64 = cpu_shares_read_u64,
9173 		.write_u64 = cpu_shares_write_u64,
9174 	},
9175 #endif
9176 #ifdef CONFIG_RT_GROUP_SCHED
9177 	{
9178 		.name = "rt_runtime_us",
9179 		.read_s64 = cpu_rt_runtime_read,
9180 		.write_s64 = cpu_rt_runtime_write,
9181 	},
9182 	{
9183 		.name = "rt_period_us",
9184 		.read_u64 = cpu_rt_period_read_uint,
9185 		.write_u64 = cpu_rt_period_write_uint,
9186 	},
9187 #endif
9188 };
9189 
cpu_cgroup_populate(struct cgroup_subsys * ss,struct cgroup * cont)9190 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9191 {
9192 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9193 }
9194 
9195 struct cgroup_subsys cpu_cgroup_subsys = {
9196 	.name		= "cpu",
9197 	.create		= cpu_cgroup_create,
9198 	.destroy	= cpu_cgroup_destroy,
9199 	.can_attach	= cpu_cgroup_can_attach,
9200 	.attach		= cpu_cgroup_attach,
9201 	.exit		= cpu_cgroup_exit,
9202 	.populate	= cpu_cgroup_populate,
9203 	.subsys_id	= cpu_cgroup_subsys_id,
9204 	.early_init	= 1,
9205 };
9206 
9207 #endif	/* CONFIG_CGROUP_SCHED */
9208 
9209 #ifdef CONFIG_CGROUP_CPUACCT
9210 
9211 /*
9212  * CPU accounting code for task groups.
9213  *
9214  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9215  * (balbir@in.ibm.com).
9216  */
9217 
9218 /* track cpu usage of a group of tasks and its child groups */
9219 struct cpuacct {
9220 	struct cgroup_subsys_state css;
9221 	/* cpuusage holds pointer to a u64-type object on every cpu */
9222 	u64 __percpu *cpuusage;
9223 	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9224 	struct cpuacct *parent;
9225 };
9226 
9227 struct cgroup_subsys cpuacct_subsys;
9228 
9229 /* return cpu accounting group corresponding to this container */
cgroup_ca(struct cgroup * cgrp)9230 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9231 {
9232 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9233 			    struct cpuacct, css);
9234 }
9235 
9236 /* return cpu accounting group to which this task belongs */
task_ca(struct task_struct * tsk)9237 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9238 {
9239 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9240 			    struct cpuacct, css);
9241 }
9242 
9243 /* create a new cpu accounting group */
cpuacct_create(struct cgroup_subsys * ss,struct cgroup * cgrp)9244 static struct cgroup_subsys_state *cpuacct_create(
9245 	struct cgroup_subsys *ss, struct cgroup *cgrp)
9246 {
9247 	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9248 	int i;
9249 
9250 	if (!ca)
9251 		goto out;
9252 
9253 	ca->cpuusage = alloc_percpu(u64);
9254 	if (!ca->cpuusage)
9255 		goto out_free_ca;
9256 
9257 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9258 		if (percpu_counter_init(&ca->cpustat[i], 0))
9259 			goto out_free_counters;
9260 
9261 	if (cgrp->parent)
9262 		ca->parent = cgroup_ca(cgrp->parent);
9263 
9264 	return &ca->css;
9265 
9266 out_free_counters:
9267 	while (--i >= 0)
9268 		percpu_counter_destroy(&ca->cpustat[i]);
9269 	free_percpu(ca->cpuusage);
9270 out_free_ca:
9271 	kfree(ca);
9272 out:
9273 	return ERR_PTR(-ENOMEM);
9274 }
9275 
9276 /* destroy an existing cpu accounting group */
9277 static void
cpuacct_destroy(struct cgroup_subsys * ss,struct cgroup * cgrp)9278 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9279 {
9280 	struct cpuacct *ca = cgroup_ca(cgrp);
9281 	int i;
9282 
9283 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9284 		percpu_counter_destroy(&ca->cpustat[i]);
9285 	free_percpu(ca->cpuusage);
9286 	kfree(ca);
9287 }
9288 
cpuacct_cpuusage_read(struct cpuacct * ca,int cpu)9289 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9290 {
9291 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9292 	u64 data;
9293 
9294 #ifndef CONFIG_64BIT
9295 	/*
9296 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9297 	 */
9298 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9299 	data = *cpuusage;
9300 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9301 #else
9302 	data = *cpuusage;
9303 #endif
9304 
9305 	return data;
9306 }
9307 
cpuacct_cpuusage_write(struct cpuacct * ca,int cpu,u64 val)9308 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9309 {
9310 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9311 
9312 #ifndef CONFIG_64BIT
9313 	/*
9314 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9315 	 */
9316 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9317 	*cpuusage = val;
9318 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9319 #else
9320 	*cpuusage = val;
9321 #endif
9322 }
9323 
9324 /* return total cpu usage (in nanoseconds) of a group */
cpuusage_read(struct cgroup * cgrp,struct cftype * cft)9325 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9326 {
9327 	struct cpuacct *ca = cgroup_ca(cgrp);
9328 	u64 totalcpuusage = 0;
9329 	int i;
9330 
9331 	for_each_present_cpu(i)
9332 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9333 
9334 	return totalcpuusage;
9335 }
9336 
cpuusage_write(struct cgroup * cgrp,struct cftype * cftype,u64 reset)9337 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9338 								u64 reset)
9339 {
9340 	struct cpuacct *ca = cgroup_ca(cgrp);
9341 	int err = 0;
9342 	int i;
9343 
9344 	if (reset) {
9345 		err = -EINVAL;
9346 		goto out;
9347 	}
9348 
9349 	for_each_present_cpu(i)
9350 		cpuacct_cpuusage_write(ca, i, 0);
9351 
9352 out:
9353 	return err;
9354 }
9355 
cpuacct_percpu_seq_read(struct cgroup * cgroup,struct cftype * cft,struct seq_file * m)9356 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9357 				   struct seq_file *m)
9358 {
9359 	struct cpuacct *ca = cgroup_ca(cgroup);
9360 	u64 percpu;
9361 	int i;
9362 
9363 	for_each_present_cpu(i) {
9364 		percpu = cpuacct_cpuusage_read(ca, i);
9365 		seq_printf(m, "%llu ", (unsigned long long) percpu);
9366 	}
9367 	seq_printf(m, "\n");
9368 	return 0;
9369 }
9370 
9371 static const char *cpuacct_stat_desc[] = {
9372 	[CPUACCT_STAT_USER] = "user",
9373 	[CPUACCT_STAT_SYSTEM] = "system",
9374 };
9375 
cpuacct_stats_show(struct cgroup * cgrp,struct cftype * cft,struct cgroup_map_cb * cb)9376 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9377 		struct cgroup_map_cb *cb)
9378 {
9379 	struct cpuacct *ca = cgroup_ca(cgrp);
9380 	int i;
9381 
9382 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9383 		s64 val = percpu_counter_read(&ca->cpustat[i]);
9384 		val = cputime64_to_clock_t(val);
9385 		cb->fill(cb, cpuacct_stat_desc[i], val);
9386 	}
9387 	return 0;
9388 }
9389 
9390 static struct cftype files[] = {
9391 	{
9392 		.name = "usage",
9393 		.read_u64 = cpuusage_read,
9394 		.write_u64 = cpuusage_write,
9395 	},
9396 	{
9397 		.name = "usage_percpu",
9398 		.read_seq_string = cpuacct_percpu_seq_read,
9399 	},
9400 	{
9401 		.name = "stat",
9402 		.read_map = cpuacct_stats_show,
9403 	},
9404 };
9405 
cpuacct_populate(struct cgroup_subsys * ss,struct cgroup * cgrp)9406 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9407 {
9408 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9409 }
9410 
9411 /*
9412  * charge this task's execution time to its accounting group.
9413  *
9414  * called with rq->lock held.
9415  */
cpuacct_charge(struct task_struct * tsk,u64 cputime)9416 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9417 {
9418 	struct cpuacct *ca;
9419 	int cpu;
9420 
9421 	if (unlikely(!cpuacct_subsys.active))
9422 		return;
9423 
9424 	cpu = task_cpu(tsk);
9425 
9426 	rcu_read_lock();
9427 
9428 	ca = task_ca(tsk);
9429 
9430 	for (; ca; ca = ca->parent) {
9431 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9432 		*cpuusage += cputime;
9433 	}
9434 
9435 	rcu_read_unlock();
9436 }
9437 
9438 /*
9439  * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9440  * in cputime_t units. As a result, cpuacct_update_stats calls
9441  * percpu_counter_add with values large enough to always overflow the
9442  * per cpu batch limit causing bad SMP scalability.
9443  *
9444  * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9445  * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9446  * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9447  */
9448 #ifdef CONFIG_SMP
9449 #define CPUACCT_BATCH	\
9450 	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9451 #else
9452 #define CPUACCT_BATCH	0
9453 #endif
9454 
9455 /*
9456  * Charge the system/user time to the task's accounting group.
9457  */
cpuacct_update_stats(struct task_struct * tsk,enum cpuacct_stat_index idx,cputime_t val)9458 static void cpuacct_update_stats(struct task_struct *tsk,
9459 		enum cpuacct_stat_index idx, cputime_t val)
9460 {
9461 	struct cpuacct *ca;
9462 	int batch = CPUACCT_BATCH;
9463 
9464 	if (unlikely(!cpuacct_subsys.active))
9465 		return;
9466 
9467 	rcu_read_lock();
9468 	ca = task_ca(tsk);
9469 
9470 	do {
9471 		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9472 		ca = ca->parent;
9473 	} while (ca);
9474 	rcu_read_unlock();
9475 }
9476 
9477 struct cgroup_subsys cpuacct_subsys = {
9478 	.name = "cpuacct",
9479 	.create = cpuacct_create,
9480 	.destroy = cpuacct_destroy,
9481 	.populate = cpuacct_populate,
9482 	.subsys_id = cpuacct_subsys_id,
9483 };
9484 #endif	/* CONFIG_CGROUP_CPUACCT */
9485 
9486