1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 
13 /*
14  * Called after updating RLIMIT_CPU to run cpu timer and update
15  * tsk->signal->cputime_expires expiration cache if necessary. Needs
16  * siglock protection since other code may update expiration cache as
17  * well.
18  */
update_rlimit_cpu(struct task_struct * task,unsigned long rlim_new)19 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
20 {
21 	cputime_t cputime = secs_to_cputime(rlim_new);
22 
23 	spin_lock_irq(&task->sighand->siglock);
24 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
25 	spin_unlock_irq(&task->sighand->siglock);
26 }
27 
check_clock(const clockid_t which_clock)28 static int check_clock(const clockid_t which_clock)
29 {
30 	int error = 0;
31 	struct task_struct *p;
32 	const pid_t pid = CPUCLOCK_PID(which_clock);
33 
34 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 		return -EINVAL;
36 
37 	if (pid == 0)
38 		return 0;
39 
40 	rcu_read_lock();
41 	p = find_task_by_vpid(pid);
42 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
44 		error = -EINVAL;
45 	}
46 	rcu_read_unlock();
47 
48 	return error;
49 }
50 
51 static inline union cpu_time_count
timespec_to_sample(const clockid_t which_clock,const struct timespec * tp)52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
53 {
54 	union cpu_time_count ret;
55 	ret.sched = 0;		/* high half always zero when .cpu used */
56 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57 		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58 	} else {
59 		ret.cpu = timespec_to_cputime(tp);
60 	}
61 	return ret;
62 }
63 
sample_to_timespec(const clockid_t which_clock,union cpu_time_count cpu,struct timespec * tp)64 static void sample_to_timespec(const clockid_t which_clock,
65 			       union cpu_time_count cpu,
66 			       struct timespec *tp)
67 {
68 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 		*tp = ns_to_timespec(cpu.sched);
70 	else
71 		cputime_to_timespec(cpu.cpu, tp);
72 }
73 
cpu_time_before(const clockid_t which_clock,union cpu_time_count now,union cpu_time_count then)74 static inline int cpu_time_before(const clockid_t which_clock,
75 				  union cpu_time_count now,
76 				  union cpu_time_count then)
77 {
78 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 		return now.sched < then.sched;
80 	}  else {
81 		return cputime_lt(now.cpu, then.cpu);
82 	}
83 }
cpu_time_add(const clockid_t which_clock,union cpu_time_count * acc,union cpu_time_count val)84 static inline void cpu_time_add(const clockid_t which_clock,
85 				union cpu_time_count *acc,
86 			        union cpu_time_count val)
87 {
88 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 		acc->sched += val.sched;
90 	}  else {
91 		acc->cpu = cputime_add(acc->cpu, val.cpu);
92 	}
93 }
cpu_time_sub(const clockid_t which_clock,union cpu_time_count a,union cpu_time_count b)94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95 						union cpu_time_count a,
96 						union cpu_time_count b)
97 {
98 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 		a.sched -= b.sched;
100 	}  else {
101 		a.cpu = cputime_sub(a.cpu, b.cpu);
102 	}
103 	return a;
104 }
105 
106 /*
107  * Divide and limit the result to res >= 1
108  *
109  * This is necessary to prevent signal delivery starvation, when the result of
110  * the division would be rounded down to 0.
111  */
cputime_div_non_zero(cputime_t time,unsigned long div)112 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113 {
114 	cputime_t res = cputime_div(time, div);
115 
116 	return max_t(cputime_t, res, 1);
117 }
118 
119 /*
120  * Update expiry time from increment, and increase overrun count,
121  * given the current clock sample.
122  */
bump_cpu_timer(struct k_itimer * timer,union cpu_time_count now)123 static void bump_cpu_timer(struct k_itimer *timer,
124 				  union cpu_time_count now)
125 {
126 	int i;
127 
128 	if (timer->it.cpu.incr.sched == 0)
129 		return;
130 
131 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 		unsigned long long delta, incr;
133 
134 		if (now.sched < timer->it.cpu.expires.sched)
135 			return;
136 		incr = timer->it.cpu.incr.sched;
137 		delta = now.sched + incr - timer->it.cpu.expires.sched;
138 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
139 		for (i = 0; incr < delta - incr; i++)
140 			incr = incr << 1;
141 		for (; i >= 0; incr >>= 1, i--) {
142 			if (delta < incr)
143 				continue;
144 			timer->it.cpu.expires.sched += incr;
145 			timer->it_overrun += 1 << i;
146 			delta -= incr;
147 		}
148 	} else {
149 		cputime_t delta, incr;
150 
151 		if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 			return;
153 		incr = timer->it.cpu.incr.cpu;
154 		delta = cputime_sub(cputime_add(now.cpu, incr),
155 				    timer->it.cpu.expires.cpu);
156 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
157 		for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 			     incr = cputime_add(incr, incr);
159 		for (; i >= 0; incr = cputime_halve(incr), i--) {
160 			if (cputime_lt(delta, incr))
161 				continue;
162 			timer->it.cpu.expires.cpu =
163 				cputime_add(timer->it.cpu.expires.cpu, incr);
164 			timer->it_overrun += 1 << i;
165 			delta = cputime_sub(delta, incr);
166 		}
167 	}
168 }
169 
prof_ticks(struct task_struct * p)170 static inline cputime_t prof_ticks(struct task_struct *p)
171 {
172 	return cputime_add(p->utime, p->stime);
173 }
virt_ticks(struct task_struct * p)174 static inline cputime_t virt_ticks(struct task_struct *p)
175 {
176 	return p->utime;
177 }
178 
179 static int
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)180 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
181 {
182 	int error = check_clock(which_clock);
183 	if (!error) {
184 		tp->tv_sec = 0;
185 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
186 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
187 			/*
188 			 * If sched_clock is using a cycle counter, we
189 			 * don't have any idea of its true resolution
190 			 * exported, but it is much more than 1s/HZ.
191 			 */
192 			tp->tv_nsec = 1;
193 		}
194 	}
195 	return error;
196 }
197 
198 static int
posix_cpu_clock_set(const clockid_t which_clock,const struct timespec * tp)199 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
200 {
201 	/*
202 	 * You can never reset a CPU clock, but we check for other errors
203 	 * in the call before failing with EPERM.
204 	 */
205 	int error = check_clock(which_clock);
206 	if (error == 0) {
207 		error = -EPERM;
208 	}
209 	return error;
210 }
211 
212 
213 /*
214  * Sample a per-thread clock for the given task.
215  */
cpu_clock_sample(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)216 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
217 			    union cpu_time_count *cpu)
218 {
219 	switch (CPUCLOCK_WHICH(which_clock)) {
220 	default:
221 		return -EINVAL;
222 	case CPUCLOCK_PROF:
223 		cpu->cpu = prof_ticks(p);
224 		break;
225 	case CPUCLOCK_VIRT:
226 		cpu->cpu = virt_ticks(p);
227 		break;
228 	case CPUCLOCK_SCHED:
229 		cpu->sched = task_sched_runtime(p);
230 		break;
231 	}
232 	return 0;
233 }
234 
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)235 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
236 {
237 	struct signal_struct *sig = tsk->signal;
238 	struct task_struct *t;
239 
240 	times->utime = sig->utime;
241 	times->stime = sig->stime;
242 	times->sum_exec_runtime = sig->sum_sched_runtime;
243 
244 	rcu_read_lock();
245 	/* make sure we can trust tsk->thread_group list */
246 	if (!likely(pid_alive(tsk)))
247 		goto out;
248 
249 	t = tsk;
250 	do {
251 		times->utime = cputime_add(times->utime, t->utime);
252 		times->stime = cputime_add(times->stime, t->stime);
253 		times->sum_exec_runtime += t->se.sum_exec_runtime;
254 	} while_each_thread(tsk, t);
255 out:
256 	rcu_read_unlock();
257 }
258 
update_gt_cputime(struct task_cputime * a,struct task_cputime * b)259 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
260 {
261 	if (cputime_gt(b->utime, a->utime))
262 		a->utime = b->utime;
263 
264 	if (cputime_gt(b->stime, a->stime))
265 		a->stime = b->stime;
266 
267 	if (b->sum_exec_runtime > a->sum_exec_runtime)
268 		a->sum_exec_runtime = b->sum_exec_runtime;
269 }
270 
thread_group_cputimer(struct task_struct * tsk,struct task_cputime * times)271 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
272 {
273 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
274 	struct task_cputime sum;
275 	unsigned long flags;
276 
277 	spin_lock_irqsave(&cputimer->lock, flags);
278 	if (!cputimer->running) {
279 		cputimer->running = 1;
280 		/*
281 		 * The POSIX timer interface allows for absolute time expiry
282 		 * values through the TIMER_ABSTIME flag, therefore we have
283 		 * to synchronize the timer to the clock every time we start
284 		 * it.
285 		 */
286 		thread_group_cputime(tsk, &sum);
287 		update_gt_cputime(&cputimer->cputime, &sum);
288 	}
289 	*times = cputimer->cputime;
290 	spin_unlock_irqrestore(&cputimer->lock, flags);
291 }
292 
293 /*
294  * Sample a process (thread group) clock for the given group_leader task.
295  * Must be called with tasklist_lock held for reading.
296  */
cpu_clock_sample_group(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)297 static int cpu_clock_sample_group(const clockid_t which_clock,
298 				  struct task_struct *p,
299 				  union cpu_time_count *cpu)
300 {
301 	struct task_cputime cputime;
302 
303 	switch (CPUCLOCK_WHICH(which_clock)) {
304 	default:
305 		return -EINVAL;
306 	case CPUCLOCK_PROF:
307 		thread_group_cputime(p, &cputime);
308 		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
309 		break;
310 	case CPUCLOCK_VIRT:
311 		thread_group_cputime(p, &cputime);
312 		cpu->cpu = cputime.utime;
313 		break;
314 	case CPUCLOCK_SCHED:
315 		cpu->sched = thread_group_sched_runtime(p);
316 		break;
317 	}
318 	return 0;
319 }
320 
321 
posix_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)322 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
323 {
324 	const pid_t pid = CPUCLOCK_PID(which_clock);
325 	int error = -EINVAL;
326 	union cpu_time_count rtn;
327 
328 	if (pid == 0) {
329 		/*
330 		 * Special case constant value for our own clocks.
331 		 * We don't have to do any lookup to find ourselves.
332 		 */
333 		if (CPUCLOCK_PERTHREAD(which_clock)) {
334 			/*
335 			 * Sampling just ourselves we can do with no locking.
336 			 */
337 			error = cpu_clock_sample(which_clock,
338 						 current, &rtn);
339 		} else {
340 			read_lock(&tasklist_lock);
341 			error = cpu_clock_sample_group(which_clock,
342 						       current, &rtn);
343 			read_unlock(&tasklist_lock);
344 		}
345 	} else {
346 		/*
347 		 * Find the given PID, and validate that the caller
348 		 * should be able to see it.
349 		 */
350 		struct task_struct *p;
351 		rcu_read_lock();
352 		p = find_task_by_vpid(pid);
353 		if (p) {
354 			if (CPUCLOCK_PERTHREAD(which_clock)) {
355 				if (same_thread_group(p, current)) {
356 					error = cpu_clock_sample(which_clock,
357 								 p, &rtn);
358 				}
359 			} else {
360 				read_lock(&tasklist_lock);
361 				if (thread_group_leader(p) && p->sighand) {
362 					error =
363 					    cpu_clock_sample_group(which_clock,
364 							           p, &rtn);
365 				}
366 				read_unlock(&tasklist_lock);
367 			}
368 		}
369 		rcu_read_unlock();
370 	}
371 
372 	if (error)
373 		return error;
374 	sample_to_timespec(which_clock, rtn, tp);
375 	return 0;
376 }
377 
378 
379 /*
380  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
381  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
382  * new timer already all-zeros initialized.
383  */
posix_cpu_timer_create(struct k_itimer * new_timer)384 static int posix_cpu_timer_create(struct k_itimer *new_timer)
385 {
386 	int ret = 0;
387 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
388 	struct task_struct *p;
389 
390 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
391 		return -EINVAL;
392 
393 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
394 
395 	rcu_read_lock();
396 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
397 		if (pid == 0) {
398 			p = current;
399 		} else {
400 			p = find_task_by_vpid(pid);
401 			if (p && !same_thread_group(p, current))
402 				p = NULL;
403 		}
404 	} else {
405 		if (pid == 0) {
406 			p = current->group_leader;
407 		} else {
408 			p = find_task_by_vpid(pid);
409 			if (p && !has_group_leader_pid(p))
410 				p = NULL;
411 		}
412 	}
413 	new_timer->it.cpu.task = p;
414 	if (p) {
415 		get_task_struct(p);
416 	} else {
417 		ret = -EINVAL;
418 	}
419 	rcu_read_unlock();
420 
421 	return ret;
422 }
423 
424 /*
425  * Clean up a CPU-clock timer that is about to be destroyed.
426  * This is called from timer deletion with the timer already locked.
427  * If we return TIMER_RETRY, it's necessary to release the timer's lock
428  * and try again.  (This happens when the timer is in the middle of firing.)
429  */
posix_cpu_timer_del(struct k_itimer * timer)430 static int posix_cpu_timer_del(struct k_itimer *timer)
431 {
432 	struct task_struct *p = timer->it.cpu.task;
433 	int ret = 0;
434 
435 	if (likely(p != NULL)) {
436 		read_lock(&tasklist_lock);
437 		if (unlikely(p->sighand == NULL)) {
438 			/*
439 			 * We raced with the reaping of the task.
440 			 * The deletion should have cleared us off the list.
441 			 */
442 			BUG_ON(!list_empty(&timer->it.cpu.entry));
443 		} else {
444 			spin_lock(&p->sighand->siglock);
445 			if (timer->it.cpu.firing)
446 				ret = TIMER_RETRY;
447 			else
448 				list_del(&timer->it.cpu.entry);
449 			spin_unlock(&p->sighand->siglock);
450 		}
451 		read_unlock(&tasklist_lock);
452 
453 		if (!ret)
454 			put_task_struct(p);
455 	}
456 
457 	return ret;
458 }
459 
460 /*
461  * Clean out CPU timers still ticking when a thread exited.  The task
462  * pointer is cleared, and the expiry time is replaced with the residual
463  * time for later timer_gettime calls to return.
464  * This must be called with the siglock held.
465  */
cleanup_timers(struct list_head * head,cputime_t utime,cputime_t stime,unsigned long long sum_exec_runtime)466 static void cleanup_timers(struct list_head *head,
467 			   cputime_t utime, cputime_t stime,
468 			   unsigned long long sum_exec_runtime)
469 {
470 	struct cpu_timer_list *timer, *next;
471 	cputime_t ptime = cputime_add(utime, stime);
472 
473 	list_for_each_entry_safe(timer, next, head, entry) {
474 		list_del_init(&timer->entry);
475 		if (cputime_lt(timer->expires.cpu, ptime)) {
476 			timer->expires.cpu = cputime_zero;
477 		} else {
478 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
479 							 ptime);
480 		}
481 	}
482 
483 	++head;
484 	list_for_each_entry_safe(timer, next, head, entry) {
485 		list_del_init(&timer->entry);
486 		if (cputime_lt(timer->expires.cpu, utime)) {
487 			timer->expires.cpu = cputime_zero;
488 		} else {
489 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
490 							 utime);
491 		}
492 	}
493 
494 	++head;
495 	list_for_each_entry_safe(timer, next, head, entry) {
496 		list_del_init(&timer->entry);
497 		if (timer->expires.sched < sum_exec_runtime) {
498 			timer->expires.sched = 0;
499 		} else {
500 			timer->expires.sched -= sum_exec_runtime;
501 		}
502 	}
503 }
504 
505 /*
506  * These are both called with the siglock held, when the current thread
507  * is being reaped.  When the final (leader) thread in the group is reaped,
508  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
509  */
posix_cpu_timers_exit(struct task_struct * tsk)510 void posix_cpu_timers_exit(struct task_struct *tsk)
511 {
512 	cleanup_timers(tsk->cpu_timers,
513 		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
514 
515 }
posix_cpu_timers_exit_group(struct task_struct * tsk)516 void posix_cpu_timers_exit_group(struct task_struct *tsk)
517 {
518 	struct signal_struct *const sig = tsk->signal;
519 
520 	cleanup_timers(tsk->signal->cpu_timers,
521 		       cputime_add(tsk->utime, sig->utime),
522 		       cputime_add(tsk->stime, sig->stime),
523 		       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
524 }
525 
clear_dead_task(struct k_itimer * timer,union cpu_time_count now)526 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
527 {
528 	/*
529 	 * That's all for this thread or process.
530 	 * We leave our residual in expires to be reported.
531 	 */
532 	put_task_struct(timer->it.cpu.task);
533 	timer->it.cpu.task = NULL;
534 	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
535 					     timer->it.cpu.expires,
536 					     now);
537 }
538 
expires_gt(cputime_t expires,cputime_t new_exp)539 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
540 {
541 	return cputime_eq(expires, cputime_zero) ||
542 	       cputime_gt(expires, new_exp);
543 }
544 
545 /*
546  * Insert the timer on the appropriate list before any timers that
547  * expire later.  This must be called with the tasklist_lock held
548  * for reading, interrupts disabled and p->sighand->siglock taken.
549  */
arm_timer(struct k_itimer * timer)550 static void arm_timer(struct k_itimer *timer)
551 {
552 	struct task_struct *p = timer->it.cpu.task;
553 	struct list_head *head, *listpos;
554 	struct task_cputime *cputime_expires;
555 	struct cpu_timer_list *const nt = &timer->it.cpu;
556 	struct cpu_timer_list *next;
557 
558 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
559 		head = p->cpu_timers;
560 		cputime_expires = &p->cputime_expires;
561 	} else {
562 		head = p->signal->cpu_timers;
563 		cputime_expires = &p->signal->cputime_expires;
564 	}
565 	head += CPUCLOCK_WHICH(timer->it_clock);
566 
567 	listpos = head;
568 	list_for_each_entry(next, head, entry) {
569 		if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
570 			break;
571 		listpos = &next->entry;
572 	}
573 	list_add(&nt->entry, listpos);
574 
575 	if (listpos == head) {
576 		union cpu_time_count *exp = &nt->expires;
577 
578 		/*
579 		 * We are the new earliest-expiring POSIX 1.b timer, hence
580 		 * need to update expiration cache. Take into account that
581 		 * for process timers we share expiration cache with itimers
582 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
583 		 */
584 
585 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
586 		case CPUCLOCK_PROF:
587 			if (expires_gt(cputime_expires->prof_exp, exp->cpu))
588 				cputime_expires->prof_exp = exp->cpu;
589 			break;
590 		case CPUCLOCK_VIRT:
591 			if (expires_gt(cputime_expires->virt_exp, exp->cpu))
592 				cputime_expires->virt_exp = exp->cpu;
593 			break;
594 		case CPUCLOCK_SCHED:
595 			if (cputime_expires->sched_exp == 0 ||
596 			    cputime_expires->sched_exp > exp->sched)
597 				cputime_expires->sched_exp = exp->sched;
598 			break;
599 		}
600 	}
601 }
602 
603 /*
604  * The timer is locked, fire it and arrange for its reload.
605  */
cpu_timer_fire(struct k_itimer * timer)606 static void cpu_timer_fire(struct k_itimer *timer)
607 {
608 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
609 		/*
610 		 * User don't want any signal.
611 		 */
612 		timer->it.cpu.expires.sched = 0;
613 	} else if (unlikely(timer->sigq == NULL)) {
614 		/*
615 		 * This a special case for clock_nanosleep,
616 		 * not a normal timer from sys_timer_create.
617 		 */
618 		wake_up_process(timer->it_process);
619 		timer->it.cpu.expires.sched = 0;
620 	} else if (timer->it.cpu.incr.sched == 0) {
621 		/*
622 		 * One-shot timer.  Clear it as soon as it's fired.
623 		 */
624 		posix_timer_event(timer, 0);
625 		timer->it.cpu.expires.sched = 0;
626 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
627 		/*
628 		 * The signal did not get queued because the signal
629 		 * was ignored, so we won't get any callback to
630 		 * reload the timer.  But we need to keep it
631 		 * ticking in case the signal is deliverable next time.
632 		 */
633 		posix_cpu_timer_schedule(timer);
634 	}
635 }
636 
637 /*
638  * Sample a process (thread group) timer for the given group_leader task.
639  * Must be called with tasklist_lock held for reading.
640  */
cpu_timer_sample_group(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)641 static int cpu_timer_sample_group(const clockid_t which_clock,
642 				  struct task_struct *p,
643 				  union cpu_time_count *cpu)
644 {
645 	struct task_cputime cputime;
646 
647 	thread_group_cputimer(p, &cputime);
648 	switch (CPUCLOCK_WHICH(which_clock)) {
649 	default:
650 		return -EINVAL;
651 	case CPUCLOCK_PROF:
652 		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
653 		break;
654 	case CPUCLOCK_VIRT:
655 		cpu->cpu = cputime.utime;
656 		break;
657 	case CPUCLOCK_SCHED:
658 		cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
659 		break;
660 	}
661 	return 0;
662 }
663 
664 /*
665  * Guts of sys_timer_settime for CPU timers.
666  * This is called with the timer locked and interrupts disabled.
667  * If we return TIMER_RETRY, it's necessary to release the timer's lock
668  * and try again.  (This happens when the timer is in the middle of firing.)
669  */
posix_cpu_timer_set(struct k_itimer * timer,int flags,struct itimerspec * new,struct itimerspec * old)670 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
671 			       struct itimerspec *new, struct itimerspec *old)
672 {
673 	struct task_struct *p = timer->it.cpu.task;
674 	union cpu_time_count old_expires, new_expires, old_incr, val;
675 	int ret;
676 
677 	if (unlikely(p == NULL)) {
678 		/*
679 		 * Timer refers to a dead task's clock.
680 		 */
681 		return -ESRCH;
682 	}
683 
684 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
685 
686 	read_lock(&tasklist_lock);
687 	/*
688 	 * We need the tasklist_lock to protect against reaping that
689 	 * clears p->sighand.  If p has just been reaped, we can no
690 	 * longer get any information about it at all.
691 	 */
692 	if (unlikely(p->sighand == NULL)) {
693 		read_unlock(&tasklist_lock);
694 		put_task_struct(p);
695 		timer->it.cpu.task = NULL;
696 		return -ESRCH;
697 	}
698 
699 	/*
700 	 * Disarm any old timer after extracting its expiry time.
701 	 */
702 	BUG_ON(!irqs_disabled());
703 
704 	ret = 0;
705 	old_incr = timer->it.cpu.incr;
706 	spin_lock(&p->sighand->siglock);
707 	old_expires = timer->it.cpu.expires;
708 	if (unlikely(timer->it.cpu.firing)) {
709 		timer->it.cpu.firing = -1;
710 		ret = TIMER_RETRY;
711 	} else
712 		list_del_init(&timer->it.cpu.entry);
713 
714 	/*
715 	 * We need to sample the current value to convert the new
716 	 * value from to relative and absolute, and to convert the
717 	 * old value from absolute to relative.  To set a process
718 	 * timer, we need a sample to balance the thread expiry
719 	 * times (in arm_timer).  With an absolute time, we must
720 	 * check if it's already passed.  In short, we need a sample.
721 	 */
722 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
723 		cpu_clock_sample(timer->it_clock, p, &val);
724 	} else {
725 		cpu_timer_sample_group(timer->it_clock, p, &val);
726 	}
727 
728 	if (old) {
729 		if (old_expires.sched == 0) {
730 			old->it_value.tv_sec = 0;
731 			old->it_value.tv_nsec = 0;
732 		} else {
733 			/*
734 			 * Update the timer in case it has
735 			 * overrun already.  If it has,
736 			 * we'll report it as having overrun
737 			 * and with the next reloaded timer
738 			 * already ticking, though we are
739 			 * swallowing that pending
740 			 * notification here to install the
741 			 * new setting.
742 			 */
743 			bump_cpu_timer(timer, val);
744 			if (cpu_time_before(timer->it_clock, val,
745 					    timer->it.cpu.expires)) {
746 				old_expires = cpu_time_sub(
747 					timer->it_clock,
748 					timer->it.cpu.expires, val);
749 				sample_to_timespec(timer->it_clock,
750 						   old_expires,
751 						   &old->it_value);
752 			} else {
753 				old->it_value.tv_nsec = 1;
754 				old->it_value.tv_sec = 0;
755 			}
756 		}
757 	}
758 
759 	if (unlikely(ret)) {
760 		/*
761 		 * We are colliding with the timer actually firing.
762 		 * Punt after filling in the timer's old value, and
763 		 * disable this firing since we are already reporting
764 		 * it as an overrun (thanks to bump_cpu_timer above).
765 		 */
766 		spin_unlock(&p->sighand->siglock);
767 		read_unlock(&tasklist_lock);
768 		goto out;
769 	}
770 
771 	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
772 		cpu_time_add(timer->it_clock, &new_expires, val);
773 	}
774 
775 	/*
776 	 * Install the new expiry time (or zero).
777 	 * For a timer with no notification action, we don't actually
778 	 * arm the timer (we'll just fake it for timer_gettime).
779 	 */
780 	timer->it.cpu.expires = new_expires;
781 	if (new_expires.sched != 0 &&
782 	    cpu_time_before(timer->it_clock, val, new_expires)) {
783 		arm_timer(timer);
784 	}
785 
786 	spin_unlock(&p->sighand->siglock);
787 	read_unlock(&tasklist_lock);
788 
789 	/*
790 	 * Install the new reload setting, and
791 	 * set up the signal and overrun bookkeeping.
792 	 */
793 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
794 						&new->it_interval);
795 
796 	/*
797 	 * This acts as a modification timestamp for the timer,
798 	 * so any automatic reload attempt will punt on seeing
799 	 * that we have reset the timer manually.
800 	 */
801 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
802 		~REQUEUE_PENDING;
803 	timer->it_overrun_last = 0;
804 	timer->it_overrun = -1;
805 
806 	if (new_expires.sched != 0 &&
807 	    !cpu_time_before(timer->it_clock, val, new_expires)) {
808 		/*
809 		 * The designated time already passed, so we notify
810 		 * immediately, even if the thread never runs to
811 		 * accumulate more time on this clock.
812 		 */
813 		cpu_timer_fire(timer);
814 	}
815 
816 	ret = 0;
817  out:
818 	if (old) {
819 		sample_to_timespec(timer->it_clock,
820 				   old_incr, &old->it_interval);
821 	}
822 	return ret;
823 }
824 
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec * itp)825 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
826 {
827 	union cpu_time_count now;
828 	struct task_struct *p = timer->it.cpu.task;
829 	int clear_dead;
830 
831 	/*
832 	 * Easy part: convert the reload time.
833 	 */
834 	sample_to_timespec(timer->it_clock,
835 			   timer->it.cpu.incr, &itp->it_interval);
836 
837 	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
838 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
839 		return;
840 	}
841 
842 	if (unlikely(p == NULL)) {
843 		/*
844 		 * This task already died and the timer will never fire.
845 		 * In this case, expires is actually the dead value.
846 		 */
847 	dead:
848 		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
849 				   &itp->it_value);
850 		return;
851 	}
852 
853 	/*
854 	 * Sample the clock to take the difference with the expiry time.
855 	 */
856 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
857 		cpu_clock_sample(timer->it_clock, p, &now);
858 		clear_dead = p->exit_state;
859 	} else {
860 		read_lock(&tasklist_lock);
861 		if (unlikely(p->sighand == NULL)) {
862 			/*
863 			 * The process has been reaped.
864 			 * We can't even collect a sample any more.
865 			 * Call the timer disarmed, nothing else to do.
866 			 */
867 			put_task_struct(p);
868 			timer->it.cpu.task = NULL;
869 			timer->it.cpu.expires.sched = 0;
870 			read_unlock(&tasklist_lock);
871 			goto dead;
872 		} else {
873 			cpu_timer_sample_group(timer->it_clock, p, &now);
874 			clear_dead = (unlikely(p->exit_state) &&
875 				      thread_group_empty(p));
876 		}
877 		read_unlock(&tasklist_lock);
878 	}
879 
880 	if (unlikely(clear_dead)) {
881 		/*
882 		 * We've noticed that the thread is dead, but
883 		 * not yet reaped.  Take this opportunity to
884 		 * drop our task ref.
885 		 */
886 		clear_dead_task(timer, now);
887 		goto dead;
888 	}
889 
890 	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
891 		sample_to_timespec(timer->it_clock,
892 				   cpu_time_sub(timer->it_clock,
893 						timer->it.cpu.expires, now),
894 				   &itp->it_value);
895 	} else {
896 		/*
897 		 * The timer should have expired already, but the firing
898 		 * hasn't taken place yet.  Say it's just about to expire.
899 		 */
900 		itp->it_value.tv_nsec = 1;
901 		itp->it_value.tv_sec = 0;
902 	}
903 }
904 
905 /*
906  * Check for any per-thread CPU timers that have fired and move them off
907  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
908  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
909  */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)910 static void check_thread_timers(struct task_struct *tsk,
911 				struct list_head *firing)
912 {
913 	int maxfire;
914 	struct list_head *timers = tsk->cpu_timers;
915 	struct signal_struct *const sig = tsk->signal;
916 	unsigned long soft;
917 
918 	maxfire = 20;
919 	tsk->cputime_expires.prof_exp = cputime_zero;
920 	while (!list_empty(timers)) {
921 		struct cpu_timer_list *t = list_first_entry(timers,
922 						      struct cpu_timer_list,
923 						      entry);
924 		if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
925 			tsk->cputime_expires.prof_exp = t->expires.cpu;
926 			break;
927 		}
928 		t->firing = 1;
929 		list_move_tail(&t->entry, firing);
930 	}
931 
932 	++timers;
933 	maxfire = 20;
934 	tsk->cputime_expires.virt_exp = cputime_zero;
935 	while (!list_empty(timers)) {
936 		struct cpu_timer_list *t = list_first_entry(timers,
937 						      struct cpu_timer_list,
938 						      entry);
939 		if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
940 			tsk->cputime_expires.virt_exp = t->expires.cpu;
941 			break;
942 		}
943 		t->firing = 1;
944 		list_move_tail(&t->entry, firing);
945 	}
946 
947 	++timers;
948 	maxfire = 20;
949 	tsk->cputime_expires.sched_exp = 0;
950 	while (!list_empty(timers)) {
951 		struct cpu_timer_list *t = list_first_entry(timers,
952 						      struct cpu_timer_list,
953 						      entry);
954 		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
955 			tsk->cputime_expires.sched_exp = t->expires.sched;
956 			break;
957 		}
958 		t->firing = 1;
959 		list_move_tail(&t->entry, firing);
960 	}
961 
962 	/*
963 	 * Check for the special case thread timers.
964 	 */
965 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
966 	if (soft != RLIM_INFINITY) {
967 		unsigned long hard =
968 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
969 
970 		if (hard != RLIM_INFINITY &&
971 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
972 			/*
973 			 * At the hard limit, we just die.
974 			 * No need to calculate anything else now.
975 			 */
976 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
977 			return;
978 		}
979 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
980 			/*
981 			 * At the soft limit, send a SIGXCPU every second.
982 			 */
983 			if (soft < hard) {
984 				soft += USEC_PER_SEC;
985 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
986 			}
987 			printk(KERN_INFO
988 				"RT Watchdog Timeout: %s[%d]\n",
989 				tsk->comm, task_pid_nr(tsk));
990 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
991 		}
992 	}
993 }
994 
stop_process_timers(struct signal_struct * sig)995 static void stop_process_timers(struct signal_struct *sig)
996 {
997 	struct thread_group_cputimer *cputimer = &sig->cputimer;
998 	unsigned long flags;
999 
1000 	spin_lock_irqsave(&cputimer->lock, flags);
1001 	cputimer->running = 0;
1002 	spin_unlock_irqrestore(&cputimer->lock, flags);
1003 }
1004 
1005 static u32 onecputick;
1006 
check_cpu_itimer(struct task_struct * tsk,struct cpu_itimer * it,cputime_t * expires,cputime_t cur_time,int signo)1007 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1008 			     cputime_t *expires, cputime_t cur_time, int signo)
1009 {
1010 	if (cputime_eq(it->expires, cputime_zero))
1011 		return;
1012 
1013 	if (cputime_ge(cur_time, it->expires)) {
1014 		if (!cputime_eq(it->incr, cputime_zero)) {
1015 			it->expires = cputime_add(it->expires, it->incr);
1016 			it->error += it->incr_error;
1017 			if (it->error >= onecputick) {
1018 				it->expires = cputime_sub(it->expires,
1019 							  cputime_one_jiffy);
1020 				it->error -= onecputick;
1021 			}
1022 		} else {
1023 			it->expires = cputime_zero;
1024 		}
1025 
1026 		trace_itimer_expire(signo == SIGPROF ?
1027 				    ITIMER_PROF : ITIMER_VIRTUAL,
1028 				    tsk->signal->leader_pid, cur_time);
1029 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1030 	}
1031 
1032 	if (!cputime_eq(it->expires, cputime_zero) &&
1033 	    (cputime_eq(*expires, cputime_zero) ||
1034 	     cputime_lt(it->expires, *expires))) {
1035 		*expires = it->expires;
1036 	}
1037 }
1038 
1039 /**
1040  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1041  *
1042  * @cputime:	The struct to compare.
1043  *
1044  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1045  * are zero, false if any field is nonzero.
1046  */
task_cputime_zero(const struct task_cputime * cputime)1047 static inline int task_cputime_zero(const struct task_cputime *cputime)
1048 {
1049 	if (cputime_eq(cputime->utime, cputime_zero) &&
1050 	    cputime_eq(cputime->stime, cputime_zero) &&
1051 	    cputime->sum_exec_runtime == 0)
1052 		return 1;
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Check for any per-thread CPU timers that have fired and move them
1058  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1059  * have already been taken off.
1060  */
check_process_timers(struct task_struct * tsk,struct list_head * firing)1061 static void check_process_timers(struct task_struct *tsk,
1062 				 struct list_head *firing)
1063 {
1064 	int maxfire;
1065 	struct signal_struct *const sig = tsk->signal;
1066 	cputime_t utime, ptime, virt_expires, prof_expires;
1067 	unsigned long long sum_sched_runtime, sched_expires;
1068 	struct list_head *timers = sig->cpu_timers;
1069 	struct task_cputime cputime;
1070 	unsigned long soft;
1071 
1072 	/*
1073 	 * Collect the current process totals.
1074 	 */
1075 	thread_group_cputimer(tsk, &cputime);
1076 	utime = cputime.utime;
1077 	ptime = cputime_add(utime, cputime.stime);
1078 	sum_sched_runtime = cputime.sum_exec_runtime;
1079 	maxfire = 20;
1080 	prof_expires = cputime_zero;
1081 	while (!list_empty(timers)) {
1082 		struct cpu_timer_list *tl = list_first_entry(timers,
1083 						      struct cpu_timer_list,
1084 						      entry);
1085 		if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1086 			prof_expires = tl->expires.cpu;
1087 			break;
1088 		}
1089 		tl->firing = 1;
1090 		list_move_tail(&tl->entry, firing);
1091 	}
1092 
1093 	++timers;
1094 	maxfire = 20;
1095 	virt_expires = cputime_zero;
1096 	while (!list_empty(timers)) {
1097 		struct cpu_timer_list *tl = list_first_entry(timers,
1098 						      struct cpu_timer_list,
1099 						      entry);
1100 		if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1101 			virt_expires = tl->expires.cpu;
1102 			break;
1103 		}
1104 		tl->firing = 1;
1105 		list_move_tail(&tl->entry, firing);
1106 	}
1107 
1108 	++timers;
1109 	maxfire = 20;
1110 	sched_expires = 0;
1111 	while (!list_empty(timers)) {
1112 		struct cpu_timer_list *tl = list_first_entry(timers,
1113 						      struct cpu_timer_list,
1114 						      entry);
1115 		if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1116 			sched_expires = tl->expires.sched;
1117 			break;
1118 		}
1119 		tl->firing = 1;
1120 		list_move_tail(&tl->entry, firing);
1121 	}
1122 
1123 	/*
1124 	 * Check for the special case process timers.
1125 	 */
1126 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1127 			 SIGPROF);
1128 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1129 			 SIGVTALRM);
1130 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1131 	if (soft != RLIM_INFINITY) {
1132 		unsigned long psecs = cputime_to_secs(ptime);
1133 		unsigned long hard =
1134 			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1135 		cputime_t x;
1136 		if (psecs >= hard) {
1137 			/*
1138 			 * At the hard limit, we just die.
1139 			 * No need to calculate anything else now.
1140 			 */
1141 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1142 			return;
1143 		}
1144 		if (psecs >= soft) {
1145 			/*
1146 			 * At the soft limit, send a SIGXCPU every second.
1147 			 */
1148 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1149 			if (soft < hard) {
1150 				soft++;
1151 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1152 			}
1153 		}
1154 		x = secs_to_cputime(soft);
1155 		if (cputime_eq(prof_expires, cputime_zero) ||
1156 		    cputime_lt(x, prof_expires)) {
1157 			prof_expires = x;
1158 		}
1159 	}
1160 
1161 	sig->cputime_expires.prof_exp = prof_expires;
1162 	sig->cputime_expires.virt_exp = virt_expires;
1163 	sig->cputime_expires.sched_exp = sched_expires;
1164 	if (task_cputime_zero(&sig->cputime_expires))
1165 		stop_process_timers(sig);
1166 }
1167 
1168 /*
1169  * This is called from the signal code (via do_schedule_next_timer)
1170  * when the last timer signal was delivered and we have to reload the timer.
1171  */
posix_cpu_timer_schedule(struct k_itimer * timer)1172 void posix_cpu_timer_schedule(struct k_itimer *timer)
1173 {
1174 	struct task_struct *p = timer->it.cpu.task;
1175 	union cpu_time_count now;
1176 
1177 	if (unlikely(p == NULL))
1178 		/*
1179 		 * The task was cleaned up already, no future firings.
1180 		 */
1181 		goto out;
1182 
1183 	/*
1184 	 * Fetch the current sample and update the timer's expiry time.
1185 	 */
1186 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1187 		cpu_clock_sample(timer->it_clock, p, &now);
1188 		bump_cpu_timer(timer, now);
1189 		if (unlikely(p->exit_state)) {
1190 			clear_dead_task(timer, now);
1191 			goto out;
1192 		}
1193 		read_lock(&tasklist_lock); /* arm_timer needs it.  */
1194 		spin_lock(&p->sighand->siglock);
1195 	} else {
1196 		read_lock(&tasklist_lock);
1197 		if (unlikely(p->sighand == NULL)) {
1198 			/*
1199 			 * The process has been reaped.
1200 			 * We can't even collect a sample any more.
1201 			 */
1202 			put_task_struct(p);
1203 			timer->it.cpu.task = p = NULL;
1204 			timer->it.cpu.expires.sched = 0;
1205 			goto out_unlock;
1206 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1207 			/*
1208 			 * We've noticed that the thread is dead, but
1209 			 * not yet reaped.  Take this opportunity to
1210 			 * drop our task ref.
1211 			 */
1212 			clear_dead_task(timer, now);
1213 			goto out_unlock;
1214 		}
1215 		spin_lock(&p->sighand->siglock);
1216 		cpu_timer_sample_group(timer->it_clock, p, &now);
1217 		bump_cpu_timer(timer, now);
1218 		/* Leave the tasklist_lock locked for the call below.  */
1219 	}
1220 
1221 	/*
1222 	 * Now re-arm for the new expiry time.
1223 	 */
1224 	BUG_ON(!irqs_disabled());
1225 	arm_timer(timer);
1226 	spin_unlock(&p->sighand->siglock);
1227 
1228 out_unlock:
1229 	read_unlock(&tasklist_lock);
1230 
1231 out:
1232 	timer->it_overrun_last = timer->it_overrun;
1233 	timer->it_overrun = -1;
1234 	++timer->it_requeue_pending;
1235 }
1236 
1237 /**
1238  * task_cputime_expired - Compare two task_cputime entities.
1239  *
1240  * @sample:	The task_cputime structure to be checked for expiration.
1241  * @expires:	Expiration times, against which @sample will be checked.
1242  *
1243  * Checks @sample against @expires to see if any field of @sample has expired.
1244  * Returns true if any field of the former is greater than the corresponding
1245  * field of the latter if the latter field is set.  Otherwise returns false.
1246  */
task_cputime_expired(const struct task_cputime * sample,const struct task_cputime * expires)1247 static inline int task_cputime_expired(const struct task_cputime *sample,
1248 					const struct task_cputime *expires)
1249 {
1250 	if (!cputime_eq(expires->utime, cputime_zero) &&
1251 	    cputime_ge(sample->utime, expires->utime))
1252 		return 1;
1253 	if (!cputime_eq(expires->stime, cputime_zero) &&
1254 	    cputime_ge(cputime_add(sample->utime, sample->stime),
1255 		       expires->stime))
1256 		return 1;
1257 	if (expires->sum_exec_runtime != 0 &&
1258 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1259 		return 1;
1260 	return 0;
1261 }
1262 
1263 /**
1264  * fastpath_timer_check - POSIX CPU timers fast path.
1265  *
1266  * @tsk:	The task (thread) being checked.
1267  *
1268  * Check the task and thread group timers.  If both are zero (there are no
1269  * timers set) return false.  Otherwise snapshot the task and thread group
1270  * timers and compare them with the corresponding expiration times.  Return
1271  * true if a timer has expired, else return false.
1272  */
fastpath_timer_check(struct task_struct * tsk)1273 static inline int fastpath_timer_check(struct task_struct *tsk)
1274 {
1275 	struct signal_struct *sig;
1276 
1277 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1278 		struct task_cputime task_sample = {
1279 			.utime = tsk->utime,
1280 			.stime = tsk->stime,
1281 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1282 		};
1283 
1284 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1285 			return 1;
1286 	}
1287 
1288 	sig = tsk->signal;
1289 	if (sig->cputimer.running) {
1290 		struct task_cputime group_sample;
1291 
1292 		spin_lock(&sig->cputimer.lock);
1293 		group_sample = sig->cputimer.cputime;
1294 		spin_unlock(&sig->cputimer.lock);
1295 
1296 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1297 			return 1;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 /*
1304  * This is called from the timer interrupt handler.  The irq handler has
1305  * already updated our counts.  We need to check if any timers fire now.
1306  * Interrupts are disabled.
1307  */
run_posix_cpu_timers(struct task_struct * tsk)1308 void run_posix_cpu_timers(struct task_struct *tsk)
1309 {
1310 	LIST_HEAD(firing);
1311 	struct k_itimer *timer, *next;
1312 	unsigned long flags;
1313 
1314 	BUG_ON(!irqs_disabled());
1315 
1316 	/*
1317 	 * The fast path checks that there are no expired thread or thread
1318 	 * group timers.  If that's so, just return.
1319 	 */
1320 	if (!fastpath_timer_check(tsk))
1321 		return;
1322 
1323 	if (!lock_task_sighand(tsk, &flags))
1324 		return;
1325 	/*
1326 	 * Here we take off tsk->signal->cpu_timers[N] and
1327 	 * tsk->cpu_timers[N] all the timers that are firing, and
1328 	 * put them on the firing list.
1329 	 */
1330 	check_thread_timers(tsk, &firing);
1331 	/*
1332 	 * If there are any active process wide timers (POSIX 1.b, itimers,
1333 	 * RLIMIT_CPU) cputimer must be running.
1334 	 */
1335 	if (tsk->signal->cputimer.running)
1336 		check_process_timers(tsk, &firing);
1337 
1338 	/*
1339 	 * We must release these locks before taking any timer's lock.
1340 	 * There is a potential race with timer deletion here, as the
1341 	 * siglock now protects our private firing list.  We have set
1342 	 * the firing flag in each timer, so that a deletion attempt
1343 	 * that gets the timer lock before we do will give it up and
1344 	 * spin until we've taken care of that timer below.
1345 	 */
1346 	unlock_task_sighand(tsk, &flags);
1347 
1348 	/*
1349 	 * Now that all the timers on our list have the firing flag,
1350 	 * no one will touch their list entries but us.  We'll take
1351 	 * each timer's lock before clearing its firing flag, so no
1352 	 * timer call will interfere.
1353 	 */
1354 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1355 		int cpu_firing;
1356 
1357 		spin_lock(&timer->it_lock);
1358 		list_del_init(&timer->it.cpu.entry);
1359 		cpu_firing = timer->it.cpu.firing;
1360 		timer->it.cpu.firing = 0;
1361 		/*
1362 		 * The firing flag is -1 if we collided with a reset
1363 		 * of the timer, which already reported this
1364 		 * almost-firing as an overrun.  So don't generate an event.
1365 		 */
1366 		if (likely(cpu_firing >= 0))
1367 			cpu_timer_fire(timer);
1368 		spin_unlock(&timer->it_lock);
1369 	}
1370 }
1371 
1372 /*
1373  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1374  * The tsk->sighand->siglock must be held by the caller.
1375  */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clock_idx,cputime_t * newval,cputime_t * oldval)1376 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1377 			   cputime_t *newval, cputime_t *oldval)
1378 {
1379 	union cpu_time_count now;
1380 
1381 	BUG_ON(clock_idx == CPUCLOCK_SCHED);
1382 	cpu_timer_sample_group(clock_idx, tsk, &now);
1383 
1384 	if (oldval) {
1385 		/*
1386 		 * We are setting itimer. The *oldval is absolute and we update
1387 		 * it to be relative, *newval argument is relative and we update
1388 		 * it to be absolute.
1389 		 */
1390 		if (!cputime_eq(*oldval, cputime_zero)) {
1391 			if (cputime_le(*oldval, now.cpu)) {
1392 				/* Just about to fire. */
1393 				*oldval = cputime_one_jiffy;
1394 			} else {
1395 				*oldval = cputime_sub(*oldval, now.cpu);
1396 			}
1397 		}
1398 
1399 		if (cputime_eq(*newval, cputime_zero))
1400 			return;
1401 		*newval = cputime_add(*newval, now.cpu);
1402 	}
1403 
1404 	/*
1405 	 * Update expiration cache if we are the earliest timer, or eventually
1406 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1407 	 */
1408 	switch (clock_idx) {
1409 	case CPUCLOCK_PROF:
1410 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1411 			tsk->signal->cputime_expires.prof_exp = *newval;
1412 		break;
1413 	case CPUCLOCK_VIRT:
1414 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1415 			tsk->signal->cputime_expires.virt_exp = *newval;
1416 		break;
1417 	}
1418 }
1419 
do_cpu_nanosleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct itimerspec * it)1420 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1421 			    struct timespec *rqtp, struct itimerspec *it)
1422 {
1423 	struct k_itimer timer;
1424 	int error;
1425 
1426 	/*
1427 	 * Set up a temporary timer and then wait for it to go off.
1428 	 */
1429 	memset(&timer, 0, sizeof timer);
1430 	spin_lock_init(&timer.it_lock);
1431 	timer.it_clock = which_clock;
1432 	timer.it_overrun = -1;
1433 	error = posix_cpu_timer_create(&timer);
1434 	timer.it_process = current;
1435 	if (!error) {
1436 		static struct itimerspec zero_it;
1437 
1438 		memset(it, 0, sizeof *it);
1439 		it->it_value = *rqtp;
1440 
1441 		spin_lock_irq(&timer.it_lock);
1442 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1443 		if (error) {
1444 			spin_unlock_irq(&timer.it_lock);
1445 			return error;
1446 		}
1447 
1448 		while (!signal_pending(current)) {
1449 			if (timer.it.cpu.expires.sched == 0) {
1450 				/*
1451 				 * Our timer fired and was reset.
1452 				 */
1453 				spin_unlock_irq(&timer.it_lock);
1454 				return 0;
1455 			}
1456 
1457 			/*
1458 			 * Block until cpu_timer_fire (or a signal) wakes us.
1459 			 */
1460 			__set_current_state(TASK_INTERRUPTIBLE);
1461 			spin_unlock_irq(&timer.it_lock);
1462 			schedule();
1463 			spin_lock_irq(&timer.it_lock);
1464 		}
1465 
1466 		/*
1467 		 * We were interrupted by a signal.
1468 		 */
1469 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1470 		posix_cpu_timer_set(&timer, 0, &zero_it, it);
1471 		spin_unlock_irq(&timer.it_lock);
1472 
1473 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1474 			/*
1475 			 * It actually did fire already.
1476 			 */
1477 			return 0;
1478 		}
1479 
1480 		error = -ERESTART_RESTARTBLOCK;
1481 	}
1482 
1483 	return error;
1484 }
1485 
1486 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1487 
posix_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1488 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1489 			    struct timespec *rqtp, struct timespec __user *rmtp)
1490 {
1491 	struct restart_block *restart_block =
1492 		&current_thread_info()->restart_block;
1493 	struct itimerspec it;
1494 	int error;
1495 
1496 	/*
1497 	 * Diagnose required errors first.
1498 	 */
1499 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1500 	    (CPUCLOCK_PID(which_clock) == 0 ||
1501 	     CPUCLOCK_PID(which_clock) == current->pid))
1502 		return -EINVAL;
1503 
1504 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1505 
1506 	if (error == -ERESTART_RESTARTBLOCK) {
1507 
1508 		if (flags & TIMER_ABSTIME)
1509 			return -ERESTARTNOHAND;
1510 		/*
1511 		 * Report back to the user the time still remaining.
1512 		 */
1513 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1514 			return -EFAULT;
1515 
1516 		restart_block->fn = posix_cpu_nsleep_restart;
1517 		restart_block->nanosleep.index = which_clock;
1518 		restart_block->nanosleep.rmtp = rmtp;
1519 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1520 	}
1521 	return error;
1522 }
1523 
posix_cpu_nsleep_restart(struct restart_block * restart_block)1524 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1525 {
1526 	clockid_t which_clock = restart_block->nanosleep.index;
1527 	struct timespec t;
1528 	struct itimerspec it;
1529 	int error;
1530 
1531 	t = ns_to_timespec(restart_block->nanosleep.expires);
1532 
1533 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1534 
1535 	if (error == -ERESTART_RESTARTBLOCK) {
1536 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1537 		/*
1538 		 * Report back to the user the time still remaining.
1539 		 */
1540 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1541 			return -EFAULT;
1542 
1543 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1544 	}
1545 	return error;
1546 
1547 }
1548 
1549 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1550 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1551 
process_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1552 static int process_cpu_clock_getres(const clockid_t which_clock,
1553 				    struct timespec *tp)
1554 {
1555 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1556 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1557 static int process_cpu_clock_get(const clockid_t which_clock,
1558 				 struct timespec *tp)
1559 {
1560 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1561 }
process_cpu_timer_create(struct k_itimer * timer)1562 static int process_cpu_timer_create(struct k_itimer *timer)
1563 {
1564 	timer->it_clock = PROCESS_CLOCK;
1565 	return posix_cpu_timer_create(timer);
1566 }
process_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1567 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1568 			      struct timespec *rqtp,
1569 			      struct timespec __user *rmtp)
1570 {
1571 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1572 }
process_cpu_nsleep_restart(struct restart_block * restart_block)1573 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1574 {
1575 	return -EINVAL;
1576 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1577 static int thread_cpu_clock_getres(const clockid_t which_clock,
1578 				   struct timespec *tp)
1579 {
1580 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1581 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1582 static int thread_cpu_clock_get(const clockid_t which_clock,
1583 				struct timespec *tp)
1584 {
1585 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1586 }
thread_cpu_timer_create(struct k_itimer * timer)1587 static int thread_cpu_timer_create(struct k_itimer *timer)
1588 {
1589 	timer->it_clock = THREAD_CLOCK;
1590 	return posix_cpu_timer_create(timer);
1591 }
1592 
1593 struct k_clock clock_posix_cpu = {
1594 	.clock_getres	= posix_cpu_clock_getres,
1595 	.clock_set	= posix_cpu_clock_set,
1596 	.clock_get	= posix_cpu_clock_get,
1597 	.timer_create	= posix_cpu_timer_create,
1598 	.nsleep		= posix_cpu_nsleep,
1599 	.nsleep_restart	= posix_cpu_nsleep_restart,
1600 	.timer_set	= posix_cpu_timer_set,
1601 	.timer_del	= posix_cpu_timer_del,
1602 	.timer_get	= posix_cpu_timer_get,
1603 };
1604 
init_posix_cpu_timers(void)1605 static __init int init_posix_cpu_timers(void)
1606 {
1607 	struct k_clock process = {
1608 		.clock_getres	= process_cpu_clock_getres,
1609 		.clock_get	= process_cpu_clock_get,
1610 		.timer_create	= process_cpu_timer_create,
1611 		.nsleep		= process_cpu_nsleep,
1612 		.nsleep_restart	= process_cpu_nsleep_restart,
1613 	};
1614 	struct k_clock thread = {
1615 		.clock_getres	= thread_cpu_clock_getres,
1616 		.clock_get	= thread_cpu_clock_get,
1617 		.timer_create	= thread_cpu_timer_create,
1618 	};
1619 	struct timespec ts;
1620 
1621 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1622 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1623 
1624 	cputime_to_timespec(cputime_one_jiffy, &ts);
1625 	onecputick = ts.tv_nsec;
1626 	WARN_ON(ts.tv_sec != 0);
1627 
1628 	return 0;
1629 }
1630 __initcall(init_posix_cpu_timers);
1631