1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_platform.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18 #include <linux/tegra-icc.h>
19
20 #include <soc/tegra/fuse.h>
21
22 #include "mc.h"
23
24 static const struct of_device_id tegra_mc_of_match[] = {
25 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
26 { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
27 #endif
28 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
29 { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
30 #endif
31 #ifdef CONFIG_ARCH_TEGRA_114_SOC
32 { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
33 #endif
34 #ifdef CONFIG_ARCH_TEGRA_124_SOC
35 { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
36 #endif
37 #ifdef CONFIG_ARCH_TEGRA_132_SOC
38 { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
39 #endif
40 #ifdef CONFIG_ARCH_TEGRA_210_SOC
41 { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
42 #endif
43 #ifdef CONFIG_ARCH_TEGRA_186_SOC
44 { .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
45 #endif
46 #ifdef CONFIG_ARCH_TEGRA_194_SOC
47 { .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
48 #endif
49 #ifdef CONFIG_ARCH_TEGRA_234_SOC
50 { .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc },
51 #endif
52 { /* sentinel */ }
53 };
54 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
55
tegra_mc_devm_action_put_device(void * data)56 static void tegra_mc_devm_action_put_device(void *data)
57 {
58 struct tegra_mc *mc = data;
59
60 put_device(mc->dev);
61 }
62
63 /**
64 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
65 * @dev: device pointer for the consumer device
66 *
67 * This function will search for the Memory Controller node in a device-tree
68 * and retrieve the Memory Controller handle.
69 *
70 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
71 */
devm_tegra_memory_controller_get(struct device * dev)72 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
73 {
74 struct platform_device *pdev;
75 struct device_node *np;
76 struct tegra_mc *mc;
77 int err;
78
79 np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
80 if (!np)
81 return ERR_PTR(-ENOENT);
82
83 pdev = of_find_device_by_node(np);
84 of_node_put(np);
85 if (!pdev)
86 return ERR_PTR(-ENODEV);
87
88 mc = platform_get_drvdata(pdev);
89 if (!mc) {
90 put_device(&pdev->dev);
91 return ERR_PTR(-EPROBE_DEFER);
92 }
93
94 err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
95 if (err)
96 return ERR_PTR(err);
97
98 return mc;
99 }
100 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
101
tegra_mc_probe_device(struct tegra_mc * mc,struct device * dev)102 int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
103 {
104 if (mc->soc->ops && mc->soc->ops->probe_device)
105 return mc->soc->ops->probe_device(mc, dev);
106
107 return 0;
108 }
109 EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
110
tegra_mc_get_carveout_info(struct tegra_mc * mc,unsigned int id,phys_addr_t * base,u64 * size)111 int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id,
112 phys_addr_t *base, u64 *size)
113 {
114 u32 offset;
115
116 if (id < 1 || id >= mc->soc->num_carveouts)
117 return -EINVAL;
118
119 if (id < 6)
120 offset = 0xc0c + 0x50 * (id - 1);
121 else
122 offset = 0x2004 + 0x50 * (id - 6);
123
124 *base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0);
125 #ifdef CONFIG_PHYS_ADDR_T_64BIT
126 *base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32;
127 #endif
128
129 if (size)
130 *size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17;
131
132 return 0;
133 }
134 EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info);
135
tegra_mc_block_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)136 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
137 const struct tegra_mc_reset *rst)
138 {
139 unsigned long flags;
140 u32 value;
141
142 spin_lock_irqsave(&mc->lock, flags);
143
144 value = mc_readl(mc, rst->control) | BIT(rst->bit);
145 mc_writel(mc, value, rst->control);
146
147 spin_unlock_irqrestore(&mc->lock, flags);
148
149 return 0;
150 }
151
tegra_mc_dma_idling_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)152 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
153 const struct tegra_mc_reset *rst)
154 {
155 return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
156 }
157
tegra_mc_unblock_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)158 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
159 const struct tegra_mc_reset *rst)
160 {
161 unsigned long flags;
162 u32 value;
163
164 spin_lock_irqsave(&mc->lock, flags);
165
166 value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
167 mc_writel(mc, value, rst->control);
168
169 spin_unlock_irqrestore(&mc->lock, flags);
170
171 return 0;
172 }
173
tegra_mc_reset_status_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)174 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
175 const struct tegra_mc_reset *rst)
176 {
177 return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
178 }
179
180 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
181 .block_dma = tegra_mc_block_dma_common,
182 .dma_idling = tegra_mc_dma_idling_common,
183 .unblock_dma = tegra_mc_unblock_dma_common,
184 .reset_status = tegra_mc_reset_status_common,
185 };
186
reset_to_mc(struct reset_controller_dev * rcdev)187 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
188 {
189 return container_of(rcdev, struct tegra_mc, reset);
190 }
191
tegra_mc_reset_find(struct tegra_mc * mc,unsigned long id)192 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
193 unsigned long id)
194 {
195 unsigned int i;
196
197 for (i = 0; i < mc->soc->num_resets; i++)
198 if (mc->soc->resets[i].id == id)
199 return &mc->soc->resets[i];
200
201 return NULL;
202 }
203
tegra_mc_hotreset_assert(struct reset_controller_dev * rcdev,unsigned long id)204 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
205 unsigned long id)
206 {
207 struct tegra_mc *mc = reset_to_mc(rcdev);
208 const struct tegra_mc_reset_ops *rst_ops;
209 const struct tegra_mc_reset *rst;
210 int retries = 500;
211 int err;
212
213 rst = tegra_mc_reset_find(mc, id);
214 if (!rst)
215 return -ENODEV;
216
217 rst_ops = mc->soc->reset_ops;
218 if (!rst_ops)
219 return -ENODEV;
220
221 /* DMA flushing will fail if reset is already asserted */
222 if (rst_ops->reset_status) {
223 /* check whether reset is asserted */
224 if (rst_ops->reset_status(mc, rst))
225 return 0;
226 }
227
228 if (rst_ops->block_dma) {
229 /* block clients DMA requests */
230 err = rst_ops->block_dma(mc, rst);
231 if (err) {
232 dev_err(mc->dev, "failed to block %s DMA: %d\n",
233 rst->name, err);
234 return err;
235 }
236 }
237
238 if (rst_ops->dma_idling) {
239 /* wait for completion of the outstanding DMA requests */
240 while (!rst_ops->dma_idling(mc, rst)) {
241 if (!retries--) {
242 dev_err(mc->dev, "failed to flush %s DMA\n",
243 rst->name);
244 return -EBUSY;
245 }
246
247 usleep_range(10, 100);
248 }
249 }
250
251 if (rst_ops->hotreset_assert) {
252 /* clear clients DMA requests sitting before arbitration */
253 err = rst_ops->hotreset_assert(mc, rst);
254 if (err) {
255 dev_err(mc->dev, "failed to hot reset %s: %d\n",
256 rst->name, err);
257 return err;
258 }
259 }
260
261 return 0;
262 }
263
tegra_mc_hotreset_deassert(struct reset_controller_dev * rcdev,unsigned long id)264 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
265 unsigned long id)
266 {
267 struct tegra_mc *mc = reset_to_mc(rcdev);
268 const struct tegra_mc_reset_ops *rst_ops;
269 const struct tegra_mc_reset *rst;
270 int err;
271
272 rst = tegra_mc_reset_find(mc, id);
273 if (!rst)
274 return -ENODEV;
275
276 rst_ops = mc->soc->reset_ops;
277 if (!rst_ops)
278 return -ENODEV;
279
280 if (rst_ops->hotreset_deassert) {
281 /* take out client from hot reset */
282 err = rst_ops->hotreset_deassert(mc, rst);
283 if (err) {
284 dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
285 rst->name, err);
286 return err;
287 }
288 }
289
290 if (rst_ops->unblock_dma) {
291 /* allow new DMA requests to proceed to arbitration */
292 err = rst_ops->unblock_dma(mc, rst);
293 if (err) {
294 dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
295 rst->name, err);
296 return err;
297 }
298 }
299
300 return 0;
301 }
302
tegra_mc_hotreset_status(struct reset_controller_dev * rcdev,unsigned long id)303 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
304 unsigned long id)
305 {
306 struct tegra_mc *mc = reset_to_mc(rcdev);
307 const struct tegra_mc_reset_ops *rst_ops;
308 const struct tegra_mc_reset *rst;
309
310 rst = tegra_mc_reset_find(mc, id);
311 if (!rst)
312 return -ENODEV;
313
314 rst_ops = mc->soc->reset_ops;
315 if (!rst_ops)
316 return -ENODEV;
317
318 return rst_ops->reset_status(mc, rst);
319 }
320
321 static const struct reset_control_ops tegra_mc_reset_ops = {
322 .assert = tegra_mc_hotreset_assert,
323 .deassert = tegra_mc_hotreset_deassert,
324 .status = tegra_mc_hotreset_status,
325 };
326
tegra_mc_reset_setup(struct tegra_mc * mc)327 static int tegra_mc_reset_setup(struct tegra_mc *mc)
328 {
329 int err;
330
331 mc->reset.ops = &tegra_mc_reset_ops;
332 mc->reset.owner = THIS_MODULE;
333 mc->reset.of_node = mc->dev->of_node;
334 mc->reset.of_reset_n_cells = 1;
335 mc->reset.nr_resets = mc->soc->num_resets;
336
337 err = reset_controller_register(&mc->reset);
338 if (err < 0)
339 return err;
340
341 return 0;
342 }
343
tegra_mc_write_emem_configuration(struct tegra_mc * mc,unsigned long rate)344 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
345 {
346 unsigned int i;
347 struct tegra_mc_timing *timing = NULL;
348
349 for (i = 0; i < mc->num_timings; i++) {
350 if (mc->timings[i].rate == rate) {
351 timing = &mc->timings[i];
352 break;
353 }
354 }
355
356 if (!timing) {
357 dev_err(mc->dev, "no memory timing registered for rate %lu\n",
358 rate);
359 return -EINVAL;
360 }
361
362 for (i = 0; i < mc->soc->num_emem_regs; ++i)
363 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
364
365 return 0;
366 }
367 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
368
tegra_mc_get_emem_device_count(struct tegra_mc * mc)369 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
370 {
371 u8 dram_count;
372
373 dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
374 dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
375 dram_count++;
376
377 return dram_count;
378 }
379 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
380
381 #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
382 defined(CONFIG_ARCH_TEGRA_114_SOC) || \
383 defined(CONFIG_ARCH_TEGRA_124_SOC) || \
384 defined(CONFIG_ARCH_TEGRA_132_SOC) || \
385 defined(CONFIG_ARCH_TEGRA_210_SOC)
tegra_mc_setup_latency_allowance(struct tegra_mc * mc)386 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
387 {
388 unsigned long long tick;
389 unsigned int i;
390 u32 value;
391
392 /* compute the number of MC clock cycles per tick */
393 tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
394 do_div(tick, NSEC_PER_SEC);
395
396 value = mc_readl(mc, MC_EMEM_ARB_CFG);
397 value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
398 value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
399 mc_writel(mc, value, MC_EMEM_ARB_CFG);
400
401 /* write latency allowance defaults */
402 for (i = 0; i < mc->soc->num_clients; i++) {
403 const struct tegra_mc_client *client = &mc->soc->clients[i];
404 u32 value;
405
406 value = mc_readl(mc, client->regs.la.reg);
407 value &= ~(client->regs.la.mask << client->regs.la.shift);
408 value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
409 mc_writel(mc, value, client->regs.la.reg);
410 }
411
412 /* latch new values */
413 mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
414
415 return 0;
416 }
417
load_one_timing(struct tegra_mc * mc,struct tegra_mc_timing * timing,struct device_node * node)418 static int load_one_timing(struct tegra_mc *mc,
419 struct tegra_mc_timing *timing,
420 struct device_node *node)
421 {
422 int err;
423 u32 tmp;
424
425 err = of_property_read_u32(node, "clock-frequency", &tmp);
426 if (err) {
427 dev_err(mc->dev,
428 "timing %pOFn: failed to read rate\n", node);
429 return err;
430 }
431
432 timing->rate = tmp;
433 timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
434 sizeof(u32), GFP_KERNEL);
435 if (!timing->emem_data)
436 return -ENOMEM;
437
438 err = of_property_read_u32_array(node, "nvidia,emem-configuration",
439 timing->emem_data,
440 mc->soc->num_emem_regs);
441 if (err) {
442 dev_err(mc->dev,
443 "timing %pOFn: failed to read EMEM configuration\n",
444 node);
445 return err;
446 }
447
448 return 0;
449 }
450
load_timings(struct tegra_mc * mc,struct device_node * node)451 static int load_timings(struct tegra_mc *mc, struct device_node *node)
452 {
453 struct device_node *child;
454 struct tegra_mc_timing *timing;
455 int child_count = of_get_child_count(node);
456 int i = 0, err;
457
458 mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
459 GFP_KERNEL);
460 if (!mc->timings)
461 return -ENOMEM;
462
463 mc->num_timings = child_count;
464
465 for_each_child_of_node(node, child) {
466 timing = &mc->timings[i++];
467
468 err = load_one_timing(mc, timing, child);
469 if (err) {
470 of_node_put(child);
471 return err;
472 }
473 }
474
475 return 0;
476 }
477
tegra_mc_setup_timings(struct tegra_mc * mc)478 static int tegra_mc_setup_timings(struct tegra_mc *mc)
479 {
480 struct device_node *node;
481 u32 ram_code, node_ram_code;
482 int err;
483
484 ram_code = tegra_read_ram_code();
485
486 mc->num_timings = 0;
487
488 for_each_child_of_node(mc->dev->of_node, node) {
489 err = of_property_read_u32(node, "nvidia,ram-code",
490 &node_ram_code);
491 if (err || (node_ram_code != ram_code))
492 continue;
493
494 err = load_timings(mc, node);
495 of_node_put(node);
496 if (err)
497 return err;
498 break;
499 }
500
501 if (mc->num_timings == 0)
502 dev_warn(mc->dev,
503 "no memory timings for RAM code %u registered\n",
504 ram_code);
505
506 return 0;
507 }
508
tegra30_mc_probe(struct tegra_mc * mc)509 int tegra30_mc_probe(struct tegra_mc *mc)
510 {
511 int err;
512
513 mc->clk = devm_clk_get_optional(mc->dev, "mc");
514 if (IS_ERR(mc->clk)) {
515 dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
516 return PTR_ERR(mc->clk);
517 }
518
519 /* ensure that debug features are disabled */
520 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
521
522 err = tegra_mc_setup_latency_allowance(mc);
523 if (err < 0) {
524 dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
525 return err;
526 }
527
528 err = tegra_mc_setup_timings(mc);
529 if (err < 0) {
530 dev_err(mc->dev, "failed to setup timings: %d\n", err);
531 return err;
532 }
533
534 return 0;
535 }
536
537 const struct tegra_mc_ops tegra30_mc_ops = {
538 .probe = tegra30_mc_probe,
539 .handle_irq = tegra30_mc_handle_irq,
540 };
541 #endif
542
mc_global_intstatus_to_channel(const struct tegra_mc * mc,u32 status,unsigned int * mc_channel)543 static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status,
544 unsigned int *mc_channel)
545 {
546 if ((status & mc->soc->ch_intmask) == 0)
547 return -EINVAL;
548
549 *mc_channel = __ffs((status & mc->soc->ch_intmask) >>
550 mc->soc->global_intstatus_channel_shift);
551
552 return 0;
553 }
554
mc_channel_to_global_intstatus(const struct tegra_mc * mc,unsigned int channel)555 static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc,
556 unsigned int channel)
557 {
558 return BIT(channel) << mc->soc->global_intstatus_channel_shift;
559 }
560
tegra30_mc_handle_irq(int irq,void * data)561 irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
562 {
563 struct tegra_mc *mc = data;
564 unsigned int bit, channel;
565 unsigned long status;
566
567 if (mc->soc->num_channels) {
568 u32 global_status;
569 int err;
570
571 global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS);
572 err = mc_global_intstatus_to_channel(mc, global_status, &channel);
573 if (err < 0) {
574 dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n",
575 global_status);
576 return IRQ_NONE;
577 }
578
579 /* mask all interrupts to avoid flooding */
580 status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask;
581 } else {
582 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
583 }
584
585 if (!status)
586 return IRQ_NONE;
587
588 for_each_set_bit(bit, &status, 32) {
589 const char *error = tegra_mc_status_names[bit] ?: "unknown";
590 const char *client = "unknown", *desc;
591 const char *direction, *secure;
592 u32 status_reg, addr_reg;
593 u32 intmask = BIT(bit);
594 phys_addr_t addr = 0;
595 #ifdef CONFIG_PHYS_ADDR_T_64BIT
596 u32 addr_hi_reg = 0;
597 #endif
598 unsigned int i;
599 char perm[7];
600 u8 id, type;
601 u32 value;
602
603 switch (intmask) {
604 case MC_INT_DECERR_VPR:
605 status_reg = MC_ERR_VPR_STATUS;
606 addr_reg = MC_ERR_VPR_ADR;
607 break;
608
609 case MC_INT_SECERR_SEC:
610 status_reg = MC_ERR_SEC_STATUS;
611 addr_reg = MC_ERR_SEC_ADR;
612 break;
613
614 case MC_INT_DECERR_MTS:
615 status_reg = MC_ERR_MTS_STATUS;
616 addr_reg = MC_ERR_MTS_ADR;
617 break;
618
619 case MC_INT_DECERR_GENERALIZED_CARVEOUT:
620 status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS;
621 addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR;
622 break;
623
624 case MC_INT_DECERR_ROUTE_SANITY:
625 status_reg = MC_ERR_ROUTE_SANITY_STATUS;
626 addr_reg = MC_ERR_ROUTE_SANITY_ADR;
627 break;
628
629 default:
630 status_reg = MC_ERR_STATUS;
631 addr_reg = MC_ERR_ADR;
632
633 #ifdef CONFIG_PHYS_ADDR_T_64BIT
634 if (mc->soc->has_addr_hi_reg)
635 addr_hi_reg = MC_ERR_ADR_HI;
636 #endif
637 break;
638 }
639
640 if (mc->soc->num_channels)
641 value = mc_ch_readl(mc, channel, status_reg);
642 else
643 value = mc_readl(mc, status_reg);
644
645 #ifdef CONFIG_PHYS_ADDR_T_64BIT
646 if (mc->soc->num_address_bits > 32) {
647 if (addr_hi_reg) {
648 if (mc->soc->num_channels)
649 addr = mc_ch_readl(mc, channel, addr_hi_reg);
650 else
651 addr = mc_readl(mc, addr_hi_reg);
652 } else {
653 addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
654 MC_ERR_STATUS_ADR_HI_MASK);
655 }
656 addr <<= 32;
657 }
658 #endif
659
660 if (value & MC_ERR_STATUS_RW)
661 direction = "write";
662 else
663 direction = "read";
664
665 if (value & MC_ERR_STATUS_SECURITY)
666 secure = "secure ";
667 else
668 secure = "";
669
670 id = value & mc->soc->client_id_mask;
671
672 for (i = 0; i < mc->soc->num_clients; i++) {
673 if (mc->soc->clients[i].id == id) {
674 client = mc->soc->clients[i].name;
675 break;
676 }
677 }
678
679 type = (value & MC_ERR_STATUS_TYPE_MASK) >>
680 MC_ERR_STATUS_TYPE_SHIFT;
681 desc = tegra_mc_error_names[type];
682
683 switch (value & MC_ERR_STATUS_TYPE_MASK) {
684 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
685 perm[0] = ' ';
686 perm[1] = '[';
687
688 if (value & MC_ERR_STATUS_READABLE)
689 perm[2] = 'R';
690 else
691 perm[2] = '-';
692
693 if (value & MC_ERR_STATUS_WRITABLE)
694 perm[3] = 'W';
695 else
696 perm[3] = '-';
697
698 if (value & MC_ERR_STATUS_NONSECURE)
699 perm[4] = '-';
700 else
701 perm[4] = 'S';
702
703 perm[5] = ']';
704 perm[6] = '\0';
705 break;
706
707 default:
708 perm[0] = '\0';
709 break;
710 }
711
712 if (mc->soc->num_channels)
713 value = mc_ch_readl(mc, channel, addr_reg);
714 else
715 value = mc_readl(mc, addr_reg);
716 addr |= value;
717
718 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
719 client, secure, direction, &addr, error,
720 desc, perm);
721 }
722
723 /* clear interrupts */
724 if (mc->soc->num_channels) {
725 mc_ch_writel(mc, channel, status, MC_INTSTATUS);
726 mc_ch_writel(mc, MC_BROADCAST_CHANNEL,
727 mc_channel_to_global_intstatus(mc, channel),
728 MC_GLOBAL_INTSTATUS);
729 } else {
730 mc_writel(mc, status, MC_INTSTATUS);
731 }
732
733 return IRQ_HANDLED;
734 }
735
736 const char *const tegra_mc_status_names[32] = {
737 [ 1] = "External interrupt",
738 [ 6] = "EMEM address decode error",
739 [ 7] = "GART page fault",
740 [ 8] = "Security violation",
741 [ 9] = "EMEM arbitration error",
742 [10] = "Page fault",
743 [11] = "Invalid APB ASID update",
744 [12] = "VPR violation",
745 [13] = "Secure carveout violation",
746 [16] = "MTS carveout violation",
747 [17] = "Generalized carveout violation",
748 [20] = "Route Sanity error",
749 };
750
751 const char *const tegra_mc_error_names[8] = {
752 [2] = "EMEM decode error",
753 [3] = "TrustZone violation",
754 [4] = "Carveout violation",
755 [6] = "SMMU translation error",
756 };
757
tegra_mc_icc_xlate(struct of_phandle_args * spec,void * data)758 struct icc_node *tegra_mc_icc_xlate(struct of_phandle_args *spec, void *data)
759 {
760 struct tegra_mc *mc = icc_provider_to_tegra_mc(data);
761 struct icc_node *node;
762
763 list_for_each_entry(node, &mc->provider.nodes, node_list) {
764 if (node->id == spec->args[0])
765 return node;
766 }
767
768 /*
769 * If a client driver calls devm_of_icc_get() before the MC driver
770 * is probed, then return EPROBE_DEFER to the client driver.
771 */
772 return ERR_PTR(-EPROBE_DEFER);
773 }
774
tegra_mc_icc_get(struct icc_node * node,u32 * average,u32 * peak)775 static int tegra_mc_icc_get(struct icc_node *node, u32 *average, u32 *peak)
776 {
777 *average = 0;
778 *peak = 0;
779
780 return 0;
781 }
782
tegra_mc_icc_set(struct icc_node * src,struct icc_node * dst)783 static int tegra_mc_icc_set(struct icc_node *src, struct icc_node *dst)
784 {
785 return 0;
786 }
787
788 const struct tegra_mc_icc_ops tegra_mc_icc_ops = {
789 .xlate = tegra_mc_icc_xlate,
790 .aggregate = icc_std_aggregate,
791 .get_bw = tegra_mc_icc_get,
792 .set = tegra_mc_icc_set,
793 };
794
795 /*
796 * Memory Controller (MC) has few Memory Clients that are issuing memory
797 * bandwidth allocation requests to the MC interconnect provider. The MC
798 * provider aggregates the requests and then sends the aggregated request
799 * up to the External Memory Controller (EMC) interconnect provider which
800 * re-configures hardware interface to External Memory (EMEM) in accordance
801 * to the required bandwidth. Each MC interconnect node represents an
802 * individual Memory Client.
803 *
804 * Memory interconnect topology:
805 *
806 * +----+
807 * +--------+ | |
808 * | TEXSRD +--->+ |
809 * +--------+ | |
810 * | | +-----+ +------+
811 * ... | MC +--->+ EMC +--->+ EMEM |
812 * | | +-----+ +------+
813 * +--------+ | |
814 * | DISP.. +--->+ |
815 * +--------+ | |
816 * +----+
817 */
tegra_mc_interconnect_setup(struct tegra_mc * mc)818 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
819 {
820 struct icc_node *node;
821 unsigned int i;
822 int err;
823
824 /* older device-trees don't have interconnect properties */
825 if (!device_property_present(mc->dev, "#interconnect-cells") ||
826 !mc->soc->icc_ops)
827 return 0;
828
829 mc->provider.dev = mc->dev;
830 mc->provider.data = &mc->provider;
831 mc->provider.set = mc->soc->icc_ops->set;
832 mc->provider.aggregate = mc->soc->icc_ops->aggregate;
833 mc->provider.get_bw = mc->soc->icc_ops->get_bw;
834 mc->provider.xlate = mc->soc->icc_ops->xlate;
835 mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
836
837 icc_provider_init(&mc->provider);
838
839 /* create Memory Controller node */
840 node = icc_node_create(TEGRA_ICC_MC);
841 if (IS_ERR(node))
842 return PTR_ERR(node);
843
844 node->name = "Memory Controller";
845 icc_node_add(node, &mc->provider);
846
847 /* link Memory Controller to External Memory Controller */
848 err = icc_link_create(node, TEGRA_ICC_EMC);
849 if (err)
850 goto remove_nodes;
851
852 for (i = 0; i < mc->soc->num_clients; i++) {
853 /* create MC client node */
854 node = icc_node_create(mc->soc->clients[i].id);
855 if (IS_ERR(node)) {
856 err = PTR_ERR(node);
857 goto remove_nodes;
858 }
859
860 node->name = mc->soc->clients[i].name;
861 icc_node_add(node, &mc->provider);
862
863 /* link Memory Client to Memory Controller */
864 err = icc_link_create(node, TEGRA_ICC_MC);
865 if (err)
866 goto remove_nodes;
867
868 node->data = (struct tegra_mc_client *)&(mc->soc->clients[i]);
869 }
870
871 err = icc_provider_register(&mc->provider);
872 if (err)
873 goto remove_nodes;
874
875 return 0;
876
877 remove_nodes:
878 icc_nodes_remove(&mc->provider);
879
880 return err;
881 }
882
tegra_mc_num_channel_enabled(struct tegra_mc * mc)883 static void tegra_mc_num_channel_enabled(struct tegra_mc *mc)
884 {
885 unsigned int i;
886 u32 value;
887
888 value = mc_ch_readl(mc, 0, MC_EMEM_ADR_CFG_CHANNEL_ENABLE);
889 if (value <= 0) {
890 mc->num_channels = mc->soc->num_channels;
891 return;
892 }
893
894 for (i = 0; i < 32; i++) {
895 if (value & BIT(i))
896 mc->num_channels++;
897 }
898 }
899
tegra_mc_probe(struct platform_device * pdev)900 static int tegra_mc_probe(struct platform_device *pdev)
901 {
902 struct tegra_mc *mc;
903 u64 mask;
904 int err;
905
906 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
907 if (!mc)
908 return -ENOMEM;
909
910 platform_set_drvdata(pdev, mc);
911 spin_lock_init(&mc->lock);
912 mc->soc = of_device_get_match_data(&pdev->dev);
913 mc->dev = &pdev->dev;
914
915 mask = DMA_BIT_MASK(mc->soc->num_address_bits);
916
917 err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
918 if (err < 0) {
919 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
920 return err;
921 }
922
923 /* length of MC tick in nanoseconds */
924 mc->tick = 30;
925
926 mc->regs = devm_platform_ioremap_resource(pdev, 0);
927 if (IS_ERR(mc->regs))
928 return PTR_ERR(mc->regs);
929
930 mc->debugfs.root = debugfs_create_dir("mc", NULL);
931
932 if (mc->soc->ops && mc->soc->ops->probe) {
933 err = mc->soc->ops->probe(mc);
934 if (err < 0)
935 return err;
936 }
937
938 tegra_mc_num_channel_enabled(mc);
939
940 if (mc->soc->ops && mc->soc->ops->handle_irq) {
941 mc->irq = platform_get_irq(pdev, 0);
942 if (mc->irq < 0)
943 return mc->irq;
944
945 WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
946
947 if (mc->soc->num_channels)
948 mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask,
949 MC_INTMASK);
950 else
951 mc_writel(mc, mc->soc->intmask, MC_INTMASK);
952
953 err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
954 dev_name(&pdev->dev), mc);
955 if (err < 0) {
956 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
957 err);
958 return err;
959 }
960 }
961
962 if (mc->soc->reset_ops) {
963 err = tegra_mc_reset_setup(mc);
964 if (err < 0)
965 dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
966 }
967
968 err = tegra_mc_interconnect_setup(mc);
969 if (err < 0)
970 dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
971 err);
972
973 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
974 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
975 if (IS_ERR(mc->smmu)) {
976 dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
977 PTR_ERR(mc->smmu));
978 mc->smmu = NULL;
979 }
980 }
981
982 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
983 mc->gart = tegra_gart_probe(&pdev->dev, mc);
984 if (IS_ERR(mc->gart)) {
985 dev_err(&pdev->dev, "failed to probe GART: %ld\n",
986 PTR_ERR(mc->gart));
987 mc->gart = NULL;
988 }
989 }
990
991 return 0;
992 }
993
tegra_mc_suspend(struct device * dev)994 static int __maybe_unused tegra_mc_suspend(struct device *dev)
995 {
996 struct tegra_mc *mc = dev_get_drvdata(dev);
997
998 if (mc->soc->ops && mc->soc->ops->suspend)
999 return mc->soc->ops->suspend(mc);
1000
1001 return 0;
1002 }
1003
tegra_mc_resume(struct device * dev)1004 static int __maybe_unused tegra_mc_resume(struct device *dev)
1005 {
1006 struct tegra_mc *mc = dev_get_drvdata(dev);
1007
1008 if (mc->soc->ops && mc->soc->ops->resume)
1009 return mc->soc->ops->resume(mc);
1010
1011 return 0;
1012 }
1013
tegra_mc_sync_state(struct device * dev)1014 static void tegra_mc_sync_state(struct device *dev)
1015 {
1016 struct tegra_mc *mc = dev_get_drvdata(dev);
1017
1018 /* check whether ICC provider is registered */
1019 if (mc->provider.dev == dev)
1020 icc_sync_state(dev);
1021 }
1022
1023 static const struct dev_pm_ops tegra_mc_pm_ops = {
1024 SET_SYSTEM_SLEEP_PM_OPS(tegra_mc_suspend, tegra_mc_resume)
1025 };
1026
1027 static struct platform_driver tegra_mc_driver = {
1028 .driver = {
1029 .name = "tegra-mc",
1030 .of_match_table = tegra_mc_of_match,
1031 .pm = &tegra_mc_pm_ops,
1032 .suppress_bind_attrs = true,
1033 .sync_state = tegra_mc_sync_state,
1034 },
1035 .prevent_deferred_probe = true,
1036 .probe = tegra_mc_probe,
1037 };
1038
tegra_mc_init(void)1039 static int tegra_mc_init(void)
1040 {
1041 return platform_driver_register(&tegra_mc_driver);
1042 }
1043 arch_initcall(tegra_mc_init);
1044
1045 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
1046 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
1047