1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
6
7 #include <linux/clk.h>
8
9 #include <drm/drm_atomic_helper.h>
10 #include <drm/drm_bridge_connector.h>
11 #include <drm/drm_simple_kms_helper.h>
12
13 #include "drm.h"
14 #include "dc.h"
15
16 struct tegra_rgb {
17 struct tegra_output output;
18 struct tegra_dc *dc;
19
20 struct clk *pll_d_out0;
21 struct clk *pll_d2_out0;
22 struct clk *clk_parent;
23 struct clk *clk;
24 };
25
to_rgb(struct tegra_output * output)26 static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
27 {
28 return container_of(output, struct tegra_rgb, output);
29 }
30
31 struct reg_entry {
32 unsigned long offset;
33 unsigned long value;
34 };
35
36 static const struct reg_entry rgb_enable[] = {
37 { DC_COM_PIN_OUTPUT_ENABLE(0), 0x00000000 },
38 { DC_COM_PIN_OUTPUT_ENABLE(1), 0x00000000 },
39 { DC_COM_PIN_OUTPUT_ENABLE(2), 0x00000000 },
40 { DC_COM_PIN_OUTPUT_ENABLE(3), 0x00000000 },
41 { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
42 { DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
43 { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
44 { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
45 { DC_COM_PIN_OUTPUT_DATA(0), 0x00000000 },
46 { DC_COM_PIN_OUTPUT_DATA(1), 0x00000000 },
47 { DC_COM_PIN_OUTPUT_DATA(2), 0x00000000 },
48 { DC_COM_PIN_OUTPUT_DATA(3), 0x00000000 },
49 { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 },
50 { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 },
51 { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 },
52 { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 },
53 { DC_COM_PIN_OUTPUT_SELECT(4), 0x00210222 },
54 { DC_COM_PIN_OUTPUT_SELECT(5), 0x00002200 },
55 { DC_COM_PIN_OUTPUT_SELECT(6), 0x00020000 },
56 };
57
58 static const struct reg_entry rgb_disable[] = {
59 { DC_COM_PIN_OUTPUT_SELECT(6), 0x00000000 },
60 { DC_COM_PIN_OUTPUT_SELECT(5), 0x00000000 },
61 { DC_COM_PIN_OUTPUT_SELECT(4), 0x00000000 },
62 { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 },
63 { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 },
64 { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 },
65 { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 },
66 { DC_COM_PIN_OUTPUT_DATA(3), 0xaaaaaaaa },
67 { DC_COM_PIN_OUTPUT_DATA(2), 0xaaaaaaaa },
68 { DC_COM_PIN_OUTPUT_DATA(1), 0xaaaaaaaa },
69 { DC_COM_PIN_OUTPUT_DATA(0), 0xaaaaaaaa },
70 { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
71 { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
72 { DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
73 { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
74 { DC_COM_PIN_OUTPUT_ENABLE(3), 0x55555555 },
75 { DC_COM_PIN_OUTPUT_ENABLE(2), 0x55555555 },
76 { DC_COM_PIN_OUTPUT_ENABLE(1), 0x55150005 },
77 { DC_COM_PIN_OUTPUT_ENABLE(0), 0x55555555 },
78 };
79
tegra_dc_write_regs(struct tegra_dc * dc,const struct reg_entry * table,unsigned int num)80 static void tegra_dc_write_regs(struct tegra_dc *dc,
81 const struct reg_entry *table,
82 unsigned int num)
83 {
84 unsigned int i;
85
86 for (i = 0; i < num; i++)
87 tegra_dc_writel(dc, table[i].value, table[i].offset);
88 }
89
tegra_rgb_encoder_disable(struct drm_encoder * encoder)90 static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
91 {
92 struct tegra_output *output = encoder_to_output(encoder);
93 struct tegra_rgb *rgb = to_rgb(output);
94
95 tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
96 tegra_dc_commit(rgb->dc);
97 }
98
tegra_rgb_encoder_enable(struct drm_encoder * encoder)99 static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
100 {
101 struct tegra_output *output = encoder_to_output(encoder);
102 struct tegra_rgb *rgb = to_rgb(output);
103 u32 value;
104
105 tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
106
107 value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
108 tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
109
110 /* XXX: parameterize? */
111 value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
112 value &= ~LVS_OUTPUT_POLARITY_LOW;
113 value &= ~LHS_OUTPUT_POLARITY_LOW;
114 tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
115
116 /* XXX: parameterize? */
117 value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
118 DISP_ORDER_RED_BLUE;
119 tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
120
121 tegra_dc_commit(rgb->dc);
122 }
123
tegra_rgb_pll_rate_change_allowed(struct tegra_rgb * rgb)124 static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb)
125 {
126 if (!rgb->pll_d2_out0)
127 return false;
128
129 if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) &&
130 !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0))
131 return false;
132
133 return true;
134 }
135
136 static int
tegra_rgb_encoder_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)137 tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
138 struct drm_crtc_state *crtc_state,
139 struct drm_connector_state *conn_state)
140 {
141 struct tegra_output *output = encoder_to_output(encoder);
142 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
143 unsigned long pclk = crtc_state->mode.clock * 1000;
144 struct tegra_rgb *rgb = to_rgb(output);
145 unsigned int div;
146 int err;
147
148 /*
149 * We may not want to change the frequency of the parent clock, since
150 * it may be a parent for other peripherals. This is due to the fact
151 * that on Tegra20 there's only a single clock dedicated to display
152 * (pll_d_out0), whereas later generations have a second one that can
153 * be used to independently drive a second output (pll_d2_out0).
154 *
155 * As a way to support multiple outputs on Tegra20 as well, pll_p is
156 * typically used as the parent clock for the display controllers.
157 * But this comes at a cost: pll_p is the parent of several other
158 * peripherals, so its frequency shouldn't change out of the blue.
159 *
160 * The best we can do at this point is to use the shift clock divider
161 * and hope that the desired frequency can be matched (or at least
162 * matched sufficiently close that the panel will still work).
163 */
164 if (tegra_rgb_pll_rate_change_allowed(rgb)) {
165 /*
166 * Set display controller clock to x2 of PCLK in order to
167 * produce higher resolution pulse positions.
168 */
169 div = 2;
170 pclk *= 2;
171 } else {
172 div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
173 pclk = 0;
174 }
175
176 err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
177 pclk, div);
178 if (err < 0) {
179 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
180 return err;
181 }
182
183 return err;
184 }
185
186 static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
187 .disable = tegra_rgb_encoder_disable,
188 .enable = tegra_rgb_encoder_enable,
189 .atomic_check = tegra_rgb_encoder_atomic_check,
190 };
191
tegra_dc_rgb_probe(struct tegra_dc * dc)192 int tegra_dc_rgb_probe(struct tegra_dc *dc)
193 {
194 struct device_node *np;
195 struct tegra_rgb *rgb;
196 int err;
197
198 np = of_get_child_by_name(dc->dev->of_node, "rgb");
199 if (!np || !of_device_is_available(np))
200 return -ENODEV;
201
202 rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
203 if (!rgb)
204 return -ENOMEM;
205
206 rgb->output.dev = dc->dev;
207 rgb->output.of_node = np;
208 rgb->dc = dc;
209
210 err = tegra_output_probe(&rgb->output);
211 if (err < 0)
212 return err;
213
214 rgb->clk = devm_clk_get(dc->dev, NULL);
215 if (IS_ERR(rgb->clk)) {
216 dev_err(dc->dev, "failed to get clock\n");
217 return PTR_ERR(rgb->clk);
218 }
219
220 rgb->clk_parent = devm_clk_get(dc->dev, "parent");
221 if (IS_ERR(rgb->clk_parent)) {
222 dev_err(dc->dev, "failed to get parent clock\n");
223 return PTR_ERR(rgb->clk_parent);
224 }
225
226 err = clk_set_parent(rgb->clk, rgb->clk_parent);
227 if (err < 0) {
228 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
229 return err;
230 }
231
232 rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0");
233 if (IS_ERR(rgb->pll_d_out0)) {
234 err = PTR_ERR(rgb->pll_d_out0);
235 dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err);
236 return err;
237 }
238
239 if (dc->soc->has_pll_d2_out0) {
240 rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0");
241 if (IS_ERR(rgb->pll_d2_out0)) {
242 err = PTR_ERR(rgb->pll_d2_out0);
243 dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err);
244 return err;
245 }
246 }
247
248 dc->rgb = &rgb->output;
249
250 return 0;
251 }
252
tegra_dc_rgb_remove(struct tegra_dc * dc)253 int tegra_dc_rgb_remove(struct tegra_dc *dc)
254 {
255 struct tegra_rgb *rgb;
256
257 if (!dc->rgb)
258 return 0;
259
260 rgb = to_rgb(dc->rgb);
261 clk_put(rgb->pll_d2_out0);
262 clk_put(rgb->pll_d_out0);
263
264 tegra_output_remove(dc->rgb);
265 dc->rgb = NULL;
266
267 return 0;
268 }
269
tegra_dc_rgb_init(struct drm_device * drm,struct tegra_dc * dc)270 int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
271 {
272 struct tegra_output *output = dc->rgb;
273 struct drm_connector *connector;
274 int err;
275
276 if (!dc->rgb)
277 return -ENODEV;
278
279 drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
280 drm_encoder_helper_add(&output->encoder,
281 &tegra_rgb_encoder_helper_funcs);
282
283 /*
284 * Wrap directly-connected panel into DRM bridge in order to let
285 * DRM core to handle panel for us.
286 */
287 if (output->panel) {
288 output->bridge = devm_drm_panel_bridge_add(output->dev,
289 output->panel);
290 if (IS_ERR(output->bridge)) {
291 dev_err(output->dev,
292 "failed to wrap panel into bridge: %pe\n",
293 output->bridge);
294 return PTR_ERR(output->bridge);
295 }
296
297 output->panel = NULL;
298 }
299
300 /*
301 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
302 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
303 * go to display panel's receiver.
304 *
305 * Encoder usually have a power-down control which needs to be enabled
306 * in order to transmit data to the panel. Historically devices that
307 * use an older device-tree version didn't model the bridge, assuming
308 * that encoder is turned ON by default, while today's DRM allows us
309 * to model LVDS encoder properly.
310 *
311 * Newer device-trees utilize LVDS encoder bridge, which provides
312 * us with a connector and handles the display panel.
313 *
314 * For older device-trees we wrapped panel into the panel-bridge.
315 */
316 if (output->bridge) {
317 err = drm_bridge_attach(&output->encoder, output->bridge,
318 NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
319 if (err)
320 return err;
321
322 connector = drm_bridge_connector_init(drm, &output->encoder);
323 if (IS_ERR(connector)) {
324 dev_err(output->dev,
325 "failed to initialize bridge connector: %pe\n",
326 connector);
327 return PTR_ERR(connector);
328 }
329
330 drm_connector_attach_encoder(connector, &output->encoder);
331 }
332
333 err = tegra_output_init(drm, output);
334 if (err < 0) {
335 dev_err(output->dev, "failed to initialize output: %d\n", err);
336 return err;
337 }
338
339 /*
340 * Other outputs can be attached to either display controller. The RGB
341 * outputs are an exception and work only with their parent display
342 * controller.
343 */
344 output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
345
346 return 0;
347 }
348
tegra_dc_rgb_exit(struct tegra_dc * dc)349 int tegra_dc_rgb_exit(struct tegra_dc *dc)
350 {
351 if (dc->rgb)
352 tegra_output_exit(dc->rgb);
353
354 return 0;
355 }
356