1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41 };
42
43 enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54 };
55
56 struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59 };
60
61 #ifdef CONFIG_MEMCG
62
63 #define MEM_CGROUP_ID_SHIFT 16
64
65 struct mem_cgroup_id {
66 int id;
67 refcount_t ref;
68 };
69
70 /*
71 * Per memcg event counter is incremented at every pagein/pageout. With THP,
72 * it will be incremented by the number of pages. This counter is used
73 * to trigger some periodic events. This is straightforward and better
74 * than using jiffies etc. to handle periodic memcg event.
75 */
76 enum mem_cgroup_events_target {
77 MEM_CGROUP_TARGET_THRESH,
78 MEM_CGROUP_TARGET_SOFTLIMIT,
79 MEM_CGROUP_NTARGETS,
80 };
81
82 struct memcg_vmstats_percpu;
83 struct memcg_vmstats;
84
85 struct mem_cgroup_reclaim_iter {
86 struct mem_cgroup *position;
87 /* scan generation, increased every round-trip */
88 unsigned int generation;
89 };
90
91 /*
92 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
93 * shrinkers, which have elements charged to this memcg.
94 */
95 struct shrinker_info {
96 struct rcu_head rcu;
97 atomic_long_t *nr_deferred;
98 unsigned long *map;
99 int map_nr_max;
100 };
101
102 struct lruvec_stats_percpu {
103 /* Local (CPU and cgroup) state */
104 long state[NR_VM_NODE_STAT_ITEMS];
105
106 /* Delta calculation for lockless upward propagation */
107 long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109
110 struct lruvec_stats {
111 /* Aggregated (CPU and subtree) state */
112 long state[NR_VM_NODE_STAT_ITEMS];
113
114 /* Non-hierarchical (CPU aggregated) state */
115 long state_local[NR_VM_NODE_STAT_ITEMS];
116
117 /* Pending child counts during tree propagation */
118 long state_pending[NR_VM_NODE_STAT_ITEMS];
119 };
120
121 /*
122 * per-node information in memory controller.
123 */
124 struct mem_cgroup_per_node {
125 struct lruvec lruvec;
126
127 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
128 struct lruvec_stats lruvec_stats;
129
130 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
131
132 struct mem_cgroup_reclaim_iter iter;
133
134 struct shrinker_info __rcu *shrinker_info;
135
136 struct rb_node tree_node; /* RB tree node */
137 unsigned long usage_in_excess;/* Set to the value by which */
138 /* the soft limit is exceeded*/
139 bool on_tree;
140 struct mem_cgroup *memcg; /* Back pointer, we cannot */
141 /* use container_of */
142 };
143
144 struct mem_cgroup_threshold {
145 struct eventfd_ctx *eventfd;
146 unsigned long threshold;
147 };
148
149 /* For threshold */
150 struct mem_cgroup_threshold_ary {
151 /* An array index points to threshold just below or equal to usage. */
152 int current_threshold;
153 /* Size of entries[] */
154 unsigned int size;
155 /* Array of thresholds */
156 struct mem_cgroup_threshold entries[];
157 };
158
159 struct mem_cgroup_thresholds {
160 /* Primary thresholds array */
161 struct mem_cgroup_threshold_ary *primary;
162 /*
163 * Spare threshold array.
164 * This is needed to make mem_cgroup_unregister_event() "never fail".
165 * It must be able to store at least primary->size - 1 entries.
166 */
167 struct mem_cgroup_threshold_ary *spare;
168 };
169
170 /*
171 * Remember four most recent foreign writebacks with dirty pages in this
172 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
173 * one in a given round, we're likely to catch it later if it keeps
174 * foreign-dirtying, so a fairly low count should be enough.
175 *
176 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
177 */
178 #define MEMCG_CGWB_FRN_CNT 4
179
180 struct memcg_cgwb_frn {
181 u64 bdi_id; /* bdi->id of the foreign inode */
182 int memcg_id; /* memcg->css.id of foreign inode */
183 u64 at; /* jiffies_64 at the time of dirtying */
184 struct wb_completion done; /* tracks in-flight foreign writebacks */
185 };
186
187 /*
188 * Bucket for arbitrarily byte-sized objects charged to a memory
189 * cgroup. The bucket can be reparented in one piece when the cgroup
190 * is destroyed, without having to round up the individual references
191 * of all live memory objects in the wild.
192 */
193 struct obj_cgroup {
194 struct percpu_ref refcnt;
195 struct mem_cgroup *memcg;
196 atomic_t nr_charged_bytes;
197 union {
198 struct list_head list; /* protected by objcg_lock */
199 struct rcu_head rcu;
200 };
201 };
202
203 /*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 */
209 struct mem_cgroup {
210 struct cgroup_subsys_state css;
211
212 /* Private memcg ID. Used to ID objects that outlive the cgroup */
213 struct mem_cgroup_id id;
214
215 /* Accounted resources */
216 struct page_counter memory; /* Both v1 & v2 */
217
218 union {
219 struct page_counter swap; /* v2 only */
220 struct page_counter memsw; /* v1 only */
221 };
222
223 /* Legacy consumer-oriented counters */
224 struct page_counter kmem; /* v1 only */
225 struct page_counter tcpmem; /* v1 only */
226
227 /* Range enforcement for interrupt charges */
228 struct work_struct high_work;
229
230 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
231 unsigned long zswap_max;
232 #endif
233
234 unsigned long soft_limit;
235
236 /* vmpressure notifications */
237 struct vmpressure vmpressure;
238
239 /*
240 * Should the OOM killer kill all belonging tasks, had it kill one?
241 */
242 bool oom_group;
243
244 /* protected by memcg_oom_lock */
245 bool oom_lock;
246 int under_oom;
247
248 int swappiness;
249 /* OOM-Killer disable */
250 int oom_kill_disable;
251
252 /* memory.events and memory.events.local */
253 struct cgroup_file events_file;
254 struct cgroup_file events_local_file;
255
256 /* handle for "memory.swap.events" */
257 struct cgroup_file swap_events_file;
258
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
261
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds;
264
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds;
267
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
270
271 /*
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
274 */
275 unsigned long move_charge_at_immigrate;
276 /* taken only while moving_account > 0 */
277 spinlock_t move_lock;
278 unsigned long move_lock_flags;
279
280 CACHELINE_PADDING(_pad1_);
281
282 /* memory.stat */
283 struct memcg_vmstats *vmstats;
284
285 /* memory.events */
286 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
287 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
288
289 /*
290 * Hint of reclaim pressure for socket memroy management. Note
291 * that this indicator should NOT be used in legacy cgroup mode
292 * where socket memory is accounted/charged separately.
293 */
294 unsigned long socket_pressure;
295
296 /* Legacy tcp memory accounting */
297 bool tcpmem_active;
298 int tcpmem_pressure;
299
300 #ifdef CONFIG_MEMCG_KMEM
301 int kmemcg_id;
302 struct obj_cgroup __rcu *objcg;
303 /* list of inherited objcgs, protected by objcg_lock */
304 struct list_head objcg_list;
305 #endif
306
307 CACHELINE_PADDING(_pad2_);
308
309 /*
310 * set > 0 if pages under this cgroup are moving to other cgroup.
311 */
312 atomic_t moving_account;
313 struct task_struct *move_lock_task;
314
315 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
316
317 #ifdef CONFIG_CGROUP_WRITEBACK
318 struct list_head cgwb_list;
319 struct wb_domain cgwb_domain;
320 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
321 #endif
322
323 /* List of events which userspace want to receive */
324 struct list_head event_list;
325 spinlock_t event_list_lock;
326
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 struct deferred_split deferred_split_queue;
329 #endif
330
331 #ifdef CONFIG_LRU_GEN
332 /* per-memcg mm_struct list */
333 struct lru_gen_mm_list mm_list;
334 #endif
335
336 struct mem_cgroup_per_node *nodeinfo[];
337 };
338
339 /*
340 * size of first charge trial.
341 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
342 * workload.
343 */
344 #define MEMCG_CHARGE_BATCH 64U
345
346 extern struct mem_cgroup *root_mem_cgroup;
347
348 enum page_memcg_data_flags {
349 /* page->memcg_data is a pointer to an objcgs vector */
350 MEMCG_DATA_OBJCGS = (1UL << 0),
351 /* page has been accounted as a non-slab kernel page */
352 MEMCG_DATA_KMEM = (1UL << 1),
353 /* the next bit after the last actual flag */
354 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
355 };
356
357 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
358
359 static inline bool folio_memcg_kmem(struct folio *folio);
360
361 /*
362 * After the initialization objcg->memcg is always pointing at
363 * a valid memcg, but can be atomically swapped to the parent memcg.
364 *
365 * The caller must ensure that the returned memcg won't be released:
366 * e.g. acquire the rcu_read_lock or css_set_lock.
367 */
obj_cgroup_memcg(struct obj_cgroup * objcg)368 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
369 {
370 return READ_ONCE(objcg->memcg);
371 }
372
373 /*
374 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
375 * @folio: Pointer to the folio.
376 *
377 * Returns a pointer to the memory cgroup associated with the folio,
378 * or NULL. This function assumes that the folio is known to have a
379 * proper memory cgroup pointer. It's not safe to call this function
380 * against some type of folios, e.g. slab folios or ex-slab folios or
381 * kmem folios.
382 */
__folio_memcg(struct folio * folio)383 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
384 {
385 unsigned long memcg_data = folio->memcg_data;
386
387 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
388 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
389 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
390
391 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
392 }
393
394 /*
395 * __folio_objcg - get the object cgroup associated with a kmem folio.
396 * @folio: Pointer to the folio.
397 *
398 * Returns a pointer to the object cgroup associated with the folio,
399 * or NULL. This function assumes that the folio is known to have a
400 * proper object cgroup pointer. It's not safe to call this function
401 * against some type of folios, e.g. slab folios or ex-slab folios or
402 * LRU folios.
403 */
__folio_objcg(struct folio * folio)404 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
405 {
406 unsigned long memcg_data = folio->memcg_data;
407
408 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
409 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
410 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
411
412 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
413 }
414
415 /*
416 * folio_memcg - Get the memory cgroup associated with a folio.
417 * @folio: Pointer to the folio.
418 *
419 * Returns a pointer to the memory cgroup associated with the folio,
420 * or NULL. This function assumes that the folio is known to have a
421 * proper memory cgroup pointer. It's not safe to call this function
422 * against some type of folios, e.g. slab folios or ex-slab folios.
423 *
424 * For a non-kmem folio any of the following ensures folio and memcg binding
425 * stability:
426 *
427 * - the folio lock
428 * - LRU isolation
429 * - folio_memcg_lock()
430 * - exclusive reference
431 * - mem_cgroup_trylock_pages()
432 *
433 * For a kmem folio a caller should hold an rcu read lock to protect memcg
434 * associated with a kmem folio from being released.
435 */
folio_memcg(struct folio * folio)436 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
437 {
438 if (folio_memcg_kmem(folio))
439 return obj_cgroup_memcg(__folio_objcg(folio));
440 return __folio_memcg(folio);
441 }
442
page_memcg(struct page * page)443 static inline struct mem_cgroup *page_memcg(struct page *page)
444 {
445 return folio_memcg(page_folio(page));
446 }
447
448 /**
449 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
450 * @folio: Pointer to the folio.
451 *
452 * This function assumes that the folio is known to have a
453 * proper memory cgroup pointer. It's not safe to call this function
454 * against some type of folios, e.g. slab folios or ex-slab folios.
455 *
456 * Return: A pointer to the memory cgroup associated with the folio,
457 * or NULL.
458 */
folio_memcg_rcu(struct folio * folio)459 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
460 {
461 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
462
463 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
464 WARN_ON_ONCE(!rcu_read_lock_held());
465
466 if (memcg_data & MEMCG_DATA_KMEM) {
467 struct obj_cgroup *objcg;
468
469 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
470 return obj_cgroup_memcg(objcg);
471 }
472
473 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
474 }
475
476 /*
477 * folio_memcg_check - Get the memory cgroup associated with a folio.
478 * @folio: Pointer to the folio.
479 *
480 * Returns a pointer to the memory cgroup associated with the folio,
481 * or NULL. This function unlike folio_memcg() can take any folio
482 * as an argument. It has to be used in cases when it's not known if a folio
483 * has an associated memory cgroup pointer or an object cgroups vector or
484 * an object cgroup.
485 *
486 * For a non-kmem folio any of the following ensures folio and memcg binding
487 * stability:
488 *
489 * - the folio lock
490 * - LRU isolation
491 * - lock_folio_memcg()
492 * - exclusive reference
493 * - mem_cgroup_trylock_pages()
494 *
495 * For a kmem folio a caller should hold an rcu read lock to protect memcg
496 * associated with a kmem folio from being released.
497 */
folio_memcg_check(struct folio * folio)498 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
499 {
500 /*
501 * Because folio->memcg_data might be changed asynchronously
502 * for slabs, READ_ONCE() should be used here.
503 */
504 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
505
506 if (memcg_data & MEMCG_DATA_OBJCGS)
507 return NULL;
508
509 if (memcg_data & MEMCG_DATA_KMEM) {
510 struct obj_cgroup *objcg;
511
512 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
513 return obj_cgroup_memcg(objcg);
514 }
515
516 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
517 }
518
page_memcg_check(struct page * page)519 static inline struct mem_cgroup *page_memcg_check(struct page *page)
520 {
521 if (PageTail(page))
522 return NULL;
523 return folio_memcg_check((struct folio *)page);
524 }
525
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)526 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
527 {
528 struct mem_cgroup *memcg;
529
530 rcu_read_lock();
531 retry:
532 memcg = obj_cgroup_memcg(objcg);
533 if (unlikely(!css_tryget(&memcg->css)))
534 goto retry;
535 rcu_read_unlock();
536
537 return memcg;
538 }
539
540 #ifdef CONFIG_MEMCG_KMEM
541 /*
542 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
543 * @folio: Pointer to the folio.
544 *
545 * Checks if the folio has MemcgKmem flag set. The caller must ensure
546 * that the folio has an associated memory cgroup. It's not safe to call
547 * this function against some types of folios, e.g. slab folios.
548 */
folio_memcg_kmem(struct folio * folio)549 static inline bool folio_memcg_kmem(struct folio *folio)
550 {
551 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
552 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
553 return folio->memcg_data & MEMCG_DATA_KMEM;
554 }
555
556
557 #else
folio_memcg_kmem(struct folio * folio)558 static inline bool folio_memcg_kmem(struct folio *folio)
559 {
560 return false;
561 }
562
563 #endif
564
PageMemcgKmem(struct page * page)565 static inline bool PageMemcgKmem(struct page *page)
566 {
567 return folio_memcg_kmem(page_folio(page));
568 }
569
mem_cgroup_is_root(struct mem_cgroup * memcg)570 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
571 {
572 return (memcg == root_mem_cgroup);
573 }
574
mem_cgroup_disabled(void)575 static inline bool mem_cgroup_disabled(void)
576 {
577 return !cgroup_subsys_enabled(memory_cgrp_subsys);
578 }
579
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)580 static inline void mem_cgroup_protection(struct mem_cgroup *root,
581 struct mem_cgroup *memcg,
582 unsigned long *min,
583 unsigned long *low)
584 {
585 *min = *low = 0;
586
587 if (mem_cgroup_disabled())
588 return;
589
590 /*
591 * There is no reclaim protection applied to a targeted reclaim.
592 * We are special casing this specific case here because
593 * mem_cgroup_calculate_protection is not robust enough to keep
594 * the protection invariant for calculated effective values for
595 * parallel reclaimers with different reclaim target. This is
596 * especially a problem for tail memcgs (as they have pages on LRU)
597 * which would want to have effective values 0 for targeted reclaim
598 * but a different value for external reclaim.
599 *
600 * Example
601 * Let's have global and A's reclaim in parallel:
602 * |
603 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
604 * |\
605 * | C (low = 1G, usage = 2.5G)
606 * B (low = 1G, usage = 0.5G)
607 *
608 * For the global reclaim
609 * A.elow = A.low
610 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
611 * C.elow = min(C.usage, C.low)
612 *
613 * With the effective values resetting we have A reclaim
614 * A.elow = 0
615 * B.elow = B.low
616 * C.elow = C.low
617 *
618 * If the global reclaim races with A's reclaim then
619 * B.elow = C.elow = 0 because children_low_usage > A.elow)
620 * is possible and reclaiming B would be violating the protection.
621 *
622 */
623 if (root == memcg)
624 return;
625
626 *min = READ_ONCE(memcg->memory.emin);
627 *low = READ_ONCE(memcg->memory.elow);
628 }
629
630 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
631 struct mem_cgroup *memcg);
632
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)633 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
634 struct mem_cgroup *memcg)
635 {
636 /*
637 * The root memcg doesn't account charges, and doesn't support
638 * protection. The target memcg's protection is ignored, see
639 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
640 */
641 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
642 memcg == target;
643 }
644
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)645 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
646 struct mem_cgroup *memcg)
647 {
648 if (mem_cgroup_unprotected(target, memcg))
649 return false;
650
651 return READ_ONCE(memcg->memory.elow) >=
652 page_counter_read(&memcg->memory);
653 }
654
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)655 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
656 struct mem_cgroup *memcg)
657 {
658 if (mem_cgroup_unprotected(target, memcg))
659 return false;
660
661 return READ_ONCE(memcg->memory.emin) >=
662 page_counter_read(&memcg->memory);
663 }
664
665 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
666
667 /**
668 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
669 * @folio: Folio to charge.
670 * @mm: mm context of the allocating task.
671 * @gfp: Reclaim mode.
672 *
673 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
674 * pages according to @gfp if necessary. If @mm is NULL, try to
675 * charge to the active memcg.
676 *
677 * Do not use this for folios allocated for swapin.
678 *
679 * Return: 0 on success. Otherwise, an error code is returned.
680 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)681 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
682 gfp_t gfp)
683 {
684 if (mem_cgroup_disabled())
685 return 0;
686 return __mem_cgroup_charge(folio, mm, gfp);
687 }
688
689 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
690 gfp_t gfp, swp_entry_t entry);
691 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
692
693 void __mem_cgroup_uncharge(struct folio *folio);
694
695 /**
696 * mem_cgroup_uncharge - Uncharge a folio.
697 * @folio: Folio to uncharge.
698 *
699 * Uncharge a folio previously charged with mem_cgroup_charge().
700 */
mem_cgroup_uncharge(struct folio * folio)701 static inline void mem_cgroup_uncharge(struct folio *folio)
702 {
703 if (mem_cgroup_disabled())
704 return;
705 __mem_cgroup_uncharge(folio);
706 }
707
708 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)709 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
710 {
711 if (mem_cgroup_disabled())
712 return;
713 __mem_cgroup_uncharge_list(page_list);
714 }
715
716 void mem_cgroup_migrate(struct folio *old, struct folio *new);
717
718 /**
719 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
720 * @memcg: memcg of the wanted lruvec
721 * @pgdat: pglist_data
722 *
723 * Returns the lru list vector holding pages for a given @memcg &
724 * @pgdat combination. This can be the node lruvec, if the memory
725 * controller is disabled.
726 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)727 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
728 struct pglist_data *pgdat)
729 {
730 struct mem_cgroup_per_node *mz;
731 struct lruvec *lruvec;
732
733 if (mem_cgroup_disabled()) {
734 lruvec = &pgdat->__lruvec;
735 goto out;
736 }
737
738 if (!memcg)
739 memcg = root_mem_cgroup;
740
741 mz = memcg->nodeinfo[pgdat->node_id];
742 lruvec = &mz->lruvec;
743 out:
744 /*
745 * Since a node can be onlined after the mem_cgroup was created,
746 * we have to be prepared to initialize lruvec->pgdat here;
747 * and if offlined then reonlined, we need to reinitialize it.
748 */
749 if (unlikely(lruvec->pgdat != pgdat))
750 lruvec->pgdat = pgdat;
751 return lruvec;
752 }
753
754 /**
755 * folio_lruvec - return lruvec for isolating/putting an LRU folio
756 * @folio: Pointer to the folio.
757 *
758 * This function relies on folio->mem_cgroup being stable.
759 */
folio_lruvec(struct folio * folio)760 static inline struct lruvec *folio_lruvec(struct folio *folio)
761 {
762 struct mem_cgroup *memcg = folio_memcg(folio);
763
764 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
765 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
766 }
767
768 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
769
770 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
771
772 struct lruvec *folio_lruvec_lock(struct folio *folio);
773 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
774 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
775 unsigned long *flags);
776
777 #ifdef CONFIG_DEBUG_VM
778 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
779 #else
780 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)781 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
782 {
783 }
784 #endif
785
786 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)787 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
788 return css ? container_of(css, struct mem_cgroup, css) : NULL;
789 }
790
obj_cgroup_tryget(struct obj_cgroup * objcg)791 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
792 {
793 return percpu_ref_tryget(&objcg->refcnt);
794 }
795
obj_cgroup_get(struct obj_cgroup * objcg)796 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
797 {
798 percpu_ref_get(&objcg->refcnt);
799 }
800
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)801 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
802 unsigned long nr)
803 {
804 percpu_ref_get_many(&objcg->refcnt, nr);
805 }
806
obj_cgroup_put(struct obj_cgroup * objcg)807 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
808 {
809 percpu_ref_put(&objcg->refcnt);
810 }
811
mem_cgroup_tryget(struct mem_cgroup * memcg)812 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
813 {
814 return !memcg || css_tryget(&memcg->css);
815 }
816
mem_cgroup_put(struct mem_cgroup * memcg)817 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
818 {
819 if (memcg)
820 css_put(&memcg->css);
821 }
822
823 #define mem_cgroup_from_counter(counter, member) \
824 container_of(counter, struct mem_cgroup, member)
825
826 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
827 struct mem_cgroup *,
828 struct mem_cgroup_reclaim_cookie *);
829 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
830 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
831 int (*)(struct task_struct *, void *), void *arg);
832
mem_cgroup_id(struct mem_cgroup * memcg)833 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
834 {
835 if (mem_cgroup_disabled())
836 return 0;
837
838 return memcg->id.id;
839 }
840 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
841
842 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)843 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
844 {
845 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
846 }
847
848 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
849 #endif
850
mem_cgroup_from_seq(struct seq_file * m)851 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
852 {
853 return mem_cgroup_from_css(seq_css(m));
854 }
855
lruvec_memcg(struct lruvec * lruvec)856 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
857 {
858 struct mem_cgroup_per_node *mz;
859
860 if (mem_cgroup_disabled())
861 return NULL;
862
863 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
864 return mz->memcg;
865 }
866
867 /**
868 * parent_mem_cgroup - find the accounting parent of a memcg
869 * @memcg: memcg whose parent to find
870 *
871 * Returns the parent memcg, or NULL if this is the root.
872 */
parent_mem_cgroup(struct mem_cgroup * memcg)873 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
874 {
875 return mem_cgroup_from_css(memcg->css.parent);
876 }
877
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)878 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
879 struct mem_cgroup *root)
880 {
881 if (root == memcg)
882 return true;
883 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
884 }
885
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)886 static inline bool mm_match_cgroup(struct mm_struct *mm,
887 struct mem_cgroup *memcg)
888 {
889 struct mem_cgroup *task_memcg;
890 bool match = false;
891
892 rcu_read_lock();
893 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
894 if (task_memcg)
895 match = mem_cgroup_is_descendant(task_memcg, memcg);
896 rcu_read_unlock();
897 return match;
898 }
899
900 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
901 ino_t page_cgroup_ino(struct page *page);
902
mem_cgroup_online(struct mem_cgroup * memcg)903 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
904 {
905 if (mem_cgroup_disabled())
906 return true;
907 return !!(memcg->css.flags & CSS_ONLINE);
908 }
909
910 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
911 int zid, int nr_pages);
912
913 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)914 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
915 enum lru_list lru, int zone_idx)
916 {
917 struct mem_cgroup_per_node *mz;
918
919 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
920 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
921 }
922
923 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
924
925 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
926
927 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
928
929 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
930 struct task_struct *p);
931
932 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
933
mem_cgroup_enter_user_fault(void)934 static inline void mem_cgroup_enter_user_fault(void)
935 {
936 WARN_ON(current->in_user_fault);
937 current->in_user_fault = 1;
938 }
939
mem_cgroup_exit_user_fault(void)940 static inline void mem_cgroup_exit_user_fault(void)
941 {
942 WARN_ON(!current->in_user_fault);
943 current->in_user_fault = 0;
944 }
945
task_in_memcg_oom(struct task_struct * p)946 static inline bool task_in_memcg_oom(struct task_struct *p)
947 {
948 return p->memcg_in_oom;
949 }
950
951 bool mem_cgroup_oom_synchronize(bool wait);
952 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
953 struct mem_cgroup *oom_domain);
954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
955
956 void folio_memcg_lock(struct folio *folio);
957 void folio_memcg_unlock(struct folio *folio);
958
959 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
960
961 /* try to stablize folio_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)962 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
963 {
964 rcu_read_lock();
965
966 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
967 return true;
968
969 rcu_read_unlock();
970 return false;
971 }
972
mem_cgroup_unlock_pages(void)973 static inline void mem_cgroup_unlock_pages(void)
974 {
975 rcu_read_unlock();
976 }
977
978 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)979 static inline void mod_memcg_state(struct mem_cgroup *memcg,
980 int idx, int val)
981 {
982 unsigned long flags;
983
984 local_irq_save(flags);
985 __mod_memcg_state(memcg, idx, val);
986 local_irq_restore(flags);
987 }
988
mod_memcg_page_state(struct page * page,int idx,int val)989 static inline void mod_memcg_page_state(struct page *page,
990 int idx, int val)
991 {
992 struct mem_cgroup *memcg;
993
994 if (mem_cgroup_disabled())
995 return;
996
997 rcu_read_lock();
998 memcg = page_memcg(page);
999 if (memcg)
1000 mod_memcg_state(memcg, idx, val);
1001 rcu_read_unlock();
1002 }
1003
1004 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1005
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1006 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1007 enum node_stat_item idx)
1008 {
1009 struct mem_cgroup_per_node *pn;
1010 long x;
1011
1012 if (mem_cgroup_disabled())
1013 return node_page_state(lruvec_pgdat(lruvec), idx);
1014
1015 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1016 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1017 #ifdef CONFIG_SMP
1018 if (x < 0)
1019 x = 0;
1020 #endif
1021 return x;
1022 }
1023
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1024 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1025 enum node_stat_item idx)
1026 {
1027 struct mem_cgroup_per_node *pn;
1028 long x = 0;
1029
1030 if (mem_cgroup_disabled())
1031 return node_page_state(lruvec_pgdat(lruvec), idx);
1032
1033 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1035 #ifdef CONFIG_SMP
1036 if (x < 0)
1037 x = 0;
1038 #endif
1039 return x;
1040 }
1041
1042 void mem_cgroup_flush_stats(void);
1043 void mem_cgroup_flush_stats_ratelimited(void);
1044
1045 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1046 int val);
1047 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1048
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1049 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1050 int val)
1051 {
1052 unsigned long flags;
1053
1054 local_irq_save(flags);
1055 __mod_lruvec_kmem_state(p, idx, val);
1056 local_irq_restore(flags);
1057 }
1058
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1059 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1060 enum node_stat_item idx, int val)
1061 {
1062 unsigned long flags;
1063
1064 local_irq_save(flags);
1065 __mod_memcg_lruvec_state(lruvec, idx, val);
1066 local_irq_restore(flags);
1067 }
1068
1069 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1070 unsigned long count);
1071
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1072 static inline void count_memcg_events(struct mem_cgroup *memcg,
1073 enum vm_event_item idx,
1074 unsigned long count)
1075 {
1076 unsigned long flags;
1077
1078 local_irq_save(flags);
1079 __count_memcg_events(memcg, idx, count);
1080 local_irq_restore(flags);
1081 }
1082
count_memcg_page_event(struct page * page,enum vm_event_item idx)1083 static inline void count_memcg_page_event(struct page *page,
1084 enum vm_event_item idx)
1085 {
1086 struct mem_cgroup *memcg = page_memcg(page);
1087
1088 if (memcg)
1089 count_memcg_events(memcg, idx, 1);
1090 }
1091
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1092 static inline void count_memcg_folio_events(struct folio *folio,
1093 enum vm_event_item idx, unsigned long nr)
1094 {
1095 struct mem_cgroup *memcg = folio_memcg(folio);
1096
1097 if (memcg)
1098 count_memcg_events(memcg, idx, nr);
1099 }
1100
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1101 static inline void count_memcg_event_mm(struct mm_struct *mm,
1102 enum vm_event_item idx)
1103 {
1104 struct mem_cgroup *memcg;
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
1109 rcu_read_lock();
1110 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1111 if (likely(memcg))
1112 count_memcg_events(memcg, idx, 1);
1113 rcu_read_unlock();
1114 }
1115
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1116 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1117 enum memcg_memory_event event)
1118 {
1119 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1120 event == MEMCG_SWAP_FAIL;
1121
1122 atomic_long_inc(&memcg->memory_events_local[event]);
1123 if (!swap_event)
1124 cgroup_file_notify(&memcg->events_local_file);
1125
1126 do {
1127 atomic_long_inc(&memcg->memory_events[event]);
1128 if (swap_event)
1129 cgroup_file_notify(&memcg->swap_events_file);
1130 else
1131 cgroup_file_notify(&memcg->events_file);
1132
1133 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1134 break;
1135 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1136 break;
1137 } while ((memcg = parent_mem_cgroup(memcg)) &&
1138 !mem_cgroup_is_root(memcg));
1139 }
1140
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1141 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1142 enum memcg_memory_event event)
1143 {
1144 struct mem_cgroup *memcg;
1145
1146 if (mem_cgroup_disabled())
1147 return;
1148
1149 rcu_read_lock();
1150 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1151 if (likely(memcg))
1152 memcg_memory_event(memcg, event);
1153 rcu_read_unlock();
1154 }
1155
1156 void split_page_memcg(struct page *head, unsigned int nr);
1157
1158 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1159 gfp_t gfp_mask,
1160 unsigned long *total_scanned);
1161
1162 #else /* CONFIG_MEMCG */
1163
1164 #define MEM_CGROUP_ID_SHIFT 0
1165
folio_memcg(struct folio * folio)1166 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1167 {
1168 return NULL;
1169 }
1170
page_memcg(struct page * page)1171 static inline struct mem_cgroup *page_memcg(struct page *page)
1172 {
1173 return NULL;
1174 }
1175
folio_memcg_rcu(struct folio * folio)1176 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1177 {
1178 WARN_ON_ONCE(!rcu_read_lock_held());
1179 return NULL;
1180 }
1181
folio_memcg_check(struct folio * folio)1182 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1183 {
1184 return NULL;
1185 }
1186
page_memcg_check(struct page * page)1187 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1188 {
1189 return NULL;
1190 }
1191
folio_memcg_kmem(struct folio * folio)1192 static inline bool folio_memcg_kmem(struct folio *folio)
1193 {
1194 return false;
1195 }
1196
PageMemcgKmem(struct page * page)1197 static inline bool PageMemcgKmem(struct page *page)
1198 {
1199 return false;
1200 }
1201
mem_cgroup_is_root(struct mem_cgroup * memcg)1202 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1203 {
1204 return true;
1205 }
1206
mem_cgroup_disabled(void)1207 static inline bool mem_cgroup_disabled(void)
1208 {
1209 return true;
1210 }
1211
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1212 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1213 enum memcg_memory_event event)
1214 {
1215 }
1216
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1217 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1218 enum memcg_memory_event event)
1219 {
1220 }
1221
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1222 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1223 struct mem_cgroup *memcg,
1224 unsigned long *min,
1225 unsigned long *low)
1226 {
1227 *min = *low = 0;
1228 }
1229
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1230 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1231 struct mem_cgroup *memcg)
1232 {
1233 }
1234
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1235 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1236 struct mem_cgroup *memcg)
1237 {
1238 return true;
1239 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1240 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1241 struct mem_cgroup *memcg)
1242 {
1243 return false;
1244 }
1245
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1246 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1247 struct mem_cgroup *memcg)
1248 {
1249 return false;
1250 }
1251
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1252 static inline int mem_cgroup_charge(struct folio *folio,
1253 struct mm_struct *mm, gfp_t gfp)
1254 {
1255 return 0;
1256 }
1257
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1258 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1259 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1260 {
1261 return 0;
1262 }
1263
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1264 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1265 {
1266 }
1267
mem_cgroup_uncharge(struct folio * folio)1268 static inline void mem_cgroup_uncharge(struct folio *folio)
1269 {
1270 }
1271
mem_cgroup_uncharge_list(struct list_head * page_list)1272 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1273 {
1274 }
1275
mem_cgroup_migrate(struct folio * old,struct folio * new)1276 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1277 {
1278 }
1279
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1280 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1281 struct pglist_data *pgdat)
1282 {
1283 return &pgdat->__lruvec;
1284 }
1285
folio_lruvec(struct folio * folio)1286 static inline struct lruvec *folio_lruvec(struct folio *folio)
1287 {
1288 struct pglist_data *pgdat = folio_pgdat(folio);
1289 return &pgdat->__lruvec;
1290 }
1291
1292 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1293 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1294 {
1295 }
1296
parent_mem_cgroup(struct mem_cgroup * memcg)1297 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1298 {
1299 return NULL;
1300 }
1301
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1302 static inline bool mm_match_cgroup(struct mm_struct *mm,
1303 struct mem_cgroup *memcg)
1304 {
1305 return true;
1306 }
1307
get_mem_cgroup_from_mm(struct mm_struct * mm)1308 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1309 {
1310 return NULL;
1311 }
1312
1313 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1314 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1315 {
1316 return NULL;
1317 }
1318
obj_cgroup_put(struct obj_cgroup * objcg)1319 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1320 {
1321 }
1322
mem_cgroup_tryget(struct mem_cgroup * memcg)1323 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1324 {
1325 return true;
1326 }
1327
mem_cgroup_put(struct mem_cgroup * memcg)1328 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1329 {
1330 }
1331
folio_lruvec_lock(struct folio * folio)1332 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1333 {
1334 struct pglist_data *pgdat = folio_pgdat(folio);
1335
1336 spin_lock(&pgdat->__lruvec.lru_lock);
1337 return &pgdat->__lruvec;
1338 }
1339
folio_lruvec_lock_irq(struct folio * folio)1340 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1341 {
1342 struct pglist_data *pgdat = folio_pgdat(folio);
1343
1344 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1345 return &pgdat->__lruvec;
1346 }
1347
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1348 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1349 unsigned long *flagsp)
1350 {
1351 struct pglist_data *pgdat = folio_pgdat(folio);
1352
1353 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1354 return &pgdat->__lruvec;
1355 }
1356
1357 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1358 mem_cgroup_iter(struct mem_cgroup *root,
1359 struct mem_cgroup *prev,
1360 struct mem_cgroup_reclaim_cookie *reclaim)
1361 {
1362 return NULL;
1363 }
1364
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1365 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1366 struct mem_cgroup *prev)
1367 {
1368 }
1369
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1370 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1371 int (*fn)(struct task_struct *, void *), void *arg)
1372 {
1373 }
1374
mem_cgroup_id(struct mem_cgroup * memcg)1375 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1376 {
1377 return 0;
1378 }
1379
mem_cgroup_from_id(unsigned short id)1380 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1381 {
1382 WARN_ON_ONCE(id);
1383 /* XXX: This should always return root_mem_cgroup */
1384 return NULL;
1385 }
1386
1387 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1388 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1389 {
1390 return 0;
1391 }
1392
mem_cgroup_get_from_ino(unsigned long ino)1393 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1394 {
1395 return NULL;
1396 }
1397 #endif
1398
mem_cgroup_from_seq(struct seq_file * m)1399 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1400 {
1401 return NULL;
1402 }
1403
lruvec_memcg(struct lruvec * lruvec)1404 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1405 {
1406 return NULL;
1407 }
1408
mem_cgroup_online(struct mem_cgroup * memcg)1409 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1410 {
1411 return true;
1412 }
1413
1414 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1415 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1416 enum lru_list lru, int zone_idx)
1417 {
1418 return 0;
1419 }
1420
mem_cgroup_get_max(struct mem_cgroup * memcg)1421 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1422 {
1423 return 0;
1424 }
1425
mem_cgroup_size(struct mem_cgroup * memcg)1426 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1427 {
1428 return 0;
1429 }
1430
1431 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1432 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1433 {
1434 }
1435
1436 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1437 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1438 {
1439 }
1440
folio_memcg_lock(struct folio * folio)1441 static inline void folio_memcg_lock(struct folio *folio)
1442 {
1443 }
1444
folio_memcg_unlock(struct folio * folio)1445 static inline void folio_memcg_unlock(struct folio *folio)
1446 {
1447 }
1448
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1449 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1450 {
1451 /* to match folio_memcg_rcu() */
1452 rcu_read_lock();
1453 return true;
1454 }
1455
mem_cgroup_unlock_pages(void)1456 static inline void mem_cgroup_unlock_pages(void)
1457 {
1458 rcu_read_unlock();
1459 }
1460
mem_cgroup_handle_over_high(gfp_t gfp_mask)1461 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1462 {
1463 }
1464
mem_cgroup_enter_user_fault(void)1465 static inline void mem_cgroup_enter_user_fault(void)
1466 {
1467 }
1468
mem_cgroup_exit_user_fault(void)1469 static inline void mem_cgroup_exit_user_fault(void)
1470 {
1471 }
1472
task_in_memcg_oom(struct task_struct * p)1473 static inline bool task_in_memcg_oom(struct task_struct *p)
1474 {
1475 return false;
1476 }
1477
mem_cgroup_oom_synchronize(bool wait)1478 static inline bool mem_cgroup_oom_synchronize(bool wait)
1479 {
1480 return false;
1481 }
1482
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1483 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1484 struct task_struct *victim, struct mem_cgroup *oom_domain)
1485 {
1486 return NULL;
1487 }
1488
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1489 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1490 {
1491 }
1492
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1493 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1494 int idx,
1495 int nr)
1496 {
1497 }
1498
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1499 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1500 int idx,
1501 int nr)
1502 {
1503 }
1504
mod_memcg_page_state(struct page * page,int idx,int val)1505 static inline void mod_memcg_page_state(struct page *page,
1506 int idx, int val)
1507 {
1508 }
1509
memcg_page_state(struct mem_cgroup * memcg,int idx)1510 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1511 {
1512 return 0;
1513 }
1514
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1515 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1516 enum node_stat_item idx)
1517 {
1518 return node_page_state(lruvec_pgdat(lruvec), idx);
1519 }
1520
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1521 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1522 enum node_stat_item idx)
1523 {
1524 return node_page_state(lruvec_pgdat(lruvec), idx);
1525 }
1526
mem_cgroup_flush_stats(void)1527 static inline void mem_cgroup_flush_stats(void)
1528 {
1529 }
1530
mem_cgroup_flush_stats_ratelimited(void)1531 static inline void mem_cgroup_flush_stats_ratelimited(void)
1532 {
1533 }
1534
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1535 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1536 enum node_stat_item idx, int val)
1537 {
1538 }
1539
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1540 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1541 int val)
1542 {
1543 struct page *page = virt_to_head_page(p);
1544
1545 __mod_node_page_state(page_pgdat(page), idx, val);
1546 }
1547
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1548 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1549 int val)
1550 {
1551 struct page *page = virt_to_head_page(p);
1552
1553 mod_node_page_state(page_pgdat(page), idx, val);
1554 }
1555
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1556 static inline void count_memcg_events(struct mem_cgroup *memcg,
1557 enum vm_event_item idx,
1558 unsigned long count)
1559 {
1560 }
1561
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1562 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1563 enum vm_event_item idx,
1564 unsigned long count)
1565 {
1566 }
1567
count_memcg_page_event(struct page * page,int idx)1568 static inline void count_memcg_page_event(struct page *page,
1569 int idx)
1570 {
1571 }
1572
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1573 static inline void count_memcg_folio_events(struct folio *folio,
1574 enum vm_event_item idx, unsigned long nr)
1575 {
1576 }
1577
1578 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1579 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1580 {
1581 }
1582
split_page_memcg(struct page * head,unsigned int nr)1583 static inline void split_page_memcg(struct page *head, unsigned int nr)
1584 {
1585 }
1586
1587 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1588 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1589 gfp_t gfp_mask,
1590 unsigned long *total_scanned)
1591 {
1592 return 0;
1593 }
1594 #endif /* CONFIG_MEMCG */
1595
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1596 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1597 {
1598 __mod_lruvec_kmem_state(p, idx, 1);
1599 }
1600
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1601 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1602 {
1603 __mod_lruvec_kmem_state(p, idx, -1);
1604 }
1605
parent_lruvec(struct lruvec * lruvec)1606 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1607 {
1608 struct mem_cgroup *memcg;
1609
1610 memcg = lruvec_memcg(lruvec);
1611 if (!memcg)
1612 return NULL;
1613 memcg = parent_mem_cgroup(memcg);
1614 if (!memcg)
1615 return NULL;
1616 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1617 }
1618
unlock_page_lruvec(struct lruvec * lruvec)1619 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1620 {
1621 spin_unlock(&lruvec->lru_lock);
1622 }
1623
unlock_page_lruvec_irq(struct lruvec * lruvec)1624 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1625 {
1626 spin_unlock_irq(&lruvec->lru_lock);
1627 }
1628
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1629 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1630 unsigned long flags)
1631 {
1632 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1633 }
1634
1635 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1636 static inline bool folio_matches_lruvec(struct folio *folio,
1637 struct lruvec *lruvec)
1638 {
1639 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1640 lruvec_memcg(lruvec) == folio_memcg(folio);
1641 }
1642
1643 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1644 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1645 struct lruvec *locked_lruvec)
1646 {
1647 if (locked_lruvec) {
1648 if (folio_matches_lruvec(folio, locked_lruvec))
1649 return locked_lruvec;
1650
1651 unlock_page_lruvec_irq(locked_lruvec);
1652 }
1653
1654 return folio_lruvec_lock_irq(folio);
1655 }
1656
1657 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1658 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1659 struct lruvec *locked_lruvec, unsigned long *flags)
1660 {
1661 if (locked_lruvec) {
1662 if (folio_matches_lruvec(folio, locked_lruvec))
1663 return locked_lruvec;
1664
1665 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1666 }
1667
1668 return folio_lruvec_lock_irqsave(folio, flags);
1669 }
1670
1671 #ifdef CONFIG_CGROUP_WRITEBACK
1672
1673 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1674 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1675 unsigned long *pheadroom, unsigned long *pdirty,
1676 unsigned long *pwriteback);
1677
1678 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1679 struct bdi_writeback *wb);
1680
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1681 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1682 struct bdi_writeback *wb)
1683 {
1684 struct mem_cgroup *memcg;
1685
1686 if (mem_cgroup_disabled())
1687 return;
1688
1689 memcg = folio_memcg(folio);
1690 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1691 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1692 }
1693
1694 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1695
1696 #else /* CONFIG_CGROUP_WRITEBACK */
1697
mem_cgroup_wb_domain(struct bdi_writeback * wb)1698 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1699 {
1700 return NULL;
1701 }
1702
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1703 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1704 unsigned long *pfilepages,
1705 unsigned long *pheadroom,
1706 unsigned long *pdirty,
1707 unsigned long *pwriteback)
1708 {
1709 }
1710
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1711 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1712 struct bdi_writeback *wb)
1713 {
1714 }
1715
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1716 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1717 {
1718 }
1719
1720 #endif /* CONFIG_CGROUP_WRITEBACK */
1721
1722 struct sock;
1723 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1724 gfp_t gfp_mask);
1725 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1726 #ifdef CONFIG_MEMCG
1727 extern struct static_key_false memcg_sockets_enabled_key;
1728 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1729 void mem_cgroup_sk_alloc(struct sock *sk);
1730 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1731 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1732 {
1733 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1734 return !!memcg->tcpmem_pressure;
1735 do {
1736 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1737 return true;
1738 } while ((memcg = parent_mem_cgroup(memcg)));
1739 return false;
1740 }
1741
1742 int alloc_shrinker_info(struct mem_cgroup *memcg);
1743 void free_shrinker_info(struct mem_cgroup *memcg);
1744 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1745 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1746 #else
1747 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1748 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1749 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1750 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1751 {
1752 return false;
1753 }
1754
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1755 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1756 int nid, int shrinker_id)
1757 {
1758 }
1759 #endif
1760
1761 #ifdef CONFIG_MEMCG_KMEM
1762 bool mem_cgroup_kmem_disabled(void);
1763 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1764 void __memcg_kmem_uncharge_page(struct page *page, int order);
1765
1766 struct obj_cgroup *get_obj_cgroup_from_current(void);
1767 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1768
1769 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1770 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1771
1772 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1773 static inline bool memcg_bpf_enabled(void)
1774 {
1775 return static_branch_likely(&memcg_bpf_enabled_key);
1776 }
1777
1778 extern struct static_key_false memcg_kmem_online_key;
1779
memcg_kmem_online(void)1780 static inline bool memcg_kmem_online(void)
1781 {
1782 return static_branch_likely(&memcg_kmem_online_key);
1783 }
1784
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1785 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1786 int order)
1787 {
1788 if (memcg_kmem_online())
1789 return __memcg_kmem_charge_page(page, gfp, order);
1790 return 0;
1791 }
1792
memcg_kmem_uncharge_page(struct page * page,int order)1793 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1794 {
1795 if (memcg_kmem_online())
1796 __memcg_kmem_uncharge_page(page, order);
1797 }
1798
1799 /*
1800 * A helper for accessing memcg's kmem_id, used for getting
1801 * corresponding LRU lists.
1802 */
memcg_kmem_id(struct mem_cgroup * memcg)1803 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1804 {
1805 return memcg ? memcg->kmemcg_id : -1;
1806 }
1807
1808 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1809 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1810
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1811 static inline void count_objcg_event(struct obj_cgroup *objcg,
1812 enum vm_event_item idx)
1813 {
1814 struct mem_cgroup *memcg;
1815
1816 if (!memcg_kmem_online())
1817 return;
1818
1819 rcu_read_lock();
1820 memcg = obj_cgroup_memcg(objcg);
1821 count_memcg_events(memcg, idx, 1);
1822 rcu_read_unlock();
1823 }
1824
1825 #else
mem_cgroup_kmem_disabled(void)1826 static inline bool mem_cgroup_kmem_disabled(void)
1827 {
1828 return true;
1829 }
1830
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1831 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1832 int order)
1833 {
1834 return 0;
1835 }
1836
memcg_kmem_uncharge_page(struct page * page,int order)1837 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1838 {
1839 }
1840
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1841 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1842 int order)
1843 {
1844 return 0;
1845 }
1846
__memcg_kmem_uncharge_page(struct page * page,int order)1847 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1848 {
1849 }
1850
get_obj_cgroup_from_folio(struct folio * folio)1851 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1852 {
1853 return NULL;
1854 }
1855
memcg_bpf_enabled(void)1856 static inline bool memcg_bpf_enabled(void)
1857 {
1858 return false;
1859 }
1860
memcg_kmem_online(void)1861 static inline bool memcg_kmem_online(void)
1862 {
1863 return false;
1864 }
1865
memcg_kmem_id(struct mem_cgroup * memcg)1866 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1867 {
1868 return -1;
1869 }
1870
mem_cgroup_from_obj(void * p)1871 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1872 {
1873 return NULL;
1874 }
1875
mem_cgroup_from_slab_obj(void * p)1876 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1877 {
1878 return NULL;
1879 }
1880
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1881 static inline void count_objcg_event(struct obj_cgroup *objcg,
1882 enum vm_event_item idx)
1883 {
1884 }
1885
1886 #endif /* CONFIG_MEMCG_KMEM */
1887
1888 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1889 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1890 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1891 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1892 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1893 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1894 {
1895 return true;
1896 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1897 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1898 size_t size)
1899 {
1900 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1901 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1902 size_t size)
1903 {
1904 }
1905 #endif
1906
1907 #endif /* _LINUX_MEMCONTROL_H */
1908