1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
177 }
178
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 u32 rcv_nxt)
182 {
183 struct tcp_sock *tp = tcp_sk(sk);
184
185 if (unlikely(tp->compressed_ack)) {
186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 tp->compressed_ack);
188 tp->compressed_ack = 0;
189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 __sock_put(sk);
191 }
192
193 if (unlikely(rcv_nxt != tp->rcv_nxt))
194 return; /* Special ACK sent by DCTCP to reflect ECN */
195 tcp_dec_quickack_mode(sk, pkts);
196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = min_t(u32, space, U16_MAX);
234
235 if (init_rcv_wnd)
236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237
238 *rcv_wscale = 0;
239 if (wscale_ok) {
240 /* Set window scaling on max possible window */
241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 space = min_t(u32, space, *window_clamp);
244 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 0, TCP_MAX_WSCALE);
246 }
247 /* Set the clamp no higher than max representable value */
248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251
252 /* Chose a new window to advertise, update state in tcp_sock for the
253 * socket, and return result with RFC1323 scaling applied. The return
254 * value can be stuffed directly into th->window for an outgoing
255 * frame.
256 */
tcp_select_window(struct sock * sk)257 static u16 tcp_select_window(struct sock *sk)
258 {
259 struct tcp_sock *tp = tcp_sk(sk);
260 u32 old_win = tp->rcv_wnd;
261 u32 cur_win = tcp_receive_window(tp);
262 u32 new_win = __tcp_select_window(sk);
263
264 /* Never shrink the offered window */
265 if (new_win < cur_win) {
266 /* Danger Will Robinson!
267 * Don't update rcv_wup/rcv_wnd here or else
268 * we will not be able to advertise a zero
269 * window in time. --DaveM
270 *
271 * Relax Will Robinson.
272 */
273 if (new_win == 0)
274 NET_INC_STATS(sock_net(sk),
275 LINUX_MIB_TCPWANTZEROWINDOWADV);
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 }
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
280
281 /* Make sure we do not exceed the maximum possible
282 * scaled window.
283 */
284 if (!tp->rx_opt.rcv_wscale &&
285 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
286 new_win = min(new_win, MAX_TCP_WINDOW);
287 else
288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289
290 /* RFC1323 scaling applied */
291 new_win >>= tp->rx_opt.rcv_wscale;
292
293 /* If we advertise zero window, disable fast path. */
294 if (new_win == 0) {
295 tp->pred_flags = 0;
296 if (old_win)
297 NET_INC_STATS(sock_net(sk),
298 LINUX_MIB_TCPTOZEROWINDOWADV);
299 } else if (old_win == 0) {
300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
301 }
302
303 return new_win;
304 }
305
306 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
308 {
309 const struct tcp_sock *tp = tcp_sk(sk);
310
311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 if (!(tp->ecn_flags & TCP_ECN_OK))
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 else if (tcp_ca_needs_ecn(sk) ||
315 tcp_bpf_ca_needs_ecn(sk))
316 INET_ECN_xmit(sk);
317 }
318
319 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
321 {
322 struct tcp_sock *tp = tcp_sk(sk);
323 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
325 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326
327 if (!use_ecn) {
328 const struct dst_entry *dst = __sk_dst_get(sk);
329
330 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 use_ecn = true;
332 }
333
334 tp->ecn_flags = 0;
335
336 if (use_ecn) {
337 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 tp->ecn_flags = TCP_ECN_OK;
339 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 INET_ECN_xmit(sk);
341 }
342 }
343
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
345 {
346 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
347 /* tp->ecn_flags are cleared at a later point in time when
348 * SYN ACK is ultimatively being received.
349 */
350 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
351 }
352
353 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
355 {
356 if (inet_rsk(req)->ecn_ok)
357 th->ece = 1;
358 }
359
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361 * be sent.
362 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 struct tcphdr *th, int tcp_header_len)
365 {
366 struct tcp_sock *tp = tcp_sk(sk);
367
368 if (tp->ecn_flags & TCP_ECN_OK) {
369 /* Not-retransmitted data segment: set ECT and inject CWR. */
370 if (skb->len != tcp_header_len &&
371 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 INET_ECN_xmit(sk);
373 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 th->cwr = 1;
376 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
377 }
378 } else if (!tcp_ca_needs_ecn(sk)) {
379 /* ACK or retransmitted segment: clear ECT|CE */
380 INET_ECN_dontxmit(sk);
381 }
382 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 th->ece = 1;
384 }
385 }
386
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388 * auto increment end seqno.
389 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
391 {
392 skb->ip_summed = CHECKSUM_PARTIAL;
393
394 TCP_SKB_CB(skb)->tcp_flags = flags;
395
396 tcp_skb_pcount_set(skb, 1);
397
398 TCP_SKB_CB(skb)->seq = seq;
399 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 seq++;
401 TCP_SKB_CB(skb)->end_seq = seq;
402 }
403
tcp_urg_mode(const struct tcp_sock * tp)404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 {
406 return tp->snd_una != tp->snd_up;
407 }
408
409 #define OPTION_SACK_ADVERTISE BIT(0)
410 #define OPTION_TS BIT(1)
411 #define OPTION_MD5 BIT(2)
412 #define OPTION_WSCALE BIT(3)
413 #define OPTION_FAST_OPEN_COOKIE BIT(8)
414 #define OPTION_SMC BIT(9)
415 #define OPTION_MPTCP BIT(10)
416
smc_options_write(__be32 * ptr,u16 * options)417 static void smc_options_write(__be32 *ptr, u16 *options)
418 {
419 #if IS_ENABLED(CONFIG_SMC)
420 if (static_branch_unlikely(&tcp_have_smc)) {
421 if (unlikely(OPTION_SMC & *options)) {
422 *ptr++ = htonl((TCPOPT_NOP << 24) |
423 (TCPOPT_NOP << 16) |
424 (TCPOPT_EXP << 8) |
425 (TCPOLEN_EXP_SMC_BASE));
426 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
427 }
428 }
429 #endif
430 }
431
432 struct tcp_out_options {
433 u16 options; /* bit field of OPTION_* */
434 u16 mss; /* 0 to disable */
435 u8 ws; /* window scale, 0 to disable */
436 u8 num_sack_blocks; /* number of SACK blocks to include */
437 u8 hash_size; /* bytes in hash_location */
438 u8 bpf_opt_len; /* length of BPF hdr option */
439 __u8 *hash_location; /* temporary pointer, overloaded */
440 __u32 tsval, tsecr; /* need to include OPTION_TS */
441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
442 struct mptcp_out_options mptcp;
443 };
444
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)445 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
446 struct tcp_sock *tp,
447 struct tcp_out_options *opts)
448 {
449 #if IS_ENABLED(CONFIG_MPTCP)
450 if (unlikely(OPTION_MPTCP & opts->options))
451 mptcp_write_options(th, ptr, tp, &opts->mptcp);
452 #endif
453 }
454
455 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
457 enum tcp_synack_type synack_type)
458 {
459 if (unlikely(!skb))
460 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
461
462 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
463 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
464
465 return 0;
466 }
467
468 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
470 struct request_sock *req,
471 struct sk_buff *syn_skb,
472 enum tcp_synack_type synack_type,
473 struct tcp_out_options *opts,
474 unsigned int *remaining)
475 {
476 struct bpf_sock_ops_kern sock_ops;
477 int err;
478
479 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
480 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
481 !*remaining)
482 return;
483
484 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
485
486 /* init sock_ops */
487 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
488
489 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
490
491 if (req) {
492 /* The listen "sk" cannot be passed here because
493 * it is not locked. It would not make too much
494 * sense to do bpf_setsockopt(listen_sk) based
495 * on individual connection request also.
496 *
497 * Thus, "req" is passed here and the cgroup-bpf-progs
498 * of the listen "sk" will be run.
499 *
500 * "req" is also used here for fastopen even the "sk" here is
501 * a fullsock "child" sk. It is to keep the behavior
502 * consistent between fastopen and non-fastopen on
503 * the bpf programming side.
504 */
505 sock_ops.sk = (struct sock *)req;
506 sock_ops.syn_skb = syn_skb;
507 } else {
508 sock_owned_by_me(sk);
509
510 sock_ops.is_fullsock = 1;
511 sock_ops.sk = sk;
512 }
513
514 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
515 sock_ops.remaining_opt_len = *remaining;
516 /* tcp_current_mss() does not pass a skb */
517 if (skb)
518 bpf_skops_init_skb(&sock_ops, skb, 0);
519
520 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
521
522 if (err || sock_ops.remaining_opt_len == *remaining)
523 return;
524
525 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
526 /* round up to 4 bytes */
527 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
528
529 *remaining -= opts->bpf_opt_len;
530 }
531
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
533 struct request_sock *req,
534 struct sk_buff *syn_skb,
535 enum tcp_synack_type synack_type,
536 struct tcp_out_options *opts)
537 {
538 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
539 struct bpf_sock_ops_kern sock_ops;
540 int err;
541
542 if (likely(!max_opt_len))
543 return;
544
545 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
546
547 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
548
549 if (req) {
550 sock_ops.sk = (struct sock *)req;
551 sock_ops.syn_skb = syn_skb;
552 } else {
553 sock_owned_by_me(sk);
554
555 sock_ops.is_fullsock = 1;
556 sock_ops.sk = sk;
557 }
558
559 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
560 sock_ops.remaining_opt_len = max_opt_len;
561 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
562 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
563
564 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
565
566 if (err)
567 nr_written = 0;
568 else
569 nr_written = max_opt_len - sock_ops.remaining_opt_len;
570
571 if (nr_written < max_opt_len)
572 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
573 max_opt_len - nr_written);
574 }
575 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
577 struct request_sock *req,
578 struct sk_buff *syn_skb,
579 enum tcp_synack_type synack_type,
580 struct tcp_out_options *opts,
581 unsigned int *remaining)
582 {
583 }
584
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
586 struct request_sock *req,
587 struct sk_buff *syn_skb,
588 enum tcp_synack_type synack_type,
589 struct tcp_out_options *opts)
590 {
591 }
592 #endif
593
594 /* Write previously computed TCP options to the packet.
595 *
596 * Beware: Something in the Internet is very sensitive to the ordering of
597 * TCP options, we learned this through the hard way, so be careful here.
598 * Luckily we can at least blame others for their non-compliance but from
599 * inter-operability perspective it seems that we're somewhat stuck with
600 * the ordering which we have been using if we want to keep working with
601 * those broken things (not that it currently hurts anybody as there isn't
602 * particular reason why the ordering would need to be changed).
603 *
604 * At least SACK_PERM as the first option is known to lead to a disaster
605 * (but it may well be that other scenarios fail similarly).
606 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)607 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
608 struct tcp_out_options *opts)
609 {
610 __be32 *ptr = (__be32 *)(th + 1);
611 u16 options = opts->options; /* mungable copy */
612
613 if (unlikely(OPTION_MD5 & options)) {
614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 /* overload cookie hash location */
617 opts->hash_location = (__u8 *)ptr;
618 ptr += 4;
619 }
620
621 if (unlikely(opts->mss)) {
622 *ptr++ = htonl((TCPOPT_MSS << 24) |
623 (TCPOLEN_MSS << 16) |
624 opts->mss);
625 }
626
627 if (likely(OPTION_TS & options)) {
628 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 (TCPOLEN_SACK_PERM << 16) |
631 (TCPOPT_TIMESTAMP << 8) |
632 TCPOLEN_TIMESTAMP);
633 options &= ~OPTION_SACK_ADVERTISE;
634 } else {
635 *ptr++ = htonl((TCPOPT_NOP << 24) |
636 (TCPOPT_NOP << 16) |
637 (TCPOPT_TIMESTAMP << 8) |
638 TCPOLEN_TIMESTAMP);
639 }
640 *ptr++ = htonl(opts->tsval);
641 *ptr++ = htonl(opts->tsecr);
642 }
643
644 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 *ptr++ = htonl((TCPOPT_NOP << 24) |
646 (TCPOPT_NOP << 16) |
647 (TCPOPT_SACK_PERM << 8) |
648 TCPOLEN_SACK_PERM);
649 }
650
651 if (unlikely(OPTION_WSCALE & options)) {
652 *ptr++ = htonl((TCPOPT_NOP << 24) |
653 (TCPOPT_WINDOW << 16) |
654 (TCPOLEN_WINDOW << 8) |
655 opts->ws);
656 }
657
658 if (unlikely(opts->num_sack_blocks)) {
659 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 tp->duplicate_sack : tp->selective_acks;
661 int this_sack;
662
663 *ptr++ = htonl((TCPOPT_NOP << 24) |
664 (TCPOPT_NOP << 16) |
665 (TCPOPT_SACK << 8) |
666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 TCPOLEN_SACK_PERBLOCK)));
668
669 for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 ++this_sack) {
671 *ptr++ = htonl(sp[this_sack].start_seq);
672 *ptr++ = htonl(sp[this_sack].end_seq);
673 }
674
675 tp->rx_opt.dsack = 0;
676 }
677
678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 u8 *p = (u8 *)ptr;
681 u32 len; /* Fast Open option length */
682
683 if (foc->exp) {
684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 TCPOPT_FASTOPEN_MAGIC);
687 p += TCPOLEN_EXP_FASTOPEN_BASE;
688 } else {
689 len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 *p++ = TCPOPT_FASTOPEN;
691 *p++ = len;
692 }
693
694 memcpy(p, foc->val, foc->len);
695 if ((len & 3) == 2) {
696 p[foc->len] = TCPOPT_NOP;
697 p[foc->len + 1] = TCPOPT_NOP;
698 }
699 ptr += (len + 3) >> 2;
700 }
701
702 smc_options_write(ptr, &options);
703
704 mptcp_options_write(th, ptr, tp, opts);
705 }
706
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)707 static void smc_set_option(const struct tcp_sock *tp,
708 struct tcp_out_options *opts,
709 unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 if (static_branch_unlikely(&tcp_have_smc)) {
713 if (tp->syn_smc) {
714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 opts->options |= OPTION_SMC;
716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 }
718 }
719 }
720 #endif
721 }
722
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 const struct inet_request_sock *ireq,
725 struct tcp_out_options *opts,
726 unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 if (static_branch_unlikely(&tcp_have_smc)) {
730 if (tp->syn_smc && ireq->smc_ok) {
731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 opts->options |= OPTION_SMC;
733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 }
735 }
736 }
737 #endif
738 }
739
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)740 static void mptcp_set_option_cond(const struct request_sock *req,
741 struct tcp_out_options *opts,
742 unsigned int *remaining)
743 {
744 if (rsk_is_mptcp(req)) {
745 unsigned int size;
746
747 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 if (*remaining >= size) {
749 opts->options |= OPTION_MPTCP;
750 *remaining -= size;
751 }
752 }
753 }
754 }
755
756 /* Compute TCP options for SYN packets. This is not the final
757 * network wire format yet.
758 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 struct tcp_out_options *opts,
761 struct tcp_md5sig_key **md5)
762 {
763 struct tcp_sock *tp = tcp_sk(sk);
764 unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766
767 *md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 if (static_branch_unlikely(&tcp_md5_needed) &&
770 rcu_access_pointer(tp->md5sig_info)) {
771 *md5 = tp->af_specific->md5_lookup(sk, sk);
772 if (*md5) {
773 opts->options |= OPTION_MD5;
774 remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 }
776 }
777 #endif
778
779 /* We always get an MSS option. The option bytes which will be seen in
780 * normal data packets should timestamps be used, must be in the MSS
781 * advertised. But we subtract them from tp->mss_cache so that
782 * calculations in tcp_sendmsg are simpler etc. So account for this
783 * fact here if necessary. If we don't do this correctly, as a
784 * receiver we won't recognize data packets as being full sized when we
785 * should, and thus we won't abide by the delayed ACK rules correctly.
786 * SACKs don't matter, we never delay an ACK when we have any of those
787 * going out. */
788 opts->mss = tcp_advertise_mss(sk);
789 remaining -= TCPOLEN_MSS_ALIGNED;
790
791 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
792 opts->options |= OPTION_TS;
793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 opts->tsecr = tp->rx_opt.ts_recent;
795 remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 }
797 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
798 opts->ws = tp->rx_opt.rcv_wscale;
799 opts->options |= OPTION_WSCALE;
800 remaining -= TCPOLEN_WSCALE_ALIGNED;
801 }
802 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
803 opts->options |= OPTION_SACK_ADVERTISE;
804 if (unlikely(!(OPTION_TS & opts->options)))
805 remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 }
807
808 if (fastopen && fastopen->cookie.len >= 0) {
809 u32 need = fastopen->cookie.len;
810
811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 TCPOLEN_FASTOPEN_BASE;
813 need = (need + 3) & ~3U; /* Align to 32 bits */
814 if (remaining >= need) {
815 opts->options |= OPTION_FAST_OPEN_COOKIE;
816 opts->fastopen_cookie = &fastopen->cookie;
817 remaining -= need;
818 tp->syn_fastopen = 1;
819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 }
821 }
822
823 smc_set_option(tp, opts, &remaining);
824
825 if (sk_is_mptcp(sk)) {
826 unsigned int size;
827
828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 opts->options |= OPTION_MPTCP;
830 remaining -= size;
831 }
832 }
833
834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835
836 return MAX_TCP_OPTION_SPACE - remaining;
837 }
838
839 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)840 static unsigned int tcp_synack_options(const struct sock *sk,
841 struct request_sock *req,
842 unsigned int mss, struct sk_buff *skb,
843 struct tcp_out_options *opts,
844 const struct tcp_md5sig_key *md5,
845 struct tcp_fastopen_cookie *foc,
846 enum tcp_synack_type synack_type,
847 struct sk_buff *syn_skb)
848 {
849 struct inet_request_sock *ireq = inet_rsk(req);
850 unsigned int remaining = MAX_TCP_OPTION_SPACE;
851
852 #ifdef CONFIG_TCP_MD5SIG
853 if (md5) {
854 opts->options |= OPTION_MD5;
855 remaining -= TCPOLEN_MD5SIG_ALIGNED;
856
857 /* We can't fit any SACK blocks in a packet with MD5 + TS
858 * options. There was discussion about disabling SACK
859 * rather than TS in order to fit in better with old,
860 * buggy kernels, but that was deemed to be unnecessary.
861 */
862 if (synack_type != TCP_SYNACK_COOKIE)
863 ireq->tstamp_ok &= !ireq->sack_ok;
864 }
865 #endif
866
867 /* We always send an MSS option. */
868 opts->mss = mss;
869 remaining -= TCPOLEN_MSS_ALIGNED;
870
871 if (likely(ireq->wscale_ok)) {
872 opts->ws = ireq->rcv_wscale;
873 opts->options |= OPTION_WSCALE;
874 remaining -= TCPOLEN_WSCALE_ALIGNED;
875 }
876 if (likely(ireq->tstamp_ok)) {
877 opts->options |= OPTION_TS;
878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 opts->tsecr = req->ts_recent;
880 remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 }
882 if (likely(ireq->sack_ok)) {
883 opts->options |= OPTION_SACK_ADVERTISE;
884 if (unlikely(!ireq->tstamp_ok))
885 remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 }
887 if (foc != NULL && foc->len >= 0) {
888 u32 need = foc->len;
889
890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 TCPOLEN_FASTOPEN_BASE;
892 need = (need + 3) & ~3U; /* Align to 32 bits */
893 if (remaining >= need) {
894 opts->options |= OPTION_FAST_OPEN_COOKIE;
895 opts->fastopen_cookie = foc;
896 remaining -= need;
897 }
898 }
899
900 mptcp_set_option_cond(req, opts, &remaining);
901
902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903
904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 synack_type, opts, &remaining);
906
907 return MAX_TCP_OPTION_SPACE - remaining;
908 }
909
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911 * final wire format yet.
912 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 struct tcp_out_options *opts,
915 struct tcp_md5sig_key **md5)
916 {
917 struct tcp_sock *tp = tcp_sk(sk);
918 unsigned int size = 0;
919 unsigned int eff_sacks;
920
921 opts->options = 0;
922
923 *md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 if (static_branch_unlikely(&tcp_md5_needed) &&
926 rcu_access_pointer(tp->md5sig_info)) {
927 *md5 = tp->af_specific->md5_lookup(sk, sk);
928 if (*md5) {
929 opts->options |= OPTION_MD5;
930 size += TCPOLEN_MD5SIG_ALIGNED;
931 }
932 }
933 #endif
934
935 if (likely(tp->rx_opt.tstamp_ok)) {
936 opts->options |= OPTION_TS;
937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 opts->tsecr = tp->rx_opt.ts_recent;
939 size += TCPOLEN_TSTAMP_ALIGNED;
940 }
941
942 /* MPTCP options have precedence over SACK for the limited TCP
943 * option space because a MPTCP connection would be forced to
944 * fall back to regular TCP if a required multipath option is
945 * missing. SACK still gets a chance to use whatever space is
946 * left.
947 */
948 if (sk_is_mptcp(sk)) {
949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 unsigned int opt_size = 0;
951
952 if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 &opts->mptcp)) {
954 opts->options |= OPTION_MPTCP;
955 size += opt_size;
956 }
957 }
958
959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 if (unlikely(eff_sacks)) {
961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 TCPOLEN_SACK_PERBLOCK))
964 return size;
965
966 opts->num_sack_blocks =
967 min_t(unsigned int, eff_sacks,
968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 TCPOLEN_SACK_PERBLOCK);
970
971 size += TCPOLEN_SACK_BASE_ALIGNED +
972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 }
974
975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978
979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980
981 size = MAX_TCP_OPTION_SPACE - remaining;
982 }
983
984 return size;
985 }
986
987
988 /* TCP SMALL QUEUES (TSQ)
989 *
990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991 * to reduce RTT and bufferbloat.
992 * We do this using a special skb destructor (tcp_wfree).
993 *
994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995 * needs to be reallocated in a driver.
996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997 *
998 * Since transmit from skb destructor is forbidden, we use a tasklet
999 * to process all sockets that eventually need to send more skbs.
1000 * We use one tasklet per cpu, with its own queue of sockets.
1001 */
1002 struct tsq_tasklet {
1003 struct tasklet_struct tasklet;
1004 struct list_head head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007
tcp_tsq_write(struct sock * sk)1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 if ((1 << sk->sk_state) &
1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1013 struct tcp_sock *tp = tcp_sk(sk);
1014
1015 if (tp->lost_out > tp->retrans_out &&
1016 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1017 tcp_mstamp_refresh(tp);
1018 tcp_xmit_retransmit_queue(sk);
1019 }
1020
1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 0, GFP_ATOMIC);
1023 }
1024 }
1025
tcp_tsq_handler(struct sock * sk)1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 bh_lock_sock(sk);
1029 if (!sock_owned_by_user(sk))
1030 tcp_tsq_write(sk);
1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 sock_hold(sk);
1033 bh_unlock_sock(sk);
1034 }
1035 /*
1036 * One tasklet per cpu tries to send more skbs.
1037 * We run in tasklet context but need to disable irqs when
1038 * transferring tsq->head because tcp_wfree() might
1039 * interrupt us (non NAPI drivers)
1040 */
tcp_tasklet_func(struct tasklet_struct * t)1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1042 {
1043 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1044 LIST_HEAD(list);
1045 unsigned long flags;
1046 struct list_head *q, *n;
1047 struct tcp_sock *tp;
1048 struct sock *sk;
1049
1050 local_irq_save(flags);
1051 list_splice_init(&tsq->head, &list);
1052 local_irq_restore(flags);
1053
1054 list_for_each_safe(q, n, &list) {
1055 tp = list_entry(q, struct tcp_sock, tsq_node);
1056 list_del(&tp->tsq_node);
1057
1058 sk = (struct sock *)tp;
1059 smp_mb__before_atomic();
1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061
1062 tcp_tsq_handler(sk);
1063 sk_free(sk);
1064 }
1065 }
1066
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1068 TCPF_WRITE_TIMER_DEFERRED | \
1069 TCPF_DELACK_TIMER_DEFERRED | \
1070 TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072 * tcp_release_cb - tcp release_sock() callback
1073 * @sk: socket
1074 *
1075 * called from release_sock() to perform protocol dependent
1076 * actions before socket release.
1077 */
tcp_release_cb(struct sock * sk)1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 unsigned long flags, nflags;
1081
1082 /* perform an atomic operation only if at least one flag is set */
1083 do {
1084 flags = sk->sk_tsq_flags;
1085 if (!(flags & TCP_DEFERRED_ALL))
1086 return;
1087 nflags = flags & ~TCP_DEFERRED_ALL;
1088 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089
1090 if (flags & TCPF_TSQ_DEFERRED) {
1091 tcp_tsq_write(sk);
1092 __sock_put(sk);
1093 }
1094 /* Here begins the tricky part :
1095 * We are called from release_sock() with :
1096 * 1) BH disabled
1097 * 2) sk_lock.slock spinlock held
1098 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 *
1100 * But following code is meant to be called from BH handlers,
1101 * so we should keep BH disabled, but early release socket ownership
1102 */
1103 sock_release_ownership(sk);
1104
1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 tcp_write_timer_handler(sk);
1107 __sock_put(sk);
1108 }
1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 tcp_delack_timer_handler(sk);
1111 __sock_put(sk);
1112 }
1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 __sock_put(sk);
1116 }
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119
tcp_tasklet_init(void)1120 void __init tcp_tasklet_init(void)
1121 {
1122 int i;
1123
1124 for_each_possible_cpu(i) {
1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126
1127 INIT_LIST_HEAD(&tsq->head);
1128 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1129 }
1130 }
1131
1132 /*
1133 * Write buffer destructor automatically called from kfree_skb.
1134 * We can't xmit new skbs from this context, as we might already
1135 * hold qdisc lock.
1136 */
tcp_wfree(struct sk_buff * skb)1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139 struct sock *sk = skb->sk;
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 unsigned long flags, nval, oval;
1142
1143 /* Keep one reference on sk_wmem_alloc.
1144 * Will be released by sk_free() from here or tcp_tasklet_func()
1145 */
1146 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1147
1148 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149 * Wait until our queues (qdisc + devices) are drained.
1150 * This gives :
1151 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152 * - chance for incoming ACK (processed by another cpu maybe)
1153 * to migrate this flow (skb->ooo_okay will be eventually set)
1154 */
1155 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1156 goto out;
1157
1158 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159 struct tsq_tasklet *tsq;
1160 bool empty;
1161
1162 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163 goto out;
1164
1165 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1167 if (nval != oval)
1168 continue;
1169
1170 /* queue this socket to tasklet queue */
1171 local_irq_save(flags);
1172 tsq = this_cpu_ptr(&tsq_tasklet);
1173 empty = list_empty(&tsq->head);
1174 list_add(&tp->tsq_node, &tsq->head);
1175 if (empty)
1176 tasklet_schedule(&tsq->tasklet);
1177 local_irq_restore(flags);
1178 return;
1179 }
1180 out:
1181 sk_free(sk);
1182 }
1183
1184 /* Note: Called under soft irq.
1185 * We can call TCP stack right away, unless socket is owned by user.
1186 */
tcp_pace_kick(struct hrtimer * timer)1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1188 {
1189 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190 struct sock *sk = (struct sock *)tp;
1191
1192 tcp_tsq_handler(sk);
1193 sock_put(sk);
1194
1195 return HRTIMER_NORESTART;
1196 }
1197
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1199 u64 prior_wstamp)
1200 {
1201 struct tcp_sock *tp = tcp_sk(sk);
1202
1203 if (sk->sk_pacing_status != SK_PACING_NONE) {
1204 unsigned long rate = sk->sk_pacing_rate;
1205
1206 /* Original sch_fq does not pace first 10 MSS
1207 * Note that tp->data_segs_out overflows after 2^32 packets,
1208 * this is a minor annoyance.
1209 */
1210 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1213
1214 /* take into account OS jitter */
1215 len_ns -= min_t(u64, len_ns / 2, credit);
1216 tp->tcp_wstamp_ns += len_ns;
1217 }
1218 }
1219 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1220 }
1221
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1225
1226 /* This routine actually transmits TCP packets queued in by
1227 * tcp_do_sendmsg(). This is used by both the initial
1228 * transmission and possible later retransmissions.
1229 * All SKB's seen here are completely headerless. It is our
1230 * job to build the TCP header, and pass the packet down to
1231 * IP so it can do the same plus pass the packet off to the
1232 * device.
1233 *
1234 * We are working here with either a clone of the original
1235 * SKB, or a fresh unique copy made by the retransmit engine.
1236 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1239 {
1240 const struct inet_connection_sock *icsk = inet_csk(sk);
1241 struct inet_sock *inet;
1242 struct tcp_sock *tp;
1243 struct tcp_skb_cb *tcb;
1244 struct tcp_out_options opts;
1245 unsigned int tcp_options_size, tcp_header_size;
1246 struct sk_buff *oskb = NULL;
1247 struct tcp_md5sig_key *md5;
1248 struct tcphdr *th;
1249 u64 prior_wstamp;
1250 int err;
1251
1252 BUG_ON(!skb || !tcp_skb_pcount(skb));
1253 tp = tcp_sk(sk);
1254 prior_wstamp = tp->tcp_wstamp_ns;
1255 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1257 if (clone_it) {
1258 oskb = skb;
1259
1260 tcp_skb_tsorted_save(oskb) {
1261 if (unlikely(skb_cloned(oskb)))
1262 skb = pskb_copy(oskb, gfp_mask);
1263 else
1264 skb = skb_clone(oskb, gfp_mask);
1265 } tcp_skb_tsorted_restore(oskb);
1266
1267 if (unlikely(!skb))
1268 return -ENOBUFS;
1269 /* retransmit skbs might have a non zero value in skb->dev
1270 * because skb->dev is aliased with skb->rbnode.rb_left
1271 */
1272 skb->dev = NULL;
1273 }
1274
1275 inet = inet_sk(sk);
1276 tcb = TCP_SKB_CB(skb);
1277 memset(&opts, 0, sizeof(opts));
1278
1279 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1280 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1281 } else {
1282 tcp_options_size = tcp_established_options(sk, skb, &opts,
1283 &md5);
1284 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1285 * at receiver : This slightly improve GRO performance.
1286 * Note that we do not force the PSH flag for non GSO packets,
1287 * because they might be sent under high congestion events,
1288 * and in this case it is better to delay the delivery of 1-MSS
1289 * packets and thus the corresponding ACK packet that would
1290 * release the following packet.
1291 */
1292 if (tcp_skb_pcount(skb) > 1)
1293 tcb->tcp_flags |= TCPHDR_PSH;
1294 }
1295 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1296
1297 /* if no packet is in qdisc/device queue, then allow XPS to select
1298 * another queue. We can be called from tcp_tsq_handler()
1299 * which holds one reference to sk.
1300 *
1301 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1302 * One way to get this would be to set skb->truesize = 2 on them.
1303 */
1304 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1305
1306 /* If we had to use memory reserve to allocate this skb,
1307 * this might cause drops if packet is looped back :
1308 * Other socket might not have SOCK_MEMALLOC.
1309 * Packets not looped back do not care about pfmemalloc.
1310 */
1311 skb->pfmemalloc = 0;
1312
1313 skb_push(skb, tcp_header_size);
1314 skb_reset_transport_header(skb);
1315
1316 skb_orphan(skb);
1317 skb->sk = sk;
1318 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1319 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1320
1321 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1322
1323 /* Build TCP header and checksum it. */
1324 th = (struct tcphdr *)skb->data;
1325 th->source = inet->inet_sport;
1326 th->dest = inet->inet_dport;
1327 th->seq = htonl(tcb->seq);
1328 th->ack_seq = htonl(rcv_nxt);
1329 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1330 tcb->tcp_flags);
1331
1332 th->check = 0;
1333 th->urg_ptr = 0;
1334
1335 /* The urg_mode check is necessary during a below snd_una win probe */
1336 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1337 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1338 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1339 th->urg = 1;
1340 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1341 th->urg_ptr = htons(0xFFFF);
1342 th->urg = 1;
1343 }
1344 }
1345
1346 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1347 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1348 th->window = htons(tcp_select_window(sk));
1349 tcp_ecn_send(sk, skb, th, tcp_header_size);
1350 } else {
1351 /* RFC1323: The window in SYN & SYN/ACK segments
1352 * is never scaled.
1353 */
1354 th->window = htons(min(tp->rcv_wnd, 65535U));
1355 }
1356
1357 tcp_options_write(th, tp, &opts);
1358
1359 #ifdef CONFIG_TCP_MD5SIG
1360 /* Calculate the MD5 hash, as we have all we need now */
1361 if (md5) {
1362 sk_gso_disable(sk);
1363 tp->af_specific->calc_md5_hash(opts.hash_location,
1364 md5, sk, skb);
1365 }
1366 #endif
1367
1368 /* BPF prog is the last one writing header option */
1369 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1370
1371 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372 tcp_v6_send_check, tcp_v4_send_check,
1373 sk, skb);
1374
1375 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1377
1378 if (skb->len != tcp_header_size) {
1379 tcp_event_data_sent(tp, sk);
1380 tp->data_segs_out += tcp_skb_pcount(skb);
1381 tp->bytes_sent += skb->len - tcp_header_size;
1382 }
1383
1384 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386 tcp_skb_pcount(skb));
1387
1388 tp->segs_out += tcp_skb_pcount(skb);
1389 skb_set_hash_from_sk(skb, sk);
1390 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393
1394 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395
1396 /* Cleanup our debris for IP stacks */
1397 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 sizeof(struct inet6_skb_parm)));
1399
1400 tcp_add_tx_delay(skb, tp);
1401
1402 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 inet6_csk_xmit, ip_queue_xmit,
1404 sk, skb, &inet->cork.fl);
1405
1406 if (unlikely(err > 0)) {
1407 tcp_enter_cwr(sk);
1408 err = net_xmit_eval(err);
1409 }
1410 if (!err && oskb) {
1411 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 tcp_rate_skb_sent(sk, oskb);
1413 }
1414 return err;
1415 }
1416
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418 gfp_t gfp_mask)
1419 {
1420 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 tcp_sk(sk)->rcv_nxt);
1422 }
1423
1424 /* This routine just queues the buffer for sending.
1425 *
1426 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427 * otherwise socket can stall.
1428 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 struct tcp_sock *tp = tcp_sk(sk);
1432
1433 /* Advance write_seq and place onto the write_queue. */
1434 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 __skb_header_release(skb);
1436 tcp_add_write_queue_tail(sk, skb);
1437 sk_wmem_queued_add(sk, skb->truesize);
1438 sk_mem_charge(sk, skb->truesize);
1439 }
1440
1441 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444 if (skb->len <= mss_now) {
1445 /* Avoid the costly divide in the normal
1446 * non-TSO case.
1447 */
1448 tcp_skb_pcount_set(skb, 1);
1449 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450 } else {
1451 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 }
1454 }
1455
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457 * tweaks to fix counters
1458 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 tp->packets_out -= decr;
1464
1465 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 tp->sacked_out -= decr;
1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 tp->retrans_out -= decr;
1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 tp->lost_out -= decr;
1471
1472 /* Reno case is special. Sigh... */
1473 if (tcp_is_reno(tp) && decr > 0)
1474 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475
1476 if (tp->lost_skb_hint &&
1477 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 tp->lost_cnt_hint -= decr;
1480
1481 tcp_verify_left_out(tp);
1482 }
1483
tcp_has_tx_tstamp(const struct sk_buff * skb)1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486 return TCP_SKB_CB(skb)->txstamp_ack ||
1487 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492 struct skb_shared_info *shinfo = skb_shinfo(skb);
1493
1494 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498
1499 shinfo->tx_flags &= ~tsflags;
1500 shinfo2->tx_flags |= tsflags;
1501 swap(shinfo->tskey, shinfo2->tskey);
1502 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 }
1505 }
1506
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 TCP_SKB_CB(skb)->eor = 0;
1511 }
1512
1513 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 struct sk_buff *buff,
1516 struct sock *sk,
1517 enum tcp_queue tcp_queue)
1518 {
1519 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1521 else
1522 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524
1525 /* Function to create two new TCP segments. Shrinks the given segment
1526 * to the specified size and appends a new segment with the rest of the
1527 * packet to the list. This won't be called frequently, I hope.
1528 * Remember, these are still headerless SKBs at this point.
1529 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 struct sk_buff *skb, u32 len,
1532 unsigned int mss_now, gfp_t gfp)
1533 {
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *buff;
1536 int nsize, old_factor;
1537 long limit;
1538 int nlen;
1539 u8 flags;
1540
1541 if (WARN_ON(len > skb->len))
1542 return -EINVAL;
1543
1544 nsize = skb_headlen(skb) - len;
1545 if (nsize < 0)
1546 nsize = 0;
1547
1548 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 * We need some allowance to not penalize applications setting small
1550 * SO_SNDBUF values.
1551 * Also allow first and last skb in retransmit queue to be split.
1552 */
1553 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1554 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 skb != tcp_rtx_queue_head(sk) &&
1557 skb != tcp_rtx_queue_tail(sk))) {
1558 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 return -ENOMEM;
1560 }
1561
1562 if (skb_unclone_keeptruesize(skb, gfp))
1563 return -ENOMEM;
1564
1565 /* Get a new skb... force flag on. */
1566 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1567 if (!buff)
1568 return -ENOMEM; /* We'll just try again later. */
1569 skb_copy_decrypted(buff, skb);
1570 mptcp_skb_ext_copy(buff, skb);
1571
1572 sk_wmem_queued_add(sk, buff->truesize);
1573 sk_mem_charge(sk, buff->truesize);
1574 nlen = skb->len - len - nsize;
1575 buff->truesize += nlen;
1576 skb->truesize -= nlen;
1577
1578 /* Correct the sequence numbers. */
1579 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582
1583 /* PSH and FIN should only be set in the second packet. */
1584 flags = TCP_SKB_CB(skb)->tcp_flags;
1585 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586 TCP_SKB_CB(buff)->tcp_flags = flags;
1587 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588 tcp_skb_fragment_eor(skb, buff);
1589
1590 skb_split(skb, buff, len);
1591
1592 skb_set_delivery_time(buff, skb->tstamp, true);
1593 tcp_fragment_tstamp(skb, buff);
1594
1595 old_factor = tcp_skb_pcount(skb);
1596
1597 /* Fix up tso_factor for both original and new SKB. */
1598 tcp_set_skb_tso_segs(skb, mss_now);
1599 tcp_set_skb_tso_segs(buff, mss_now);
1600
1601 /* Update delivered info for the new segment */
1602 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1603
1604 /* If this packet has been sent out already, we must
1605 * adjust the various packet counters.
1606 */
1607 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1608 int diff = old_factor - tcp_skb_pcount(skb) -
1609 tcp_skb_pcount(buff);
1610
1611 if (diff)
1612 tcp_adjust_pcount(sk, skb, diff);
1613 }
1614
1615 /* Link BUFF into the send queue. */
1616 __skb_header_release(buff);
1617 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1618 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1619 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1620
1621 return 0;
1622 }
1623
1624 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1625 * data is not copied, but immediately discarded.
1626 */
__pskb_trim_head(struct sk_buff * skb,int len)1627 static int __pskb_trim_head(struct sk_buff *skb, int len)
1628 {
1629 struct skb_shared_info *shinfo;
1630 int i, k, eat;
1631
1632 eat = min_t(int, len, skb_headlen(skb));
1633 if (eat) {
1634 __skb_pull(skb, eat);
1635 len -= eat;
1636 if (!len)
1637 return 0;
1638 }
1639 eat = len;
1640 k = 0;
1641 shinfo = skb_shinfo(skb);
1642 for (i = 0; i < shinfo->nr_frags; i++) {
1643 int size = skb_frag_size(&shinfo->frags[i]);
1644
1645 if (size <= eat) {
1646 skb_frag_unref(skb, i);
1647 eat -= size;
1648 } else {
1649 shinfo->frags[k] = shinfo->frags[i];
1650 if (eat) {
1651 skb_frag_off_add(&shinfo->frags[k], eat);
1652 skb_frag_size_sub(&shinfo->frags[k], eat);
1653 eat = 0;
1654 }
1655 k++;
1656 }
1657 }
1658 shinfo->nr_frags = k;
1659
1660 skb->data_len -= len;
1661 skb->len = skb->data_len;
1662 return len;
1663 }
1664
1665 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 {
1668 u32 delta_truesize;
1669
1670 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1671 return -ENOMEM;
1672
1673 delta_truesize = __pskb_trim_head(skb, len);
1674
1675 TCP_SKB_CB(skb)->seq += len;
1676
1677 if (delta_truesize) {
1678 skb->truesize -= delta_truesize;
1679 sk_wmem_queued_add(sk, -delta_truesize);
1680 if (!skb_zcopy_pure(skb))
1681 sk_mem_uncharge(sk, delta_truesize);
1682 }
1683
1684 /* Any change of skb->len requires recalculation of tso factor. */
1685 if (tcp_skb_pcount(skb) > 1)
1686 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1687
1688 return 0;
1689 }
1690
1691 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1692 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1693 {
1694 const struct tcp_sock *tp = tcp_sk(sk);
1695 const struct inet_connection_sock *icsk = inet_csk(sk);
1696 int mss_now;
1697
1698 /* Calculate base mss without TCP options:
1699 It is MMS_S - sizeof(tcphdr) of rfc1122
1700 */
1701 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1702
1703 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1704 if (icsk->icsk_af_ops->net_frag_header_len) {
1705 const struct dst_entry *dst = __sk_dst_get(sk);
1706
1707 if (dst && dst_allfrag(dst))
1708 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1709 }
1710
1711 /* Clamp it (mss_clamp does not include tcp options) */
1712 if (mss_now > tp->rx_opt.mss_clamp)
1713 mss_now = tp->rx_opt.mss_clamp;
1714
1715 /* Now subtract optional transport overhead */
1716 mss_now -= icsk->icsk_ext_hdr_len;
1717
1718 /* Then reserve room for full set of TCP options and 8 bytes of data */
1719 mss_now = max(mss_now,
1720 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1721 return mss_now;
1722 }
1723
1724 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1725 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1726 {
1727 /* Subtract TCP options size, not including SACKs */
1728 return __tcp_mtu_to_mss(sk, pmtu) -
1729 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1730 }
1731 EXPORT_SYMBOL(tcp_mtu_to_mss);
1732
1733 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1734 int tcp_mss_to_mtu(struct sock *sk, int mss)
1735 {
1736 const struct tcp_sock *tp = tcp_sk(sk);
1737 const struct inet_connection_sock *icsk = inet_csk(sk);
1738 int mtu;
1739
1740 mtu = mss +
1741 tp->tcp_header_len +
1742 icsk->icsk_ext_hdr_len +
1743 icsk->icsk_af_ops->net_header_len;
1744
1745 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1746 if (icsk->icsk_af_ops->net_frag_header_len) {
1747 const struct dst_entry *dst = __sk_dst_get(sk);
1748
1749 if (dst && dst_allfrag(dst))
1750 mtu += icsk->icsk_af_ops->net_frag_header_len;
1751 }
1752 return mtu;
1753 }
1754 EXPORT_SYMBOL(tcp_mss_to_mtu);
1755
1756 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1757 void tcp_mtup_init(struct sock *sk)
1758 {
1759 struct tcp_sock *tp = tcp_sk(sk);
1760 struct inet_connection_sock *icsk = inet_csk(sk);
1761 struct net *net = sock_net(sk);
1762
1763 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1764 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1765 icsk->icsk_af_ops->net_header_len;
1766 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1767 icsk->icsk_mtup.probe_size = 0;
1768 if (icsk->icsk_mtup.enabled)
1769 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1770 }
1771 EXPORT_SYMBOL(tcp_mtup_init);
1772
1773 /* This function synchronize snd mss to current pmtu/exthdr set.
1774
1775 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1776 for TCP options, but includes only bare TCP header.
1777
1778 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1779 It is minimum of user_mss and mss received with SYN.
1780 It also does not include TCP options.
1781
1782 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1783
1784 tp->mss_cache is current effective sending mss, including
1785 all tcp options except for SACKs. It is evaluated,
1786 taking into account current pmtu, but never exceeds
1787 tp->rx_opt.mss_clamp.
1788
1789 NOTE1. rfc1122 clearly states that advertised MSS
1790 DOES NOT include either tcp or ip options.
1791
1792 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1793 are READ ONLY outside this function. --ANK (980731)
1794 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1795 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1796 {
1797 struct tcp_sock *tp = tcp_sk(sk);
1798 struct inet_connection_sock *icsk = inet_csk(sk);
1799 int mss_now;
1800
1801 if (icsk->icsk_mtup.search_high > pmtu)
1802 icsk->icsk_mtup.search_high = pmtu;
1803
1804 mss_now = tcp_mtu_to_mss(sk, pmtu);
1805 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1806
1807 /* And store cached results */
1808 icsk->icsk_pmtu_cookie = pmtu;
1809 if (icsk->icsk_mtup.enabled)
1810 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1811 tp->mss_cache = mss_now;
1812
1813 return mss_now;
1814 }
1815 EXPORT_SYMBOL(tcp_sync_mss);
1816
1817 /* Compute the current effective MSS, taking SACKs and IP options,
1818 * and even PMTU discovery events into account.
1819 */
tcp_current_mss(struct sock * sk)1820 unsigned int tcp_current_mss(struct sock *sk)
1821 {
1822 const struct tcp_sock *tp = tcp_sk(sk);
1823 const struct dst_entry *dst = __sk_dst_get(sk);
1824 u32 mss_now;
1825 unsigned int header_len;
1826 struct tcp_out_options opts;
1827 struct tcp_md5sig_key *md5;
1828
1829 mss_now = tp->mss_cache;
1830
1831 if (dst) {
1832 u32 mtu = dst_mtu(dst);
1833 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1834 mss_now = tcp_sync_mss(sk, mtu);
1835 }
1836
1837 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1838 sizeof(struct tcphdr);
1839 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1840 * some common options. If this is an odd packet (because we have SACK
1841 * blocks etc) then our calculated header_len will be different, and
1842 * we have to adjust mss_now correspondingly */
1843 if (header_len != tp->tcp_header_len) {
1844 int delta = (int) header_len - tp->tcp_header_len;
1845 mss_now -= delta;
1846 }
1847
1848 return mss_now;
1849 }
1850
1851 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1852 * As additional protections, we do not touch cwnd in retransmission phases,
1853 * and if application hit its sndbuf limit recently.
1854 */
tcp_cwnd_application_limited(struct sock * sk)1855 static void tcp_cwnd_application_limited(struct sock *sk)
1856 {
1857 struct tcp_sock *tp = tcp_sk(sk);
1858
1859 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1860 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1861 /* Limited by application or receiver window. */
1862 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1863 u32 win_used = max(tp->snd_cwnd_used, init_win);
1864 if (win_used < tcp_snd_cwnd(tp)) {
1865 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1866 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1867 }
1868 tp->snd_cwnd_used = 0;
1869 }
1870 tp->snd_cwnd_stamp = tcp_jiffies32;
1871 }
1872
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1873 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1874 {
1875 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1876 struct tcp_sock *tp = tcp_sk(sk);
1877
1878 /* Track the maximum number of outstanding packets in each
1879 * window, and remember whether we were cwnd-limited then.
1880 */
1881 if (!before(tp->snd_una, tp->max_packets_seq) ||
1882 tp->packets_out > tp->max_packets_out ||
1883 is_cwnd_limited) {
1884 tp->max_packets_out = tp->packets_out;
1885 tp->max_packets_seq = tp->snd_nxt;
1886 tp->is_cwnd_limited = is_cwnd_limited;
1887 }
1888
1889 if (tcp_is_cwnd_limited(sk)) {
1890 /* Network is feed fully. */
1891 tp->snd_cwnd_used = 0;
1892 tp->snd_cwnd_stamp = tcp_jiffies32;
1893 } else {
1894 /* Network starves. */
1895 if (tp->packets_out > tp->snd_cwnd_used)
1896 tp->snd_cwnd_used = tp->packets_out;
1897
1898 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1899 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1900 !ca_ops->cong_control)
1901 tcp_cwnd_application_limited(sk);
1902
1903 /* The following conditions together indicate the starvation
1904 * is caused by insufficient sender buffer:
1905 * 1) just sent some data (see tcp_write_xmit)
1906 * 2) not cwnd limited (this else condition)
1907 * 3) no more data to send (tcp_write_queue_empty())
1908 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1909 */
1910 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1911 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1912 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1913 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1914 }
1915 }
1916
1917 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1918 static bool tcp_minshall_check(const struct tcp_sock *tp)
1919 {
1920 return after(tp->snd_sml, tp->snd_una) &&
1921 !after(tp->snd_sml, tp->snd_nxt);
1922 }
1923
1924 /* Update snd_sml if this skb is under mss
1925 * Note that a TSO packet might end with a sub-mss segment
1926 * The test is really :
1927 * if ((skb->len % mss) != 0)
1928 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1929 * But we can avoid doing the divide again given we already have
1930 * skb_pcount = skb->len / mss_now
1931 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1932 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1933 const struct sk_buff *skb)
1934 {
1935 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1936 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1937 }
1938
1939 /* Return false, if packet can be sent now without violation Nagle's rules:
1940 * 1. It is full sized. (provided by caller in %partial bool)
1941 * 2. Or it contains FIN. (already checked by caller)
1942 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1943 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1944 * With Minshall's modification: all sent small packets are ACKed.
1945 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1946 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1947 int nonagle)
1948 {
1949 return partial &&
1950 ((nonagle & TCP_NAGLE_CORK) ||
1951 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1952 }
1953
1954 /* Return how many segs we'd like on a TSO packet,
1955 * depending on current pacing rate, and how close the peer is.
1956 *
1957 * Rationale is:
1958 * - For close peers, we rather send bigger packets to reduce
1959 * cpu costs, because occasional losses will be repaired fast.
1960 * - For long distance/rtt flows, we would like to get ACK clocking
1961 * with 1 ACK per ms.
1962 *
1963 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1964 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1965 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1966 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1967 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1968 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1969 int min_tso_segs)
1970 {
1971 unsigned long bytes;
1972 u32 r;
1973
1974 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1975
1976 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1977 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1978 bytes += sk->sk_gso_max_size >> r;
1979
1980 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1981
1982 return max_t(u32, bytes / mss_now, min_tso_segs);
1983 }
1984
1985 /* Return the number of segments we want in the skb we are transmitting.
1986 * See if congestion control module wants to decide; otherwise, autosize.
1987 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1988 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1989 {
1990 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1991 u32 min_tso, tso_segs;
1992
1993 min_tso = ca_ops->min_tso_segs ?
1994 ca_ops->min_tso_segs(sk) :
1995 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1996
1997 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1998 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1999 }
2000
2001 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2002 static unsigned int tcp_mss_split_point(const struct sock *sk,
2003 const struct sk_buff *skb,
2004 unsigned int mss_now,
2005 unsigned int max_segs,
2006 int nonagle)
2007 {
2008 const struct tcp_sock *tp = tcp_sk(sk);
2009 u32 partial, needed, window, max_len;
2010
2011 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2012 max_len = mss_now * max_segs;
2013
2014 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2015 return max_len;
2016
2017 needed = min(skb->len, window);
2018
2019 if (max_len <= needed)
2020 return max_len;
2021
2022 partial = needed % mss_now;
2023 /* If last segment is not a full MSS, check if Nagle rules allow us
2024 * to include this last segment in this skb.
2025 * Otherwise, we'll split the skb at last MSS boundary
2026 */
2027 if (tcp_nagle_check(partial != 0, tp, nonagle))
2028 return needed - partial;
2029
2030 return needed;
2031 }
2032
2033 /* Can at least one segment of SKB be sent right now, according to the
2034 * congestion window rules? If so, return how many segments are allowed.
2035 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2036 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2037 const struct sk_buff *skb)
2038 {
2039 u32 in_flight, cwnd, halfcwnd;
2040
2041 /* Don't be strict about the congestion window for the final FIN. */
2042 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2043 tcp_skb_pcount(skb) == 1)
2044 return 1;
2045
2046 in_flight = tcp_packets_in_flight(tp);
2047 cwnd = tcp_snd_cwnd(tp);
2048 if (in_flight >= cwnd)
2049 return 0;
2050
2051 /* For better scheduling, ensure we have at least
2052 * 2 GSO packets in flight.
2053 */
2054 halfcwnd = max(cwnd >> 1, 1U);
2055 return min(halfcwnd, cwnd - in_flight);
2056 }
2057
2058 /* Initialize TSO state of a skb.
2059 * This must be invoked the first time we consider transmitting
2060 * SKB onto the wire.
2061 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2062 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2063 {
2064 int tso_segs = tcp_skb_pcount(skb);
2065
2066 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2067 tcp_set_skb_tso_segs(skb, mss_now);
2068 tso_segs = tcp_skb_pcount(skb);
2069 }
2070 return tso_segs;
2071 }
2072
2073
2074 /* Return true if the Nagle test allows this packet to be
2075 * sent now.
2076 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2077 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2078 unsigned int cur_mss, int nonagle)
2079 {
2080 /* Nagle rule does not apply to frames, which sit in the middle of the
2081 * write_queue (they have no chances to get new data).
2082 *
2083 * This is implemented in the callers, where they modify the 'nonagle'
2084 * argument based upon the location of SKB in the send queue.
2085 */
2086 if (nonagle & TCP_NAGLE_PUSH)
2087 return true;
2088
2089 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2090 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2091 return true;
2092
2093 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2094 return true;
2095
2096 return false;
2097 }
2098
2099 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2100 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2101 const struct sk_buff *skb,
2102 unsigned int cur_mss)
2103 {
2104 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2105
2106 if (skb->len > cur_mss)
2107 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2108
2109 return !after(end_seq, tcp_wnd_end(tp));
2110 }
2111
2112 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2113 * which is put after SKB on the list. It is very much like
2114 * tcp_fragment() except that it may make several kinds of assumptions
2115 * in order to speed up the splitting operation. In particular, we
2116 * know that all the data is in scatter-gather pages, and that the
2117 * packet has never been sent out before (and thus is not cloned).
2118 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2119 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2120 unsigned int mss_now, gfp_t gfp)
2121 {
2122 int nlen = skb->len - len;
2123 struct sk_buff *buff;
2124 u8 flags;
2125
2126 /* All of a TSO frame must be composed of paged data. */
2127 if (skb->len != skb->data_len)
2128 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2129 skb, len, mss_now, gfp);
2130
2131 buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2132 if (unlikely(!buff))
2133 return -ENOMEM;
2134 skb_copy_decrypted(buff, skb);
2135 mptcp_skb_ext_copy(buff, skb);
2136
2137 sk_wmem_queued_add(sk, buff->truesize);
2138 sk_mem_charge(sk, buff->truesize);
2139 buff->truesize += nlen;
2140 skb->truesize -= nlen;
2141
2142 /* Correct the sequence numbers. */
2143 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2144 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2145 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2146
2147 /* PSH and FIN should only be set in the second packet. */
2148 flags = TCP_SKB_CB(skb)->tcp_flags;
2149 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2150 TCP_SKB_CB(buff)->tcp_flags = flags;
2151
2152 tcp_skb_fragment_eor(skb, buff);
2153
2154 skb_split(skb, buff, len);
2155 tcp_fragment_tstamp(skb, buff);
2156
2157 /* Fix up tso_factor for both original and new SKB. */
2158 tcp_set_skb_tso_segs(skb, mss_now);
2159 tcp_set_skb_tso_segs(buff, mss_now);
2160
2161 /* Link BUFF into the send queue. */
2162 __skb_header_release(buff);
2163 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2164
2165 return 0;
2166 }
2167
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2170 *
2171 * This algorithm is from John Heffner.
2172 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174 bool *is_cwnd_limited,
2175 bool *is_rwnd_limited,
2176 u32 max_segs)
2177 {
2178 const struct inet_connection_sock *icsk = inet_csk(sk);
2179 u32 send_win, cong_win, limit, in_flight;
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct sk_buff *head;
2182 int win_divisor;
2183 s64 delta;
2184
2185 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2186 goto send_now;
2187
2188 /* Avoid bursty behavior by allowing defer
2189 * only if the last write was recent (1 ms).
2190 * Note that tp->tcp_wstamp_ns can be in the future if we have
2191 * packets waiting in a qdisc or device for EDT delivery.
2192 */
2193 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2194 if (delta > 0)
2195 goto send_now;
2196
2197 in_flight = tcp_packets_in_flight(tp);
2198
2199 BUG_ON(tcp_skb_pcount(skb) <= 1);
2200 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2201
2202 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203
2204 /* From in_flight test above, we know that cwnd > in_flight. */
2205 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2206
2207 limit = min(send_win, cong_win);
2208
2209 /* If a full-sized TSO skb can be sent, do it. */
2210 if (limit >= max_segs * tp->mss_cache)
2211 goto send_now;
2212
2213 /* Middle in queue won't get any more data, full sendable already? */
2214 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2215 goto send_now;
2216
2217 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218 if (win_divisor) {
2219 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2220
2221 /* If at least some fraction of a window is available,
2222 * just use it.
2223 */
2224 chunk /= win_divisor;
2225 if (limit >= chunk)
2226 goto send_now;
2227 } else {
2228 /* Different approach, try not to defer past a single
2229 * ACK. Receiver should ACK every other full sized
2230 * frame, so if we have space for more than 3 frames
2231 * then send now.
2232 */
2233 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2234 goto send_now;
2235 }
2236
2237 /* TODO : use tsorted_sent_queue ? */
2238 head = tcp_rtx_queue_head(sk);
2239 if (!head)
2240 goto send_now;
2241 delta = tp->tcp_clock_cache - head->tstamp;
2242 /* If next ACK is likely to come too late (half srtt), do not defer */
2243 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2244 goto send_now;
2245
2246 /* Ok, it looks like it is advisable to defer.
2247 * Three cases are tracked :
2248 * 1) We are cwnd-limited
2249 * 2) We are rwnd-limited
2250 * 3) We are application limited.
2251 */
2252 if (cong_win < send_win) {
2253 if (cong_win <= skb->len) {
2254 *is_cwnd_limited = true;
2255 return true;
2256 }
2257 } else {
2258 if (send_win <= skb->len) {
2259 *is_rwnd_limited = true;
2260 return true;
2261 }
2262 }
2263
2264 /* If this packet won't get more data, do not wait. */
2265 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266 TCP_SKB_CB(skb)->eor)
2267 goto send_now;
2268
2269 return true;
2270
2271 send_now:
2272 return false;
2273 }
2274
tcp_mtu_check_reprobe(struct sock * sk)2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 {
2277 struct inet_connection_sock *icsk = inet_csk(sk);
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 struct net *net = sock_net(sk);
2280 u32 interval;
2281 s32 delta;
2282
2283 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2284 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285 if (unlikely(delta >= interval * HZ)) {
2286 int mss = tcp_current_mss(sk);
2287
2288 /* Update current search range */
2289 icsk->icsk_mtup.probe_size = 0;
2290 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291 sizeof(struct tcphdr) +
2292 icsk->icsk_af_ops->net_header_len;
2293 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294
2295 /* Update probe time stamp */
2296 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2297 }
2298 }
2299
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 {
2302 struct sk_buff *skb, *next;
2303
2304 skb = tcp_send_head(sk);
2305 tcp_for_write_queue_from_safe(skb, next, sk) {
2306 if (len <= skb->len)
2307 break;
2308
2309 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2310 tcp_has_tx_tstamp(skb) ||
2311 !skb_pure_zcopy_same(skb, next))
2312 return false;
2313
2314 len -= skb->len;
2315 }
2316
2317 return true;
2318 }
2319
2320 /* Create a new MTU probe if we are ready.
2321 * MTU probe is regularly attempting to increase the path MTU by
2322 * deliberately sending larger packets. This discovers routing
2323 * changes resulting in larger path MTUs.
2324 *
2325 * Returns 0 if we should wait to probe (no cwnd available),
2326 * 1 if a probe was sent,
2327 * -1 otherwise
2328 */
tcp_mtu_probe(struct sock * sk)2329 static int tcp_mtu_probe(struct sock *sk)
2330 {
2331 struct inet_connection_sock *icsk = inet_csk(sk);
2332 struct tcp_sock *tp = tcp_sk(sk);
2333 struct sk_buff *skb, *nskb, *next;
2334 struct net *net = sock_net(sk);
2335 int probe_size;
2336 int size_needed;
2337 int copy, len;
2338 int mss_now;
2339 int interval;
2340
2341 /* Not currently probing/verifying,
2342 * not in recovery,
2343 * have enough cwnd, and
2344 * not SACKing (the variable headers throw things off)
2345 */
2346 if (likely(!icsk->icsk_mtup.enabled ||
2347 icsk->icsk_mtup.probe_size ||
2348 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2349 tcp_snd_cwnd(tp) < 11 ||
2350 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2351 return -1;
2352
2353 /* Use binary search for probe_size between tcp_mss_base,
2354 * and current mss_clamp. if (search_high - search_low)
2355 * smaller than a threshold, backoff from probing.
2356 */
2357 mss_now = tcp_current_mss(sk);
2358 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2359 icsk->icsk_mtup.search_low) >> 1);
2360 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2361 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2362 /* When misfortune happens, we are reprobing actively,
2363 * and then reprobe timer has expired. We stick with current
2364 * probing process by not resetting search range to its orignal.
2365 */
2366 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2367 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2368 /* Check whether enough time has elaplased for
2369 * another round of probing.
2370 */
2371 tcp_mtu_check_reprobe(sk);
2372 return -1;
2373 }
2374
2375 /* Have enough data in the send queue to probe? */
2376 if (tp->write_seq - tp->snd_nxt < size_needed)
2377 return -1;
2378
2379 if (tp->snd_wnd < size_needed)
2380 return -1;
2381 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2382 return 0;
2383
2384 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2385 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2386 if (!tcp_packets_in_flight(tp))
2387 return -1;
2388 else
2389 return 0;
2390 }
2391
2392 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2393 return -1;
2394
2395 /* We're allowed to probe. Build it now. */
2396 nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2397 if (!nskb)
2398 return -1;
2399 sk_wmem_queued_add(sk, nskb->truesize);
2400 sk_mem_charge(sk, nskb->truesize);
2401
2402 skb = tcp_send_head(sk);
2403 skb_copy_decrypted(nskb, skb);
2404 mptcp_skb_ext_copy(nskb, skb);
2405
2406 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2407 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2408 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2409
2410 tcp_insert_write_queue_before(nskb, skb, sk);
2411 tcp_highest_sack_replace(sk, skb, nskb);
2412
2413 len = 0;
2414 tcp_for_write_queue_from_safe(skb, next, sk) {
2415 copy = min_t(int, skb->len, probe_size - len);
2416 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417
2418 if (skb->len <= copy) {
2419 /* We've eaten all the data from this skb.
2420 * Throw it away. */
2421 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422 /* If this is the last SKB we copy and eor is set
2423 * we need to propagate it to the new skb.
2424 */
2425 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426 tcp_skb_collapse_tstamp(nskb, skb);
2427 tcp_unlink_write_queue(skb, sk);
2428 tcp_wmem_free_skb(sk, skb);
2429 } else {
2430 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431 ~(TCPHDR_FIN|TCPHDR_PSH);
2432 if (!skb_shinfo(skb)->nr_frags) {
2433 skb_pull(skb, copy);
2434 } else {
2435 __pskb_trim_head(skb, copy);
2436 tcp_set_skb_tso_segs(skb, mss_now);
2437 }
2438 TCP_SKB_CB(skb)->seq += copy;
2439 }
2440
2441 len += copy;
2442
2443 if (len >= probe_size)
2444 break;
2445 }
2446 tcp_init_tso_segs(nskb, nskb->len);
2447
2448 /* We're ready to send. If this fails, the probe will
2449 * be resegmented into mss-sized pieces by tcp_write_xmit().
2450 */
2451 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452 /* Decrement cwnd here because we are sending
2453 * effectively two packets. */
2454 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2455 tcp_event_new_data_sent(sk, nskb);
2456
2457 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2460
2461 return 1;
2462 }
2463
2464 return -1;
2465 }
2466
tcp_pacing_check(struct sock * sk)2467 static bool tcp_pacing_check(struct sock *sk)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470
2471 if (!tcp_needs_internal_pacing(sk))
2472 return false;
2473
2474 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2475 return false;
2476
2477 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478 hrtimer_start(&tp->pacing_timer,
2479 ns_to_ktime(tp->tcp_wstamp_ns),
2480 HRTIMER_MODE_ABS_PINNED_SOFT);
2481 sock_hold(sk);
2482 }
2483 return true;
2484 }
2485
2486 /* TCP Small Queues :
2487 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488 * (These limits are doubled for retransmits)
2489 * This allows for :
2490 * - better RTT estimation and ACK scheduling
2491 * - faster recovery
2492 * - high rates
2493 * Alas, some drivers / subsystems require a fair amount
2494 * of queued bytes to ensure line rate.
2495 * One example is wifi aggregation (802.11 AMPDU)
2496 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2497 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498 unsigned int factor)
2499 {
2500 unsigned long limit;
2501
2502 limit = max_t(unsigned long,
2503 2 * skb->truesize,
2504 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505 if (sk->sk_pacing_status == SK_PACING_NONE)
2506 limit = min_t(unsigned long, limit,
2507 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2508 limit <<= factor;
2509
2510 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511 tcp_sk(sk)->tcp_tx_delay) {
2512 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2513
2514 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515 * approximate our needs assuming an ~100% skb->truesize overhead.
2516 * USEC_PER_SEC is approximated by 2^20.
2517 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518 */
2519 extra_bytes >>= (20 - 1);
2520 limit += extra_bytes;
2521 }
2522 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523 /* Always send skb if rtx queue is empty.
2524 * No need to wait for TX completion to call us back,
2525 * after softirq/tasklet schedule.
2526 * This helps when TX completions are delayed too much.
2527 */
2528 if (tcp_rtx_queue_empty(sk))
2529 return false;
2530
2531 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532 /* It is possible TX completion already happened
2533 * before we set TSQ_THROTTLED, so we must
2534 * test again the condition.
2535 */
2536 smp_mb__after_atomic();
2537 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2538 return true;
2539 }
2540 return false;
2541 }
2542
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2543 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544 {
2545 const u32 now = tcp_jiffies32;
2546 enum tcp_chrono old = tp->chrono_type;
2547
2548 if (old > TCP_CHRONO_UNSPEC)
2549 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550 tp->chrono_start = now;
2551 tp->chrono_type = new;
2552 }
2553
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2554 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555 {
2556 struct tcp_sock *tp = tcp_sk(sk);
2557
2558 /* If there are multiple conditions worthy of tracking in a
2559 * chronograph then the highest priority enum takes precedence
2560 * over the other conditions. So that if something "more interesting"
2561 * starts happening, stop the previous chrono and start a new one.
2562 */
2563 if (type > tp->chrono_type)
2564 tcp_chrono_set(tp, type);
2565 }
2566
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568 {
2569 struct tcp_sock *tp = tcp_sk(sk);
2570
2571
2572 /* There are multiple conditions worthy of tracking in a
2573 * chronograph, so that the highest priority enum takes
2574 * precedence over the other conditions (see tcp_chrono_start).
2575 * If a condition stops, we only stop chrono tracking if
2576 * it's the "most interesting" or current chrono we are
2577 * tracking and starts busy chrono if we have pending data.
2578 */
2579 if (tcp_rtx_and_write_queues_empty(sk))
2580 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581 else if (type == tp->chrono_type)
2582 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2583 }
2584
2585 /* This routine writes packets to the network. It advances the
2586 * send_head. This happens as incoming acks open up the remote
2587 * window for us.
2588 *
2589 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591 * account rare use of URG, this is not a big flaw.
2592 *
2593 * Send at most one packet when push_one > 0. Temporarily ignore
2594 * cwnd limit to force at most one packet out when push_one == 2.
2595
2596 * Returns true, if no segments are in flight and we have queued segments,
2597 * but cannot send anything now because of SWS or another problem.
2598 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2599 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600 int push_one, gfp_t gfp)
2601 {
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct sk_buff *skb;
2604 unsigned int tso_segs, sent_pkts;
2605 int cwnd_quota;
2606 int result;
2607 bool is_cwnd_limited = false, is_rwnd_limited = false;
2608 u32 max_segs;
2609
2610 sent_pkts = 0;
2611
2612 tcp_mstamp_refresh(tp);
2613 if (!push_one) {
2614 /* Do MTU probing. */
2615 result = tcp_mtu_probe(sk);
2616 if (!result) {
2617 return false;
2618 } else if (result > 0) {
2619 sent_pkts = 1;
2620 }
2621 }
2622
2623 max_segs = tcp_tso_segs(sk, mss_now);
2624 while ((skb = tcp_send_head(sk))) {
2625 unsigned int limit;
2626
2627 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2630 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2631 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2632 tcp_init_tso_segs(skb, mss_now);
2633 goto repair; /* Skip network transmission */
2634 }
2635
2636 if (tcp_pacing_check(sk))
2637 break;
2638
2639 tso_segs = tcp_init_tso_segs(skb, mss_now);
2640 BUG_ON(!tso_segs);
2641
2642 cwnd_quota = tcp_cwnd_test(tp, skb);
2643 if (!cwnd_quota) {
2644 if (push_one == 2)
2645 /* Force out a loss probe pkt. */
2646 cwnd_quota = 1;
2647 else
2648 break;
2649 }
2650
2651 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2652 is_rwnd_limited = true;
2653 break;
2654 }
2655
2656 if (tso_segs == 1) {
2657 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2658 (tcp_skb_is_last(sk, skb) ?
2659 nonagle : TCP_NAGLE_PUSH))))
2660 break;
2661 } else {
2662 if (!push_one &&
2663 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2664 &is_rwnd_limited, max_segs))
2665 break;
2666 }
2667
2668 limit = mss_now;
2669 if (tso_segs > 1 && !tcp_urg_mode(tp))
2670 limit = tcp_mss_split_point(sk, skb, mss_now,
2671 min_t(unsigned int,
2672 cwnd_quota,
2673 max_segs),
2674 nonagle);
2675
2676 if (skb->len > limit &&
2677 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2678 break;
2679
2680 if (tcp_small_queue_check(sk, skb, 0))
2681 break;
2682
2683 /* Argh, we hit an empty skb(), presumably a thread
2684 * is sleeping in sendmsg()/sk_stream_wait_memory().
2685 * We do not want to send a pure-ack packet and have
2686 * a strange looking rtx queue with empty packet(s).
2687 */
2688 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2689 break;
2690
2691 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2692 break;
2693
2694 repair:
2695 /* Advance the send_head. This one is sent out.
2696 * This call will increment packets_out.
2697 */
2698 tcp_event_new_data_sent(sk, skb);
2699
2700 tcp_minshall_update(tp, mss_now, skb);
2701 sent_pkts += tcp_skb_pcount(skb);
2702
2703 if (push_one)
2704 break;
2705 }
2706
2707 if (is_rwnd_limited)
2708 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2709 else
2710 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2711
2712 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2713 if (likely(sent_pkts || is_cwnd_limited))
2714 tcp_cwnd_validate(sk, is_cwnd_limited);
2715
2716 if (likely(sent_pkts)) {
2717 if (tcp_in_cwnd_reduction(sk))
2718 tp->prr_out += sent_pkts;
2719
2720 /* Send one loss probe per tail loss episode. */
2721 if (push_one != 2)
2722 tcp_schedule_loss_probe(sk, false);
2723 return false;
2724 }
2725 return !tp->packets_out && !tcp_write_queue_empty(sk);
2726 }
2727
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2728 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2729 {
2730 struct inet_connection_sock *icsk = inet_csk(sk);
2731 struct tcp_sock *tp = tcp_sk(sk);
2732 u32 timeout, rto_delta_us;
2733 int early_retrans;
2734
2735 /* Don't do any loss probe on a Fast Open connection before 3WHS
2736 * finishes.
2737 */
2738 if (rcu_access_pointer(tp->fastopen_rsk))
2739 return false;
2740
2741 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2742 /* Schedule a loss probe in 2*RTT for SACK capable connections
2743 * not in loss recovery, that are either limited by cwnd or application.
2744 */
2745 if ((early_retrans != 3 && early_retrans != 4) ||
2746 !tp->packets_out || !tcp_is_sack(tp) ||
2747 (icsk->icsk_ca_state != TCP_CA_Open &&
2748 icsk->icsk_ca_state != TCP_CA_CWR))
2749 return false;
2750
2751 /* Probe timeout is 2*rtt. Add minimum RTO to account
2752 * for delayed ack when there's one outstanding packet. If no RTT
2753 * sample is available then probe after TCP_TIMEOUT_INIT.
2754 */
2755 if (tp->srtt_us) {
2756 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2757 if (tp->packets_out == 1)
2758 timeout += TCP_RTO_MIN;
2759 else
2760 timeout += TCP_TIMEOUT_MIN;
2761 } else {
2762 timeout = TCP_TIMEOUT_INIT;
2763 }
2764
2765 /* If the RTO formula yields an earlier time, then use that time. */
2766 rto_delta_us = advancing_rto ?
2767 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2768 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2769 if (rto_delta_us > 0)
2770 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2771
2772 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2773 return true;
2774 }
2775
2776 /* Thanks to skb fast clones, we can detect if a prior transmit of
2777 * a packet is still in a qdisc or driver queue.
2778 * In this case, there is very little point doing a retransmit !
2779 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2780 static bool skb_still_in_host_queue(struct sock *sk,
2781 const struct sk_buff *skb)
2782 {
2783 if (unlikely(skb_fclone_busy(sk, skb))) {
2784 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2785 smp_mb__after_atomic();
2786 if (skb_fclone_busy(sk, skb)) {
2787 NET_INC_STATS(sock_net(sk),
2788 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2789 return true;
2790 }
2791 }
2792 return false;
2793 }
2794
2795 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2796 * retransmit the last segment.
2797 */
tcp_send_loss_probe(struct sock * sk)2798 void tcp_send_loss_probe(struct sock *sk)
2799 {
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 struct sk_buff *skb;
2802 int pcount;
2803 int mss = tcp_current_mss(sk);
2804
2805 /* At most one outstanding TLP */
2806 if (tp->tlp_high_seq)
2807 goto rearm_timer;
2808
2809 tp->tlp_retrans = 0;
2810 skb = tcp_send_head(sk);
2811 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2812 pcount = tp->packets_out;
2813 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2814 if (tp->packets_out > pcount)
2815 goto probe_sent;
2816 goto rearm_timer;
2817 }
2818 skb = skb_rb_last(&sk->tcp_rtx_queue);
2819 if (unlikely(!skb)) {
2820 WARN_ONCE(tp->packets_out,
2821 "invalid inflight: %u state %u cwnd %u mss %d\n",
2822 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2823 inet_csk(sk)->icsk_pending = 0;
2824 return;
2825 }
2826
2827 if (skb_still_in_host_queue(sk, skb))
2828 goto rearm_timer;
2829
2830 pcount = tcp_skb_pcount(skb);
2831 if (WARN_ON(!pcount))
2832 goto rearm_timer;
2833
2834 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2835 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2836 (pcount - 1) * mss, mss,
2837 GFP_ATOMIC)))
2838 goto rearm_timer;
2839 skb = skb_rb_next(skb);
2840 }
2841
2842 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2843 goto rearm_timer;
2844
2845 if (__tcp_retransmit_skb(sk, skb, 1))
2846 goto rearm_timer;
2847
2848 tp->tlp_retrans = 1;
2849
2850 probe_sent:
2851 /* Record snd_nxt for loss detection. */
2852 tp->tlp_high_seq = tp->snd_nxt;
2853
2854 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2855 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2856 inet_csk(sk)->icsk_pending = 0;
2857 rearm_timer:
2858 tcp_rearm_rto(sk);
2859 }
2860
2861 /* Push out any pending frames which were held back due to
2862 * TCP_CORK or attempt at coalescing tiny packets.
2863 * The socket must be locked by the caller.
2864 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2865 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2866 int nonagle)
2867 {
2868 /* If we are closed, the bytes will have to remain here.
2869 * In time closedown will finish, we empty the write queue and
2870 * all will be happy.
2871 */
2872 if (unlikely(sk->sk_state == TCP_CLOSE))
2873 return;
2874
2875 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2876 sk_gfp_mask(sk, GFP_ATOMIC)))
2877 tcp_check_probe_timer(sk);
2878 }
2879
2880 /* Send _single_ skb sitting at the send head. This function requires
2881 * true push pending frames to setup probe timer etc.
2882 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2883 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2884 {
2885 struct sk_buff *skb = tcp_send_head(sk);
2886
2887 BUG_ON(!skb || skb->len < mss_now);
2888
2889 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2890 }
2891
2892 /* This function returns the amount that we can raise the
2893 * usable window based on the following constraints
2894 *
2895 * 1. The window can never be shrunk once it is offered (RFC 793)
2896 * 2. We limit memory per socket
2897 *
2898 * RFC 1122:
2899 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2900 * RECV.NEXT + RCV.WIN fixed until:
2901 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2902 *
2903 * i.e. don't raise the right edge of the window until you can raise
2904 * it at least MSS bytes.
2905 *
2906 * Unfortunately, the recommended algorithm breaks header prediction,
2907 * since header prediction assumes th->window stays fixed.
2908 *
2909 * Strictly speaking, keeping th->window fixed violates the receiver
2910 * side SWS prevention criteria. The problem is that under this rule
2911 * a stream of single byte packets will cause the right side of the
2912 * window to always advance by a single byte.
2913 *
2914 * Of course, if the sender implements sender side SWS prevention
2915 * then this will not be a problem.
2916 *
2917 * BSD seems to make the following compromise:
2918 *
2919 * If the free space is less than the 1/4 of the maximum
2920 * space available and the free space is less than 1/2 mss,
2921 * then set the window to 0.
2922 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2923 * Otherwise, just prevent the window from shrinking
2924 * and from being larger than the largest representable value.
2925 *
2926 * This prevents incremental opening of the window in the regime
2927 * where TCP is limited by the speed of the reader side taking
2928 * data out of the TCP receive queue. It does nothing about
2929 * those cases where the window is constrained on the sender side
2930 * because the pipeline is full.
2931 *
2932 * BSD also seems to "accidentally" limit itself to windows that are a
2933 * multiple of MSS, at least until the free space gets quite small.
2934 * This would appear to be a side effect of the mbuf implementation.
2935 * Combining these two algorithms results in the observed behavior
2936 * of having a fixed window size at almost all times.
2937 *
2938 * Below we obtain similar behavior by forcing the offered window to
2939 * a multiple of the mss when it is feasible to do so.
2940 *
2941 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2942 * Regular options like TIMESTAMP are taken into account.
2943 */
__tcp_select_window(struct sock * sk)2944 u32 __tcp_select_window(struct sock *sk)
2945 {
2946 struct inet_connection_sock *icsk = inet_csk(sk);
2947 struct tcp_sock *tp = tcp_sk(sk);
2948 /* MSS for the peer's data. Previous versions used mss_clamp
2949 * here. I don't know if the value based on our guesses
2950 * of peer's MSS is better for the performance. It's more correct
2951 * but may be worse for the performance because of rcv_mss
2952 * fluctuations. --SAW 1998/11/1
2953 */
2954 int mss = icsk->icsk_ack.rcv_mss;
2955 int free_space = tcp_space(sk);
2956 int allowed_space = tcp_full_space(sk);
2957 int full_space, window;
2958
2959 if (sk_is_mptcp(sk))
2960 mptcp_space(sk, &free_space, &allowed_space);
2961
2962 full_space = min_t(int, tp->window_clamp, allowed_space);
2963
2964 if (unlikely(mss > full_space)) {
2965 mss = full_space;
2966 if (mss <= 0)
2967 return 0;
2968 }
2969 if (free_space < (full_space >> 1)) {
2970 icsk->icsk_ack.quick = 0;
2971
2972 if (tcp_under_memory_pressure(sk))
2973 tcp_adjust_rcv_ssthresh(sk);
2974
2975 /* free_space might become our new window, make sure we don't
2976 * increase it due to wscale.
2977 */
2978 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2979
2980 /* if free space is less than mss estimate, or is below 1/16th
2981 * of the maximum allowed, try to move to zero-window, else
2982 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2983 * new incoming data is dropped due to memory limits.
2984 * With large window, mss test triggers way too late in order
2985 * to announce zero window in time before rmem limit kicks in.
2986 */
2987 if (free_space < (allowed_space >> 4) || free_space < mss)
2988 return 0;
2989 }
2990
2991 if (free_space > tp->rcv_ssthresh)
2992 free_space = tp->rcv_ssthresh;
2993
2994 /* Don't do rounding if we are using window scaling, since the
2995 * scaled window will not line up with the MSS boundary anyway.
2996 */
2997 if (tp->rx_opt.rcv_wscale) {
2998 window = free_space;
2999
3000 /* Advertise enough space so that it won't get scaled away.
3001 * Import case: prevent zero window announcement if
3002 * 1<<rcv_wscale > mss.
3003 */
3004 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3005 } else {
3006 window = tp->rcv_wnd;
3007 /* Get the largest window that is a nice multiple of mss.
3008 * Window clamp already applied above.
3009 * If our current window offering is within 1 mss of the
3010 * free space we just keep it. This prevents the divide
3011 * and multiply from happening most of the time.
3012 * We also don't do any window rounding when the free space
3013 * is too small.
3014 */
3015 if (window <= free_space - mss || window > free_space)
3016 window = rounddown(free_space, mss);
3017 else if (mss == full_space &&
3018 free_space > window + (full_space >> 1))
3019 window = free_space;
3020 }
3021
3022 return window;
3023 }
3024
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3025 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3026 const struct sk_buff *next_skb)
3027 {
3028 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3029 const struct skb_shared_info *next_shinfo =
3030 skb_shinfo(next_skb);
3031 struct skb_shared_info *shinfo = skb_shinfo(skb);
3032
3033 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3034 shinfo->tskey = next_shinfo->tskey;
3035 TCP_SKB_CB(skb)->txstamp_ack |=
3036 TCP_SKB_CB(next_skb)->txstamp_ack;
3037 }
3038 }
3039
3040 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3041 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3042 {
3043 struct tcp_sock *tp = tcp_sk(sk);
3044 struct sk_buff *next_skb = skb_rb_next(skb);
3045 int next_skb_size;
3046
3047 next_skb_size = next_skb->len;
3048
3049 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3050
3051 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3052 return false;
3053
3054 tcp_highest_sack_replace(sk, next_skb, skb);
3055
3056 /* Update sequence range on original skb. */
3057 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3058
3059 /* Merge over control information. This moves PSH/FIN etc. over */
3060 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3061
3062 /* All done, get rid of second SKB and account for it so
3063 * packet counting does not break.
3064 */
3065 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3066 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3067
3068 /* changed transmit queue under us so clear hints */
3069 tcp_clear_retrans_hints_partial(tp);
3070 if (next_skb == tp->retransmit_skb_hint)
3071 tp->retransmit_skb_hint = skb;
3072
3073 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3074
3075 tcp_skb_collapse_tstamp(skb, next_skb);
3076
3077 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3078 return true;
3079 }
3080
3081 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3082 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3083 {
3084 if (tcp_skb_pcount(skb) > 1)
3085 return false;
3086 if (skb_cloned(skb))
3087 return false;
3088 /* Some heuristics for collapsing over SACK'd could be invented */
3089 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3090 return false;
3091
3092 return true;
3093 }
3094
3095 /* Collapse packets in the retransmit queue to make to create
3096 * less packets on the wire. This is only done on retransmission.
3097 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3098 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3099 int space)
3100 {
3101 struct tcp_sock *tp = tcp_sk(sk);
3102 struct sk_buff *skb = to, *tmp;
3103 bool first = true;
3104
3105 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3106 return;
3107 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3108 return;
3109
3110 skb_rbtree_walk_from_safe(skb, tmp) {
3111 if (!tcp_can_collapse(sk, skb))
3112 break;
3113
3114 if (!tcp_skb_can_collapse(to, skb))
3115 break;
3116
3117 space -= skb->len;
3118
3119 if (first) {
3120 first = false;
3121 continue;
3122 }
3123
3124 if (space < 0)
3125 break;
3126
3127 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3128 break;
3129
3130 if (!tcp_collapse_retrans(sk, to))
3131 break;
3132 }
3133 }
3134
3135 /* This retransmits one SKB. Policy decisions and retransmit queue
3136 * state updates are done by the caller. Returns non-zero if an
3137 * error occurred which prevented the send.
3138 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3139 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3140 {
3141 struct inet_connection_sock *icsk = inet_csk(sk);
3142 struct tcp_sock *tp = tcp_sk(sk);
3143 unsigned int cur_mss;
3144 int diff, len, err;
3145 int avail_wnd;
3146
3147 /* Inconclusive MTU probe */
3148 if (icsk->icsk_mtup.probe_size)
3149 icsk->icsk_mtup.probe_size = 0;
3150
3151 if (skb_still_in_host_queue(sk, skb))
3152 return -EBUSY;
3153
3154 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3155 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3156 WARN_ON_ONCE(1);
3157 return -EINVAL;
3158 }
3159 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3160 return -ENOMEM;
3161 }
3162
3163 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3164 return -EHOSTUNREACH; /* Routing failure or similar. */
3165
3166 cur_mss = tcp_current_mss(sk);
3167 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3168
3169 /* If receiver has shrunk his window, and skb is out of
3170 * new window, do not retransmit it. The exception is the
3171 * case, when window is shrunk to zero. In this case
3172 * our retransmit of one segment serves as a zero window probe.
3173 */
3174 if (avail_wnd <= 0) {
3175 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3176 return -EAGAIN;
3177 avail_wnd = cur_mss;
3178 }
3179
3180 len = cur_mss * segs;
3181 if (len > avail_wnd) {
3182 len = rounddown(avail_wnd, cur_mss);
3183 if (!len)
3184 len = avail_wnd;
3185 }
3186 if (skb->len > len) {
3187 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3188 cur_mss, GFP_ATOMIC))
3189 return -ENOMEM; /* We'll try again later. */
3190 } else {
3191 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3192 return -ENOMEM;
3193
3194 diff = tcp_skb_pcount(skb);
3195 tcp_set_skb_tso_segs(skb, cur_mss);
3196 diff -= tcp_skb_pcount(skb);
3197 if (diff)
3198 tcp_adjust_pcount(sk, skb, diff);
3199 avail_wnd = min_t(int, avail_wnd, cur_mss);
3200 if (skb->len < avail_wnd)
3201 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3202 }
3203
3204 /* RFC3168, section 6.1.1.1. ECN fallback */
3205 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3206 tcp_ecn_clear_syn(sk, skb);
3207
3208 /* Update global and local TCP statistics. */
3209 segs = tcp_skb_pcount(skb);
3210 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3211 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3212 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3213 tp->total_retrans += segs;
3214 tp->bytes_retrans += skb->len;
3215
3216 /* make sure skb->data is aligned on arches that require it
3217 * and check if ack-trimming & collapsing extended the headroom
3218 * beyond what csum_start can cover.
3219 */
3220 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3221 skb_headroom(skb) >= 0xFFFF)) {
3222 struct sk_buff *nskb;
3223
3224 tcp_skb_tsorted_save(skb) {
3225 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3226 if (nskb) {
3227 nskb->dev = NULL;
3228 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3229 } else {
3230 err = -ENOBUFS;
3231 }
3232 } tcp_skb_tsorted_restore(skb);
3233
3234 if (!err) {
3235 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3236 tcp_rate_skb_sent(sk, skb);
3237 }
3238 } else {
3239 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3240 }
3241
3242 /* To avoid taking spuriously low RTT samples based on a timestamp
3243 * for a transmit that never happened, always mark EVER_RETRANS
3244 */
3245 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3246
3247 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3248 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3249 TCP_SKB_CB(skb)->seq, segs, err);
3250
3251 if (likely(!err)) {
3252 trace_tcp_retransmit_skb(sk, skb);
3253 } else if (err != -EBUSY) {
3254 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3255 }
3256 return err;
3257 }
3258
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3259 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3260 {
3261 struct tcp_sock *tp = tcp_sk(sk);
3262 int err = __tcp_retransmit_skb(sk, skb, segs);
3263
3264 if (err == 0) {
3265 #if FASTRETRANS_DEBUG > 0
3266 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3267 net_dbg_ratelimited("retrans_out leaked\n");
3268 }
3269 #endif
3270 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3271 tp->retrans_out += tcp_skb_pcount(skb);
3272 }
3273
3274 /* Save stamp of the first (attempted) retransmit. */
3275 if (!tp->retrans_stamp)
3276 tp->retrans_stamp = tcp_skb_timestamp(skb);
3277
3278 if (tp->undo_retrans < 0)
3279 tp->undo_retrans = 0;
3280 tp->undo_retrans += tcp_skb_pcount(skb);
3281 return err;
3282 }
3283
3284 /* This gets called after a retransmit timeout, and the initially
3285 * retransmitted data is acknowledged. It tries to continue
3286 * resending the rest of the retransmit queue, until either
3287 * we've sent it all or the congestion window limit is reached.
3288 */
tcp_xmit_retransmit_queue(struct sock * sk)3289 void tcp_xmit_retransmit_queue(struct sock *sk)
3290 {
3291 const struct inet_connection_sock *icsk = inet_csk(sk);
3292 struct sk_buff *skb, *rtx_head, *hole = NULL;
3293 struct tcp_sock *tp = tcp_sk(sk);
3294 bool rearm_timer = false;
3295 u32 max_segs;
3296 int mib_idx;
3297
3298 if (!tp->packets_out)
3299 return;
3300
3301 rtx_head = tcp_rtx_queue_head(sk);
3302 skb = tp->retransmit_skb_hint ?: rtx_head;
3303 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3304 skb_rbtree_walk_from(skb) {
3305 __u8 sacked;
3306 int segs;
3307
3308 if (tcp_pacing_check(sk))
3309 break;
3310
3311 /* we could do better than to assign each time */
3312 if (!hole)
3313 tp->retransmit_skb_hint = skb;
3314
3315 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3316 if (segs <= 0)
3317 break;
3318 sacked = TCP_SKB_CB(skb)->sacked;
3319 /* In case tcp_shift_skb_data() have aggregated large skbs,
3320 * we need to make sure not sending too bigs TSO packets
3321 */
3322 segs = min_t(int, segs, max_segs);
3323
3324 if (tp->retrans_out >= tp->lost_out) {
3325 break;
3326 } else if (!(sacked & TCPCB_LOST)) {
3327 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3328 hole = skb;
3329 continue;
3330
3331 } else {
3332 if (icsk->icsk_ca_state != TCP_CA_Loss)
3333 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3334 else
3335 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3336 }
3337
3338 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3339 continue;
3340
3341 if (tcp_small_queue_check(sk, skb, 1))
3342 break;
3343
3344 if (tcp_retransmit_skb(sk, skb, segs))
3345 break;
3346
3347 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3348
3349 if (tcp_in_cwnd_reduction(sk))
3350 tp->prr_out += tcp_skb_pcount(skb);
3351
3352 if (skb == rtx_head &&
3353 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3354 rearm_timer = true;
3355
3356 }
3357 if (rearm_timer)
3358 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3359 inet_csk(sk)->icsk_rto,
3360 TCP_RTO_MAX);
3361 }
3362
3363 /* We allow to exceed memory limits for FIN packets to expedite
3364 * connection tear down and (memory) recovery.
3365 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3366 * or even be forced to close flow without any FIN.
3367 * In general, we want to allow one skb per socket to avoid hangs
3368 * with edge trigger epoll()
3369 */
sk_forced_mem_schedule(struct sock * sk,int size)3370 void sk_forced_mem_schedule(struct sock *sk, int size)
3371 {
3372 int delta, amt;
3373
3374 delta = size - sk->sk_forward_alloc;
3375 if (delta <= 0)
3376 return;
3377 amt = sk_mem_pages(delta);
3378 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3379 sk_memory_allocated_add(sk, amt);
3380
3381 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3382 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3383 gfp_memcg_charge() | __GFP_NOFAIL);
3384 }
3385
3386 /* Send a FIN. The caller locks the socket for us.
3387 * We should try to send a FIN packet really hard, but eventually give up.
3388 */
tcp_send_fin(struct sock * sk)3389 void tcp_send_fin(struct sock *sk)
3390 {
3391 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3392 struct tcp_sock *tp = tcp_sk(sk);
3393
3394 /* Optimization, tack on the FIN if we have one skb in write queue and
3395 * this skb was not yet sent, or we are under memory pressure.
3396 * Note: in the latter case, FIN packet will be sent after a timeout,
3397 * as TCP stack thinks it has already been transmitted.
3398 */
3399 tskb = tail;
3400 if (!tskb && tcp_under_memory_pressure(sk))
3401 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3402
3403 if (tskb) {
3404 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3405 TCP_SKB_CB(tskb)->end_seq++;
3406 tp->write_seq++;
3407 if (!tail) {
3408 /* This means tskb was already sent.
3409 * Pretend we included the FIN on previous transmit.
3410 * We need to set tp->snd_nxt to the value it would have
3411 * if FIN had been sent. This is because retransmit path
3412 * does not change tp->snd_nxt.
3413 */
3414 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3415 return;
3416 }
3417 } else {
3418 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3419 if (unlikely(!skb))
3420 return;
3421
3422 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3423 skb_reserve(skb, MAX_TCP_HEADER);
3424 sk_forced_mem_schedule(sk, skb->truesize);
3425 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3426 tcp_init_nondata_skb(skb, tp->write_seq,
3427 TCPHDR_ACK | TCPHDR_FIN);
3428 tcp_queue_skb(sk, skb);
3429 }
3430 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3431 }
3432
3433 /* We get here when a process closes a file descriptor (either due to
3434 * an explicit close() or as a byproduct of exit()'ing) and there
3435 * was unread data in the receive queue. This behavior is recommended
3436 * by RFC 2525, section 2.17. -DaveM
3437 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3438 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3439 {
3440 struct sk_buff *skb;
3441
3442 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3443
3444 /* NOTE: No TCP options attached and we never retransmit this. */
3445 skb = alloc_skb(MAX_TCP_HEADER, priority);
3446 if (!skb) {
3447 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3448 return;
3449 }
3450
3451 /* Reserve space for headers and prepare control bits. */
3452 skb_reserve(skb, MAX_TCP_HEADER);
3453 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3454 TCPHDR_ACK | TCPHDR_RST);
3455 tcp_mstamp_refresh(tcp_sk(sk));
3456 /* Send it off. */
3457 if (tcp_transmit_skb(sk, skb, 0, priority))
3458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3459
3460 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3461 * skb here is different to the troublesome skb, so use NULL
3462 */
3463 trace_tcp_send_reset(sk, NULL);
3464 }
3465
3466 /* Send a crossed SYN-ACK during socket establishment.
3467 * WARNING: This routine must only be called when we have already sent
3468 * a SYN packet that crossed the incoming SYN that caused this routine
3469 * to get called. If this assumption fails then the initial rcv_wnd
3470 * and rcv_wscale values will not be correct.
3471 */
tcp_send_synack(struct sock * sk)3472 int tcp_send_synack(struct sock *sk)
3473 {
3474 struct sk_buff *skb;
3475
3476 skb = tcp_rtx_queue_head(sk);
3477 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3478 pr_err("%s: wrong queue state\n", __func__);
3479 return -EFAULT;
3480 }
3481 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3482 if (skb_cloned(skb)) {
3483 struct sk_buff *nskb;
3484
3485 tcp_skb_tsorted_save(skb) {
3486 nskb = skb_copy(skb, GFP_ATOMIC);
3487 } tcp_skb_tsorted_restore(skb);
3488 if (!nskb)
3489 return -ENOMEM;
3490 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3491 tcp_highest_sack_replace(sk, skb, nskb);
3492 tcp_rtx_queue_unlink_and_free(skb, sk);
3493 __skb_header_release(nskb);
3494 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3495 sk_wmem_queued_add(sk, nskb->truesize);
3496 sk_mem_charge(sk, nskb->truesize);
3497 skb = nskb;
3498 }
3499
3500 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3501 tcp_ecn_send_synack(sk, skb);
3502 }
3503 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3504 }
3505
3506 /**
3507 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3508 * @sk: listener socket
3509 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3510 * should not use it again.
3511 * @req: request_sock pointer
3512 * @foc: cookie for tcp fast open
3513 * @synack_type: Type of synack to prepare
3514 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3515 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3516 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3517 struct request_sock *req,
3518 struct tcp_fastopen_cookie *foc,
3519 enum tcp_synack_type synack_type,
3520 struct sk_buff *syn_skb)
3521 {
3522 struct inet_request_sock *ireq = inet_rsk(req);
3523 const struct tcp_sock *tp = tcp_sk(sk);
3524 struct tcp_md5sig_key *md5 = NULL;
3525 struct tcp_out_options opts;
3526 struct sk_buff *skb;
3527 int tcp_header_size;
3528 struct tcphdr *th;
3529 int mss;
3530 u64 now;
3531
3532 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3533 if (unlikely(!skb)) {
3534 dst_release(dst);
3535 return NULL;
3536 }
3537 /* Reserve space for headers. */
3538 skb_reserve(skb, MAX_TCP_HEADER);
3539
3540 switch (synack_type) {
3541 case TCP_SYNACK_NORMAL:
3542 skb_set_owner_w(skb, req_to_sk(req));
3543 break;
3544 case TCP_SYNACK_COOKIE:
3545 /* Under synflood, we do not attach skb to a socket,
3546 * to avoid false sharing.
3547 */
3548 break;
3549 case TCP_SYNACK_FASTOPEN:
3550 /* sk is a const pointer, because we want to express multiple
3551 * cpu might call us concurrently.
3552 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3553 */
3554 skb_set_owner_w(skb, (struct sock *)sk);
3555 break;
3556 }
3557 skb_dst_set(skb, dst);
3558
3559 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3560
3561 memset(&opts, 0, sizeof(opts));
3562 now = tcp_clock_ns();
3563 #ifdef CONFIG_SYN_COOKIES
3564 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3565 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3566 true);
3567 else
3568 #endif
3569 {
3570 skb_set_delivery_time(skb, now, true);
3571 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3572 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3573 }
3574
3575 #ifdef CONFIG_TCP_MD5SIG
3576 rcu_read_lock();
3577 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3578 #endif
3579 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3580 /* bpf program will be interested in the tcp_flags */
3581 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3582 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3583 foc, synack_type,
3584 syn_skb) + sizeof(*th);
3585
3586 skb_push(skb, tcp_header_size);
3587 skb_reset_transport_header(skb);
3588
3589 th = (struct tcphdr *)skb->data;
3590 memset(th, 0, sizeof(struct tcphdr));
3591 th->syn = 1;
3592 th->ack = 1;
3593 tcp_ecn_make_synack(req, th);
3594 th->source = htons(ireq->ir_num);
3595 th->dest = ireq->ir_rmt_port;
3596 skb->mark = ireq->ir_mark;
3597 skb->ip_summed = CHECKSUM_PARTIAL;
3598 th->seq = htonl(tcp_rsk(req)->snt_isn);
3599 /* XXX data is queued and acked as is. No buffer/window check */
3600 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3601
3602 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3603 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3604 tcp_options_write(th, NULL, &opts);
3605 th->doff = (tcp_header_size >> 2);
3606 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3607
3608 #ifdef CONFIG_TCP_MD5SIG
3609 /* Okay, we have all we need - do the md5 hash if needed */
3610 if (md5)
3611 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3612 md5, req_to_sk(req), skb);
3613 rcu_read_unlock();
3614 #endif
3615
3616 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3617 synack_type, &opts);
3618
3619 skb_set_delivery_time(skb, now, true);
3620 tcp_add_tx_delay(skb, tp);
3621
3622 return skb;
3623 }
3624 EXPORT_SYMBOL(tcp_make_synack);
3625
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3626 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3627 {
3628 struct inet_connection_sock *icsk = inet_csk(sk);
3629 const struct tcp_congestion_ops *ca;
3630 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3631
3632 if (ca_key == TCP_CA_UNSPEC)
3633 return;
3634
3635 rcu_read_lock();
3636 ca = tcp_ca_find_key(ca_key);
3637 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3638 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3639 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3640 icsk->icsk_ca_ops = ca;
3641 }
3642 rcu_read_unlock();
3643 }
3644
3645 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3646 static void tcp_connect_init(struct sock *sk)
3647 {
3648 const struct dst_entry *dst = __sk_dst_get(sk);
3649 struct tcp_sock *tp = tcp_sk(sk);
3650 __u8 rcv_wscale;
3651 u32 rcv_wnd;
3652
3653 /* We'll fix this up when we get a response from the other end.
3654 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3655 */
3656 tp->tcp_header_len = sizeof(struct tcphdr);
3657 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3658 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3659
3660 #ifdef CONFIG_TCP_MD5SIG
3661 if (tp->af_specific->md5_lookup(sk, sk))
3662 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3663 #endif
3664
3665 /* If user gave his TCP_MAXSEG, record it to clamp */
3666 if (tp->rx_opt.user_mss)
3667 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3668 tp->max_window = 0;
3669 tcp_mtup_init(sk);
3670 tcp_sync_mss(sk, dst_mtu(dst));
3671
3672 tcp_ca_dst_init(sk, dst);
3673
3674 if (!tp->window_clamp)
3675 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3676 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3677
3678 tcp_initialize_rcv_mss(sk);
3679
3680 /* limit the window selection if the user enforce a smaller rx buffer */
3681 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3682 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3683 tp->window_clamp = tcp_full_space(sk);
3684
3685 rcv_wnd = tcp_rwnd_init_bpf(sk);
3686 if (rcv_wnd == 0)
3687 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3688
3689 tcp_select_initial_window(sk, tcp_full_space(sk),
3690 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3691 &tp->rcv_wnd,
3692 &tp->window_clamp,
3693 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3694 &rcv_wscale,
3695 rcv_wnd);
3696
3697 tp->rx_opt.rcv_wscale = rcv_wscale;
3698 tp->rcv_ssthresh = tp->rcv_wnd;
3699
3700 sk->sk_err = 0;
3701 sock_reset_flag(sk, SOCK_DONE);
3702 tp->snd_wnd = 0;
3703 tcp_init_wl(tp, 0);
3704 tcp_write_queue_purge(sk);
3705 tp->snd_una = tp->write_seq;
3706 tp->snd_sml = tp->write_seq;
3707 tp->snd_up = tp->write_seq;
3708 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3709
3710 if (likely(!tp->repair))
3711 tp->rcv_nxt = 0;
3712 else
3713 tp->rcv_tstamp = tcp_jiffies32;
3714 tp->rcv_wup = tp->rcv_nxt;
3715 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3716
3717 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3718 inet_csk(sk)->icsk_retransmits = 0;
3719 tcp_clear_retrans(tp);
3720 }
3721
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3722 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3723 {
3724 struct tcp_sock *tp = tcp_sk(sk);
3725 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3726
3727 tcb->end_seq += skb->len;
3728 __skb_header_release(skb);
3729 sk_wmem_queued_add(sk, skb->truesize);
3730 sk_mem_charge(sk, skb->truesize);
3731 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3732 tp->packets_out += tcp_skb_pcount(skb);
3733 }
3734
3735 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3736 * queue a data-only packet after the regular SYN, such that regular SYNs
3737 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3738 * only the SYN sequence, the data are retransmitted in the first ACK.
3739 * If cookie is not cached or other error occurs, falls back to send a
3740 * regular SYN with Fast Open cookie request option.
3741 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3742 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3743 {
3744 struct inet_connection_sock *icsk = inet_csk(sk);
3745 struct tcp_sock *tp = tcp_sk(sk);
3746 struct tcp_fastopen_request *fo = tp->fastopen_req;
3747 int space, err = 0;
3748 struct sk_buff *syn_data;
3749
3750 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3751 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3752 goto fallback;
3753
3754 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3755 * user-MSS. Reserve maximum option space for middleboxes that add
3756 * private TCP options. The cost is reduced data space in SYN :(
3757 */
3758 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3759 /* Sync mss_cache after updating the mss_clamp */
3760 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3761
3762 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3763 MAX_TCP_OPTION_SPACE;
3764
3765 space = min_t(size_t, space, fo->size);
3766
3767 /* limit to order-0 allocations */
3768 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3769
3770 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3771 if (!syn_data)
3772 goto fallback;
3773 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3774 if (space) {
3775 int copied = copy_from_iter(skb_put(syn_data, space), space,
3776 &fo->data->msg_iter);
3777 if (unlikely(!copied)) {
3778 tcp_skb_tsorted_anchor_cleanup(syn_data);
3779 kfree_skb(syn_data);
3780 goto fallback;
3781 }
3782 if (copied != space) {
3783 skb_trim(syn_data, copied);
3784 space = copied;
3785 }
3786 skb_zcopy_set(syn_data, fo->uarg, NULL);
3787 }
3788 /* No more data pending in inet_wait_for_connect() */
3789 if (space == fo->size)
3790 fo->data = NULL;
3791 fo->copied = space;
3792
3793 tcp_connect_queue_skb(sk, syn_data);
3794 if (syn_data->len)
3795 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3796
3797 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3798
3799 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3800
3801 /* Now full SYN+DATA was cloned and sent (or not),
3802 * remove the SYN from the original skb (syn_data)
3803 * we keep in write queue in case of a retransmit, as we
3804 * also have the SYN packet (with no data) in the same queue.
3805 */
3806 TCP_SKB_CB(syn_data)->seq++;
3807 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3808 if (!err) {
3809 tp->syn_data = (fo->copied > 0);
3810 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3812 goto done;
3813 }
3814
3815 /* data was not sent, put it in write_queue */
3816 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3817 tp->packets_out -= tcp_skb_pcount(syn_data);
3818
3819 fallback:
3820 /* Send a regular SYN with Fast Open cookie request option */
3821 if (fo->cookie.len > 0)
3822 fo->cookie.len = 0;
3823 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3824 if (err)
3825 tp->syn_fastopen = 0;
3826 done:
3827 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3828 return err;
3829 }
3830
3831 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3832 int tcp_connect(struct sock *sk)
3833 {
3834 struct tcp_sock *tp = tcp_sk(sk);
3835 struct sk_buff *buff;
3836 int err;
3837
3838 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3839
3840 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3841 return -EHOSTUNREACH; /* Routing failure or similar. */
3842
3843 tcp_connect_init(sk);
3844
3845 if (unlikely(tp->repair)) {
3846 tcp_finish_connect(sk, NULL);
3847 return 0;
3848 }
3849
3850 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3851 if (unlikely(!buff))
3852 return -ENOBUFS;
3853
3854 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3855 tcp_mstamp_refresh(tp);
3856 tp->retrans_stamp = tcp_time_stamp(tp);
3857 tcp_connect_queue_skb(sk, buff);
3858 tcp_ecn_send_syn(sk, buff);
3859 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3860
3861 /* Send off SYN; include data in Fast Open. */
3862 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3863 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3864 if (err == -ECONNREFUSED)
3865 return err;
3866
3867 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3868 * in order to make this packet get counted in tcpOutSegs.
3869 */
3870 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3871 tp->pushed_seq = tp->write_seq;
3872 buff = tcp_send_head(sk);
3873 if (unlikely(buff)) {
3874 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3875 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3876 }
3877 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3878
3879 /* Timer for repeating the SYN until an answer. */
3880 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3881 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3882 return 0;
3883 }
3884 EXPORT_SYMBOL(tcp_connect);
3885
3886 /* Send out a delayed ack, the caller does the policy checking
3887 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3888 * for details.
3889 */
tcp_send_delayed_ack(struct sock * sk)3890 void tcp_send_delayed_ack(struct sock *sk)
3891 {
3892 struct inet_connection_sock *icsk = inet_csk(sk);
3893 int ato = icsk->icsk_ack.ato;
3894 unsigned long timeout;
3895
3896 if (ato > TCP_DELACK_MIN) {
3897 const struct tcp_sock *tp = tcp_sk(sk);
3898 int max_ato = HZ / 2;
3899
3900 if (inet_csk_in_pingpong_mode(sk) ||
3901 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3902 max_ato = TCP_DELACK_MAX;
3903
3904 /* Slow path, intersegment interval is "high". */
3905
3906 /* If some rtt estimate is known, use it to bound delayed ack.
3907 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3908 * directly.
3909 */
3910 if (tp->srtt_us) {
3911 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3912 TCP_DELACK_MIN);
3913
3914 if (rtt < max_ato)
3915 max_ato = rtt;
3916 }
3917
3918 ato = min(ato, max_ato);
3919 }
3920
3921 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3922
3923 /* Stay within the limit we were given */
3924 timeout = jiffies + ato;
3925
3926 /* Use new timeout only if there wasn't a older one earlier. */
3927 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3928 /* If delack timer is about to expire, send ACK now. */
3929 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3930 tcp_send_ack(sk);
3931 return;
3932 }
3933
3934 if (!time_before(timeout, icsk->icsk_ack.timeout))
3935 timeout = icsk->icsk_ack.timeout;
3936 }
3937 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3938 icsk->icsk_ack.timeout = timeout;
3939 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3940 }
3941
3942 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3943 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3944 {
3945 struct sk_buff *buff;
3946
3947 /* If we have been reset, we may not send again. */
3948 if (sk->sk_state == TCP_CLOSE)
3949 return;
3950
3951 /* We are not putting this on the write queue, so
3952 * tcp_transmit_skb() will set the ownership to this
3953 * sock.
3954 */
3955 buff = alloc_skb(MAX_TCP_HEADER,
3956 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3957 if (unlikely(!buff)) {
3958 struct inet_connection_sock *icsk = inet_csk(sk);
3959 unsigned long delay;
3960
3961 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3962 if (delay < TCP_RTO_MAX)
3963 icsk->icsk_ack.retry++;
3964 inet_csk_schedule_ack(sk);
3965 icsk->icsk_ack.ato = TCP_ATO_MIN;
3966 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3967 return;
3968 }
3969
3970 /* Reserve space for headers and prepare control bits. */
3971 skb_reserve(buff, MAX_TCP_HEADER);
3972 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3973
3974 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3975 * too much.
3976 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3977 */
3978 skb_set_tcp_pure_ack(buff);
3979
3980 /* Send it off, this clears delayed acks for us. */
3981 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3982 }
3983 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3984
tcp_send_ack(struct sock * sk)3985 void tcp_send_ack(struct sock *sk)
3986 {
3987 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3988 }
3989
3990 /* This routine sends a packet with an out of date sequence
3991 * number. It assumes the other end will try to ack it.
3992 *
3993 * Question: what should we make while urgent mode?
3994 * 4.4BSD forces sending single byte of data. We cannot send
3995 * out of window data, because we have SND.NXT==SND.MAX...
3996 *
3997 * Current solution: to send TWO zero-length segments in urgent mode:
3998 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3999 * out-of-date with SND.UNA-1 to probe window.
4000 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4001 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4002 {
4003 struct tcp_sock *tp = tcp_sk(sk);
4004 struct sk_buff *skb;
4005
4006 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4007 skb = alloc_skb(MAX_TCP_HEADER,
4008 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4009 if (!skb)
4010 return -1;
4011
4012 /* Reserve space for headers and set control bits. */
4013 skb_reserve(skb, MAX_TCP_HEADER);
4014 /* Use a previous sequence. This should cause the other
4015 * end to send an ack. Don't queue or clone SKB, just
4016 * send it.
4017 */
4018 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4019 NET_INC_STATS(sock_net(sk), mib);
4020 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4021 }
4022
4023 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4024 void tcp_send_window_probe(struct sock *sk)
4025 {
4026 if (sk->sk_state == TCP_ESTABLISHED) {
4027 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4028 tcp_mstamp_refresh(tcp_sk(sk));
4029 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4030 }
4031 }
4032
4033 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4034 int tcp_write_wakeup(struct sock *sk, int mib)
4035 {
4036 struct tcp_sock *tp = tcp_sk(sk);
4037 struct sk_buff *skb;
4038
4039 if (sk->sk_state == TCP_CLOSE)
4040 return -1;
4041
4042 skb = tcp_send_head(sk);
4043 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4044 int err;
4045 unsigned int mss = tcp_current_mss(sk);
4046 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4047
4048 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4049 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4050
4051 /* We are probing the opening of a window
4052 * but the window size is != 0
4053 * must have been a result SWS avoidance ( sender )
4054 */
4055 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4056 skb->len > mss) {
4057 seg_size = min(seg_size, mss);
4058 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4059 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4060 skb, seg_size, mss, GFP_ATOMIC))
4061 return -1;
4062 } else if (!tcp_skb_pcount(skb))
4063 tcp_set_skb_tso_segs(skb, mss);
4064
4065 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4066 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4067 if (!err)
4068 tcp_event_new_data_sent(sk, skb);
4069 return err;
4070 } else {
4071 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4072 tcp_xmit_probe_skb(sk, 1, mib);
4073 return tcp_xmit_probe_skb(sk, 0, mib);
4074 }
4075 }
4076
4077 /* A window probe timeout has occurred. If window is not closed send
4078 * a partial packet else a zero probe.
4079 */
tcp_send_probe0(struct sock * sk)4080 void tcp_send_probe0(struct sock *sk)
4081 {
4082 struct inet_connection_sock *icsk = inet_csk(sk);
4083 struct tcp_sock *tp = tcp_sk(sk);
4084 struct net *net = sock_net(sk);
4085 unsigned long timeout;
4086 int err;
4087
4088 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4089
4090 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4091 /* Cancel probe timer, if it is not required. */
4092 icsk->icsk_probes_out = 0;
4093 icsk->icsk_backoff = 0;
4094 icsk->icsk_probes_tstamp = 0;
4095 return;
4096 }
4097
4098 icsk->icsk_probes_out++;
4099 if (err <= 0) {
4100 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4101 icsk->icsk_backoff++;
4102 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4103 } else {
4104 /* If packet was not sent due to local congestion,
4105 * Let senders fight for local resources conservatively.
4106 */
4107 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4108 }
4109
4110 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4111 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4112 }
4113
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4114 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4115 {
4116 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4117 struct flowi fl;
4118 int res;
4119
4120 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4121 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4122 tcp_rsk(req)->txhash = net_tx_rndhash();
4123 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4124 NULL);
4125 if (!res) {
4126 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4127 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4128 if (unlikely(tcp_passive_fastopen(sk)))
4129 tcp_sk(sk)->total_retrans++;
4130 trace_tcp_retransmit_synack(sk, req);
4131 }
4132 return res;
4133 }
4134 EXPORT_SYMBOL(tcp_rtx_synack);
4135