1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_frto_response __read_mostly;
99 int sysctl_tcp_nometrics_save __read_mostly;
100 
101 int sysctl_tcp_thin_dupack __read_mostly;
102 
103 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
104 int sysctl_tcp_abc __read_mostly;
105 
106 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
107 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
108 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
109 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
110 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
111 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
112 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
113 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
120 
121 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
125 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
126 
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
128 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
129 
130 /* Adapt the MSS value used to make delayed ack decision to the
131  * real world.
132  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)133 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
134 {
135 	struct inet_connection_sock *icsk = inet_csk(sk);
136 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
137 	unsigned int len;
138 
139 	icsk->icsk_ack.last_seg_size = 0;
140 
141 	/* skb->len may jitter because of SACKs, even if peer
142 	 * sends good full-sized frames.
143 	 */
144 	len = skb_shinfo(skb)->gso_size ? : skb->len;
145 	if (len >= icsk->icsk_ack.rcv_mss) {
146 		icsk->icsk_ack.rcv_mss = len;
147 	} else {
148 		/* Otherwise, we make more careful check taking into account,
149 		 * that SACKs block is variable.
150 		 *
151 		 * "len" is invariant segment length, including TCP header.
152 		 */
153 		len += skb->data - skb_transport_header(skb);
154 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
155 		    /* If PSH is not set, packet should be
156 		     * full sized, provided peer TCP is not badly broken.
157 		     * This observation (if it is correct 8)) allows
158 		     * to handle super-low mtu links fairly.
159 		     */
160 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
161 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
162 			/* Subtract also invariant (if peer is RFC compliant),
163 			 * tcp header plus fixed timestamp option length.
164 			 * Resulting "len" is MSS free of SACK jitter.
165 			 */
166 			len -= tcp_sk(sk)->tcp_header_len;
167 			icsk->icsk_ack.last_seg_size = len;
168 			if (len == lss) {
169 				icsk->icsk_ack.rcv_mss = len;
170 				return;
171 			}
172 		}
173 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
174 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
175 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
176 	}
177 }
178 
tcp_incr_quickack(struct sock * sk)179 static void tcp_incr_quickack(struct sock *sk)
180 {
181 	struct inet_connection_sock *icsk = inet_csk(sk);
182 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
183 
184 	if (quickacks == 0)
185 		quickacks = 2;
186 	if (quickacks > icsk->icsk_ack.quick)
187 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
188 }
189 
tcp_enter_quickack_mode(struct sock * sk)190 static void tcp_enter_quickack_mode(struct sock *sk)
191 {
192 	struct inet_connection_sock *icsk = inet_csk(sk);
193 	tcp_incr_quickack(sk);
194 	icsk->icsk_ack.pingpong = 0;
195 	icsk->icsk_ack.ato = TCP_ATO_MIN;
196 }
197 
198 /* Send ACKs quickly, if "quick" count is not exhausted
199  * and the session is not interactive.
200  */
201 
tcp_in_quickack_mode(const struct sock * sk)202 static inline int tcp_in_quickack_mode(const struct sock *sk)
203 {
204 	const struct inet_connection_sock *icsk = inet_csk(sk);
205 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207 
TCP_ECN_queue_cwr(struct tcp_sock * tp)208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210 	if (tp->ecn_flags & TCP_ECN_OK)
211 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 }
213 
TCP_ECN_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216 	if (tcp_hdr(skb)->cwr)
217 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
TCP_ECN_withdraw_cwr(struct tcp_sock * tp)220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
222 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224 
TCP_ECN_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 	if (!(tp->ecn_flags & TCP_ECN_OK))
228 		return;
229 
230 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231 	case INET_ECN_NOT_ECT:
232 		/* Funny extension: if ECT is not set on a segment,
233 		 * and we already seen ECT on a previous segment,
234 		 * it is probably a retransmit.
235 		 */
236 		if (tp->ecn_flags & TCP_ECN_SEEN)
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 		break;
239 	case INET_ECN_CE:
240 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 		/* fallinto */
242 	default:
243 		tp->ecn_flags |= TCP_ECN_SEEN;
244 	}
245 }
246 
TCP_ECN_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 		tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252 
TCP_ECN_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 		tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258 
TCP_ECN_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)259 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 		return 1;
263 	return 0;
264 }
265 
266 /* Buffer size and advertised window tuning.
267  *
268  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269  */
270 
tcp_fixup_sndbuf(struct sock * sk)271 static void tcp_fixup_sndbuf(struct sock *sk)
272 {
273 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
274 
275 	sndmem *= TCP_INIT_CWND;
276 	if (sk->sk_sndbuf < sndmem)
277 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
278 }
279 
280 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281  *
282  * All tcp_full_space() is split to two parts: "network" buffer, allocated
283  * forward and advertised in receiver window (tp->rcv_wnd) and
284  * "application buffer", required to isolate scheduling/application
285  * latencies from network.
286  * window_clamp is maximal advertised window. It can be less than
287  * tcp_full_space(), in this case tcp_full_space() - window_clamp
288  * is reserved for "application" buffer. The less window_clamp is
289  * the smoother our behaviour from viewpoint of network, but the lower
290  * throughput and the higher sensitivity of the connection to losses. 8)
291  *
292  * rcv_ssthresh is more strict window_clamp used at "slow start"
293  * phase to predict further behaviour of this connection.
294  * It is used for two goals:
295  * - to enforce header prediction at sender, even when application
296  *   requires some significant "application buffer". It is check #1.
297  * - to prevent pruning of receive queue because of misprediction
298  *   of receiver window. Check #2.
299  *
300  * The scheme does not work when sender sends good segments opening
301  * window and then starts to feed us spaghetti. But it should work
302  * in common situations. Otherwise, we have to rely on queue collapsing.
303  */
304 
305 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)306 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
307 {
308 	struct tcp_sock *tp = tcp_sk(sk);
309 	/* Optimize this! */
310 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
311 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
312 
313 	while (tp->rcv_ssthresh <= window) {
314 		if (truesize <= skb->len)
315 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
316 
317 		truesize >>= 1;
318 		window >>= 1;
319 	}
320 	return 0;
321 }
322 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)323 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
324 {
325 	struct tcp_sock *tp = tcp_sk(sk);
326 
327 	/* Check #1 */
328 	if (tp->rcv_ssthresh < tp->window_clamp &&
329 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
330 	    !sk_under_memory_pressure(sk)) {
331 		int incr;
332 
333 		/* Check #2. Increase window, if skb with such overhead
334 		 * will fit to rcvbuf in future.
335 		 */
336 		if (tcp_win_from_space(skb->truesize) <= skb->len)
337 			incr = 2 * tp->advmss;
338 		else
339 			incr = __tcp_grow_window(sk, skb);
340 
341 		if (incr) {
342 			incr = max_t(int, incr, 2 * skb->len);
343 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
344 					       tp->window_clamp);
345 			inet_csk(sk)->icsk_ack.quick |= 1;
346 		}
347 	}
348 }
349 
350 /* 3. Tuning rcvbuf, when connection enters established state. */
351 
tcp_fixup_rcvbuf(struct sock * sk)352 static void tcp_fixup_rcvbuf(struct sock *sk)
353 {
354 	u32 mss = tcp_sk(sk)->advmss;
355 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
356 	int rcvmem;
357 
358 	/* Limit to 10 segments if mss <= 1460,
359 	 * or 14600/mss segments, with a minimum of two segments.
360 	 */
361 	if (mss > 1460)
362 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
363 
364 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
365 	while (tcp_win_from_space(rcvmem) < mss)
366 		rcvmem += 128;
367 
368 	rcvmem *= icwnd;
369 
370 	if (sk->sk_rcvbuf < rcvmem)
371 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
372 }
373 
374 /* 4. Try to fixup all. It is made immediately after connection enters
375  *    established state.
376  */
tcp_init_buffer_space(struct sock * sk)377 static void tcp_init_buffer_space(struct sock *sk)
378 {
379 	struct tcp_sock *tp = tcp_sk(sk);
380 	int maxwin;
381 
382 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
383 		tcp_fixup_rcvbuf(sk);
384 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
385 		tcp_fixup_sndbuf(sk);
386 
387 	tp->rcvq_space.space = tp->rcv_wnd;
388 
389 	maxwin = tcp_full_space(sk);
390 
391 	if (tp->window_clamp >= maxwin) {
392 		tp->window_clamp = maxwin;
393 
394 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
395 			tp->window_clamp = max(maxwin -
396 					       (maxwin >> sysctl_tcp_app_win),
397 					       4 * tp->advmss);
398 	}
399 
400 	/* Force reservation of one segment. */
401 	if (sysctl_tcp_app_win &&
402 	    tp->window_clamp > 2 * tp->advmss &&
403 	    tp->window_clamp + tp->advmss > maxwin)
404 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
405 
406 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
407 	tp->snd_cwnd_stamp = tcp_time_stamp;
408 }
409 
410 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)411 static void tcp_clamp_window(struct sock *sk)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 
416 	icsk->icsk_ack.quick = 0;
417 
418 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
419 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
420 	    !sk_under_memory_pressure(sk) &&
421 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
422 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
423 				    sysctl_tcp_rmem[2]);
424 	}
425 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
426 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
427 }
428 
429 /* Initialize RCV_MSS value.
430  * RCV_MSS is an our guess about MSS used by the peer.
431  * We haven't any direct information about the MSS.
432  * It's better to underestimate the RCV_MSS rather than overestimate.
433  * Overestimations make us ACKing less frequently than needed.
434  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
435  */
tcp_initialize_rcv_mss(struct sock * sk)436 void tcp_initialize_rcv_mss(struct sock *sk)
437 {
438 	const struct tcp_sock *tp = tcp_sk(sk);
439 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
440 
441 	hint = min(hint, tp->rcv_wnd / 2);
442 	hint = min(hint, TCP_MSS_DEFAULT);
443 	hint = max(hint, TCP_MIN_MSS);
444 
445 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
446 }
447 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
448 
449 /* Receiver "autotuning" code.
450  *
451  * The algorithm for RTT estimation w/o timestamps is based on
452  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
453  * <http://public.lanl.gov/radiant/pubs.html#DRS>
454  *
455  * More detail on this code can be found at
456  * <http://staff.psc.edu/jheffner/>,
457  * though this reference is out of date.  A new paper
458  * is pending.
459  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)460 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
461 {
462 	u32 new_sample = tp->rcv_rtt_est.rtt;
463 	long m = sample;
464 
465 	if (m == 0)
466 		m = 1;
467 
468 	if (new_sample != 0) {
469 		/* If we sample in larger samples in the non-timestamp
470 		 * case, we could grossly overestimate the RTT especially
471 		 * with chatty applications or bulk transfer apps which
472 		 * are stalled on filesystem I/O.
473 		 *
474 		 * Also, since we are only going for a minimum in the
475 		 * non-timestamp case, we do not smooth things out
476 		 * else with timestamps disabled convergence takes too
477 		 * long.
478 		 */
479 		if (!win_dep) {
480 			m -= (new_sample >> 3);
481 			new_sample += m;
482 		} else {
483 			m <<= 3;
484 			if (m < new_sample)
485 				new_sample = m;
486 		}
487 	} else {
488 		/* No previous measure. */
489 		new_sample = m << 3;
490 	}
491 
492 	if (tp->rcv_rtt_est.rtt != new_sample)
493 		tp->rcv_rtt_est.rtt = new_sample;
494 }
495 
tcp_rcv_rtt_measure(struct tcp_sock * tp)496 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
497 {
498 	if (tp->rcv_rtt_est.time == 0)
499 		goto new_measure;
500 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
501 		return;
502 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
503 
504 new_measure:
505 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
506 	tp->rcv_rtt_est.time = tcp_time_stamp;
507 }
508 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)509 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
510 					  const struct sk_buff *skb)
511 {
512 	struct tcp_sock *tp = tcp_sk(sk);
513 	if (tp->rx_opt.rcv_tsecr &&
514 	    (TCP_SKB_CB(skb)->end_seq -
515 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
516 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
517 }
518 
519 /*
520  * This function should be called every time data is copied to user space.
521  * It calculates the appropriate TCP receive buffer space.
522  */
tcp_rcv_space_adjust(struct sock * sk)523 void tcp_rcv_space_adjust(struct sock *sk)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	int time;
527 	int space;
528 
529 	if (tp->rcvq_space.time == 0)
530 		goto new_measure;
531 
532 	time = tcp_time_stamp - tp->rcvq_space.time;
533 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
534 		return;
535 
536 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
537 
538 	space = max(tp->rcvq_space.space, space);
539 
540 	if (tp->rcvq_space.space != space) {
541 		int rcvmem;
542 
543 		tp->rcvq_space.space = space;
544 
545 		if (sysctl_tcp_moderate_rcvbuf &&
546 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
547 			int new_clamp = space;
548 
549 			/* Receive space grows, normalize in order to
550 			 * take into account packet headers and sk_buff
551 			 * structure overhead.
552 			 */
553 			space /= tp->advmss;
554 			if (!space)
555 				space = 1;
556 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
557 			while (tcp_win_from_space(rcvmem) < tp->advmss)
558 				rcvmem += 128;
559 			space *= rcvmem;
560 			space = min(space, sysctl_tcp_rmem[2]);
561 			if (space > sk->sk_rcvbuf) {
562 				sk->sk_rcvbuf = space;
563 
564 				/* Make the window clamp follow along.  */
565 				tp->window_clamp = new_clamp;
566 			}
567 		}
568 	}
569 
570 new_measure:
571 	tp->rcvq_space.seq = tp->copied_seq;
572 	tp->rcvq_space.time = tcp_time_stamp;
573 }
574 
575 /* There is something which you must keep in mind when you analyze the
576  * behavior of the tp->ato delayed ack timeout interval.  When a
577  * connection starts up, we want to ack as quickly as possible.  The
578  * problem is that "good" TCP's do slow start at the beginning of data
579  * transmission.  The means that until we send the first few ACK's the
580  * sender will sit on his end and only queue most of his data, because
581  * he can only send snd_cwnd unacked packets at any given time.  For
582  * each ACK we send, he increments snd_cwnd and transmits more of his
583  * queue.  -DaveM
584  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)585 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
586 {
587 	struct tcp_sock *tp = tcp_sk(sk);
588 	struct inet_connection_sock *icsk = inet_csk(sk);
589 	u32 now;
590 
591 	inet_csk_schedule_ack(sk);
592 
593 	tcp_measure_rcv_mss(sk, skb);
594 
595 	tcp_rcv_rtt_measure(tp);
596 
597 	now = tcp_time_stamp;
598 
599 	if (!icsk->icsk_ack.ato) {
600 		/* The _first_ data packet received, initialize
601 		 * delayed ACK engine.
602 		 */
603 		tcp_incr_quickack(sk);
604 		icsk->icsk_ack.ato = TCP_ATO_MIN;
605 	} else {
606 		int m = now - icsk->icsk_ack.lrcvtime;
607 
608 		if (m <= TCP_ATO_MIN / 2) {
609 			/* The fastest case is the first. */
610 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
611 		} else if (m < icsk->icsk_ack.ato) {
612 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
613 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
614 				icsk->icsk_ack.ato = icsk->icsk_rto;
615 		} else if (m > icsk->icsk_rto) {
616 			/* Too long gap. Apparently sender failed to
617 			 * restart window, so that we send ACKs quickly.
618 			 */
619 			tcp_incr_quickack(sk);
620 			sk_mem_reclaim(sk);
621 		}
622 	}
623 	icsk->icsk_ack.lrcvtime = now;
624 
625 	TCP_ECN_check_ce(tp, skb);
626 
627 	if (skb->len >= 128)
628 		tcp_grow_window(sk, skb);
629 }
630 
631 /* Called to compute a smoothed rtt estimate. The data fed to this
632  * routine either comes from timestamps, or from segments that were
633  * known _not_ to have been retransmitted [see Karn/Partridge
634  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
635  * piece by Van Jacobson.
636  * NOTE: the next three routines used to be one big routine.
637  * To save cycles in the RFC 1323 implementation it was better to break
638  * it up into three procedures. -- erics
639  */
tcp_rtt_estimator(struct sock * sk,const __u32 mrtt)640 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
641 {
642 	struct tcp_sock *tp = tcp_sk(sk);
643 	long m = mrtt; /* RTT */
644 
645 	/*	The following amusing code comes from Jacobson's
646 	 *	article in SIGCOMM '88.  Note that rtt and mdev
647 	 *	are scaled versions of rtt and mean deviation.
648 	 *	This is designed to be as fast as possible
649 	 *	m stands for "measurement".
650 	 *
651 	 *	On a 1990 paper the rto value is changed to:
652 	 *	RTO = rtt + 4 * mdev
653 	 *
654 	 * Funny. This algorithm seems to be very broken.
655 	 * These formulae increase RTO, when it should be decreased, increase
656 	 * too slowly, when it should be increased quickly, decrease too quickly
657 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
658 	 * does not matter how to _calculate_ it. Seems, it was trap
659 	 * that VJ failed to avoid. 8)
660 	 */
661 	if (m == 0)
662 		m = 1;
663 	if (tp->srtt != 0) {
664 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
665 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
666 		if (m < 0) {
667 			m = -m;		/* m is now abs(error) */
668 			m -= (tp->mdev >> 2);   /* similar update on mdev */
669 			/* This is similar to one of Eifel findings.
670 			 * Eifel blocks mdev updates when rtt decreases.
671 			 * This solution is a bit different: we use finer gain
672 			 * for mdev in this case (alpha*beta).
673 			 * Like Eifel it also prevents growth of rto,
674 			 * but also it limits too fast rto decreases,
675 			 * happening in pure Eifel.
676 			 */
677 			if (m > 0)
678 				m >>= 3;
679 		} else {
680 			m -= (tp->mdev >> 2);   /* similar update on mdev */
681 		}
682 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
683 		if (tp->mdev > tp->mdev_max) {
684 			tp->mdev_max = tp->mdev;
685 			if (tp->mdev_max > tp->rttvar)
686 				tp->rttvar = tp->mdev_max;
687 		}
688 		if (after(tp->snd_una, tp->rtt_seq)) {
689 			if (tp->mdev_max < tp->rttvar)
690 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
691 			tp->rtt_seq = tp->snd_nxt;
692 			tp->mdev_max = tcp_rto_min(sk);
693 		}
694 	} else {
695 		/* no previous measure. */
696 		tp->srtt = m << 3;	/* take the measured time to be rtt */
697 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
698 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
699 		tp->rtt_seq = tp->snd_nxt;
700 	}
701 }
702 
703 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
704  * routine referred to above.
705  */
tcp_set_rto(struct sock * sk)706 static inline void tcp_set_rto(struct sock *sk)
707 {
708 	const struct tcp_sock *tp = tcp_sk(sk);
709 	/* Old crap is replaced with new one. 8)
710 	 *
711 	 * More seriously:
712 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
713 	 *    It cannot be less due to utterly erratic ACK generation made
714 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
715 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
716 	 *    is invisible. Actually, Linux-2.4 also generates erratic
717 	 *    ACKs in some circumstances.
718 	 */
719 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
720 
721 	/* 2. Fixups made earlier cannot be right.
722 	 *    If we do not estimate RTO correctly without them,
723 	 *    all the algo is pure shit and should be replaced
724 	 *    with correct one. It is exactly, which we pretend to do.
725 	 */
726 
727 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
728 	 * guarantees that rto is higher.
729 	 */
730 	tcp_bound_rto(sk);
731 }
732 
733 /* Save metrics learned by this TCP session.
734    This function is called only, when TCP finishes successfully
735    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
736  */
tcp_update_metrics(struct sock * sk)737 void tcp_update_metrics(struct sock *sk)
738 {
739 	struct tcp_sock *tp = tcp_sk(sk);
740 	struct dst_entry *dst = __sk_dst_get(sk);
741 
742 	if (sysctl_tcp_nometrics_save)
743 		return;
744 
745 	dst_confirm(dst);
746 
747 	if (dst && (dst->flags & DST_HOST)) {
748 		const struct inet_connection_sock *icsk = inet_csk(sk);
749 		int m;
750 		unsigned long rtt;
751 
752 		if (icsk->icsk_backoff || !tp->srtt) {
753 			/* This session failed to estimate rtt. Why?
754 			 * Probably, no packets returned in time.
755 			 * Reset our results.
756 			 */
757 			if (!(dst_metric_locked(dst, RTAX_RTT)))
758 				dst_metric_set(dst, RTAX_RTT, 0);
759 			return;
760 		}
761 
762 		rtt = dst_metric_rtt(dst, RTAX_RTT);
763 		m = rtt - tp->srtt;
764 
765 		/* If newly calculated rtt larger than stored one,
766 		 * store new one. Otherwise, use EWMA. Remember,
767 		 * rtt overestimation is always better than underestimation.
768 		 */
769 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
770 			if (m <= 0)
771 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
772 			else
773 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
774 		}
775 
776 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
777 			unsigned long var;
778 			if (m < 0)
779 				m = -m;
780 
781 			/* Scale deviation to rttvar fixed point */
782 			m >>= 1;
783 			if (m < tp->mdev)
784 				m = tp->mdev;
785 
786 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
787 			if (m >= var)
788 				var = m;
789 			else
790 				var -= (var - m) >> 2;
791 
792 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
793 		}
794 
795 		if (tcp_in_initial_slowstart(tp)) {
796 			/* Slow start still did not finish. */
797 			if (dst_metric(dst, RTAX_SSTHRESH) &&
798 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
800 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
801 			if (!dst_metric_locked(dst, RTAX_CWND) &&
802 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
803 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
804 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
805 			   icsk->icsk_ca_state == TCP_CA_Open) {
806 			/* Cong. avoidance phase, cwnd is reliable. */
807 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
808 				dst_metric_set(dst, RTAX_SSTHRESH,
809 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
810 			if (!dst_metric_locked(dst, RTAX_CWND))
811 				dst_metric_set(dst, RTAX_CWND,
812 					       (dst_metric(dst, RTAX_CWND) +
813 						tp->snd_cwnd) >> 1);
814 		} else {
815 			/* Else slow start did not finish, cwnd is non-sense,
816 			   ssthresh may be also invalid.
817 			 */
818 			if (!dst_metric_locked(dst, RTAX_CWND))
819 				dst_metric_set(dst, RTAX_CWND,
820 					       (dst_metric(dst, RTAX_CWND) +
821 						tp->snd_ssthresh) >> 1);
822 			if (dst_metric(dst, RTAX_SSTHRESH) &&
823 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
824 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
825 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
826 		}
827 
828 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
829 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
830 			    tp->reordering != sysctl_tcp_reordering)
831 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
832 		}
833 	}
834 }
835 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)836 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
837 {
838 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
839 
840 	if (!cwnd)
841 		cwnd = TCP_INIT_CWND;
842 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
843 }
844 
845 /* Set slow start threshold and cwnd not falling to slow start */
tcp_enter_cwr(struct sock * sk,const int set_ssthresh)846 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
847 {
848 	struct tcp_sock *tp = tcp_sk(sk);
849 	const struct inet_connection_sock *icsk = inet_csk(sk);
850 
851 	tp->prior_ssthresh = 0;
852 	tp->bytes_acked = 0;
853 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
854 		tp->undo_marker = 0;
855 		if (set_ssthresh)
856 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
857 		tp->snd_cwnd = min(tp->snd_cwnd,
858 				   tcp_packets_in_flight(tp) + 1U);
859 		tp->snd_cwnd_cnt = 0;
860 		tp->high_seq = tp->snd_nxt;
861 		tp->snd_cwnd_stamp = tcp_time_stamp;
862 		TCP_ECN_queue_cwr(tp);
863 
864 		tcp_set_ca_state(sk, TCP_CA_CWR);
865 	}
866 }
867 
868 /*
869  * Packet counting of FACK is based on in-order assumptions, therefore TCP
870  * disables it when reordering is detected
871  */
tcp_disable_fack(struct tcp_sock * tp)872 static void tcp_disable_fack(struct tcp_sock *tp)
873 {
874 	/* RFC3517 uses different metric in lost marker => reset on change */
875 	if (tcp_is_fack(tp))
876 		tp->lost_skb_hint = NULL;
877 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
878 }
879 
880 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)881 static void tcp_dsack_seen(struct tcp_sock *tp)
882 {
883 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
884 }
885 
886 /* Initialize metrics on socket. */
887 
tcp_init_metrics(struct sock * sk)888 static void tcp_init_metrics(struct sock *sk)
889 {
890 	struct tcp_sock *tp = tcp_sk(sk);
891 	struct dst_entry *dst = __sk_dst_get(sk);
892 
893 	if (dst == NULL)
894 		goto reset;
895 
896 	dst_confirm(dst);
897 
898 	if (dst_metric_locked(dst, RTAX_CWND))
899 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
900 	if (dst_metric(dst, RTAX_SSTHRESH)) {
901 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
902 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
903 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
904 	} else {
905 		/* ssthresh may have been reduced unnecessarily during.
906 		 * 3WHS. Restore it back to its initial default.
907 		 */
908 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
909 	}
910 	if (dst_metric(dst, RTAX_REORDERING) &&
911 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
912 		tcp_disable_fack(tp);
913 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
914 	}
915 
916 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
917 		goto reset;
918 
919 	/* Initial rtt is determined from SYN,SYN-ACK.
920 	 * The segment is small and rtt may appear much
921 	 * less than real one. Use per-dst memory
922 	 * to make it more realistic.
923 	 *
924 	 * A bit of theory. RTT is time passed after "normal" sized packet
925 	 * is sent until it is ACKed. In normal circumstances sending small
926 	 * packets force peer to delay ACKs and calculation is correct too.
927 	 * The algorithm is adaptive and, provided we follow specs, it
928 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
929 	 * tricks sort of "quick acks" for time long enough to decrease RTT
930 	 * to low value, and then abruptly stops to do it and starts to delay
931 	 * ACKs, wait for troubles.
932 	 */
933 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
934 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
935 		tp->rtt_seq = tp->snd_nxt;
936 	}
937 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
938 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
939 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
940 	}
941 	tcp_set_rto(sk);
942 reset:
943 	if (tp->srtt == 0) {
944 		/* RFC2988bis: We've failed to get a valid RTT sample from
945 		 * 3WHS. This is most likely due to retransmission,
946 		 * including spurious one. Reset the RTO back to 3secs
947 		 * from the more aggressive 1sec to avoid more spurious
948 		 * retransmission.
949 		 */
950 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
951 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
952 	}
953 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
954 	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
955 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
956 	 * retransmission has occurred.
957 	 */
958 	if (tp->total_retrans > 1)
959 		tp->snd_cwnd = 1;
960 	else
961 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
962 	tp->snd_cwnd_stamp = tcp_time_stamp;
963 }
964 
tcp_update_reordering(struct sock * sk,const int metric,const int ts)965 static void tcp_update_reordering(struct sock *sk, const int metric,
966 				  const int ts)
967 {
968 	struct tcp_sock *tp = tcp_sk(sk);
969 	if (metric > tp->reordering) {
970 		int mib_idx;
971 
972 		tp->reordering = min(TCP_MAX_REORDERING, metric);
973 
974 		/* This exciting event is worth to be remembered. 8) */
975 		if (ts)
976 			mib_idx = LINUX_MIB_TCPTSREORDER;
977 		else if (tcp_is_reno(tp))
978 			mib_idx = LINUX_MIB_TCPRENOREORDER;
979 		else if (tcp_is_fack(tp))
980 			mib_idx = LINUX_MIB_TCPFACKREORDER;
981 		else
982 			mib_idx = LINUX_MIB_TCPSACKREORDER;
983 
984 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
985 #if FASTRETRANS_DEBUG > 1
986 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
987 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
988 		       tp->reordering,
989 		       tp->fackets_out,
990 		       tp->sacked_out,
991 		       tp->undo_marker ? tp->undo_retrans : 0);
992 #endif
993 		tcp_disable_fack(tp);
994 	}
995 }
996 
997 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)998 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
999 {
1000 	if ((tp->retransmit_skb_hint == NULL) ||
1001 	    before(TCP_SKB_CB(skb)->seq,
1002 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1003 		tp->retransmit_skb_hint = skb;
1004 
1005 	if (!tp->lost_out ||
1006 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1007 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1008 }
1009 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)1010 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1011 {
1012 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1013 		tcp_verify_retransmit_hint(tp, skb);
1014 
1015 		tp->lost_out += tcp_skb_pcount(skb);
1016 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1017 	}
1018 }
1019 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)1020 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1021 					    struct sk_buff *skb)
1022 {
1023 	tcp_verify_retransmit_hint(tp, skb);
1024 
1025 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1026 		tp->lost_out += tcp_skb_pcount(skb);
1027 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1028 	}
1029 }
1030 
1031 /* This procedure tags the retransmission queue when SACKs arrive.
1032  *
1033  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1034  * Packets in queue with these bits set are counted in variables
1035  * sacked_out, retrans_out and lost_out, correspondingly.
1036  *
1037  * Valid combinations are:
1038  * Tag  InFlight	Description
1039  * 0	1		- orig segment is in flight.
1040  * S	0		- nothing flies, orig reached receiver.
1041  * L	0		- nothing flies, orig lost by net.
1042  * R	2		- both orig and retransmit are in flight.
1043  * L|R	1		- orig is lost, retransmit is in flight.
1044  * S|R  1		- orig reached receiver, retrans is still in flight.
1045  * (L|S|R is logically valid, it could occur when L|R is sacked,
1046  *  but it is equivalent to plain S and code short-curcuits it to S.
1047  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1048  *
1049  * These 6 states form finite state machine, controlled by the following events:
1050  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1051  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1052  * 3. Loss detection event of two flavors:
1053  *	A. Scoreboard estimator decided the packet is lost.
1054  *	   A'. Reno "three dupacks" marks head of queue lost.
1055  *	   A''. Its FACK modification, head until snd.fack is lost.
1056  *	B. SACK arrives sacking SND.NXT at the moment, when the
1057  *	   segment was retransmitted.
1058  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1059  *
1060  * It is pleasant to note, that state diagram turns out to be commutative,
1061  * so that we are allowed not to be bothered by order of our actions,
1062  * when multiple events arrive simultaneously. (see the function below).
1063  *
1064  * Reordering detection.
1065  * --------------------
1066  * Reordering metric is maximal distance, which a packet can be displaced
1067  * in packet stream. With SACKs we can estimate it:
1068  *
1069  * 1. SACK fills old hole and the corresponding segment was not
1070  *    ever retransmitted -> reordering. Alas, we cannot use it
1071  *    when segment was retransmitted.
1072  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1073  *    for retransmitted and already SACKed segment -> reordering..
1074  * Both of these heuristics are not used in Loss state, when we cannot
1075  * account for retransmits accurately.
1076  *
1077  * SACK block validation.
1078  * ----------------------
1079  *
1080  * SACK block range validation checks that the received SACK block fits to
1081  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1082  * Note that SND.UNA is not included to the range though being valid because
1083  * it means that the receiver is rather inconsistent with itself reporting
1084  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1085  * perfectly valid, however, in light of RFC2018 which explicitly states
1086  * that "SACK block MUST reflect the newest segment.  Even if the newest
1087  * segment is going to be discarded ...", not that it looks very clever
1088  * in case of head skb. Due to potentional receiver driven attacks, we
1089  * choose to avoid immediate execution of a walk in write queue due to
1090  * reneging and defer head skb's loss recovery to standard loss recovery
1091  * procedure that will eventually trigger (nothing forbids us doing this).
1092  *
1093  * Implements also blockage to start_seq wrap-around. Problem lies in the
1094  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1095  * there's no guarantee that it will be before snd_nxt (n). The problem
1096  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1097  * wrap (s_w):
1098  *
1099  *         <- outs wnd ->                          <- wrapzone ->
1100  *         u     e      n                         u_w   e_w  s n_w
1101  *         |     |      |                          |     |   |  |
1102  * |<------------+------+----- TCP seqno space --------------+---------->|
1103  * ...-- <2^31 ->|                                           |<--------...
1104  * ...---- >2^31 ------>|                                    |<--------...
1105  *
1106  * Current code wouldn't be vulnerable but it's better still to discard such
1107  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1108  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1109  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1110  * equal to the ideal case (infinite seqno space without wrap caused issues).
1111  *
1112  * With D-SACK the lower bound is extended to cover sequence space below
1113  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1114  * again, D-SACK block must not to go across snd_una (for the same reason as
1115  * for the normal SACK blocks, explained above). But there all simplicity
1116  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1117  * fully below undo_marker they do not affect behavior in anyway and can
1118  * therefore be safely ignored. In rare cases (which are more or less
1119  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1120  * fragmentation and packet reordering past skb's retransmission. To consider
1121  * them correctly, the acceptable range must be extended even more though
1122  * the exact amount is rather hard to quantify. However, tp->max_window can
1123  * be used as an exaggerated estimate.
1124  */
tcp_is_sackblock_valid(struct tcp_sock * tp,int is_dsack,u32 start_seq,u32 end_seq)1125 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1126 				  u32 start_seq, u32 end_seq)
1127 {
1128 	/* Too far in future, or reversed (interpretation is ambiguous) */
1129 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1130 		return 0;
1131 
1132 	/* Nasty start_seq wrap-around check (see comments above) */
1133 	if (!before(start_seq, tp->snd_nxt))
1134 		return 0;
1135 
1136 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1137 	 * start_seq == snd_una is non-sensical (see comments above)
1138 	 */
1139 	if (after(start_seq, tp->snd_una))
1140 		return 1;
1141 
1142 	if (!is_dsack || !tp->undo_marker)
1143 		return 0;
1144 
1145 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1146 	if (after(end_seq, tp->snd_una))
1147 		return 0;
1148 
1149 	if (!before(start_seq, tp->undo_marker))
1150 		return 1;
1151 
1152 	/* Too old */
1153 	if (!after(end_seq, tp->undo_marker))
1154 		return 0;
1155 
1156 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1157 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1158 	 */
1159 	return !before(start_seq, end_seq - tp->max_window);
1160 }
1161 
1162 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1163  * Event "B". Later note: FACK people cheated me again 8), we have to account
1164  * for reordering! Ugly, but should help.
1165  *
1166  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1167  * less than what is now known to be received by the other end (derived from
1168  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1169  * retransmitted skbs to avoid some costly processing per ACKs.
1170  */
tcp_mark_lost_retrans(struct sock * sk)1171 static void tcp_mark_lost_retrans(struct sock *sk)
1172 {
1173 	const struct inet_connection_sock *icsk = inet_csk(sk);
1174 	struct tcp_sock *tp = tcp_sk(sk);
1175 	struct sk_buff *skb;
1176 	int cnt = 0;
1177 	u32 new_low_seq = tp->snd_nxt;
1178 	u32 received_upto = tcp_highest_sack_seq(tp);
1179 
1180 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1181 	    !after(received_upto, tp->lost_retrans_low) ||
1182 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1183 		return;
1184 
1185 	tcp_for_write_queue(skb, sk) {
1186 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1187 
1188 		if (skb == tcp_send_head(sk))
1189 			break;
1190 		if (cnt == tp->retrans_out)
1191 			break;
1192 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1193 			continue;
1194 
1195 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1196 			continue;
1197 
1198 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1199 		 * constraint here (see above) but figuring out that at
1200 		 * least tp->reordering SACK blocks reside between ack_seq
1201 		 * and received_upto is not easy task to do cheaply with
1202 		 * the available datastructures.
1203 		 *
1204 		 * Whether FACK should check here for tp->reordering segs
1205 		 * in-between one could argue for either way (it would be
1206 		 * rather simple to implement as we could count fack_count
1207 		 * during the walk and do tp->fackets_out - fack_count).
1208 		 */
1209 		if (after(received_upto, ack_seq)) {
1210 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1211 			tp->retrans_out -= tcp_skb_pcount(skb);
1212 
1213 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1214 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1215 		} else {
1216 			if (before(ack_seq, new_low_seq))
1217 				new_low_seq = ack_seq;
1218 			cnt += tcp_skb_pcount(skb);
1219 		}
1220 	}
1221 
1222 	if (tp->retrans_out)
1223 		tp->lost_retrans_low = new_low_seq;
1224 }
1225 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1226 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1227 			   struct tcp_sack_block_wire *sp, int num_sacks,
1228 			   u32 prior_snd_una)
1229 {
1230 	struct tcp_sock *tp = tcp_sk(sk);
1231 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1232 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1233 	int dup_sack = 0;
1234 
1235 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1236 		dup_sack = 1;
1237 		tcp_dsack_seen(tp);
1238 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1239 	} else if (num_sacks > 1) {
1240 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1241 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1242 
1243 		if (!after(end_seq_0, end_seq_1) &&
1244 		    !before(start_seq_0, start_seq_1)) {
1245 			dup_sack = 1;
1246 			tcp_dsack_seen(tp);
1247 			NET_INC_STATS_BH(sock_net(sk),
1248 					LINUX_MIB_TCPDSACKOFORECV);
1249 		}
1250 	}
1251 
1252 	/* D-SACK for already forgotten data... Do dumb counting. */
1253 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1254 	    !after(end_seq_0, prior_snd_una) &&
1255 	    after(end_seq_0, tp->undo_marker))
1256 		tp->undo_retrans--;
1257 
1258 	return dup_sack;
1259 }
1260 
1261 struct tcp_sacktag_state {
1262 	int reord;
1263 	int fack_count;
1264 	int flag;
1265 };
1266 
1267 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1268  * the incoming SACK may not exactly match but we can find smaller MSS
1269  * aligned portion of it that matches. Therefore we might need to fragment
1270  * which may fail and creates some hassle (caller must handle error case
1271  * returns).
1272  *
1273  * FIXME: this could be merged to shift decision code
1274  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1275 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1276 				 u32 start_seq, u32 end_seq)
1277 {
1278 	int in_sack, err;
1279 	unsigned int pkt_len;
1280 	unsigned int mss;
1281 
1282 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1283 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1284 
1285 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1286 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1287 		mss = tcp_skb_mss(skb);
1288 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1289 
1290 		if (!in_sack) {
1291 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1292 			if (pkt_len < mss)
1293 				pkt_len = mss;
1294 		} else {
1295 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1296 			if (pkt_len < mss)
1297 				return -EINVAL;
1298 		}
1299 
1300 		/* Round if necessary so that SACKs cover only full MSSes
1301 		 * and/or the remaining small portion (if present)
1302 		 */
1303 		if (pkt_len > mss) {
1304 			unsigned int new_len = (pkt_len / mss) * mss;
1305 			if (!in_sack && new_len < pkt_len) {
1306 				new_len += mss;
1307 				if (new_len > skb->len)
1308 					return 0;
1309 			}
1310 			pkt_len = new_len;
1311 		}
1312 		err = tcp_fragment(sk, skb, pkt_len, mss);
1313 		if (err < 0)
1314 			return err;
1315 	}
1316 
1317 	return in_sack;
1318 }
1319 
1320 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount)1321 static u8 tcp_sacktag_one(struct sock *sk,
1322 			  struct tcp_sacktag_state *state, u8 sacked,
1323 			  u32 start_seq, u32 end_seq,
1324 			  int dup_sack, int pcount)
1325 {
1326 	struct tcp_sock *tp = tcp_sk(sk);
1327 	int fack_count = state->fack_count;
1328 
1329 	/* Account D-SACK for retransmitted packet. */
1330 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1331 		if (tp->undo_marker && tp->undo_retrans &&
1332 		    after(end_seq, tp->undo_marker))
1333 			tp->undo_retrans--;
1334 		if (sacked & TCPCB_SACKED_ACKED)
1335 			state->reord = min(fack_count, state->reord);
1336 	}
1337 
1338 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1339 	if (!after(end_seq, tp->snd_una))
1340 		return sacked;
1341 
1342 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1343 		if (sacked & TCPCB_SACKED_RETRANS) {
1344 			/* If the segment is not tagged as lost,
1345 			 * we do not clear RETRANS, believing
1346 			 * that retransmission is still in flight.
1347 			 */
1348 			if (sacked & TCPCB_LOST) {
1349 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1350 				tp->lost_out -= pcount;
1351 				tp->retrans_out -= pcount;
1352 			}
1353 		} else {
1354 			if (!(sacked & TCPCB_RETRANS)) {
1355 				/* New sack for not retransmitted frame,
1356 				 * which was in hole. It is reordering.
1357 				 */
1358 				if (before(start_seq,
1359 					   tcp_highest_sack_seq(tp)))
1360 					state->reord = min(fack_count,
1361 							   state->reord);
1362 
1363 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1364 				if (!after(end_seq, tp->frto_highmark))
1365 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1366 			}
1367 
1368 			if (sacked & TCPCB_LOST) {
1369 				sacked &= ~TCPCB_LOST;
1370 				tp->lost_out -= pcount;
1371 			}
1372 		}
1373 
1374 		sacked |= TCPCB_SACKED_ACKED;
1375 		state->flag |= FLAG_DATA_SACKED;
1376 		tp->sacked_out += pcount;
1377 
1378 		fack_count += pcount;
1379 
1380 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1381 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1382 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1383 			tp->lost_cnt_hint += pcount;
1384 
1385 		if (fack_count > tp->fackets_out)
1386 			tp->fackets_out = fack_count;
1387 	}
1388 
1389 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1390 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1391 	 * are accounted above as well.
1392 	 */
1393 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1394 		sacked &= ~TCPCB_SACKED_RETRANS;
1395 		tp->retrans_out -= pcount;
1396 	}
1397 
1398 	return sacked;
1399 }
1400 
1401 /* Shift newly-SACKed bytes from this skb to the immediately previous
1402  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1403  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,int dup_sack)1404 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1405 			   struct tcp_sacktag_state *state,
1406 			   unsigned int pcount, int shifted, int mss,
1407 			   int dup_sack)
1408 {
1409 	struct tcp_sock *tp = tcp_sk(sk);
1410 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1411 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1412 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1413 
1414 	BUG_ON(!pcount);
1415 
1416 	/* Adjust counters and hints for the newly sacked sequence
1417 	 * range but discard the return value since prev is already
1418 	 * marked. We must tag the range first because the seq
1419 	 * advancement below implicitly advances
1420 	 * tcp_highest_sack_seq() when skb is highest_sack.
1421 	 */
1422 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1423 			start_seq, end_seq, dup_sack, pcount);
1424 
1425 	if (skb == tp->lost_skb_hint)
1426 		tp->lost_cnt_hint += pcount;
1427 
1428 	TCP_SKB_CB(prev)->end_seq += shifted;
1429 	TCP_SKB_CB(skb)->seq += shifted;
1430 
1431 	skb_shinfo(prev)->gso_segs += pcount;
1432 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1433 	skb_shinfo(skb)->gso_segs -= pcount;
1434 
1435 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1436 	 * in theory this shouldn't be necessary but as long as DSACK
1437 	 * code can come after this skb later on it's better to keep
1438 	 * setting gso_size to something.
1439 	 */
1440 	if (!skb_shinfo(prev)->gso_size) {
1441 		skb_shinfo(prev)->gso_size = mss;
1442 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1443 	}
1444 
1445 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1446 	if (skb_shinfo(skb)->gso_segs <= 1) {
1447 		skb_shinfo(skb)->gso_size = 0;
1448 		skb_shinfo(skb)->gso_type = 0;
1449 	}
1450 
1451 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1452 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1453 
1454 	if (skb->len > 0) {
1455 		BUG_ON(!tcp_skb_pcount(skb));
1456 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1457 		return 0;
1458 	}
1459 
1460 	/* Whole SKB was eaten :-) */
1461 
1462 	if (skb == tp->retransmit_skb_hint)
1463 		tp->retransmit_skb_hint = prev;
1464 	if (skb == tp->scoreboard_skb_hint)
1465 		tp->scoreboard_skb_hint = prev;
1466 	if (skb == tp->lost_skb_hint) {
1467 		tp->lost_skb_hint = prev;
1468 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1469 	}
1470 
1471 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1472 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1473 		TCP_SKB_CB(prev)->end_seq++;
1474 
1475 	if (skb == tcp_highest_sack(sk))
1476 		tcp_advance_highest_sack(sk, skb);
1477 
1478 	tcp_unlink_write_queue(skb, sk);
1479 	sk_wmem_free_skb(sk, skb);
1480 
1481 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482 
1483 	return 1;
1484 }
1485 
1486 /* I wish gso_size would have a bit more sane initialization than
1487  * something-or-zero which complicates things
1488  */
tcp_skb_seglen(const struct sk_buff * skb)1489 static int tcp_skb_seglen(const struct sk_buff *skb)
1490 {
1491 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492 }
1493 
1494 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1495 static int skb_can_shift(const struct sk_buff *skb)
1496 {
1497 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498 }
1499 
1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1501  * skb.
1502  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack)1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 					  struct tcp_sacktag_state *state,
1505 					  u32 start_seq, u32 end_seq,
1506 					  int dup_sack)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 	struct sk_buff *prev;
1510 	int mss;
1511 	int pcount = 0;
1512 	int len;
1513 	int in_sack;
1514 
1515 	if (!sk_can_gso(sk))
1516 		goto fallback;
1517 
1518 	/* Normally R but no L won't result in plain S */
1519 	if (!dup_sack &&
1520 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521 		goto fallback;
1522 	if (!skb_can_shift(skb))
1523 		goto fallback;
1524 	/* This frame is about to be dropped (was ACKed). */
1525 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 		goto fallback;
1527 
1528 	/* Can only happen with delayed DSACK + discard craziness */
1529 	if (unlikely(skb == tcp_write_queue_head(sk)))
1530 		goto fallback;
1531 	prev = tcp_write_queue_prev(sk, skb);
1532 
1533 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 		goto fallback;
1535 
1536 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538 
1539 	if (in_sack) {
1540 		len = skb->len;
1541 		pcount = tcp_skb_pcount(skb);
1542 		mss = tcp_skb_seglen(skb);
1543 
1544 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 		 * drop this restriction as unnecessary
1546 		 */
1547 		if (mss != tcp_skb_seglen(prev))
1548 			goto fallback;
1549 	} else {
1550 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 			goto noop;
1552 		/* CHECKME: This is non-MSS split case only?, this will
1553 		 * cause skipped skbs due to advancing loop btw, original
1554 		 * has that feature too
1555 		 */
1556 		if (tcp_skb_pcount(skb) <= 1)
1557 			goto noop;
1558 
1559 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 		if (!in_sack) {
1561 			/* TODO: head merge to next could be attempted here
1562 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 			 * though it might not be worth of the additional hassle
1564 			 *
1565 			 * ...we can probably just fallback to what was done
1566 			 * previously. We could try merging non-SACKed ones
1567 			 * as well but it probably isn't going to buy off
1568 			 * because later SACKs might again split them, and
1569 			 * it would make skb timestamp tracking considerably
1570 			 * harder problem.
1571 			 */
1572 			goto fallback;
1573 		}
1574 
1575 		len = end_seq - TCP_SKB_CB(skb)->seq;
1576 		BUG_ON(len < 0);
1577 		BUG_ON(len > skb->len);
1578 
1579 		/* MSS boundaries should be honoured or else pcount will
1580 		 * severely break even though it makes things bit trickier.
1581 		 * Optimize common case to avoid most of the divides
1582 		 */
1583 		mss = tcp_skb_mss(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 
1591 		if (len == mss) {
1592 			pcount = 1;
1593 		} else if (len < mss) {
1594 			goto noop;
1595 		} else {
1596 			pcount = len / mss;
1597 			len = pcount * mss;
1598 		}
1599 	}
1600 
1601 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 		goto fallback;
1604 
1605 	if (!skb_shift(prev, skb, len))
1606 		goto fallback;
1607 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608 		goto out;
1609 
1610 	/* Hole filled allows collapsing with the next as well, this is very
1611 	 * useful when hole on every nth skb pattern happens
1612 	 */
1613 	if (prev == tcp_write_queue_tail(sk))
1614 		goto out;
1615 	skb = tcp_write_queue_next(sk, prev);
1616 
1617 	if (!skb_can_shift(skb) ||
1618 	    (skb == tcp_send_head(sk)) ||
1619 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 	    (mss != tcp_skb_seglen(skb)))
1621 		goto out;
1622 
1623 	len = skb->len;
1624 	if (skb_shift(prev, skb, len)) {
1625 		pcount += tcp_skb_pcount(skb);
1626 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627 	}
1628 
1629 out:
1630 	state->fack_count += pcount;
1631 	return prev;
1632 
1633 noop:
1634 	return skb;
1635 
1636 fallback:
1637 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638 	return NULL;
1639 }
1640 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack_in)1641 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 					struct tcp_sack_block *next_dup,
1643 					struct tcp_sacktag_state *state,
1644 					u32 start_seq, u32 end_seq,
1645 					int dup_sack_in)
1646 {
1647 	struct tcp_sock *tp = tcp_sk(sk);
1648 	struct sk_buff *tmp;
1649 
1650 	tcp_for_write_queue_from(skb, sk) {
1651 		int in_sack = 0;
1652 		int dup_sack = dup_sack_in;
1653 
1654 		if (skb == tcp_send_head(sk))
1655 			break;
1656 
1657 		/* queue is in-order => we can short-circuit the walk early */
1658 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 			break;
1660 
1661 		if ((next_dup != NULL) &&
1662 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 			in_sack = tcp_match_skb_to_sack(sk, skb,
1664 							next_dup->start_seq,
1665 							next_dup->end_seq);
1666 			if (in_sack > 0)
1667 				dup_sack = 1;
1668 		}
1669 
1670 		/* skb reference here is a bit tricky to get right, since
1671 		 * shifting can eat and free both this skb and the next,
1672 		 * so not even _safe variant of the loop is enough.
1673 		 */
1674 		if (in_sack <= 0) {
1675 			tmp = tcp_shift_skb_data(sk, skb, state,
1676 						 start_seq, end_seq, dup_sack);
1677 			if (tmp != NULL) {
1678 				if (tmp != skb) {
1679 					skb = tmp;
1680 					continue;
1681 				}
1682 
1683 				in_sack = 0;
1684 			} else {
1685 				in_sack = tcp_match_skb_to_sack(sk, skb,
1686 								start_seq,
1687 								end_seq);
1688 			}
1689 		}
1690 
1691 		if (unlikely(in_sack < 0))
1692 			break;
1693 
1694 		if (in_sack) {
1695 			TCP_SKB_CB(skb)->sacked =
1696 				tcp_sacktag_one(sk,
1697 						state,
1698 						TCP_SKB_CB(skb)->sacked,
1699 						TCP_SKB_CB(skb)->seq,
1700 						TCP_SKB_CB(skb)->end_seq,
1701 						dup_sack,
1702 						tcp_skb_pcount(skb));
1703 
1704 			if (!before(TCP_SKB_CB(skb)->seq,
1705 				    tcp_highest_sack_seq(tp)))
1706 				tcp_advance_highest_sack(sk, skb);
1707 		}
1708 
1709 		state->fack_count += tcp_skb_pcount(skb);
1710 	}
1711 	return skb;
1712 }
1713 
1714 /* Avoid all extra work that is being done by sacktag while walking in
1715  * a normal way
1716  */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1717 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718 					struct tcp_sacktag_state *state,
1719 					u32 skip_to_seq)
1720 {
1721 	tcp_for_write_queue_from(skb, sk) {
1722 		if (skb == tcp_send_head(sk))
1723 			break;
1724 
1725 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726 			break;
1727 
1728 		state->fack_count += tcp_skb_pcount(skb);
1729 	}
1730 	return skb;
1731 }
1732 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1733 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 						struct sock *sk,
1735 						struct tcp_sack_block *next_dup,
1736 						struct tcp_sacktag_state *state,
1737 						u32 skip_to_seq)
1738 {
1739 	if (next_dup == NULL)
1740 		return skb;
1741 
1742 	if (before(next_dup->start_seq, skip_to_seq)) {
1743 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 				       next_dup->start_seq, next_dup->end_seq,
1746 				       1);
1747 	}
1748 
1749 	return skb;
1750 }
1751 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1752 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753 {
1754 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755 }
1756 
1757 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una)1758 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759 			u32 prior_snd_una)
1760 {
1761 	const struct inet_connection_sock *icsk = inet_csk(sk);
1762 	struct tcp_sock *tp = tcp_sk(sk);
1763 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 				    TCP_SKB_CB(ack_skb)->sacked);
1765 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1767 	struct tcp_sack_block *cache;
1768 	struct tcp_sacktag_state state;
1769 	struct sk_buff *skb;
1770 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771 	int used_sacks;
1772 	int found_dup_sack = 0;
1773 	int i, j;
1774 	int first_sack_index;
1775 
1776 	state.flag = 0;
1777 	state.reord = tp->packets_out;
1778 
1779 	if (!tp->sacked_out) {
1780 		if (WARN_ON(tp->fackets_out))
1781 			tp->fackets_out = 0;
1782 		tcp_highest_sack_reset(sk);
1783 	}
1784 
1785 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786 					 num_sacks, prior_snd_una);
1787 	if (found_dup_sack)
1788 		state.flag |= FLAG_DSACKING_ACK;
1789 
1790 	/* Eliminate too old ACKs, but take into
1791 	 * account more or less fresh ones, they can
1792 	 * contain valid SACK info.
1793 	 */
1794 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 		return 0;
1796 
1797 	if (!tp->packets_out)
1798 		goto out;
1799 
1800 	used_sacks = 0;
1801 	first_sack_index = 0;
1802 	for (i = 0; i < num_sacks; i++) {
1803 		int dup_sack = !i && found_dup_sack;
1804 
1805 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807 
1808 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1809 					    sp[used_sacks].start_seq,
1810 					    sp[used_sacks].end_seq)) {
1811 			int mib_idx;
1812 
1813 			if (dup_sack) {
1814 				if (!tp->undo_marker)
1815 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816 				else
1817 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818 			} else {
1819 				/* Don't count olds caused by ACK reordering */
1820 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1822 					continue;
1823 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824 			}
1825 
1826 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827 			if (i == 0)
1828 				first_sack_index = -1;
1829 			continue;
1830 		}
1831 
1832 		/* Ignore very old stuff early */
1833 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834 			continue;
1835 
1836 		used_sacks++;
1837 	}
1838 
1839 	/* order SACK blocks to allow in order walk of the retrans queue */
1840 	for (i = used_sacks - 1; i > 0; i--) {
1841 		for (j = 0; j < i; j++) {
1842 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843 				swap(sp[j], sp[j + 1]);
1844 
1845 				/* Track where the first SACK block goes to */
1846 				if (j == first_sack_index)
1847 					first_sack_index = j + 1;
1848 			}
1849 		}
1850 	}
1851 
1852 	skb = tcp_write_queue_head(sk);
1853 	state.fack_count = 0;
1854 	i = 0;
1855 
1856 	if (!tp->sacked_out) {
1857 		/* It's already past, so skip checking against it */
1858 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859 	} else {
1860 		cache = tp->recv_sack_cache;
1861 		/* Skip empty blocks in at head of the cache */
1862 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863 		       !cache->end_seq)
1864 			cache++;
1865 	}
1866 
1867 	while (i < used_sacks) {
1868 		u32 start_seq = sp[i].start_seq;
1869 		u32 end_seq = sp[i].end_seq;
1870 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1871 		struct tcp_sack_block *next_dup = NULL;
1872 
1873 		if (found_dup_sack && ((i + 1) == first_sack_index))
1874 			next_dup = &sp[i + 1];
1875 
1876 		/* Skip too early cached blocks */
1877 		while (tcp_sack_cache_ok(tp, cache) &&
1878 		       !before(start_seq, cache->end_seq))
1879 			cache++;
1880 
1881 		/* Can skip some work by looking recv_sack_cache? */
1882 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883 		    after(end_seq, cache->start_seq)) {
1884 
1885 			/* Head todo? */
1886 			if (before(start_seq, cache->start_seq)) {
1887 				skb = tcp_sacktag_skip(skb, sk, &state,
1888 						       start_seq);
1889 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1890 						       &state,
1891 						       start_seq,
1892 						       cache->start_seq,
1893 						       dup_sack);
1894 			}
1895 
1896 			/* Rest of the block already fully processed? */
1897 			if (!after(end_seq, cache->end_seq))
1898 				goto advance_sp;
1899 
1900 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901 						       &state,
1902 						       cache->end_seq);
1903 
1904 			/* ...tail remains todo... */
1905 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906 				/* ...but better entrypoint exists! */
1907 				skb = tcp_highest_sack(sk);
1908 				if (skb == NULL)
1909 					break;
1910 				state.fack_count = tp->fackets_out;
1911 				cache++;
1912 				goto walk;
1913 			}
1914 
1915 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916 			/* Check overlap against next cached too (past this one already) */
1917 			cache++;
1918 			continue;
1919 		}
1920 
1921 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922 			skb = tcp_highest_sack(sk);
1923 			if (skb == NULL)
1924 				break;
1925 			state.fack_count = tp->fackets_out;
1926 		}
1927 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928 
1929 walk:
1930 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931 				       start_seq, end_seq, dup_sack);
1932 
1933 advance_sp:
1934 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935 		 * due to in-order walk
1936 		 */
1937 		if (after(end_seq, tp->frto_highmark))
1938 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939 
1940 		i++;
1941 	}
1942 
1943 	/* Clear the head of the cache sack blocks so we can skip it next time */
1944 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945 		tp->recv_sack_cache[i].start_seq = 0;
1946 		tp->recv_sack_cache[i].end_seq = 0;
1947 	}
1948 	for (j = 0; j < used_sacks; j++)
1949 		tp->recv_sack_cache[i++] = sp[j];
1950 
1951 	tcp_mark_lost_retrans(sk);
1952 
1953 	tcp_verify_left_out(tp);
1954 
1955 	if ((state.reord < tp->fackets_out) &&
1956 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959 
1960 out:
1961 
1962 #if FASTRETRANS_DEBUG > 0
1963 	WARN_ON((int)tp->sacked_out < 0);
1964 	WARN_ON((int)tp->lost_out < 0);
1965 	WARN_ON((int)tp->retrans_out < 0);
1966 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967 #endif
1968 	return state.flag;
1969 }
1970 
1971 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1972  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1973  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1974 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1975 {
1976 	u32 holes;
1977 
1978 	holes = max(tp->lost_out, 1U);
1979 	holes = min(holes, tp->packets_out);
1980 
1981 	if ((tp->sacked_out + holes) > tp->packets_out) {
1982 		tp->sacked_out = tp->packets_out - holes;
1983 		return 1;
1984 	}
1985 	return 0;
1986 }
1987 
1988 /* If we receive more dupacks than we expected counting segments
1989  * in assumption of absent reordering, interpret this as reordering.
1990  * The only another reason could be bug in receiver TCP.
1991  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1992 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993 {
1994 	struct tcp_sock *tp = tcp_sk(sk);
1995 	if (tcp_limit_reno_sacked(tp))
1996 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997 }
1998 
1999 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2000 
tcp_add_reno_sack(struct sock * sk)2001 static void tcp_add_reno_sack(struct sock *sk)
2002 {
2003 	struct tcp_sock *tp = tcp_sk(sk);
2004 	tp->sacked_out++;
2005 	tcp_check_reno_reordering(sk, 0);
2006 	tcp_verify_left_out(tp);
2007 }
2008 
2009 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2010 
tcp_remove_reno_sacks(struct sock * sk,int acked)2011 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012 {
2013 	struct tcp_sock *tp = tcp_sk(sk);
2014 
2015 	if (acked > 0) {
2016 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2017 		if (acked - 1 >= tp->sacked_out)
2018 			tp->sacked_out = 0;
2019 		else
2020 			tp->sacked_out -= acked - 1;
2021 	}
2022 	tcp_check_reno_reordering(sk, acked);
2023 	tcp_verify_left_out(tp);
2024 }
2025 
tcp_reset_reno_sack(struct tcp_sock * tp)2026 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027 {
2028 	tp->sacked_out = 0;
2029 }
2030 
tcp_is_sackfrto(const struct tcp_sock * tp)2031 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032 {
2033 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034 }
2035 
2036 /* F-RTO can only be used if TCP has never retransmitted anything other than
2037  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038  */
tcp_use_frto(struct sock * sk)2039 int tcp_use_frto(struct sock *sk)
2040 {
2041 	const struct tcp_sock *tp = tcp_sk(sk);
2042 	const struct inet_connection_sock *icsk = inet_csk(sk);
2043 	struct sk_buff *skb;
2044 
2045 	if (!sysctl_tcp_frto)
2046 		return 0;
2047 
2048 	/* MTU probe and F-RTO won't really play nicely along currently */
2049 	if (icsk->icsk_mtup.probe_size)
2050 		return 0;
2051 
2052 	if (tcp_is_sackfrto(tp))
2053 		return 1;
2054 
2055 	/* Avoid expensive walking of rexmit queue if possible */
2056 	if (tp->retrans_out > 1)
2057 		return 0;
2058 
2059 	skb = tcp_write_queue_head(sk);
2060 	if (tcp_skb_is_last(sk, skb))
2061 		return 1;
2062 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2063 	tcp_for_write_queue_from(skb, sk) {
2064 		if (skb == tcp_send_head(sk))
2065 			break;
2066 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067 			return 0;
2068 		/* Short-circuit when first non-SACKed skb has been checked */
2069 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070 			break;
2071 	}
2072 	return 1;
2073 }
2074 
2075 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080  * bits are handled if the Loss state is really to be entered (in
2081  * tcp_enter_frto_loss).
2082  *
2083  * Do like tcp_enter_loss() would; when RTO expires the second time it
2084  * does:
2085  *  "Reduce ssthresh if it has not yet been made inside this window."
2086  */
tcp_enter_frto(struct sock * sk)2087 void tcp_enter_frto(struct sock *sk)
2088 {
2089 	const struct inet_connection_sock *icsk = inet_csk(sk);
2090 	struct tcp_sock *tp = tcp_sk(sk);
2091 	struct sk_buff *skb;
2092 
2093 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094 	    tp->snd_una == tp->high_seq ||
2095 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096 	     !icsk->icsk_retransmits)) {
2097 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 		/* Our state is too optimistic in ssthresh() call because cwnd
2099 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100 		 * recovery has not yet completed. Pattern would be this: RTO,
2101 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102 		 * up here twice).
2103 		 * RFC4138 should be more specific on what to do, even though
2104 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2105 		 * due to back-off and complexity of triggering events ...
2106 		 */
2107 		if (tp->frto_counter) {
2108 			u32 stored_cwnd;
2109 			stored_cwnd = tp->snd_cwnd;
2110 			tp->snd_cwnd = 2;
2111 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 			tp->snd_cwnd = stored_cwnd;
2113 		} else {
2114 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115 		}
2116 		/* ... in theory, cong.control module could do "any tricks" in
2117 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2118 		 * counter would have to be faked before the call occurs. We
2119 		 * consider that too expensive, unlikely and hacky, so modules
2120 		 * using these in ssthresh() must deal these incompatibility
2121 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122 		 */
2123 		tcp_ca_event(sk, CA_EVENT_FRTO);
2124 	}
2125 
2126 	tp->undo_marker = tp->snd_una;
2127 	tp->undo_retrans = 0;
2128 
2129 	skb = tcp_write_queue_head(sk);
2130 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131 		tp->undo_marker = 0;
2132 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134 		tp->retrans_out -= tcp_skb_pcount(skb);
2135 	}
2136 	tcp_verify_left_out(tp);
2137 
2138 	/* Too bad if TCP was application limited */
2139 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140 
2141 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2142 	 * The last condition is necessary at least in tp->frto_counter case.
2143 	 */
2144 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146 	    after(tp->high_seq, tp->snd_una)) {
2147 		tp->frto_highmark = tp->high_seq;
2148 	} else {
2149 		tp->frto_highmark = tp->snd_nxt;
2150 	}
2151 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2152 	tp->high_seq = tp->snd_nxt;
2153 	tp->frto_counter = 1;
2154 }
2155 
2156 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157  * which indicates that we should follow the traditional RTO recovery,
2158  * i.e. mark everything lost and do go-back-N retransmission.
2159  */
tcp_enter_frto_loss(struct sock * sk,int allowed_segments,int flag)2160 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161 {
2162 	struct tcp_sock *tp = tcp_sk(sk);
2163 	struct sk_buff *skb;
2164 
2165 	tp->lost_out = 0;
2166 	tp->retrans_out = 0;
2167 	if (tcp_is_reno(tp))
2168 		tcp_reset_reno_sack(tp);
2169 
2170 	tcp_for_write_queue(skb, sk) {
2171 		if (skb == tcp_send_head(sk))
2172 			break;
2173 
2174 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175 		/*
2176 		 * Count the retransmission made on RTO correctly (only when
2177 		 * waiting for the first ACK and did not get it)...
2178 		 */
2179 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180 			/* For some reason this R-bit might get cleared? */
2181 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182 				tp->retrans_out += tcp_skb_pcount(skb);
2183 			/* ...enter this if branch just for the first segment */
2184 			flag |= FLAG_DATA_ACKED;
2185 		} else {
2186 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187 				tp->undo_marker = 0;
2188 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 		}
2190 
2191 		/* Marking forward transmissions that were made after RTO lost
2192 		 * can cause unnecessary retransmissions in some scenarios,
2193 		 * SACK blocks will mitigate that in some but not in all cases.
2194 		 * We used to not mark them but it was causing break-ups with
2195 		 * receivers that do only in-order receival.
2196 		 *
2197 		 * TODO: we could detect presence of such receiver and select
2198 		 * different behavior per flow.
2199 		 */
2200 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202 			tp->lost_out += tcp_skb_pcount(skb);
2203 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 		}
2205 	}
2206 	tcp_verify_left_out(tp);
2207 
2208 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209 	tp->snd_cwnd_cnt = 0;
2210 	tp->snd_cwnd_stamp = tcp_time_stamp;
2211 	tp->frto_counter = 0;
2212 	tp->bytes_acked = 0;
2213 
2214 	tp->reordering = min_t(unsigned int, tp->reordering,
2215 			       sysctl_tcp_reordering);
2216 	tcp_set_ca_state(sk, TCP_CA_Loss);
2217 	tp->high_seq = tp->snd_nxt;
2218 	TCP_ECN_queue_cwr(tp);
2219 
2220 	tcp_clear_all_retrans_hints(tp);
2221 }
2222 
tcp_clear_retrans_partial(struct tcp_sock * tp)2223 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224 {
2225 	tp->retrans_out = 0;
2226 	tp->lost_out = 0;
2227 
2228 	tp->undo_marker = 0;
2229 	tp->undo_retrans = 0;
2230 }
2231 
tcp_clear_retrans(struct tcp_sock * tp)2232 void tcp_clear_retrans(struct tcp_sock *tp)
2233 {
2234 	tcp_clear_retrans_partial(tp);
2235 
2236 	tp->fackets_out = 0;
2237 	tp->sacked_out = 0;
2238 }
2239 
2240 /* Enter Loss state. If "how" is not zero, forget all SACK information
2241  * and reset tags completely, otherwise preserve SACKs. If receiver
2242  * dropped its ofo queue, we will know this due to reneging detection.
2243  */
tcp_enter_loss(struct sock * sk,int how)2244 void tcp_enter_loss(struct sock *sk, int how)
2245 {
2246 	const struct inet_connection_sock *icsk = inet_csk(sk);
2247 	struct tcp_sock *tp = tcp_sk(sk);
2248 	struct sk_buff *skb;
2249 
2250 	/* Reduce ssthresh if it has not yet been made inside this window. */
2251 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2252 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255 		tcp_ca_event(sk, CA_EVENT_LOSS);
2256 	}
2257 	tp->snd_cwnd	   = 1;
2258 	tp->snd_cwnd_cnt   = 0;
2259 	tp->snd_cwnd_stamp = tcp_time_stamp;
2260 
2261 	tp->bytes_acked = 0;
2262 	tcp_clear_retrans_partial(tp);
2263 
2264 	if (tcp_is_reno(tp))
2265 		tcp_reset_reno_sack(tp);
2266 
2267 	tp->undo_marker = tp->snd_una;
2268 	if (how) {
2269 		tp->sacked_out = 0;
2270 		tp->fackets_out = 0;
2271 	}
2272 	tcp_clear_all_retrans_hints(tp);
2273 
2274 	tcp_for_write_queue(skb, sk) {
2275 		if (skb == tcp_send_head(sk))
2276 			break;
2277 
2278 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2279 			tp->undo_marker = 0;
2280 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2281 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2282 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2283 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2284 			tp->lost_out += tcp_skb_pcount(skb);
2285 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2286 		}
2287 	}
2288 	tcp_verify_left_out(tp);
2289 
2290 	tp->reordering = min_t(unsigned int, tp->reordering,
2291 			       sysctl_tcp_reordering);
2292 	tcp_set_ca_state(sk, TCP_CA_Loss);
2293 	tp->high_seq = tp->snd_nxt;
2294 	TCP_ECN_queue_cwr(tp);
2295 	/* Abort F-RTO algorithm if one is in progress */
2296 	tp->frto_counter = 0;
2297 }
2298 
2299 /* If ACK arrived pointing to a remembered SACK, it means that our
2300  * remembered SACKs do not reflect real state of receiver i.e.
2301  * receiver _host_ is heavily congested (or buggy).
2302  *
2303  * Do processing similar to RTO timeout.
2304  */
tcp_check_sack_reneging(struct sock * sk,int flag)2305 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2306 {
2307 	if (flag & FLAG_SACK_RENEGING) {
2308 		struct inet_connection_sock *icsk = inet_csk(sk);
2309 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2310 
2311 		tcp_enter_loss(sk, 1);
2312 		icsk->icsk_retransmits++;
2313 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2314 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2315 					  icsk->icsk_rto, TCP_RTO_MAX);
2316 		return 1;
2317 	}
2318 	return 0;
2319 }
2320 
tcp_fackets_out(const struct tcp_sock * tp)2321 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2322 {
2323 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2324 }
2325 
2326 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2327  * counter when SACK is enabled (without SACK, sacked_out is used for
2328  * that purpose).
2329  *
2330  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2331  * segments up to the highest received SACK block so far and holes in
2332  * between them.
2333  *
2334  * With reordering, holes may still be in flight, so RFC3517 recovery
2335  * uses pure sacked_out (total number of SACKed segments) even though
2336  * it violates the RFC that uses duplicate ACKs, often these are equal
2337  * but when e.g. out-of-window ACKs or packet duplication occurs,
2338  * they differ. Since neither occurs due to loss, TCP should really
2339  * ignore them.
2340  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2341 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2342 {
2343 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2344 }
2345 
tcp_skb_timedout(const struct sock * sk,const struct sk_buff * skb)2346 static inline int tcp_skb_timedout(const struct sock *sk,
2347 				   const struct sk_buff *skb)
2348 {
2349 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2350 }
2351 
tcp_head_timedout(const struct sock * sk)2352 static inline int tcp_head_timedout(const struct sock *sk)
2353 {
2354 	const struct tcp_sock *tp = tcp_sk(sk);
2355 
2356 	return tp->packets_out &&
2357 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2358 }
2359 
2360 /* Linux NewReno/SACK/FACK/ECN state machine.
2361  * --------------------------------------
2362  *
2363  * "Open"	Normal state, no dubious events, fast path.
2364  * "Disorder"   In all the respects it is "Open",
2365  *		but requires a bit more attention. It is entered when
2366  *		we see some SACKs or dupacks. It is split of "Open"
2367  *		mainly to move some processing from fast path to slow one.
2368  * "CWR"	CWND was reduced due to some Congestion Notification event.
2369  *		It can be ECN, ICMP source quench, local device congestion.
2370  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2371  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2372  *
2373  * tcp_fastretrans_alert() is entered:
2374  * - each incoming ACK, if state is not "Open"
2375  * - when arrived ACK is unusual, namely:
2376  *	* SACK
2377  *	* Duplicate ACK.
2378  *	* ECN ECE.
2379  *
2380  * Counting packets in flight is pretty simple.
2381  *
2382  *	in_flight = packets_out - left_out + retrans_out
2383  *
2384  *	packets_out is SND.NXT-SND.UNA counted in packets.
2385  *
2386  *	retrans_out is number of retransmitted segments.
2387  *
2388  *	left_out is number of segments left network, but not ACKed yet.
2389  *
2390  *		left_out = sacked_out + lost_out
2391  *
2392  *     sacked_out: Packets, which arrived to receiver out of order
2393  *		   and hence not ACKed. With SACKs this number is simply
2394  *		   amount of SACKed data. Even without SACKs
2395  *		   it is easy to give pretty reliable estimate of this number,
2396  *		   counting duplicate ACKs.
2397  *
2398  *       lost_out: Packets lost by network. TCP has no explicit
2399  *		   "loss notification" feedback from network (for now).
2400  *		   It means that this number can be only _guessed_.
2401  *		   Actually, it is the heuristics to predict lossage that
2402  *		   distinguishes different algorithms.
2403  *
2404  *	F.e. after RTO, when all the queue is considered as lost,
2405  *	lost_out = packets_out and in_flight = retrans_out.
2406  *
2407  *		Essentially, we have now two algorithms counting
2408  *		lost packets.
2409  *
2410  *		FACK: It is the simplest heuristics. As soon as we decided
2411  *		that something is lost, we decide that _all_ not SACKed
2412  *		packets until the most forward SACK are lost. I.e.
2413  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2414  *		It is absolutely correct estimate, if network does not reorder
2415  *		packets. And it loses any connection to reality when reordering
2416  *		takes place. We use FACK by default until reordering
2417  *		is suspected on the path to this destination.
2418  *
2419  *		NewReno: when Recovery is entered, we assume that one segment
2420  *		is lost (classic Reno). While we are in Recovery and
2421  *		a partial ACK arrives, we assume that one more packet
2422  *		is lost (NewReno). This heuristics are the same in NewReno
2423  *		and SACK.
2424  *
2425  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2426  *  deflation etc. CWND is real congestion window, never inflated, changes
2427  *  only according to classic VJ rules.
2428  *
2429  * Really tricky (and requiring careful tuning) part of algorithm
2430  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2431  * The first determines the moment _when_ we should reduce CWND and,
2432  * hence, slow down forward transmission. In fact, it determines the moment
2433  * when we decide that hole is caused by loss, rather than by a reorder.
2434  *
2435  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2436  * holes, caused by lost packets.
2437  *
2438  * And the most logically complicated part of algorithm is undo
2439  * heuristics. We detect false retransmits due to both too early
2440  * fast retransmit (reordering) and underestimated RTO, analyzing
2441  * timestamps and D-SACKs. When we detect that some segments were
2442  * retransmitted by mistake and CWND reduction was wrong, we undo
2443  * window reduction and abort recovery phase. This logic is hidden
2444  * inside several functions named tcp_try_undo_<something>.
2445  */
2446 
2447 /* This function decides, when we should leave Disordered state
2448  * and enter Recovery phase, reducing congestion window.
2449  *
2450  * Main question: may we further continue forward transmission
2451  * with the same cwnd?
2452  */
tcp_time_to_recover(struct sock * sk)2453 static int tcp_time_to_recover(struct sock *sk)
2454 {
2455 	struct tcp_sock *tp = tcp_sk(sk);
2456 	__u32 packets_out;
2457 
2458 	/* Do not perform any recovery during F-RTO algorithm */
2459 	if (tp->frto_counter)
2460 		return 0;
2461 
2462 	/* Trick#1: The loss is proven. */
2463 	if (tp->lost_out)
2464 		return 1;
2465 
2466 	/* Not-A-Trick#2 : Classic rule... */
2467 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2468 		return 1;
2469 
2470 	/* Trick#3 : when we use RFC2988 timer restart, fast
2471 	 * retransmit can be triggered by timeout of queue head.
2472 	 */
2473 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2474 		return 1;
2475 
2476 	/* Trick#4: It is still not OK... But will it be useful to delay
2477 	 * recovery more?
2478 	 */
2479 	packets_out = tp->packets_out;
2480 	if (packets_out <= tp->reordering &&
2481 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2482 	    !tcp_may_send_now(sk)) {
2483 		/* We have nothing to send. This connection is limited
2484 		 * either by receiver window or by application.
2485 		 */
2486 		return 1;
2487 	}
2488 
2489 	/* If a thin stream is detected, retransmit after first
2490 	 * received dupack. Employ only if SACK is supported in order
2491 	 * to avoid possible corner-case series of spurious retransmissions
2492 	 * Use only if there are no unsent data.
2493 	 */
2494 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2495 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2496 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2497 		return 1;
2498 
2499 	return 0;
2500 }
2501 
2502 /* New heuristics: it is possible only after we switched to restart timer
2503  * each time when something is ACKed. Hence, we can detect timed out packets
2504  * during fast retransmit without falling to slow start.
2505  *
2506  * Usefulness of this as is very questionable, since we should know which of
2507  * the segments is the next to timeout which is relatively expensive to find
2508  * in general case unless we add some data structure just for that. The
2509  * current approach certainly won't find the right one too often and when it
2510  * finally does find _something_ it usually marks large part of the window
2511  * right away (because a retransmission with a larger timestamp blocks the
2512  * loop from advancing). -ij
2513  */
tcp_timeout_skbs(struct sock * sk)2514 static void tcp_timeout_skbs(struct sock *sk)
2515 {
2516 	struct tcp_sock *tp = tcp_sk(sk);
2517 	struct sk_buff *skb;
2518 
2519 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2520 		return;
2521 
2522 	skb = tp->scoreboard_skb_hint;
2523 	if (tp->scoreboard_skb_hint == NULL)
2524 		skb = tcp_write_queue_head(sk);
2525 
2526 	tcp_for_write_queue_from(skb, sk) {
2527 		if (skb == tcp_send_head(sk))
2528 			break;
2529 		if (!tcp_skb_timedout(sk, skb))
2530 			break;
2531 
2532 		tcp_skb_mark_lost(tp, skb);
2533 	}
2534 
2535 	tp->scoreboard_skb_hint = skb;
2536 
2537 	tcp_verify_left_out(tp);
2538 }
2539 
2540 /* Detect loss in event "A" above by marking head of queue up as lost.
2541  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2542  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2543  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2544  * the maximum SACKed segments to pass before reaching this limit.
2545  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2546 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2547 {
2548 	struct tcp_sock *tp = tcp_sk(sk);
2549 	struct sk_buff *skb;
2550 	int cnt, oldcnt;
2551 	int err;
2552 	unsigned int mss;
2553 	/* Use SACK to deduce losses of new sequences sent during recovery */
2554 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2555 
2556 	WARN_ON(packets > tp->packets_out);
2557 	if (tp->lost_skb_hint) {
2558 		skb = tp->lost_skb_hint;
2559 		cnt = tp->lost_cnt_hint;
2560 		/* Head already handled? */
2561 		if (mark_head && skb != tcp_write_queue_head(sk))
2562 			return;
2563 	} else {
2564 		skb = tcp_write_queue_head(sk);
2565 		cnt = 0;
2566 	}
2567 
2568 	tcp_for_write_queue_from(skb, sk) {
2569 		if (skb == tcp_send_head(sk))
2570 			break;
2571 		/* TODO: do this better */
2572 		/* this is not the most efficient way to do this... */
2573 		tp->lost_skb_hint = skb;
2574 		tp->lost_cnt_hint = cnt;
2575 
2576 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2577 			break;
2578 
2579 		oldcnt = cnt;
2580 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2581 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2582 			cnt += tcp_skb_pcount(skb);
2583 
2584 		if (cnt > packets) {
2585 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2586 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2587 			    (oldcnt >= packets))
2588 				break;
2589 
2590 			mss = skb_shinfo(skb)->gso_size;
2591 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2592 			if (err < 0)
2593 				break;
2594 			cnt = packets;
2595 		}
2596 
2597 		tcp_skb_mark_lost(tp, skb);
2598 
2599 		if (mark_head)
2600 			break;
2601 	}
2602 	tcp_verify_left_out(tp);
2603 }
2604 
2605 /* Account newly detected lost packet(s) */
2606 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2607 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 
2611 	if (tcp_is_reno(tp)) {
2612 		tcp_mark_head_lost(sk, 1, 1);
2613 	} else if (tcp_is_fack(tp)) {
2614 		int lost = tp->fackets_out - tp->reordering;
2615 		if (lost <= 0)
2616 			lost = 1;
2617 		tcp_mark_head_lost(sk, lost, 0);
2618 	} else {
2619 		int sacked_upto = tp->sacked_out - tp->reordering;
2620 		if (sacked_upto >= 0)
2621 			tcp_mark_head_lost(sk, sacked_upto, 0);
2622 		else if (fast_rexmit)
2623 			tcp_mark_head_lost(sk, 1, 1);
2624 	}
2625 
2626 	tcp_timeout_skbs(sk);
2627 }
2628 
2629 /* CWND moderation, preventing bursts due to too big ACKs
2630  * in dubious situations.
2631  */
tcp_moderate_cwnd(struct tcp_sock * tp)2632 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2633 {
2634 	tp->snd_cwnd = min(tp->snd_cwnd,
2635 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2636 	tp->snd_cwnd_stamp = tcp_time_stamp;
2637 }
2638 
2639 /* Lower bound on congestion window is slow start threshold
2640  * unless congestion avoidance choice decides to overide it.
2641  */
tcp_cwnd_min(const struct sock * sk)2642 static inline u32 tcp_cwnd_min(const struct sock *sk)
2643 {
2644 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2645 
2646 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2647 }
2648 
2649 /* Decrease cwnd each second ack. */
tcp_cwnd_down(struct sock * sk,int flag)2650 static void tcp_cwnd_down(struct sock *sk, int flag)
2651 {
2652 	struct tcp_sock *tp = tcp_sk(sk);
2653 	int decr = tp->snd_cwnd_cnt + 1;
2654 
2655 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2656 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2657 		tp->snd_cwnd_cnt = decr & 1;
2658 		decr >>= 1;
2659 
2660 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2661 			tp->snd_cwnd -= decr;
2662 
2663 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2664 		tp->snd_cwnd_stamp = tcp_time_stamp;
2665 	}
2666 }
2667 
2668 /* Nothing was retransmitted or returned timestamp is less
2669  * than timestamp of the first retransmission.
2670  */
tcp_packet_delayed(const struct tcp_sock * tp)2671 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2672 {
2673 	return !tp->retrans_stamp ||
2674 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2675 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2676 }
2677 
2678 /* Undo procedures. */
2679 
2680 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2681 static void DBGUNDO(struct sock *sk, const char *msg)
2682 {
2683 	struct tcp_sock *tp = tcp_sk(sk);
2684 	struct inet_sock *inet = inet_sk(sk);
2685 
2686 	if (sk->sk_family == AF_INET) {
2687 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2688 		       msg,
2689 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2690 		       tp->snd_cwnd, tcp_left_out(tp),
2691 		       tp->snd_ssthresh, tp->prior_ssthresh,
2692 		       tp->packets_out);
2693 	}
2694 #if IS_ENABLED(CONFIG_IPV6)
2695 	else if (sk->sk_family == AF_INET6) {
2696 		struct ipv6_pinfo *np = inet6_sk(sk);
2697 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2698 		       msg,
2699 		       &np->daddr, ntohs(inet->inet_dport),
2700 		       tp->snd_cwnd, tcp_left_out(tp),
2701 		       tp->snd_ssthresh, tp->prior_ssthresh,
2702 		       tp->packets_out);
2703 	}
2704 #endif
2705 }
2706 #else
2707 #define DBGUNDO(x...) do { } while (0)
2708 #endif
2709 
tcp_undo_cwr(struct sock * sk,const bool undo_ssthresh)2710 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 
2714 	if (tp->prior_ssthresh) {
2715 		const struct inet_connection_sock *icsk = inet_csk(sk);
2716 
2717 		if (icsk->icsk_ca_ops->undo_cwnd)
2718 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2719 		else
2720 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2721 
2722 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2723 			tp->snd_ssthresh = tp->prior_ssthresh;
2724 			TCP_ECN_withdraw_cwr(tp);
2725 		}
2726 	} else {
2727 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2728 	}
2729 	tp->snd_cwnd_stamp = tcp_time_stamp;
2730 }
2731 
tcp_may_undo(const struct tcp_sock * tp)2732 static inline int tcp_may_undo(const struct tcp_sock *tp)
2733 {
2734 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2735 }
2736 
2737 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2738 static int tcp_try_undo_recovery(struct sock *sk)
2739 {
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 
2742 	if (tcp_may_undo(tp)) {
2743 		int mib_idx;
2744 
2745 		/* Happy end! We did not retransmit anything
2746 		 * or our original transmission succeeded.
2747 		 */
2748 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2749 		tcp_undo_cwr(sk, true);
2750 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2751 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2752 		else
2753 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2754 
2755 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2756 		tp->undo_marker = 0;
2757 	}
2758 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2759 		/* Hold old state until something *above* high_seq
2760 		 * is ACKed. For Reno it is MUST to prevent false
2761 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2762 		tcp_moderate_cwnd(tp);
2763 		return 1;
2764 	}
2765 	tcp_set_ca_state(sk, TCP_CA_Open);
2766 	return 0;
2767 }
2768 
2769 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2770 static void tcp_try_undo_dsack(struct sock *sk)
2771 {
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 
2774 	if (tp->undo_marker && !tp->undo_retrans) {
2775 		DBGUNDO(sk, "D-SACK");
2776 		tcp_undo_cwr(sk, true);
2777 		tp->undo_marker = 0;
2778 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2779 	}
2780 }
2781 
2782 /* We can clear retrans_stamp when there are no retransmissions in the
2783  * window. It would seem that it is trivially available for us in
2784  * tp->retrans_out, however, that kind of assumptions doesn't consider
2785  * what will happen if errors occur when sending retransmission for the
2786  * second time. ...It could the that such segment has only
2787  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2788  * the head skb is enough except for some reneging corner cases that
2789  * are not worth the effort.
2790  *
2791  * Main reason for all this complexity is the fact that connection dying
2792  * time now depends on the validity of the retrans_stamp, in particular,
2793  * that successive retransmissions of a segment must not advance
2794  * retrans_stamp under any conditions.
2795  */
tcp_any_retrans_done(const struct sock * sk)2796 static int tcp_any_retrans_done(const struct sock *sk)
2797 {
2798 	const struct tcp_sock *tp = tcp_sk(sk);
2799 	struct sk_buff *skb;
2800 
2801 	if (tp->retrans_out)
2802 		return 1;
2803 
2804 	skb = tcp_write_queue_head(sk);
2805 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2806 		return 1;
2807 
2808 	return 0;
2809 }
2810 
2811 /* Undo during fast recovery after partial ACK. */
2812 
tcp_try_undo_partial(struct sock * sk,int acked)2813 static int tcp_try_undo_partial(struct sock *sk, int acked)
2814 {
2815 	struct tcp_sock *tp = tcp_sk(sk);
2816 	/* Partial ACK arrived. Force Hoe's retransmit. */
2817 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2818 
2819 	if (tcp_may_undo(tp)) {
2820 		/* Plain luck! Hole if filled with delayed
2821 		 * packet, rather than with a retransmit.
2822 		 */
2823 		if (!tcp_any_retrans_done(sk))
2824 			tp->retrans_stamp = 0;
2825 
2826 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2827 
2828 		DBGUNDO(sk, "Hoe");
2829 		tcp_undo_cwr(sk, false);
2830 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2831 
2832 		/* So... Do not make Hoe's retransmit yet.
2833 		 * If the first packet was delayed, the rest
2834 		 * ones are most probably delayed as well.
2835 		 */
2836 		failed = 0;
2837 	}
2838 	return failed;
2839 }
2840 
2841 /* Undo during loss recovery after partial ACK. */
tcp_try_undo_loss(struct sock * sk)2842 static int tcp_try_undo_loss(struct sock *sk)
2843 {
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 
2846 	if (tcp_may_undo(tp)) {
2847 		struct sk_buff *skb;
2848 		tcp_for_write_queue(skb, sk) {
2849 			if (skb == tcp_send_head(sk))
2850 				break;
2851 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2852 		}
2853 
2854 		tcp_clear_all_retrans_hints(tp);
2855 
2856 		DBGUNDO(sk, "partial loss");
2857 		tp->lost_out = 0;
2858 		tcp_undo_cwr(sk, true);
2859 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2860 		inet_csk(sk)->icsk_retransmits = 0;
2861 		tp->undo_marker = 0;
2862 		if (tcp_is_sack(tp))
2863 			tcp_set_ca_state(sk, TCP_CA_Open);
2864 		return 1;
2865 	}
2866 	return 0;
2867 }
2868 
tcp_complete_cwr(struct sock * sk)2869 static inline void tcp_complete_cwr(struct sock *sk)
2870 {
2871 	struct tcp_sock *tp = tcp_sk(sk);
2872 
2873 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2874 	if (tp->undo_marker) {
2875 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2876 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2877 			tp->snd_cwnd_stamp = tcp_time_stamp;
2878 		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2879 			/* PRR algorithm. */
2880 			tp->snd_cwnd = tp->snd_ssthresh;
2881 			tp->snd_cwnd_stamp = tcp_time_stamp;
2882 		}
2883 	}
2884 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2885 }
2886 
tcp_try_keep_open(struct sock * sk)2887 static void tcp_try_keep_open(struct sock *sk)
2888 {
2889 	struct tcp_sock *tp = tcp_sk(sk);
2890 	int state = TCP_CA_Open;
2891 
2892 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2893 		state = TCP_CA_Disorder;
2894 
2895 	if (inet_csk(sk)->icsk_ca_state != state) {
2896 		tcp_set_ca_state(sk, state);
2897 		tp->high_seq = tp->snd_nxt;
2898 	}
2899 }
2900 
tcp_try_to_open(struct sock * sk,int flag)2901 static void tcp_try_to_open(struct sock *sk, int flag)
2902 {
2903 	struct tcp_sock *tp = tcp_sk(sk);
2904 
2905 	tcp_verify_left_out(tp);
2906 
2907 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2908 		tp->retrans_stamp = 0;
2909 
2910 	if (flag & FLAG_ECE)
2911 		tcp_enter_cwr(sk, 1);
2912 
2913 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2914 		tcp_try_keep_open(sk);
2915 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2916 			tcp_moderate_cwnd(tp);
2917 	} else {
2918 		tcp_cwnd_down(sk, flag);
2919 	}
2920 }
2921 
tcp_mtup_probe_failed(struct sock * sk)2922 static void tcp_mtup_probe_failed(struct sock *sk)
2923 {
2924 	struct inet_connection_sock *icsk = inet_csk(sk);
2925 
2926 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2927 	icsk->icsk_mtup.probe_size = 0;
2928 }
2929 
tcp_mtup_probe_success(struct sock * sk)2930 static void tcp_mtup_probe_success(struct sock *sk)
2931 {
2932 	struct tcp_sock *tp = tcp_sk(sk);
2933 	struct inet_connection_sock *icsk = inet_csk(sk);
2934 
2935 	/* FIXME: breaks with very large cwnd */
2936 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2937 	tp->snd_cwnd = tp->snd_cwnd *
2938 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2939 		       icsk->icsk_mtup.probe_size;
2940 	tp->snd_cwnd_cnt = 0;
2941 	tp->snd_cwnd_stamp = tcp_time_stamp;
2942 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2943 
2944 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2945 	icsk->icsk_mtup.probe_size = 0;
2946 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2947 }
2948 
2949 /* Do a simple retransmit without using the backoff mechanisms in
2950  * tcp_timer. This is used for path mtu discovery.
2951  * The socket is already locked here.
2952  */
tcp_simple_retransmit(struct sock * sk)2953 void tcp_simple_retransmit(struct sock *sk)
2954 {
2955 	const struct inet_connection_sock *icsk = inet_csk(sk);
2956 	struct tcp_sock *tp = tcp_sk(sk);
2957 	struct sk_buff *skb;
2958 	unsigned int mss = tcp_current_mss(sk);
2959 	u32 prior_lost = tp->lost_out;
2960 
2961 	tcp_for_write_queue(skb, sk) {
2962 		if (skb == tcp_send_head(sk))
2963 			break;
2964 		if (tcp_skb_seglen(skb) > mss &&
2965 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2966 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2967 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2968 				tp->retrans_out -= tcp_skb_pcount(skb);
2969 			}
2970 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2971 		}
2972 	}
2973 
2974 	tcp_clear_retrans_hints_partial(tp);
2975 
2976 	if (prior_lost == tp->lost_out)
2977 		return;
2978 
2979 	if (tcp_is_reno(tp))
2980 		tcp_limit_reno_sacked(tp);
2981 
2982 	tcp_verify_left_out(tp);
2983 
2984 	/* Don't muck with the congestion window here.
2985 	 * Reason is that we do not increase amount of _data_
2986 	 * in network, but units changed and effective
2987 	 * cwnd/ssthresh really reduced now.
2988 	 */
2989 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2990 		tp->high_seq = tp->snd_nxt;
2991 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2992 		tp->prior_ssthresh = 0;
2993 		tp->undo_marker = 0;
2994 		tcp_set_ca_state(sk, TCP_CA_Loss);
2995 	}
2996 	tcp_xmit_retransmit_queue(sk);
2997 }
2998 EXPORT_SYMBOL(tcp_simple_retransmit);
2999 
3000 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3001  * (proportional rate reduction with slow start reduction bound) as described in
3002  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3003  * It computes the number of packets to send (sndcnt) based on packets newly
3004  * delivered:
3005  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3006  *	cwnd reductions across a full RTT.
3007  *   2) If packets in flight is lower than ssthresh (such as due to excess
3008  *	losses and/or application stalls), do not perform any further cwnd
3009  *	reductions, but instead slow start up to ssthresh.
3010  */
tcp_update_cwnd_in_recovery(struct sock * sk,int newly_acked_sacked,int fast_rexmit,int flag)3011 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3012 					int fast_rexmit, int flag)
3013 {
3014 	struct tcp_sock *tp = tcp_sk(sk);
3015 	int sndcnt = 0;
3016 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3017 
3018 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3019 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3020 			       tp->prior_cwnd - 1;
3021 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3022 	} else {
3023 		sndcnt = min_t(int, delta,
3024 			       max_t(int, tp->prr_delivered - tp->prr_out,
3025 				     newly_acked_sacked) + 1);
3026 	}
3027 
3028 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3029 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3030 }
3031 
3032 /* Process an event, which can update packets-in-flight not trivially.
3033  * Main goal of this function is to calculate new estimate for left_out,
3034  * taking into account both packets sitting in receiver's buffer and
3035  * packets lost by network.
3036  *
3037  * Besides that it does CWND reduction, when packet loss is detected
3038  * and changes state of machine.
3039  *
3040  * It does _not_ decide what to send, it is made in function
3041  * tcp_xmit_retransmit_queue().
3042  */
tcp_fastretrans_alert(struct sock * sk,int pkts_acked,int prior_sacked,int prior_packets,bool is_dupack,int flag)3043 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3044 				  int prior_sacked, int prior_packets,
3045 				  bool is_dupack, int flag)
3046 {
3047 	struct inet_connection_sock *icsk = inet_csk(sk);
3048 	struct tcp_sock *tp = tcp_sk(sk);
3049 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3050 				    (tcp_fackets_out(tp) > tp->reordering));
3051 	int newly_acked_sacked = 0;
3052 	int fast_rexmit = 0, mib_idx;
3053 
3054 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3055 		tp->sacked_out = 0;
3056 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3057 		tp->fackets_out = 0;
3058 
3059 	/* Now state machine starts.
3060 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3061 	if (flag & FLAG_ECE)
3062 		tp->prior_ssthresh = 0;
3063 
3064 	/* B. In all the states check for reneging SACKs. */
3065 	if (tcp_check_sack_reneging(sk, flag))
3066 		return;
3067 
3068 	/* C. Check consistency of the current state. */
3069 	tcp_verify_left_out(tp);
3070 
3071 	/* D. Check state exit conditions. State can be terminated
3072 	 *    when high_seq is ACKed. */
3073 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3074 		WARN_ON(tp->retrans_out != 0);
3075 		tp->retrans_stamp = 0;
3076 	} else if (!before(tp->snd_una, tp->high_seq)) {
3077 		switch (icsk->icsk_ca_state) {
3078 		case TCP_CA_Loss:
3079 			icsk->icsk_retransmits = 0;
3080 			if (tcp_try_undo_recovery(sk))
3081 				return;
3082 			break;
3083 
3084 		case TCP_CA_CWR:
3085 			/* CWR is to be held something *above* high_seq
3086 			 * is ACKed for CWR bit to reach receiver. */
3087 			if (tp->snd_una != tp->high_seq) {
3088 				tcp_complete_cwr(sk);
3089 				tcp_set_ca_state(sk, TCP_CA_Open);
3090 			}
3091 			break;
3092 
3093 		case TCP_CA_Recovery:
3094 			if (tcp_is_reno(tp))
3095 				tcp_reset_reno_sack(tp);
3096 			if (tcp_try_undo_recovery(sk))
3097 				return;
3098 			tcp_complete_cwr(sk);
3099 			break;
3100 		}
3101 	}
3102 
3103 	/* E. Process state. */
3104 	switch (icsk->icsk_ca_state) {
3105 	case TCP_CA_Recovery:
3106 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3107 			if (tcp_is_reno(tp) && is_dupack)
3108 				tcp_add_reno_sack(sk);
3109 		} else
3110 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3111 		newly_acked_sacked = prior_packets - tp->packets_out +
3112 				     tp->sacked_out - prior_sacked;
3113 		break;
3114 	case TCP_CA_Loss:
3115 		if (flag & FLAG_DATA_ACKED)
3116 			icsk->icsk_retransmits = 0;
3117 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3118 			tcp_reset_reno_sack(tp);
3119 		if (!tcp_try_undo_loss(sk)) {
3120 			tcp_moderate_cwnd(tp);
3121 			tcp_xmit_retransmit_queue(sk);
3122 			return;
3123 		}
3124 		if (icsk->icsk_ca_state != TCP_CA_Open)
3125 			return;
3126 		/* Loss is undone; fall through to processing in Open state. */
3127 	default:
3128 		if (tcp_is_reno(tp)) {
3129 			if (flag & FLAG_SND_UNA_ADVANCED)
3130 				tcp_reset_reno_sack(tp);
3131 			if (is_dupack)
3132 				tcp_add_reno_sack(sk);
3133 		}
3134 		newly_acked_sacked = prior_packets - tp->packets_out +
3135 				     tp->sacked_out - prior_sacked;
3136 
3137 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3138 			tcp_try_undo_dsack(sk);
3139 
3140 		if (!tcp_time_to_recover(sk)) {
3141 			tcp_try_to_open(sk, flag);
3142 			return;
3143 		}
3144 
3145 		/* MTU probe failure: don't reduce cwnd */
3146 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3147 		    icsk->icsk_mtup.probe_size &&
3148 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3149 			tcp_mtup_probe_failed(sk);
3150 			/* Restores the reduction we did in tcp_mtup_probe() */
3151 			tp->snd_cwnd++;
3152 			tcp_simple_retransmit(sk);
3153 			return;
3154 		}
3155 
3156 		/* Otherwise enter Recovery state */
3157 
3158 		if (tcp_is_reno(tp))
3159 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3160 		else
3161 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3162 
3163 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3164 
3165 		tp->high_seq = tp->snd_nxt;
3166 		tp->prior_ssthresh = 0;
3167 		tp->undo_marker = tp->snd_una;
3168 		tp->undo_retrans = tp->retrans_out;
3169 
3170 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3171 			if (!(flag & FLAG_ECE))
3172 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3173 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3174 			TCP_ECN_queue_cwr(tp);
3175 		}
3176 
3177 		tp->bytes_acked = 0;
3178 		tp->snd_cwnd_cnt = 0;
3179 		tp->prior_cwnd = tp->snd_cwnd;
3180 		tp->prr_delivered = 0;
3181 		tp->prr_out = 0;
3182 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3183 		fast_rexmit = 1;
3184 	}
3185 
3186 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3187 		tcp_update_scoreboard(sk, fast_rexmit);
3188 	tp->prr_delivered += newly_acked_sacked;
3189 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3190 	tcp_xmit_retransmit_queue(sk);
3191 }
3192 
tcp_valid_rtt_meas(struct sock * sk,u32 seq_rtt)3193 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3194 {
3195 	tcp_rtt_estimator(sk, seq_rtt);
3196 	tcp_set_rto(sk);
3197 	inet_csk(sk)->icsk_backoff = 0;
3198 }
3199 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3200 
3201 /* Read draft-ietf-tcplw-high-performance before mucking
3202  * with this code. (Supersedes RFC1323)
3203  */
tcp_ack_saw_tstamp(struct sock * sk,int flag)3204 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3205 {
3206 	/* RTTM Rule: A TSecr value received in a segment is used to
3207 	 * update the averaged RTT measurement only if the segment
3208 	 * acknowledges some new data, i.e., only if it advances the
3209 	 * left edge of the send window.
3210 	 *
3211 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3212 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3213 	 *
3214 	 * Changed: reset backoff as soon as we see the first valid sample.
3215 	 * If we do not, we get strongly overestimated rto. With timestamps
3216 	 * samples are accepted even from very old segments: f.e., when rtt=1
3217 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3218 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3219 	 * in window is lost... Voila.	 			--ANK (010210)
3220 	 */
3221 	struct tcp_sock *tp = tcp_sk(sk);
3222 
3223 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3224 }
3225 
tcp_ack_no_tstamp(struct sock * sk,u32 seq_rtt,int flag)3226 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3227 {
3228 	/* We don't have a timestamp. Can only use
3229 	 * packets that are not retransmitted to determine
3230 	 * rtt estimates. Also, we must not reset the
3231 	 * backoff for rto until we get a non-retransmitted
3232 	 * packet. This allows us to deal with a situation
3233 	 * where the network delay has increased suddenly.
3234 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3235 	 */
3236 
3237 	if (flag & FLAG_RETRANS_DATA_ACKED)
3238 		return;
3239 
3240 	tcp_valid_rtt_meas(sk, seq_rtt);
3241 }
3242 
tcp_ack_update_rtt(struct sock * sk,const int flag,const s32 seq_rtt)3243 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3244 				      const s32 seq_rtt)
3245 {
3246 	const struct tcp_sock *tp = tcp_sk(sk);
3247 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3248 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3249 		tcp_ack_saw_tstamp(sk, flag);
3250 	else if (seq_rtt >= 0)
3251 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3252 }
3253 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 in_flight)3254 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3255 {
3256 	const struct inet_connection_sock *icsk = inet_csk(sk);
3257 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3258 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3259 }
3260 
3261 /* Restart timer after forward progress on connection.
3262  * RFC2988 recommends to restart timer to now+rto.
3263  */
tcp_rearm_rto(struct sock * sk)3264 static void tcp_rearm_rto(struct sock *sk)
3265 {
3266 	const struct tcp_sock *tp = tcp_sk(sk);
3267 
3268 	if (!tp->packets_out) {
3269 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3270 	} else {
3271 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3272 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3273 	}
3274 }
3275 
3276 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3277 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3278 {
3279 	struct tcp_sock *tp = tcp_sk(sk);
3280 	u32 packets_acked;
3281 
3282 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3283 
3284 	packets_acked = tcp_skb_pcount(skb);
3285 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3286 		return 0;
3287 	packets_acked -= tcp_skb_pcount(skb);
3288 
3289 	if (packets_acked) {
3290 		BUG_ON(tcp_skb_pcount(skb) == 0);
3291 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3292 	}
3293 
3294 	return packets_acked;
3295 }
3296 
3297 /* Remove acknowledged frames from the retransmission queue. If our packet
3298  * is before the ack sequence we can discard it as it's confirmed to have
3299  * arrived at the other end.
3300  */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una)3301 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3302 			       u32 prior_snd_una)
3303 {
3304 	struct tcp_sock *tp = tcp_sk(sk);
3305 	const struct inet_connection_sock *icsk = inet_csk(sk);
3306 	struct sk_buff *skb;
3307 	u32 now = tcp_time_stamp;
3308 	int fully_acked = 1;
3309 	int flag = 0;
3310 	u32 pkts_acked = 0;
3311 	u32 reord = tp->packets_out;
3312 	u32 prior_sacked = tp->sacked_out;
3313 	s32 seq_rtt = -1;
3314 	s32 ca_seq_rtt = -1;
3315 	ktime_t last_ackt = net_invalid_timestamp();
3316 
3317 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3318 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3319 		u32 acked_pcount;
3320 		u8 sacked = scb->sacked;
3321 
3322 		/* Determine how many packets and what bytes were acked, tso and else */
3323 		if (after(scb->end_seq, tp->snd_una)) {
3324 			if (tcp_skb_pcount(skb) == 1 ||
3325 			    !after(tp->snd_una, scb->seq))
3326 				break;
3327 
3328 			acked_pcount = tcp_tso_acked(sk, skb);
3329 			if (!acked_pcount)
3330 				break;
3331 
3332 			fully_acked = 0;
3333 		} else {
3334 			acked_pcount = tcp_skb_pcount(skb);
3335 		}
3336 
3337 		if (sacked & TCPCB_RETRANS) {
3338 			if (sacked & TCPCB_SACKED_RETRANS)
3339 				tp->retrans_out -= acked_pcount;
3340 			flag |= FLAG_RETRANS_DATA_ACKED;
3341 			ca_seq_rtt = -1;
3342 			seq_rtt = -1;
3343 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3344 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3345 		} else {
3346 			ca_seq_rtt = now - scb->when;
3347 			last_ackt = skb->tstamp;
3348 			if (seq_rtt < 0) {
3349 				seq_rtt = ca_seq_rtt;
3350 			}
3351 			if (!(sacked & TCPCB_SACKED_ACKED))
3352 				reord = min(pkts_acked, reord);
3353 		}
3354 
3355 		if (sacked & TCPCB_SACKED_ACKED)
3356 			tp->sacked_out -= acked_pcount;
3357 		if (sacked & TCPCB_LOST)
3358 			tp->lost_out -= acked_pcount;
3359 
3360 		tp->packets_out -= acked_pcount;
3361 		pkts_acked += acked_pcount;
3362 
3363 		/* Initial outgoing SYN's get put onto the write_queue
3364 		 * just like anything else we transmit.  It is not
3365 		 * true data, and if we misinform our callers that
3366 		 * this ACK acks real data, we will erroneously exit
3367 		 * connection startup slow start one packet too
3368 		 * quickly.  This is severely frowned upon behavior.
3369 		 */
3370 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3371 			flag |= FLAG_DATA_ACKED;
3372 		} else {
3373 			flag |= FLAG_SYN_ACKED;
3374 			tp->retrans_stamp = 0;
3375 		}
3376 
3377 		if (!fully_acked)
3378 			break;
3379 
3380 		tcp_unlink_write_queue(skb, sk);
3381 		sk_wmem_free_skb(sk, skb);
3382 		tp->scoreboard_skb_hint = NULL;
3383 		if (skb == tp->retransmit_skb_hint)
3384 			tp->retransmit_skb_hint = NULL;
3385 		if (skb == tp->lost_skb_hint)
3386 			tp->lost_skb_hint = NULL;
3387 	}
3388 
3389 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3390 		tp->snd_up = tp->snd_una;
3391 
3392 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3393 		flag |= FLAG_SACK_RENEGING;
3394 
3395 	if (flag & FLAG_ACKED) {
3396 		const struct tcp_congestion_ops *ca_ops
3397 			= inet_csk(sk)->icsk_ca_ops;
3398 
3399 		if (unlikely(icsk->icsk_mtup.probe_size &&
3400 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3401 			tcp_mtup_probe_success(sk);
3402 		}
3403 
3404 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3405 		tcp_rearm_rto(sk);
3406 
3407 		if (tcp_is_reno(tp)) {
3408 			tcp_remove_reno_sacks(sk, pkts_acked);
3409 		} else {
3410 			int delta;
3411 
3412 			/* Non-retransmitted hole got filled? That's reordering */
3413 			if (reord < prior_fackets)
3414 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3415 
3416 			delta = tcp_is_fack(tp) ? pkts_acked :
3417 						  prior_sacked - tp->sacked_out;
3418 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3419 		}
3420 
3421 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3422 
3423 		if (ca_ops->pkts_acked) {
3424 			s32 rtt_us = -1;
3425 
3426 			/* Is the ACK triggering packet unambiguous? */
3427 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3428 				/* High resolution needed and available? */
3429 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3430 				    !ktime_equal(last_ackt,
3431 						 net_invalid_timestamp()))
3432 					rtt_us = ktime_us_delta(ktime_get_real(),
3433 								last_ackt);
3434 				else if (ca_seq_rtt >= 0)
3435 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3436 			}
3437 
3438 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3439 		}
3440 	}
3441 
3442 #if FASTRETRANS_DEBUG > 0
3443 	WARN_ON((int)tp->sacked_out < 0);
3444 	WARN_ON((int)tp->lost_out < 0);
3445 	WARN_ON((int)tp->retrans_out < 0);
3446 	if (!tp->packets_out && tcp_is_sack(tp)) {
3447 		icsk = inet_csk(sk);
3448 		if (tp->lost_out) {
3449 			printk(KERN_DEBUG "Leak l=%u %d\n",
3450 			       tp->lost_out, icsk->icsk_ca_state);
3451 			tp->lost_out = 0;
3452 		}
3453 		if (tp->sacked_out) {
3454 			printk(KERN_DEBUG "Leak s=%u %d\n",
3455 			       tp->sacked_out, icsk->icsk_ca_state);
3456 			tp->sacked_out = 0;
3457 		}
3458 		if (tp->retrans_out) {
3459 			printk(KERN_DEBUG "Leak r=%u %d\n",
3460 			       tp->retrans_out, icsk->icsk_ca_state);
3461 			tp->retrans_out = 0;
3462 		}
3463 	}
3464 #endif
3465 	return flag;
3466 }
3467 
tcp_ack_probe(struct sock * sk)3468 static void tcp_ack_probe(struct sock *sk)
3469 {
3470 	const struct tcp_sock *tp = tcp_sk(sk);
3471 	struct inet_connection_sock *icsk = inet_csk(sk);
3472 
3473 	/* Was it a usable window open? */
3474 
3475 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3476 		icsk->icsk_backoff = 0;
3477 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3478 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3479 		 * This function is not for random using!
3480 		 */
3481 	} else {
3482 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3483 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3484 					  TCP_RTO_MAX);
3485 	}
3486 }
3487 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3488 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3489 {
3490 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3491 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3492 }
3493 
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3494 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3495 {
3496 	const struct tcp_sock *tp = tcp_sk(sk);
3497 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3498 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3499 }
3500 
3501 /* Check that window update is acceptable.
3502  * The function assumes that snd_una<=ack<=snd_next.
3503  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3504 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3505 					const u32 ack, const u32 ack_seq,
3506 					const u32 nwin)
3507 {
3508 	return	after(ack, tp->snd_una) ||
3509 		after(ack_seq, tp->snd_wl1) ||
3510 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3511 }
3512 
3513 /* Update our send window.
3514  *
3515  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3516  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3517  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3518 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3519 				 u32 ack_seq)
3520 {
3521 	struct tcp_sock *tp = tcp_sk(sk);
3522 	int flag = 0;
3523 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3524 
3525 	if (likely(!tcp_hdr(skb)->syn))
3526 		nwin <<= tp->rx_opt.snd_wscale;
3527 
3528 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3529 		flag |= FLAG_WIN_UPDATE;
3530 		tcp_update_wl(tp, ack_seq);
3531 
3532 		if (tp->snd_wnd != nwin) {
3533 			tp->snd_wnd = nwin;
3534 
3535 			/* Note, it is the only place, where
3536 			 * fast path is recovered for sending TCP.
3537 			 */
3538 			tp->pred_flags = 0;
3539 			tcp_fast_path_check(sk);
3540 
3541 			if (nwin > tp->max_window) {
3542 				tp->max_window = nwin;
3543 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3544 			}
3545 		}
3546 	}
3547 
3548 	tp->snd_una = ack;
3549 
3550 	return flag;
3551 }
3552 
3553 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3554  * continue in congestion avoidance.
3555  */
tcp_conservative_spur_to_response(struct tcp_sock * tp)3556 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3557 {
3558 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3559 	tp->snd_cwnd_cnt = 0;
3560 	tp->bytes_acked = 0;
3561 	TCP_ECN_queue_cwr(tp);
3562 	tcp_moderate_cwnd(tp);
3563 }
3564 
3565 /* A conservative spurious RTO response algorithm: reduce cwnd using
3566  * rate halving and continue in congestion avoidance.
3567  */
tcp_ratehalving_spur_to_response(struct sock * sk)3568 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3569 {
3570 	tcp_enter_cwr(sk, 0);
3571 }
3572 
tcp_undo_spur_to_response(struct sock * sk,int flag)3573 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3574 {
3575 	if (flag & FLAG_ECE)
3576 		tcp_ratehalving_spur_to_response(sk);
3577 	else
3578 		tcp_undo_cwr(sk, true);
3579 }
3580 
3581 /* F-RTO spurious RTO detection algorithm (RFC4138)
3582  *
3583  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3584  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3585  * window (but not to or beyond highest sequence sent before RTO):
3586  *   On First ACK,  send two new segments out.
3587  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3588  *                  algorithm is not part of the F-RTO detection algorithm
3589  *                  given in RFC4138 but can be selected separately).
3590  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3591  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3592  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3593  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3594  *
3595  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3596  * original window even after we transmit two new data segments.
3597  *
3598  * SACK version:
3599  *   on first step, wait until first cumulative ACK arrives, then move to
3600  *   the second step. In second step, the next ACK decides.
3601  *
3602  * F-RTO is implemented (mainly) in four functions:
3603  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3604  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3605  *     called when tcp_use_frto() showed green light
3606  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3607  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3608  *     to prove that the RTO is indeed spurious. It transfers the control
3609  *     from F-RTO to the conventional RTO recovery
3610  */
tcp_process_frto(struct sock * sk,int flag)3611 static int tcp_process_frto(struct sock *sk, int flag)
3612 {
3613 	struct tcp_sock *tp = tcp_sk(sk);
3614 
3615 	tcp_verify_left_out(tp);
3616 
3617 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3618 	if (flag & FLAG_DATA_ACKED)
3619 		inet_csk(sk)->icsk_retransmits = 0;
3620 
3621 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3622 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3623 		tp->undo_marker = 0;
3624 
3625 	if (!before(tp->snd_una, tp->frto_highmark)) {
3626 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3627 		return 1;
3628 	}
3629 
3630 	if (!tcp_is_sackfrto(tp)) {
3631 		/* RFC4138 shortcoming in step 2; should also have case c):
3632 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3633 		 * data, winupdate
3634 		 */
3635 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3636 			return 1;
3637 
3638 		if (!(flag & FLAG_DATA_ACKED)) {
3639 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3640 					    flag);
3641 			return 1;
3642 		}
3643 	} else {
3644 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3645 			if (!tcp_packets_in_flight(tp)) {
3646 				tcp_enter_frto_loss(sk, 2, flag);
3647 				return true;
3648 			}
3649 
3650 			/* Prevent sending of new data. */
3651 			tp->snd_cwnd = min(tp->snd_cwnd,
3652 					   tcp_packets_in_flight(tp));
3653 			return 1;
3654 		}
3655 
3656 		if ((tp->frto_counter >= 2) &&
3657 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3658 		     ((flag & FLAG_DATA_SACKED) &&
3659 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3660 			/* RFC4138 shortcoming (see comment above) */
3661 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3662 			    (flag & FLAG_NOT_DUP))
3663 				return 1;
3664 
3665 			tcp_enter_frto_loss(sk, 3, flag);
3666 			return 1;
3667 		}
3668 	}
3669 
3670 	if (tp->frto_counter == 1) {
3671 		/* tcp_may_send_now needs to see updated state */
3672 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3673 		tp->frto_counter = 2;
3674 
3675 		if (!tcp_may_send_now(sk))
3676 			tcp_enter_frto_loss(sk, 2, flag);
3677 
3678 		return 1;
3679 	} else {
3680 		switch (sysctl_tcp_frto_response) {
3681 		case 2:
3682 			tcp_undo_spur_to_response(sk, flag);
3683 			break;
3684 		case 1:
3685 			tcp_conservative_spur_to_response(tp);
3686 			break;
3687 		default:
3688 			tcp_ratehalving_spur_to_response(sk);
3689 			break;
3690 		}
3691 		tp->frto_counter = 0;
3692 		tp->undo_marker = 0;
3693 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3694 	}
3695 	return 0;
3696 }
3697 
3698 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3699 static void tcp_send_challenge_ack(struct sock *sk)
3700 {
3701 	/* unprotected vars, we dont care of overwrites */
3702 	static u32 challenge_timestamp;
3703 	static unsigned int challenge_count;
3704 	u32 now = jiffies / HZ;
3705 
3706 	if (now != challenge_timestamp) {
3707 		challenge_timestamp = now;
3708 		challenge_count = 0;
3709 	}
3710 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3711 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3712 		tcp_send_ack(sk);
3713 	}
3714 }
3715 
tcp_store_ts_recent(struct tcp_sock * tp)3716 static void tcp_store_ts_recent(struct tcp_sock *tp)
3717 {
3718 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3719 	tp->rx_opt.ts_recent_stamp = get_seconds();
3720 }
3721 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3722 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3723 {
3724 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3725 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3726 		 * extra check below makes sure this can only happen
3727 		 * for pure ACK frames.  -DaveM
3728 		 *
3729 		 * Not only, also it occurs for expired timestamps.
3730 		 */
3731 
3732 		if (tcp_paws_check(&tp->rx_opt, 0))
3733 			tcp_store_ts_recent(tp);
3734 	}
3735 }
3736 
3737 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3738 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3739 {
3740 	struct inet_connection_sock *icsk = inet_csk(sk);
3741 	struct tcp_sock *tp = tcp_sk(sk);
3742 	u32 prior_snd_una = tp->snd_una;
3743 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3744 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3745 	bool is_dupack = false;
3746 	u32 prior_in_flight;
3747 	u32 prior_fackets;
3748 	int prior_packets = tp->packets_out;
3749 	int prior_sacked = tp->sacked_out;
3750 	int pkts_acked = 0;
3751 	int previous_packets_out = 0;
3752 	int frto_cwnd = 0;
3753 
3754 	/* If the ack is older than previous acks
3755 	 * then we can probably ignore it.
3756 	 */
3757 	if (before(ack, prior_snd_una)) {
3758 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3759 		if (before(ack, prior_snd_una - tp->max_window)) {
3760 			tcp_send_challenge_ack(sk);
3761 			return -1;
3762 		}
3763 		goto old_ack;
3764 	}
3765 
3766 	/* If the ack includes data we haven't sent yet, discard
3767 	 * this segment (RFC793 Section 3.9).
3768 	 */
3769 	if (after(ack, tp->snd_nxt))
3770 		goto invalid_ack;
3771 
3772 	if (after(ack, prior_snd_una))
3773 		flag |= FLAG_SND_UNA_ADVANCED;
3774 
3775 	if (sysctl_tcp_abc) {
3776 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3777 			tp->bytes_acked += ack - prior_snd_una;
3778 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3779 			/* we assume just one segment left network */
3780 			tp->bytes_acked += min(ack - prior_snd_una,
3781 					       tp->mss_cache);
3782 	}
3783 
3784 	prior_fackets = tp->fackets_out;
3785 	prior_in_flight = tcp_packets_in_flight(tp);
3786 
3787 	/* ts_recent update must be made after we are sure that the packet
3788 	 * is in window.
3789 	 */
3790 	if (flag & FLAG_UPDATE_TS_RECENT)
3791 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3792 
3793 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3794 		/* Window is constant, pure forward advance.
3795 		 * No more checks are required.
3796 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3797 		 */
3798 		tcp_update_wl(tp, ack_seq);
3799 		tp->snd_una = ack;
3800 		flag |= FLAG_WIN_UPDATE;
3801 
3802 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3803 
3804 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3805 	} else {
3806 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3807 			flag |= FLAG_DATA;
3808 		else
3809 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3810 
3811 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3812 
3813 		if (TCP_SKB_CB(skb)->sacked)
3814 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3815 
3816 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3817 			flag |= FLAG_ECE;
3818 
3819 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3820 	}
3821 
3822 	/* We passed data and got it acked, remove any soft error
3823 	 * log. Something worked...
3824 	 */
3825 	sk->sk_err_soft = 0;
3826 	icsk->icsk_probes_out = 0;
3827 	tp->rcv_tstamp = tcp_time_stamp;
3828 	if (!prior_packets)
3829 		goto no_queue;
3830 
3831 	/* See if we can take anything off of the retransmit queue. */
3832 	previous_packets_out = tp->packets_out;
3833 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3834 
3835 	pkts_acked = previous_packets_out - tp->packets_out;
3836 
3837 	if (tp->frto_counter)
3838 		frto_cwnd = tcp_process_frto(sk, flag);
3839 	/* Guarantee sacktag reordering detection against wrap-arounds */
3840 	if (before(tp->frto_highmark, tp->snd_una))
3841 		tp->frto_highmark = 0;
3842 
3843 	if (tcp_ack_is_dubious(sk, flag)) {
3844 		/* Advance CWND, if state allows this. */
3845 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3846 		    tcp_may_raise_cwnd(sk, flag))
3847 			tcp_cong_avoid(sk, ack, prior_in_flight);
3848 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3849 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3850 				      prior_packets, is_dupack, flag);
3851 	} else {
3852 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3853 			tcp_cong_avoid(sk, ack, prior_in_flight);
3854 	}
3855 
3856 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3857 		dst_confirm(__sk_dst_get(sk));
3858 
3859 	return 1;
3860 
3861 no_queue:
3862 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3863 	if (flag & FLAG_DSACKING_ACK)
3864 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3865 				      prior_packets, is_dupack, flag);
3866 	/* If this ack opens up a zero window, clear backoff.  It was
3867 	 * being used to time the probes, and is probably far higher than
3868 	 * it needs to be for normal retransmission.
3869 	 */
3870 	if (tcp_send_head(sk))
3871 		tcp_ack_probe(sk);
3872 	return 1;
3873 
3874 invalid_ack:
3875 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3876 	return -1;
3877 
3878 old_ack:
3879 	/* If data was SACKed, tag it and see if we should send more data.
3880 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3881 	 */
3882 	if (TCP_SKB_CB(skb)->sacked) {
3883 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3884 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3885 				      prior_packets, is_dupack, flag);
3886 	}
3887 
3888 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3889 	return 0;
3890 }
3891 
3892 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3893  * But, this can also be called on packets in the established flow when
3894  * the fast version below fails.
3895  */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,const u8 ** hvpp,int estab)3896 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3897 		       const u8 **hvpp, int estab)
3898 {
3899 	const unsigned char *ptr;
3900 	const struct tcphdr *th = tcp_hdr(skb);
3901 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3902 
3903 	ptr = (const unsigned char *)(th + 1);
3904 	opt_rx->saw_tstamp = 0;
3905 
3906 	while (length > 0) {
3907 		int opcode = *ptr++;
3908 		int opsize;
3909 
3910 		switch (opcode) {
3911 		case TCPOPT_EOL:
3912 			return;
3913 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3914 			length--;
3915 			continue;
3916 		default:
3917 			opsize = *ptr++;
3918 			if (opsize < 2) /* "silly options" */
3919 				return;
3920 			if (opsize > length)
3921 				return;	/* don't parse partial options */
3922 			switch (opcode) {
3923 			case TCPOPT_MSS:
3924 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3925 					u16 in_mss = get_unaligned_be16(ptr);
3926 					if (in_mss) {
3927 						if (opt_rx->user_mss &&
3928 						    opt_rx->user_mss < in_mss)
3929 							in_mss = opt_rx->user_mss;
3930 						opt_rx->mss_clamp = in_mss;
3931 					}
3932 				}
3933 				break;
3934 			case TCPOPT_WINDOW:
3935 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3936 				    !estab && sysctl_tcp_window_scaling) {
3937 					__u8 snd_wscale = *(__u8 *)ptr;
3938 					opt_rx->wscale_ok = 1;
3939 					if (snd_wscale > 14) {
3940 						if (net_ratelimit())
3941 							pr_info("%s: Illegal window scaling value %d >14 received\n",
3942 								__func__,
3943 								snd_wscale);
3944 						snd_wscale = 14;
3945 					}
3946 					opt_rx->snd_wscale = snd_wscale;
3947 				}
3948 				break;
3949 			case TCPOPT_TIMESTAMP:
3950 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3951 				    ((estab && opt_rx->tstamp_ok) ||
3952 				     (!estab && sysctl_tcp_timestamps))) {
3953 					opt_rx->saw_tstamp = 1;
3954 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3955 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3956 				}
3957 				break;
3958 			case TCPOPT_SACK_PERM:
3959 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3960 				    !estab && sysctl_tcp_sack) {
3961 					opt_rx->sack_ok = TCP_SACK_SEEN;
3962 					tcp_sack_reset(opt_rx);
3963 				}
3964 				break;
3965 
3966 			case TCPOPT_SACK:
3967 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3968 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3969 				   opt_rx->sack_ok) {
3970 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3971 				}
3972 				break;
3973 #ifdef CONFIG_TCP_MD5SIG
3974 			case TCPOPT_MD5SIG:
3975 				/*
3976 				 * The MD5 Hash has already been
3977 				 * checked (see tcp_v{4,6}_do_rcv()).
3978 				 */
3979 				break;
3980 #endif
3981 			case TCPOPT_COOKIE:
3982 				/* This option is variable length.
3983 				 */
3984 				switch (opsize) {
3985 				case TCPOLEN_COOKIE_BASE:
3986 					/* not yet implemented */
3987 					break;
3988 				case TCPOLEN_COOKIE_PAIR:
3989 					/* not yet implemented */
3990 					break;
3991 				case TCPOLEN_COOKIE_MIN+0:
3992 				case TCPOLEN_COOKIE_MIN+2:
3993 				case TCPOLEN_COOKIE_MIN+4:
3994 				case TCPOLEN_COOKIE_MIN+6:
3995 				case TCPOLEN_COOKIE_MAX:
3996 					/* 16-bit multiple */
3997 					opt_rx->cookie_plus = opsize;
3998 					*hvpp = ptr;
3999 					break;
4000 				default:
4001 					/* ignore option */
4002 					break;
4003 				}
4004 				break;
4005 			}
4006 
4007 			ptr += opsize-2;
4008 			length -= opsize;
4009 		}
4010 	}
4011 }
4012 EXPORT_SYMBOL(tcp_parse_options);
4013 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4014 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4015 {
4016 	const __be32 *ptr = (const __be32 *)(th + 1);
4017 
4018 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4019 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4020 		tp->rx_opt.saw_tstamp = 1;
4021 		++ptr;
4022 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4023 		++ptr;
4024 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4025 		return 1;
4026 	}
4027 	return 0;
4028 }
4029 
4030 /* Fast parse options. This hopes to only see timestamps.
4031  * If it is wrong it falls back on tcp_parse_options().
4032  */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp,const u8 ** hvpp)4033 static int tcp_fast_parse_options(const struct sk_buff *skb,
4034 				  const struct tcphdr *th,
4035 				  struct tcp_sock *tp, const u8 **hvpp)
4036 {
4037 	/* In the spirit of fast parsing, compare doff directly to constant
4038 	 * values.  Because equality is used, short doff can be ignored here.
4039 	 */
4040 	if (th->doff == (sizeof(*th) / 4)) {
4041 		tp->rx_opt.saw_tstamp = 0;
4042 		return 0;
4043 	} else if (tp->rx_opt.tstamp_ok &&
4044 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4045 		if (tcp_parse_aligned_timestamp(tp, th))
4046 			return 1;
4047 	}
4048 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4049 	return 1;
4050 }
4051 
4052 #ifdef CONFIG_TCP_MD5SIG
4053 /*
4054  * Parse MD5 Signature option
4055  */
tcp_parse_md5sig_option(const struct tcphdr * th)4056 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4057 {
4058 	int length = (th->doff << 2) - sizeof(*th);
4059 	const u8 *ptr = (const u8 *)(th + 1);
4060 
4061 	/* If the TCP option is too short, we can short cut */
4062 	if (length < TCPOLEN_MD5SIG)
4063 		return NULL;
4064 
4065 	while (length > 0) {
4066 		int opcode = *ptr++;
4067 		int opsize;
4068 
4069 		switch(opcode) {
4070 		case TCPOPT_EOL:
4071 			return NULL;
4072 		case TCPOPT_NOP:
4073 			length--;
4074 			continue;
4075 		default:
4076 			opsize = *ptr++;
4077 			if (opsize < 2 || opsize > length)
4078 				return NULL;
4079 			if (opcode == TCPOPT_MD5SIG)
4080 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4081 		}
4082 		ptr += opsize - 2;
4083 		length -= opsize;
4084 	}
4085 	return NULL;
4086 }
4087 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4088 #endif
4089 
4090 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4091  *
4092  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4093  * it can pass through stack. So, the following predicate verifies that
4094  * this segment is not used for anything but congestion avoidance or
4095  * fast retransmit. Moreover, we even are able to eliminate most of such
4096  * second order effects, if we apply some small "replay" window (~RTO)
4097  * to timestamp space.
4098  *
4099  * All these measures still do not guarantee that we reject wrapped ACKs
4100  * on networks with high bandwidth, when sequence space is recycled fastly,
4101  * but it guarantees that such events will be very rare and do not affect
4102  * connection seriously. This doesn't look nice, but alas, PAWS is really
4103  * buggy extension.
4104  *
4105  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4106  * states that events when retransmit arrives after original data are rare.
4107  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4108  * the biggest problem on large power networks even with minor reordering.
4109  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4110  * up to bandwidth of 18Gigabit/sec. 8) ]
4111  */
4112 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4113 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4114 {
4115 	const struct tcp_sock *tp = tcp_sk(sk);
4116 	const struct tcphdr *th = tcp_hdr(skb);
4117 	u32 seq = TCP_SKB_CB(skb)->seq;
4118 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4119 
4120 	return (/* 1. Pure ACK with correct sequence number. */
4121 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4122 
4123 		/* 2. ... and duplicate ACK. */
4124 		ack == tp->snd_una &&
4125 
4126 		/* 3. ... and does not update window. */
4127 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4128 
4129 		/* 4. ... and sits in replay window. */
4130 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4131 }
4132 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4133 static inline int tcp_paws_discard(const struct sock *sk,
4134 				   const struct sk_buff *skb)
4135 {
4136 	const struct tcp_sock *tp = tcp_sk(sk);
4137 
4138 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4139 	       !tcp_disordered_ack(sk, skb);
4140 }
4141 
4142 /* Check segment sequence number for validity.
4143  *
4144  * Segment controls are considered valid, if the segment
4145  * fits to the window after truncation to the window. Acceptability
4146  * of data (and SYN, FIN, of course) is checked separately.
4147  * See tcp_data_queue(), for example.
4148  *
4149  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4150  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4151  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4152  * (borrowed from freebsd)
4153  */
4154 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4155 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4156 {
4157 	return	!before(end_seq, tp->rcv_wup) &&
4158 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4159 }
4160 
4161 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4162 static void tcp_reset(struct sock *sk)
4163 {
4164 	/* We want the right error as BSD sees it (and indeed as we do). */
4165 	switch (sk->sk_state) {
4166 	case TCP_SYN_SENT:
4167 		sk->sk_err = ECONNREFUSED;
4168 		break;
4169 	case TCP_CLOSE_WAIT:
4170 		sk->sk_err = EPIPE;
4171 		break;
4172 	case TCP_CLOSE:
4173 		return;
4174 	default:
4175 		sk->sk_err = ECONNRESET;
4176 	}
4177 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4178 	smp_wmb();
4179 
4180 	if (!sock_flag(sk, SOCK_DEAD))
4181 		sk->sk_error_report(sk);
4182 
4183 	tcp_done(sk);
4184 }
4185 
4186 /*
4187  * 	Process the FIN bit. This now behaves as it is supposed to work
4188  *	and the FIN takes effect when it is validly part of sequence
4189  *	space. Not before when we get holes.
4190  *
4191  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4192  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4193  *	TIME-WAIT)
4194  *
4195  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4196  *	close and we go into CLOSING (and later onto TIME-WAIT)
4197  *
4198  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4199  */
tcp_fin(struct sock * sk)4200 static void tcp_fin(struct sock *sk)
4201 {
4202 	struct tcp_sock *tp = tcp_sk(sk);
4203 
4204 	inet_csk_schedule_ack(sk);
4205 
4206 	sk->sk_shutdown |= RCV_SHUTDOWN;
4207 	sock_set_flag(sk, SOCK_DONE);
4208 
4209 	switch (sk->sk_state) {
4210 	case TCP_SYN_RECV:
4211 	case TCP_ESTABLISHED:
4212 		/* Move to CLOSE_WAIT */
4213 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4214 		inet_csk(sk)->icsk_ack.pingpong = 1;
4215 		break;
4216 
4217 	case TCP_CLOSE_WAIT:
4218 	case TCP_CLOSING:
4219 		/* Received a retransmission of the FIN, do
4220 		 * nothing.
4221 		 */
4222 		break;
4223 	case TCP_LAST_ACK:
4224 		/* RFC793: Remain in the LAST-ACK state. */
4225 		break;
4226 
4227 	case TCP_FIN_WAIT1:
4228 		/* This case occurs when a simultaneous close
4229 		 * happens, we must ack the received FIN and
4230 		 * enter the CLOSING state.
4231 		 */
4232 		tcp_send_ack(sk);
4233 		tcp_set_state(sk, TCP_CLOSING);
4234 		break;
4235 	case TCP_FIN_WAIT2:
4236 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4237 		tcp_send_ack(sk);
4238 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4239 		break;
4240 	default:
4241 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4242 		 * cases we should never reach this piece of code.
4243 		 */
4244 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4245 		       __func__, sk->sk_state);
4246 		break;
4247 	}
4248 
4249 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4250 	 * Probably, we should reset in this case. For now drop them.
4251 	 */
4252 	__skb_queue_purge(&tp->out_of_order_queue);
4253 	if (tcp_is_sack(tp))
4254 		tcp_sack_reset(&tp->rx_opt);
4255 	sk_mem_reclaim(sk);
4256 
4257 	if (!sock_flag(sk, SOCK_DEAD)) {
4258 		sk->sk_state_change(sk);
4259 
4260 		/* Do not send POLL_HUP for half duplex close. */
4261 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4262 		    sk->sk_state == TCP_CLOSE)
4263 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4264 		else
4265 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4266 	}
4267 }
4268 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4269 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4270 				  u32 end_seq)
4271 {
4272 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4273 		if (before(seq, sp->start_seq))
4274 			sp->start_seq = seq;
4275 		if (after(end_seq, sp->end_seq))
4276 			sp->end_seq = end_seq;
4277 		return 1;
4278 	}
4279 	return 0;
4280 }
4281 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4282 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4283 {
4284 	struct tcp_sock *tp = tcp_sk(sk);
4285 
4286 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4287 		int mib_idx;
4288 
4289 		if (before(seq, tp->rcv_nxt))
4290 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4291 		else
4292 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4293 
4294 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4295 
4296 		tp->rx_opt.dsack = 1;
4297 		tp->duplicate_sack[0].start_seq = seq;
4298 		tp->duplicate_sack[0].end_seq = end_seq;
4299 	}
4300 }
4301 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4302 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4303 {
4304 	struct tcp_sock *tp = tcp_sk(sk);
4305 
4306 	if (!tp->rx_opt.dsack)
4307 		tcp_dsack_set(sk, seq, end_seq);
4308 	else
4309 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4310 }
4311 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4312 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4313 {
4314 	struct tcp_sock *tp = tcp_sk(sk);
4315 
4316 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4317 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4318 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4319 		tcp_enter_quickack_mode(sk);
4320 
4321 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4322 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4323 
4324 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4325 				end_seq = tp->rcv_nxt;
4326 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4327 		}
4328 	}
4329 
4330 	tcp_send_ack(sk);
4331 }
4332 
4333 /* These routines update the SACK block as out-of-order packets arrive or
4334  * in-order packets close up the sequence space.
4335  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4336 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4337 {
4338 	int this_sack;
4339 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4340 	struct tcp_sack_block *swalk = sp + 1;
4341 
4342 	/* See if the recent change to the first SACK eats into
4343 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4344 	 */
4345 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4346 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4347 			int i;
4348 
4349 			/* Zap SWALK, by moving every further SACK up by one slot.
4350 			 * Decrease num_sacks.
4351 			 */
4352 			tp->rx_opt.num_sacks--;
4353 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4354 				sp[i] = sp[i + 1];
4355 			continue;
4356 		}
4357 		this_sack++, swalk++;
4358 	}
4359 }
4360 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4361 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4362 {
4363 	struct tcp_sock *tp = tcp_sk(sk);
4364 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4365 	int cur_sacks = tp->rx_opt.num_sacks;
4366 	int this_sack;
4367 
4368 	if (!cur_sacks)
4369 		goto new_sack;
4370 
4371 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4372 		if (tcp_sack_extend(sp, seq, end_seq)) {
4373 			/* Rotate this_sack to the first one. */
4374 			for (; this_sack > 0; this_sack--, sp--)
4375 				swap(*sp, *(sp - 1));
4376 			if (cur_sacks > 1)
4377 				tcp_sack_maybe_coalesce(tp);
4378 			return;
4379 		}
4380 	}
4381 
4382 	/* Could not find an adjacent existing SACK, build a new one,
4383 	 * put it at the front, and shift everyone else down.  We
4384 	 * always know there is at least one SACK present already here.
4385 	 *
4386 	 * If the sack array is full, forget about the last one.
4387 	 */
4388 	if (this_sack >= TCP_NUM_SACKS) {
4389 		this_sack--;
4390 		tp->rx_opt.num_sacks--;
4391 		sp--;
4392 	}
4393 	for (; this_sack > 0; this_sack--, sp--)
4394 		*sp = *(sp - 1);
4395 
4396 new_sack:
4397 	/* Build the new head SACK, and we're done. */
4398 	sp->start_seq = seq;
4399 	sp->end_seq = end_seq;
4400 	tp->rx_opt.num_sacks++;
4401 }
4402 
4403 /* RCV.NXT advances, some SACKs should be eaten. */
4404 
tcp_sack_remove(struct tcp_sock * tp)4405 static void tcp_sack_remove(struct tcp_sock *tp)
4406 {
4407 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4408 	int num_sacks = tp->rx_opt.num_sacks;
4409 	int this_sack;
4410 
4411 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4412 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4413 		tp->rx_opt.num_sacks = 0;
4414 		return;
4415 	}
4416 
4417 	for (this_sack = 0; this_sack < num_sacks;) {
4418 		/* Check if the start of the sack is covered by RCV.NXT. */
4419 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4420 			int i;
4421 
4422 			/* RCV.NXT must cover all the block! */
4423 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4424 
4425 			/* Zap this SACK, by moving forward any other SACKS. */
4426 			for (i=this_sack+1; i < num_sacks; i++)
4427 				tp->selective_acks[i-1] = tp->selective_acks[i];
4428 			num_sacks--;
4429 			continue;
4430 		}
4431 		this_sack++;
4432 		sp++;
4433 	}
4434 	tp->rx_opt.num_sacks = num_sacks;
4435 }
4436 
4437 /* This one checks to see if we can put data from the
4438  * out_of_order queue into the receive_queue.
4439  */
tcp_ofo_queue(struct sock * sk)4440 static void tcp_ofo_queue(struct sock *sk)
4441 {
4442 	struct tcp_sock *tp = tcp_sk(sk);
4443 	__u32 dsack_high = tp->rcv_nxt;
4444 	struct sk_buff *skb;
4445 
4446 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4447 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4448 			break;
4449 
4450 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4451 			__u32 dsack = dsack_high;
4452 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4453 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4454 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4455 		}
4456 
4457 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4458 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4459 			__skb_unlink(skb, &tp->out_of_order_queue);
4460 			__kfree_skb(skb);
4461 			continue;
4462 		}
4463 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4464 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4465 			   TCP_SKB_CB(skb)->end_seq);
4466 
4467 		__skb_unlink(skb, &tp->out_of_order_queue);
4468 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4469 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4470 		if (tcp_hdr(skb)->fin)
4471 			tcp_fin(sk);
4472 	}
4473 }
4474 
4475 static int tcp_prune_ofo_queue(struct sock *sk);
4476 static int tcp_prune_queue(struct sock *sk);
4477 
tcp_try_rmem_schedule(struct sock * sk,unsigned int size)4478 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4479 {
4480 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4481 	    !sk_rmem_schedule(sk, size)) {
4482 
4483 		if (tcp_prune_queue(sk) < 0)
4484 			return -1;
4485 
4486 		if (!sk_rmem_schedule(sk, size)) {
4487 			if (!tcp_prune_ofo_queue(sk))
4488 				return -1;
4489 
4490 			if (!sk_rmem_schedule(sk, size))
4491 				return -1;
4492 		}
4493 	}
4494 	return 0;
4495 }
4496 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4497 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4498 {
4499 	struct tcp_sock *tp = tcp_sk(sk);
4500 	struct sk_buff *skb1;
4501 	u32 seq, end_seq;
4502 
4503 	TCP_ECN_check_ce(tp, skb);
4504 
4505 	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4506 		/* TODO: should increment a counter */
4507 		__kfree_skb(skb);
4508 		return;
4509 	}
4510 
4511 	/* Disable header prediction. */
4512 	tp->pred_flags = 0;
4513 	inet_csk_schedule_ack(sk);
4514 
4515 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4516 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4517 
4518 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4519 	if (!skb1) {
4520 		/* Initial out of order segment, build 1 SACK. */
4521 		if (tcp_is_sack(tp)) {
4522 			tp->rx_opt.num_sacks = 1;
4523 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4524 			tp->selective_acks[0].end_seq =
4525 						TCP_SKB_CB(skb)->end_seq;
4526 		}
4527 		__skb_queue_head(&tp->out_of_order_queue, skb);
4528 		goto end;
4529 	}
4530 
4531 	seq = TCP_SKB_CB(skb)->seq;
4532 	end_seq = TCP_SKB_CB(skb)->end_seq;
4533 
4534 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4535 		/* Packets in ofo can stay in queue a long time.
4536 		 * Better try to coalesce them right now
4537 		 * to avoid future tcp_collapse_ofo_queue(),
4538 		 * probably the most expensive function in tcp stack.
4539 		 */
4540 		if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4541 			NET_INC_STATS_BH(sock_net(sk),
4542 					 LINUX_MIB_TCPRCVCOALESCE);
4543 			BUG_ON(skb_copy_bits(skb, 0,
4544 					     skb_put(skb1, skb->len),
4545 					     skb->len));
4546 			TCP_SKB_CB(skb1)->end_seq = end_seq;
4547 			TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4548 			__kfree_skb(skb);
4549 			skb = NULL;
4550 		} else {
4551 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4552 		}
4553 
4554 		if (!tp->rx_opt.num_sacks ||
4555 		    tp->selective_acks[0].end_seq != seq)
4556 			goto add_sack;
4557 
4558 		/* Common case: data arrive in order after hole. */
4559 		tp->selective_acks[0].end_seq = end_seq;
4560 		goto end;
4561 	}
4562 
4563 	/* Find place to insert this segment. */
4564 	while (1) {
4565 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4566 			break;
4567 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4568 			skb1 = NULL;
4569 			break;
4570 		}
4571 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4572 	}
4573 
4574 	/* Do skb overlap to previous one? */
4575 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4576 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4577 			/* All the bits are present. Drop. */
4578 			__kfree_skb(skb);
4579 			skb = NULL;
4580 			tcp_dsack_set(sk, seq, end_seq);
4581 			goto add_sack;
4582 		}
4583 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4584 			/* Partial overlap. */
4585 			tcp_dsack_set(sk, seq,
4586 				      TCP_SKB_CB(skb1)->end_seq);
4587 		} else {
4588 			if (skb_queue_is_first(&tp->out_of_order_queue,
4589 					       skb1))
4590 				skb1 = NULL;
4591 			else
4592 				skb1 = skb_queue_prev(
4593 					&tp->out_of_order_queue,
4594 					skb1);
4595 		}
4596 	}
4597 	if (!skb1)
4598 		__skb_queue_head(&tp->out_of_order_queue, skb);
4599 	else
4600 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4601 
4602 	/* And clean segments covered by new one as whole. */
4603 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4604 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4605 
4606 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4607 			break;
4608 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4609 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4610 					 end_seq);
4611 			break;
4612 		}
4613 		__skb_unlink(skb1, &tp->out_of_order_queue);
4614 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4615 				 TCP_SKB_CB(skb1)->end_seq);
4616 		__kfree_skb(skb1);
4617 	}
4618 
4619 add_sack:
4620 	if (tcp_is_sack(tp))
4621 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4622 end:
4623 	if (skb)
4624 		skb_set_owner_r(skb, sk);
4625 }
4626 
4627 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4628 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4629 {
4630 	const struct tcphdr *th = tcp_hdr(skb);
4631 	struct tcp_sock *tp = tcp_sk(sk);
4632 	int eaten = -1;
4633 
4634 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4635 		goto drop;
4636 
4637 	skb_dst_drop(skb);
4638 	__skb_pull(skb, th->doff * 4);
4639 
4640 	TCP_ECN_accept_cwr(tp, skb);
4641 
4642 	tp->rx_opt.dsack = 0;
4643 
4644 	/*  Queue data for delivery to the user.
4645 	 *  Packets in sequence go to the receive queue.
4646 	 *  Out of sequence packets to the out_of_order_queue.
4647 	 */
4648 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4649 		if (tcp_receive_window(tp) == 0)
4650 			goto out_of_window;
4651 
4652 		/* Ok. In sequence. In window. */
4653 		if (tp->ucopy.task == current &&
4654 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4655 		    sock_owned_by_user(sk) && !tp->urg_data) {
4656 			int chunk = min_t(unsigned int, skb->len,
4657 					  tp->ucopy.len);
4658 
4659 			__set_current_state(TASK_RUNNING);
4660 
4661 			local_bh_enable();
4662 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4663 				tp->ucopy.len -= chunk;
4664 				tp->copied_seq += chunk;
4665 				eaten = (chunk == skb->len);
4666 				tcp_rcv_space_adjust(sk);
4667 			}
4668 			local_bh_disable();
4669 		}
4670 
4671 		if (eaten <= 0) {
4672 queue_and_out:
4673 			if (eaten < 0 &&
4674 			    tcp_try_rmem_schedule(sk, skb->truesize))
4675 				goto drop;
4676 
4677 			skb_set_owner_r(skb, sk);
4678 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4679 		}
4680 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4681 		if (skb->len)
4682 			tcp_event_data_recv(sk, skb);
4683 		if (th->fin)
4684 			tcp_fin(sk);
4685 
4686 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4687 			tcp_ofo_queue(sk);
4688 
4689 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4690 			 * gap in queue is filled.
4691 			 */
4692 			if (skb_queue_empty(&tp->out_of_order_queue))
4693 				inet_csk(sk)->icsk_ack.pingpong = 0;
4694 		}
4695 
4696 		if (tp->rx_opt.num_sacks)
4697 			tcp_sack_remove(tp);
4698 
4699 		tcp_fast_path_check(sk);
4700 
4701 		if (eaten > 0)
4702 			__kfree_skb(skb);
4703 		else if (!sock_flag(sk, SOCK_DEAD))
4704 			sk->sk_data_ready(sk, 0);
4705 		return;
4706 	}
4707 
4708 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4709 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4710 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4711 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4712 
4713 out_of_window:
4714 		tcp_enter_quickack_mode(sk);
4715 		inet_csk_schedule_ack(sk);
4716 drop:
4717 		__kfree_skb(skb);
4718 		return;
4719 	}
4720 
4721 	/* Out of window. F.e. zero window probe. */
4722 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4723 		goto out_of_window;
4724 
4725 	tcp_enter_quickack_mode(sk);
4726 
4727 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4728 		/* Partial packet, seq < rcv_next < end_seq */
4729 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4730 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4731 			   TCP_SKB_CB(skb)->end_seq);
4732 
4733 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4734 
4735 		/* If window is closed, drop tail of packet. But after
4736 		 * remembering D-SACK for its head made in previous line.
4737 		 */
4738 		if (!tcp_receive_window(tp))
4739 			goto out_of_window;
4740 		goto queue_and_out;
4741 	}
4742 
4743 	tcp_data_queue_ofo(sk, skb);
4744 }
4745 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list)4746 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4747 					struct sk_buff_head *list)
4748 {
4749 	struct sk_buff *next = NULL;
4750 
4751 	if (!skb_queue_is_last(list, skb))
4752 		next = skb_queue_next(list, skb);
4753 
4754 	__skb_unlink(skb, list);
4755 	__kfree_skb(skb);
4756 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4757 
4758 	return next;
4759 }
4760 
4761 /* Collapse contiguous sequence of skbs head..tail with
4762  * sequence numbers start..end.
4763  *
4764  * If tail is NULL, this means until the end of the list.
4765  *
4766  * Segments with FIN/SYN are not collapsed (only because this
4767  * simplifies code)
4768  */
4769 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4770 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4771 	     struct sk_buff *head, struct sk_buff *tail,
4772 	     u32 start, u32 end)
4773 {
4774 	struct sk_buff *skb, *n;
4775 	bool end_of_skbs;
4776 
4777 	/* First, check that queue is collapsible and find
4778 	 * the point where collapsing can be useful. */
4779 	skb = head;
4780 restart:
4781 	end_of_skbs = true;
4782 	skb_queue_walk_from_safe(list, skb, n) {
4783 		if (skb == tail)
4784 			break;
4785 		/* No new bits? It is possible on ofo queue. */
4786 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4787 			skb = tcp_collapse_one(sk, skb, list);
4788 			if (!skb)
4789 				break;
4790 			goto restart;
4791 		}
4792 
4793 		/* The first skb to collapse is:
4794 		 * - not SYN/FIN and
4795 		 * - bloated or contains data before "start" or
4796 		 *   overlaps to the next one.
4797 		 */
4798 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4799 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4800 		     before(TCP_SKB_CB(skb)->seq, start))) {
4801 			end_of_skbs = false;
4802 			break;
4803 		}
4804 
4805 		if (!skb_queue_is_last(list, skb)) {
4806 			struct sk_buff *next = skb_queue_next(list, skb);
4807 			if (next != tail &&
4808 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4809 				end_of_skbs = false;
4810 				break;
4811 			}
4812 		}
4813 
4814 		/* Decided to skip this, advance start seq. */
4815 		start = TCP_SKB_CB(skb)->end_seq;
4816 	}
4817 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4818 		return;
4819 
4820 	while (before(start, end)) {
4821 		struct sk_buff *nskb;
4822 		unsigned int header = skb_headroom(skb);
4823 		int copy = SKB_MAX_ORDER(header, 0);
4824 
4825 		/* Too big header? This can happen with IPv6. */
4826 		if (copy < 0)
4827 			return;
4828 		if (end - start < copy)
4829 			copy = end - start;
4830 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4831 		if (!nskb)
4832 			return;
4833 
4834 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4835 		skb_set_network_header(nskb, (skb_network_header(skb) -
4836 					      skb->head));
4837 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4838 						skb->head));
4839 		skb_reserve(nskb, header);
4840 		memcpy(nskb->head, skb->head, header);
4841 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4842 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4843 		__skb_queue_before(list, skb, nskb);
4844 		skb_set_owner_r(nskb, sk);
4845 
4846 		/* Copy data, releasing collapsed skbs. */
4847 		while (copy > 0) {
4848 			int offset = start - TCP_SKB_CB(skb)->seq;
4849 			int size = TCP_SKB_CB(skb)->end_seq - start;
4850 
4851 			BUG_ON(offset < 0);
4852 			if (size > 0) {
4853 				size = min(copy, size);
4854 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4855 					BUG();
4856 				TCP_SKB_CB(nskb)->end_seq += size;
4857 				copy -= size;
4858 				start += size;
4859 			}
4860 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4861 				skb = tcp_collapse_one(sk, skb, list);
4862 				if (!skb ||
4863 				    skb == tail ||
4864 				    tcp_hdr(skb)->syn ||
4865 				    tcp_hdr(skb)->fin)
4866 					return;
4867 			}
4868 		}
4869 	}
4870 }
4871 
4872 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4873  * and tcp_collapse() them until all the queue is collapsed.
4874  */
tcp_collapse_ofo_queue(struct sock * sk)4875 static void tcp_collapse_ofo_queue(struct sock *sk)
4876 {
4877 	struct tcp_sock *tp = tcp_sk(sk);
4878 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4879 	struct sk_buff *head;
4880 	u32 start, end;
4881 
4882 	if (skb == NULL)
4883 		return;
4884 
4885 	start = TCP_SKB_CB(skb)->seq;
4886 	end = TCP_SKB_CB(skb)->end_seq;
4887 	head = skb;
4888 
4889 	for (;;) {
4890 		struct sk_buff *next = NULL;
4891 
4892 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4893 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4894 		skb = next;
4895 
4896 		/* Segment is terminated when we see gap or when
4897 		 * we are at the end of all the queue. */
4898 		if (!skb ||
4899 		    after(TCP_SKB_CB(skb)->seq, end) ||
4900 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4901 			tcp_collapse(sk, &tp->out_of_order_queue,
4902 				     head, skb, start, end);
4903 			head = skb;
4904 			if (!skb)
4905 				break;
4906 			/* Start new segment */
4907 			start = TCP_SKB_CB(skb)->seq;
4908 			end = TCP_SKB_CB(skb)->end_seq;
4909 		} else {
4910 			if (before(TCP_SKB_CB(skb)->seq, start))
4911 				start = TCP_SKB_CB(skb)->seq;
4912 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4913 				end = TCP_SKB_CB(skb)->end_seq;
4914 		}
4915 	}
4916 }
4917 
4918 /*
4919  * Purge the out-of-order queue.
4920  * Return true if queue was pruned.
4921  */
tcp_prune_ofo_queue(struct sock * sk)4922 static int tcp_prune_ofo_queue(struct sock *sk)
4923 {
4924 	struct tcp_sock *tp = tcp_sk(sk);
4925 	int res = 0;
4926 
4927 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4928 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4929 		__skb_queue_purge(&tp->out_of_order_queue);
4930 
4931 		/* Reset SACK state.  A conforming SACK implementation will
4932 		 * do the same at a timeout based retransmit.  When a connection
4933 		 * is in a sad state like this, we care only about integrity
4934 		 * of the connection not performance.
4935 		 */
4936 		if (tp->rx_opt.sack_ok)
4937 			tcp_sack_reset(&tp->rx_opt);
4938 		sk_mem_reclaim(sk);
4939 		res = 1;
4940 	}
4941 	return res;
4942 }
4943 
4944 /* Reduce allocated memory if we can, trying to get
4945  * the socket within its memory limits again.
4946  *
4947  * Return less than zero if we should start dropping frames
4948  * until the socket owning process reads some of the data
4949  * to stabilize the situation.
4950  */
tcp_prune_queue(struct sock * sk)4951 static int tcp_prune_queue(struct sock *sk)
4952 {
4953 	struct tcp_sock *tp = tcp_sk(sk);
4954 
4955 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4956 
4957 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4958 
4959 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4960 		tcp_clamp_window(sk);
4961 	else if (sk_under_memory_pressure(sk))
4962 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4963 
4964 	tcp_collapse_ofo_queue(sk);
4965 	if (!skb_queue_empty(&sk->sk_receive_queue))
4966 		tcp_collapse(sk, &sk->sk_receive_queue,
4967 			     skb_peek(&sk->sk_receive_queue),
4968 			     NULL,
4969 			     tp->copied_seq, tp->rcv_nxt);
4970 	sk_mem_reclaim(sk);
4971 
4972 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4973 		return 0;
4974 
4975 	/* Collapsing did not help, destructive actions follow.
4976 	 * This must not ever occur. */
4977 
4978 	tcp_prune_ofo_queue(sk);
4979 
4980 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4981 		return 0;
4982 
4983 	/* If we are really being abused, tell the caller to silently
4984 	 * drop receive data on the floor.  It will get retransmitted
4985 	 * and hopefully then we'll have sufficient space.
4986 	 */
4987 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4988 
4989 	/* Massive buffer overcommit. */
4990 	tp->pred_flags = 0;
4991 	return -1;
4992 }
4993 
4994 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4995  * As additional protections, we do not touch cwnd in retransmission phases,
4996  * and if application hit its sndbuf limit recently.
4997  */
tcp_cwnd_application_limited(struct sock * sk)4998 void tcp_cwnd_application_limited(struct sock *sk)
4999 {
5000 	struct tcp_sock *tp = tcp_sk(sk);
5001 
5002 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5003 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5004 		/* Limited by application or receiver window. */
5005 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5006 		u32 win_used = max(tp->snd_cwnd_used, init_win);
5007 		if (win_used < tp->snd_cwnd) {
5008 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5009 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5010 		}
5011 		tp->snd_cwnd_used = 0;
5012 	}
5013 	tp->snd_cwnd_stamp = tcp_time_stamp;
5014 }
5015 
tcp_should_expand_sndbuf(const struct sock * sk)5016 static int tcp_should_expand_sndbuf(const struct sock *sk)
5017 {
5018 	const struct tcp_sock *tp = tcp_sk(sk);
5019 
5020 	/* If the user specified a specific send buffer setting, do
5021 	 * not modify it.
5022 	 */
5023 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5024 		return 0;
5025 
5026 	/* If we are under global TCP memory pressure, do not expand.  */
5027 	if (sk_under_memory_pressure(sk))
5028 		return 0;
5029 
5030 	/* If we are under soft global TCP memory pressure, do not expand.  */
5031 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5032 		return 0;
5033 
5034 	/* If we filled the congestion window, do not expand.  */
5035 	if (tp->packets_out >= tp->snd_cwnd)
5036 		return 0;
5037 
5038 	return 1;
5039 }
5040 
5041 /* When incoming ACK allowed to free some skb from write_queue,
5042  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5043  * on the exit from tcp input handler.
5044  *
5045  * PROBLEM: sndbuf expansion does not work well with largesend.
5046  */
tcp_new_space(struct sock * sk)5047 static void tcp_new_space(struct sock *sk)
5048 {
5049 	struct tcp_sock *tp = tcp_sk(sk);
5050 
5051 	if (tcp_should_expand_sndbuf(sk)) {
5052 		int sndmem = SKB_TRUESIZE(max_t(u32,
5053 						tp->rx_opt.mss_clamp,
5054 						tp->mss_cache) +
5055 					  MAX_TCP_HEADER);
5056 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5057 				     tp->reordering + 1);
5058 		sndmem *= 2 * demanded;
5059 		if (sndmem > sk->sk_sndbuf)
5060 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5061 		tp->snd_cwnd_stamp = tcp_time_stamp;
5062 	}
5063 
5064 	sk->sk_write_space(sk);
5065 }
5066 
tcp_check_space(struct sock * sk)5067 static void tcp_check_space(struct sock *sk)
5068 {
5069 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5070 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5071 		if (sk->sk_socket &&
5072 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5073 			tcp_new_space(sk);
5074 	}
5075 }
5076 
tcp_data_snd_check(struct sock * sk)5077 static inline void tcp_data_snd_check(struct sock *sk)
5078 {
5079 	tcp_push_pending_frames(sk);
5080 	tcp_check_space(sk);
5081 }
5082 
5083 /*
5084  * Check if sending an ack is needed.
5085  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5086 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5087 {
5088 	struct tcp_sock *tp = tcp_sk(sk);
5089 
5090 	    /* More than one full frame received... */
5091 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5092 	     /* ... and right edge of window advances far enough.
5093 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5094 	      */
5095 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5096 	    /* We ACK each frame or... */
5097 	    tcp_in_quickack_mode(sk) ||
5098 	    /* We have out of order data. */
5099 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5100 		/* Then ack it now */
5101 		tcp_send_ack(sk);
5102 	} else {
5103 		/* Else, send delayed ack. */
5104 		tcp_send_delayed_ack(sk);
5105 	}
5106 }
5107 
tcp_ack_snd_check(struct sock * sk)5108 static inline void tcp_ack_snd_check(struct sock *sk)
5109 {
5110 	if (!inet_csk_ack_scheduled(sk)) {
5111 		/* We sent a data segment already. */
5112 		return;
5113 	}
5114 	__tcp_ack_snd_check(sk, 1);
5115 }
5116 
5117 /*
5118  *	This routine is only called when we have urgent data
5119  *	signaled. Its the 'slow' part of tcp_urg. It could be
5120  *	moved inline now as tcp_urg is only called from one
5121  *	place. We handle URGent data wrong. We have to - as
5122  *	BSD still doesn't use the correction from RFC961.
5123  *	For 1003.1g we should support a new option TCP_STDURG to permit
5124  *	either form (or just set the sysctl tcp_stdurg).
5125  */
5126 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5127 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5128 {
5129 	struct tcp_sock *tp = tcp_sk(sk);
5130 	u32 ptr = ntohs(th->urg_ptr);
5131 
5132 	if (ptr && !sysctl_tcp_stdurg)
5133 		ptr--;
5134 	ptr += ntohl(th->seq);
5135 
5136 	/* Ignore urgent data that we've already seen and read. */
5137 	if (after(tp->copied_seq, ptr))
5138 		return;
5139 
5140 	/* Do not replay urg ptr.
5141 	 *
5142 	 * NOTE: interesting situation not covered by specs.
5143 	 * Misbehaving sender may send urg ptr, pointing to segment,
5144 	 * which we already have in ofo queue. We are not able to fetch
5145 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5146 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5147 	 * situations. But it is worth to think about possibility of some
5148 	 * DoSes using some hypothetical application level deadlock.
5149 	 */
5150 	if (before(ptr, tp->rcv_nxt))
5151 		return;
5152 
5153 	/* Do we already have a newer (or duplicate) urgent pointer? */
5154 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5155 		return;
5156 
5157 	/* Tell the world about our new urgent pointer. */
5158 	sk_send_sigurg(sk);
5159 
5160 	/* We may be adding urgent data when the last byte read was
5161 	 * urgent. To do this requires some care. We cannot just ignore
5162 	 * tp->copied_seq since we would read the last urgent byte again
5163 	 * as data, nor can we alter copied_seq until this data arrives
5164 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5165 	 *
5166 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5167 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5168 	 * and expect that both A and B disappear from stream. This is _wrong_.
5169 	 * Though this happens in BSD with high probability, this is occasional.
5170 	 * Any application relying on this is buggy. Note also, that fix "works"
5171 	 * only in this artificial test. Insert some normal data between A and B and we will
5172 	 * decline of BSD again. Verdict: it is better to remove to trap
5173 	 * buggy users.
5174 	 */
5175 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5176 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5177 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5178 		tp->copied_seq++;
5179 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5180 			__skb_unlink(skb, &sk->sk_receive_queue);
5181 			__kfree_skb(skb);
5182 		}
5183 	}
5184 
5185 	tp->urg_data = TCP_URG_NOTYET;
5186 	tp->urg_seq = ptr;
5187 
5188 	/* Disable header prediction. */
5189 	tp->pred_flags = 0;
5190 }
5191 
5192 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5193 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5194 {
5195 	struct tcp_sock *tp = tcp_sk(sk);
5196 
5197 	/* Check if we get a new urgent pointer - normally not. */
5198 	if (th->urg)
5199 		tcp_check_urg(sk, th);
5200 
5201 	/* Do we wait for any urgent data? - normally not... */
5202 	if (tp->urg_data == TCP_URG_NOTYET) {
5203 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5204 			  th->syn;
5205 
5206 		/* Is the urgent pointer pointing into this packet? */
5207 		if (ptr < skb->len) {
5208 			u8 tmp;
5209 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5210 				BUG();
5211 			tp->urg_data = TCP_URG_VALID | tmp;
5212 			if (!sock_flag(sk, SOCK_DEAD))
5213 				sk->sk_data_ready(sk, 0);
5214 		}
5215 	}
5216 }
5217 
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)5218 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5219 {
5220 	struct tcp_sock *tp = tcp_sk(sk);
5221 	int chunk = skb->len - hlen;
5222 	int err;
5223 
5224 	local_bh_enable();
5225 	if (skb_csum_unnecessary(skb))
5226 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5227 	else
5228 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5229 						       tp->ucopy.iov);
5230 
5231 	if (!err) {
5232 		tp->ucopy.len -= chunk;
5233 		tp->copied_seq += chunk;
5234 		tcp_rcv_space_adjust(sk);
5235 	}
5236 
5237 	local_bh_disable();
5238 	return err;
5239 }
5240 
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5241 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5242 					    struct sk_buff *skb)
5243 {
5244 	__sum16 result;
5245 
5246 	if (sock_owned_by_user(sk)) {
5247 		local_bh_enable();
5248 		result = __tcp_checksum_complete(skb);
5249 		local_bh_disable();
5250 	} else {
5251 		result = __tcp_checksum_complete(skb);
5252 	}
5253 	return result;
5254 }
5255 
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5256 static inline int tcp_checksum_complete_user(struct sock *sk,
5257 					     struct sk_buff *skb)
5258 {
5259 	return !skb_csum_unnecessary(skb) &&
5260 	       __tcp_checksum_complete_user(sk, skb);
5261 }
5262 
5263 #ifdef CONFIG_NET_DMA
tcp_dma_try_early_copy(struct sock * sk,struct sk_buff * skb,int hlen)5264 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5265 				  int hlen)
5266 {
5267 	struct tcp_sock *tp = tcp_sk(sk);
5268 	int chunk = skb->len - hlen;
5269 	int dma_cookie;
5270 	int copied_early = 0;
5271 
5272 	if (tp->ucopy.wakeup)
5273 		return 0;
5274 
5275 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5276 		tp->ucopy.dma_chan = net_dma_find_channel();
5277 
5278 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5279 
5280 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5281 							 skb, hlen,
5282 							 tp->ucopy.iov, chunk,
5283 							 tp->ucopy.pinned_list);
5284 
5285 		if (dma_cookie < 0)
5286 			goto out;
5287 
5288 		tp->ucopy.dma_cookie = dma_cookie;
5289 		copied_early = 1;
5290 
5291 		tp->ucopy.len -= chunk;
5292 		tp->copied_seq += chunk;
5293 		tcp_rcv_space_adjust(sk);
5294 
5295 		if ((tp->ucopy.len == 0) ||
5296 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5297 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5298 			tp->ucopy.wakeup = 1;
5299 			sk->sk_data_ready(sk, 0);
5300 		}
5301 	} else if (chunk > 0) {
5302 		tp->ucopy.wakeup = 1;
5303 		sk->sk_data_ready(sk, 0);
5304 	}
5305 out:
5306 	return copied_early;
5307 }
5308 #endif /* CONFIG_NET_DMA */
5309 
5310 /* Does PAWS and seqno based validation of an incoming segment, flags will
5311  * play significant role here.
5312  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5313 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5314 				  const struct tcphdr *th, int syn_inerr)
5315 {
5316 	const u8 *hash_location;
5317 	struct tcp_sock *tp = tcp_sk(sk);
5318 
5319 	/* RFC1323: H1. Apply PAWS check first. */
5320 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5321 	    tp->rx_opt.saw_tstamp &&
5322 	    tcp_paws_discard(sk, skb)) {
5323 		if (!th->rst) {
5324 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5325 			tcp_send_dupack(sk, skb);
5326 			goto discard;
5327 		}
5328 		/* Reset is accepted even if it did not pass PAWS. */
5329 	}
5330 
5331 	/* Step 1: check sequence number */
5332 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5333 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5334 		 * (RST) segments are validated by checking their SEQ-fields."
5335 		 * And page 69: "If an incoming segment is not acceptable,
5336 		 * an acknowledgment should be sent in reply (unless the RST
5337 		 * bit is set, if so drop the segment and return)".
5338 		 */
5339 		if (!th->rst) {
5340 			if (th->syn)
5341 				goto syn_challenge;
5342 			tcp_send_dupack(sk, skb);
5343 		}
5344 		goto discard;
5345 	}
5346 
5347 	/* Step 2: check RST bit */
5348 	if (th->rst) {
5349 		/* RFC 5961 3.2 :
5350 		 * If sequence number exactly matches RCV.NXT, then
5351 		 *     RESET the connection
5352 		 * else
5353 		 *     Send a challenge ACK
5354 		 */
5355 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5356 			tcp_reset(sk);
5357 		else
5358 			tcp_send_challenge_ack(sk);
5359 		goto discard;
5360 	}
5361 
5362 	/* step 3: check security and precedence [ignored] */
5363 
5364 	/* step 4: Check for a SYN
5365 	 * RFC 5691 4.2 : Send a challenge ack
5366 	 */
5367 	if (th->syn) {
5368 syn_challenge:
5369 		if (syn_inerr)
5370 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5371 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5372 		tcp_send_challenge_ack(sk);
5373 		goto discard;
5374 	}
5375 
5376 	return true;
5377 
5378 discard:
5379 	__kfree_skb(skb);
5380 	return false;
5381 }
5382 
5383 /*
5384  *	TCP receive function for the ESTABLISHED state.
5385  *
5386  *	It is split into a fast path and a slow path. The fast path is
5387  * 	disabled when:
5388  *	- A zero window was announced from us - zero window probing
5389  *        is only handled properly in the slow path.
5390  *	- Out of order segments arrived.
5391  *	- Urgent data is expected.
5392  *	- There is no buffer space left
5393  *	- Unexpected TCP flags/window values/header lengths are received
5394  *	  (detected by checking the TCP header against pred_flags)
5395  *	- Data is sent in both directions. Fast path only supports pure senders
5396  *	  or pure receivers (this means either the sequence number or the ack
5397  *	  value must stay constant)
5398  *	- Unexpected TCP option.
5399  *
5400  *	When these conditions are not satisfied it drops into a standard
5401  *	receive procedure patterned after RFC793 to handle all cases.
5402  *	The first three cases are guaranteed by proper pred_flags setting,
5403  *	the rest is checked inline. Fast processing is turned on in
5404  *	tcp_data_queue when everything is OK.
5405  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5406 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5407 			const struct tcphdr *th, unsigned int len)
5408 {
5409 	struct tcp_sock *tp = tcp_sk(sk);
5410 
5411 	/*
5412 	 *	Header prediction.
5413 	 *	The code loosely follows the one in the famous
5414 	 *	"30 instruction TCP receive" Van Jacobson mail.
5415 	 *
5416 	 *	Van's trick is to deposit buffers into socket queue
5417 	 *	on a device interrupt, to call tcp_recv function
5418 	 *	on the receive process context and checksum and copy
5419 	 *	the buffer to user space. smart...
5420 	 *
5421 	 *	Our current scheme is not silly either but we take the
5422 	 *	extra cost of the net_bh soft interrupt processing...
5423 	 *	We do checksum and copy also but from device to kernel.
5424 	 */
5425 
5426 	tp->rx_opt.saw_tstamp = 0;
5427 
5428 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5429 	 *	if header_prediction is to be made
5430 	 *	'S' will always be tp->tcp_header_len >> 2
5431 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5432 	 *  turn it off	(when there are holes in the receive
5433 	 *	 space for instance)
5434 	 *	PSH flag is ignored.
5435 	 */
5436 
5437 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5438 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5439 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5440 		int tcp_header_len = tp->tcp_header_len;
5441 
5442 		/* Timestamp header prediction: tcp_header_len
5443 		 * is automatically equal to th->doff*4 due to pred_flags
5444 		 * match.
5445 		 */
5446 
5447 		/* Check timestamp */
5448 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5449 			/* No? Slow path! */
5450 			if (!tcp_parse_aligned_timestamp(tp, th))
5451 				goto slow_path;
5452 
5453 			/* If PAWS failed, check it more carefully in slow path */
5454 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5455 				goto slow_path;
5456 
5457 			/* DO NOT update ts_recent here, if checksum fails
5458 			 * and timestamp was corrupted part, it will result
5459 			 * in a hung connection since we will drop all
5460 			 * future packets due to the PAWS test.
5461 			 */
5462 		}
5463 
5464 		if (len <= tcp_header_len) {
5465 			/* Bulk data transfer: sender */
5466 			if (len == tcp_header_len) {
5467 				/* Predicted packet is in window by definition.
5468 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5469 				 * Hence, check seq<=rcv_wup reduces to:
5470 				 */
5471 				if (tcp_header_len ==
5472 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5473 				    tp->rcv_nxt == tp->rcv_wup)
5474 					tcp_store_ts_recent(tp);
5475 
5476 				/* We know that such packets are checksummed
5477 				 * on entry.
5478 				 */
5479 				tcp_ack(sk, skb, 0);
5480 				__kfree_skb(skb);
5481 				tcp_data_snd_check(sk);
5482 				return 0;
5483 			} else { /* Header too small */
5484 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5485 				goto discard;
5486 			}
5487 		} else {
5488 			int eaten = 0;
5489 			int copied_early = 0;
5490 
5491 			if (tp->copied_seq == tp->rcv_nxt &&
5492 			    len - tcp_header_len <= tp->ucopy.len) {
5493 #ifdef CONFIG_NET_DMA
5494 				if (tp->ucopy.task == current &&
5495 				    sock_owned_by_user(sk) &&
5496 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5497 					copied_early = 1;
5498 					eaten = 1;
5499 				}
5500 #endif
5501 				if (tp->ucopy.task == current &&
5502 				    sock_owned_by_user(sk) && !copied_early) {
5503 					__set_current_state(TASK_RUNNING);
5504 
5505 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5506 						eaten = 1;
5507 				}
5508 				if (eaten) {
5509 					/* Predicted packet is in window by definition.
5510 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5511 					 * Hence, check seq<=rcv_wup reduces to:
5512 					 */
5513 					if (tcp_header_len ==
5514 					    (sizeof(struct tcphdr) +
5515 					     TCPOLEN_TSTAMP_ALIGNED) &&
5516 					    tp->rcv_nxt == tp->rcv_wup)
5517 						tcp_store_ts_recent(tp);
5518 
5519 					tcp_rcv_rtt_measure_ts(sk, skb);
5520 
5521 					__skb_pull(skb, tcp_header_len);
5522 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5523 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5524 				}
5525 				if (copied_early)
5526 					tcp_cleanup_rbuf(sk, skb->len);
5527 			}
5528 			if (!eaten) {
5529 				if (tcp_checksum_complete_user(sk, skb))
5530 					goto csum_error;
5531 
5532 				if ((int)skb->truesize > sk->sk_forward_alloc)
5533 					goto step5;
5534 
5535 				/* Predicted packet is in window by definition.
5536 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5537 				 * Hence, check seq<=rcv_wup reduces to:
5538 				 */
5539 				if (tcp_header_len ==
5540 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5541 				    tp->rcv_nxt == tp->rcv_wup)
5542 					tcp_store_ts_recent(tp);
5543 
5544 				tcp_rcv_rtt_measure_ts(sk, skb);
5545 
5546 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5547 
5548 				/* Bulk data transfer: receiver */
5549 				__skb_pull(skb, tcp_header_len);
5550 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5551 				skb_set_owner_r(skb, sk);
5552 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5553 			}
5554 
5555 			tcp_event_data_recv(sk, skb);
5556 
5557 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5558 				/* Well, only one small jumplet in fast path... */
5559 				tcp_ack(sk, skb, FLAG_DATA);
5560 				tcp_data_snd_check(sk);
5561 				if (!inet_csk_ack_scheduled(sk))
5562 					goto no_ack;
5563 			}
5564 
5565 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5566 				__tcp_ack_snd_check(sk, 0);
5567 no_ack:
5568 #ifdef CONFIG_NET_DMA
5569 			if (copied_early)
5570 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5571 			else
5572 #endif
5573 			if (eaten)
5574 				__kfree_skb(skb);
5575 			else
5576 				sk->sk_data_ready(sk, 0);
5577 			return 0;
5578 		}
5579 	}
5580 
5581 slow_path:
5582 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5583 		goto csum_error;
5584 
5585 	/*
5586 	 *	Standard slow path.
5587 	 */
5588 
5589 	if (!tcp_validate_incoming(sk, skb, th, 1))
5590 		return 0;
5591 
5592 step5:
5593 	if (th->ack &&
5594 	    tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5595 		goto discard;
5596 
5597 	tcp_rcv_rtt_measure_ts(sk, skb);
5598 
5599 	/* Process urgent data. */
5600 	tcp_urg(sk, skb, th);
5601 
5602 	/* step 7: process the segment text */
5603 	tcp_data_queue(sk, skb);
5604 
5605 	tcp_data_snd_check(sk);
5606 	tcp_ack_snd_check(sk);
5607 	return 0;
5608 
5609 csum_error:
5610 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5611 
5612 discard:
5613 	__kfree_skb(skb);
5614 	return 0;
5615 }
5616 EXPORT_SYMBOL(tcp_rcv_established);
5617 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5618 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5619 					 const struct tcphdr *th, unsigned int len)
5620 {
5621 	const u8 *hash_location;
5622 	struct inet_connection_sock *icsk = inet_csk(sk);
5623 	struct tcp_sock *tp = tcp_sk(sk);
5624 	struct tcp_cookie_values *cvp = tp->cookie_values;
5625 	int saved_clamp = tp->rx_opt.mss_clamp;
5626 
5627 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5628 
5629 	if (th->ack) {
5630 		/* rfc793:
5631 		 * "If the state is SYN-SENT then
5632 		 *    first check the ACK bit
5633 		 *      If the ACK bit is set
5634 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5635 		 *        a reset (unless the RST bit is set, if so drop
5636 		 *        the segment and return)"
5637 		 *
5638 		 *  We do not send data with SYN, so that RFC-correct
5639 		 *  test reduces to:
5640 		 */
5641 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5642 			goto reset_and_undo;
5643 
5644 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5645 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5646 			     tcp_time_stamp)) {
5647 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5648 			goto reset_and_undo;
5649 		}
5650 
5651 		/* Now ACK is acceptable.
5652 		 *
5653 		 * "If the RST bit is set
5654 		 *    If the ACK was acceptable then signal the user "error:
5655 		 *    connection reset", drop the segment, enter CLOSED state,
5656 		 *    delete TCB, and return."
5657 		 */
5658 
5659 		if (th->rst) {
5660 			tcp_reset(sk);
5661 			goto discard;
5662 		}
5663 
5664 		/* rfc793:
5665 		 *   "fifth, if neither of the SYN or RST bits is set then
5666 		 *    drop the segment and return."
5667 		 *
5668 		 *    See note below!
5669 		 *                                        --ANK(990513)
5670 		 */
5671 		if (!th->syn)
5672 			goto discard_and_undo;
5673 
5674 		/* rfc793:
5675 		 *   "If the SYN bit is on ...
5676 		 *    are acceptable then ...
5677 		 *    (our SYN has been ACKed), change the connection
5678 		 *    state to ESTABLISHED..."
5679 		 */
5680 
5681 		TCP_ECN_rcv_synack(tp, th);
5682 
5683 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5684 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5685 
5686 		/* Ok.. it's good. Set up sequence numbers and
5687 		 * move to established.
5688 		 */
5689 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5690 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5691 
5692 		/* RFC1323: The window in SYN & SYN/ACK segments is
5693 		 * never scaled.
5694 		 */
5695 		tp->snd_wnd = ntohs(th->window);
5696 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5697 
5698 		if (!tp->rx_opt.wscale_ok) {
5699 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5700 			tp->window_clamp = min(tp->window_clamp, 65535U);
5701 		}
5702 
5703 		if (tp->rx_opt.saw_tstamp) {
5704 			tp->rx_opt.tstamp_ok	   = 1;
5705 			tp->tcp_header_len =
5706 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5707 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5708 			tcp_store_ts_recent(tp);
5709 		} else {
5710 			tp->tcp_header_len = sizeof(struct tcphdr);
5711 		}
5712 
5713 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5714 			tcp_enable_fack(tp);
5715 
5716 		tcp_mtup_init(sk);
5717 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5718 		tcp_initialize_rcv_mss(sk);
5719 
5720 		/* Remember, tcp_poll() does not lock socket!
5721 		 * Change state from SYN-SENT only after copied_seq
5722 		 * is initialized. */
5723 		tp->copied_seq = tp->rcv_nxt;
5724 
5725 		if (cvp != NULL &&
5726 		    cvp->cookie_pair_size > 0 &&
5727 		    tp->rx_opt.cookie_plus > 0) {
5728 			int cookie_size = tp->rx_opt.cookie_plus
5729 					- TCPOLEN_COOKIE_BASE;
5730 			int cookie_pair_size = cookie_size
5731 					     + cvp->cookie_desired;
5732 
5733 			/* A cookie extension option was sent and returned.
5734 			 * Note that each incoming SYNACK replaces the
5735 			 * Responder cookie.  The initial exchange is most
5736 			 * fragile, as protection against spoofing relies
5737 			 * entirely upon the sequence and timestamp (above).
5738 			 * This replacement strategy allows the correct pair to
5739 			 * pass through, while any others will be filtered via
5740 			 * Responder verification later.
5741 			 */
5742 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5743 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5744 				       hash_location, cookie_size);
5745 				cvp->cookie_pair_size = cookie_pair_size;
5746 			}
5747 		}
5748 
5749 		smp_mb();
5750 		tcp_set_state(sk, TCP_ESTABLISHED);
5751 
5752 		security_inet_conn_established(sk, skb);
5753 
5754 		/* Make sure socket is routed, for correct metrics.  */
5755 		icsk->icsk_af_ops->rebuild_header(sk);
5756 
5757 		tcp_init_metrics(sk);
5758 
5759 		tcp_init_congestion_control(sk);
5760 
5761 		/* Prevent spurious tcp_cwnd_restart() on first data
5762 		 * packet.
5763 		 */
5764 		tp->lsndtime = tcp_time_stamp;
5765 
5766 		tcp_init_buffer_space(sk);
5767 
5768 		if (sock_flag(sk, SOCK_KEEPOPEN))
5769 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5770 
5771 		if (!tp->rx_opt.snd_wscale)
5772 			__tcp_fast_path_on(tp, tp->snd_wnd);
5773 		else
5774 			tp->pred_flags = 0;
5775 
5776 		if (!sock_flag(sk, SOCK_DEAD)) {
5777 			sk->sk_state_change(sk);
5778 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5779 		}
5780 
5781 		if (sk->sk_write_pending ||
5782 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5783 		    icsk->icsk_ack.pingpong) {
5784 			/* Save one ACK. Data will be ready after
5785 			 * several ticks, if write_pending is set.
5786 			 *
5787 			 * It may be deleted, but with this feature tcpdumps
5788 			 * look so _wonderfully_ clever, that I was not able
5789 			 * to stand against the temptation 8)     --ANK
5790 			 */
5791 			inet_csk_schedule_ack(sk);
5792 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5793 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5794 			tcp_incr_quickack(sk);
5795 			tcp_enter_quickack_mode(sk);
5796 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5797 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5798 
5799 discard:
5800 			__kfree_skb(skb);
5801 			return 0;
5802 		} else {
5803 			tcp_send_ack(sk);
5804 		}
5805 		return -1;
5806 	}
5807 
5808 	/* No ACK in the segment */
5809 
5810 	if (th->rst) {
5811 		/* rfc793:
5812 		 * "If the RST bit is set
5813 		 *
5814 		 *      Otherwise (no ACK) drop the segment and return."
5815 		 */
5816 
5817 		goto discard_and_undo;
5818 	}
5819 
5820 	/* PAWS check. */
5821 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5822 	    tcp_paws_reject(&tp->rx_opt, 0))
5823 		goto discard_and_undo;
5824 
5825 	if (th->syn) {
5826 		/* We see SYN without ACK. It is attempt of
5827 		 * simultaneous connect with crossed SYNs.
5828 		 * Particularly, it can be connect to self.
5829 		 */
5830 		tcp_set_state(sk, TCP_SYN_RECV);
5831 
5832 		if (tp->rx_opt.saw_tstamp) {
5833 			tp->rx_opt.tstamp_ok = 1;
5834 			tcp_store_ts_recent(tp);
5835 			tp->tcp_header_len =
5836 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5837 		} else {
5838 			tp->tcp_header_len = sizeof(struct tcphdr);
5839 		}
5840 
5841 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5842 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5843 
5844 		/* RFC1323: The window in SYN & SYN/ACK segments is
5845 		 * never scaled.
5846 		 */
5847 		tp->snd_wnd    = ntohs(th->window);
5848 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5849 		tp->max_window = tp->snd_wnd;
5850 
5851 		TCP_ECN_rcv_syn(tp, th);
5852 
5853 		tcp_mtup_init(sk);
5854 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5855 		tcp_initialize_rcv_mss(sk);
5856 
5857 		tcp_send_synack(sk);
5858 #if 0
5859 		/* Note, we could accept data and URG from this segment.
5860 		 * There are no obstacles to make this.
5861 		 *
5862 		 * However, if we ignore data in ACKless segments sometimes,
5863 		 * we have no reasons to accept it sometimes.
5864 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5865 		 * is not flawless. So, discard packet for sanity.
5866 		 * Uncomment this return to process the data.
5867 		 */
5868 		return -1;
5869 #else
5870 		goto discard;
5871 #endif
5872 	}
5873 	/* "fifth, if neither of the SYN or RST bits is set then
5874 	 * drop the segment and return."
5875 	 */
5876 
5877 discard_and_undo:
5878 	tcp_clear_options(&tp->rx_opt);
5879 	tp->rx_opt.mss_clamp = saved_clamp;
5880 	goto discard;
5881 
5882 reset_and_undo:
5883 	tcp_clear_options(&tp->rx_opt);
5884 	tp->rx_opt.mss_clamp = saved_clamp;
5885 	return 1;
5886 }
5887 
5888 /*
5889  *	This function implements the receiving procedure of RFC 793 for
5890  *	all states except ESTABLISHED and TIME_WAIT.
5891  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5892  *	address independent.
5893  */
5894 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5895 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5896 			  const struct tcphdr *th, unsigned int len)
5897 {
5898 	struct tcp_sock *tp = tcp_sk(sk);
5899 	struct inet_connection_sock *icsk = inet_csk(sk);
5900 	int queued = 0;
5901 
5902 	tp->rx_opt.saw_tstamp = 0;
5903 
5904 	switch (sk->sk_state) {
5905 	case TCP_CLOSE:
5906 		goto discard;
5907 
5908 	case TCP_LISTEN:
5909 		if (th->ack)
5910 			return 1;
5911 
5912 		if (th->rst)
5913 			goto discard;
5914 
5915 		if (th->syn) {
5916 			if (th->fin)
5917 				goto discard;
5918 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5919 				return 1;
5920 
5921 			/* Now we have several options: In theory there is
5922 			 * nothing else in the frame. KA9Q has an option to
5923 			 * send data with the syn, BSD accepts data with the
5924 			 * syn up to the [to be] advertised window and
5925 			 * Solaris 2.1 gives you a protocol error. For now
5926 			 * we just ignore it, that fits the spec precisely
5927 			 * and avoids incompatibilities. It would be nice in
5928 			 * future to drop through and process the data.
5929 			 *
5930 			 * Now that TTCP is starting to be used we ought to
5931 			 * queue this data.
5932 			 * But, this leaves one open to an easy denial of
5933 			 * service attack, and SYN cookies can't defend
5934 			 * against this problem. So, we drop the data
5935 			 * in the interest of security over speed unless
5936 			 * it's still in use.
5937 			 */
5938 			kfree_skb(skb);
5939 			return 0;
5940 		}
5941 		goto discard;
5942 
5943 	case TCP_SYN_SENT:
5944 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5945 		if (queued >= 0)
5946 			return queued;
5947 
5948 		/* Do step6 onward by hand. */
5949 		tcp_urg(sk, skb, th);
5950 		__kfree_skb(skb);
5951 		tcp_data_snd_check(sk);
5952 		return 0;
5953 	}
5954 
5955 	if (!tcp_validate_incoming(sk, skb, th, 0))
5956 		return 0;
5957 
5958 	/* step 5: check the ACK field */
5959 	if (th->ack) {
5960 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5961 						  FLAG_UPDATE_TS_RECENT) > 0;
5962 
5963 		switch (sk->sk_state) {
5964 		case TCP_SYN_RECV:
5965 			if (acceptable) {
5966 				tp->copied_seq = tp->rcv_nxt;
5967 				smp_mb();
5968 				tcp_set_state(sk, TCP_ESTABLISHED);
5969 				sk->sk_state_change(sk);
5970 
5971 				/* Note, that this wakeup is only for marginal
5972 				 * crossed SYN case. Passively open sockets
5973 				 * are not waked up, because sk->sk_sleep ==
5974 				 * NULL and sk->sk_socket == NULL.
5975 				 */
5976 				if (sk->sk_socket)
5977 					sk_wake_async(sk,
5978 						      SOCK_WAKE_IO, POLL_OUT);
5979 
5980 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5981 				tp->snd_wnd = ntohs(th->window) <<
5982 					      tp->rx_opt.snd_wscale;
5983 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5984 
5985 				if (tp->rx_opt.tstamp_ok)
5986 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5987 
5988 				/* Make sure socket is routed, for
5989 				 * correct metrics.
5990 				 */
5991 				icsk->icsk_af_ops->rebuild_header(sk);
5992 
5993 				tcp_init_metrics(sk);
5994 
5995 				tcp_init_congestion_control(sk);
5996 
5997 				/* Prevent spurious tcp_cwnd_restart() on
5998 				 * first data packet.
5999 				 */
6000 				tp->lsndtime = tcp_time_stamp;
6001 
6002 				tcp_mtup_init(sk);
6003 				tcp_initialize_rcv_mss(sk);
6004 				tcp_init_buffer_space(sk);
6005 				tcp_fast_path_on(tp);
6006 			} else {
6007 				return 1;
6008 			}
6009 			break;
6010 
6011 		case TCP_FIN_WAIT1:
6012 			if (tp->snd_una == tp->write_seq) {
6013 				tcp_set_state(sk, TCP_FIN_WAIT2);
6014 				sk->sk_shutdown |= SEND_SHUTDOWN;
6015 				dst_confirm(__sk_dst_get(sk));
6016 
6017 				if (!sock_flag(sk, SOCK_DEAD))
6018 					/* Wake up lingering close() */
6019 					sk->sk_state_change(sk);
6020 				else {
6021 					int tmo;
6022 
6023 					if (tp->linger2 < 0 ||
6024 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6025 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6026 						tcp_done(sk);
6027 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6028 						return 1;
6029 					}
6030 
6031 					tmo = tcp_fin_time(sk);
6032 					if (tmo > TCP_TIMEWAIT_LEN) {
6033 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6034 					} else if (th->fin || sock_owned_by_user(sk)) {
6035 						/* Bad case. We could lose such FIN otherwise.
6036 						 * It is not a big problem, but it looks confusing
6037 						 * and not so rare event. We still can lose it now,
6038 						 * if it spins in bh_lock_sock(), but it is really
6039 						 * marginal case.
6040 						 */
6041 						inet_csk_reset_keepalive_timer(sk, tmo);
6042 					} else {
6043 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6044 						goto discard;
6045 					}
6046 				}
6047 			}
6048 			break;
6049 
6050 		case TCP_CLOSING:
6051 			if (tp->snd_una == tp->write_seq) {
6052 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6053 				goto discard;
6054 			}
6055 			break;
6056 
6057 		case TCP_LAST_ACK:
6058 			if (tp->snd_una == tp->write_seq) {
6059 				tcp_update_metrics(sk);
6060 				tcp_done(sk);
6061 				goto discard;
6062 			}
6063 			break;
6064 		}
6065 	} else
6066 		goto discard;
6067 
6068 	/* step 6: check the URG bit */
6069 	tcp_urg(sk, skb, th);
6070 
6071 	/* step 7: process the segment text */
6072 	switch (sk->sk_state) {
6073 	case TCP_CLOSE_WAIT:
6074 	case TCP_CLOSING:
6075 	case TCP_LAST_ACK:
6076 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6077 			break;
6078 	case TCP_FIN_WAIT1:
6079 	case TCP_FIN_WAIT2:
6080 		/* RFC 793 says to queue data in these states,
6081 		 * RFC 1122 says we MUST send a reset.
6082 		 * BSD 4.4 also does reset.
6083 		 */
6084 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6085 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6086 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6087 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6088 				tcp_reset(sk);
6089 				return 1;
6090 			}
6091 		}
6092 		/* Fall through */
6093 	case TCP_ESTABLISHED:
6094 		tcp_data_queue(sk, skb);
6095 		queued = 1;
6096 		break;
6097 	}
6098 
6099 	/* tcp_data could move socket to TIME-WAIT */
6100 	if (sk->sk_state != TCP_CLOSE) {
6101 		tcp_data_snd_check(sk);
6102 		tcp_ack_snd_check(sk);
6103 	}
6104 
6105 	if (!queued) {
6106 discard:
6107 		__kfree_skb(skb);
6108 	}
6109 	return 0;
6110 }
6111 EXPORT_SYMBOL(tcp_rcv_state_process);
6112