1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460
461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465
tcp_tx_timestamp(struct sock * sk,u16 tsflags)466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 struct sk_buff *skb = tcp_write_queue_tail(sk);
469
470 if (tsflags && skb) {
471 struct skb_shared_info *shinfo = skb_shinfo(skb);
472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473
474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 tcb->txstamp_ack = 1;
477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 }
480 }
481
tcp_stream_is_readable(struct sock * sk,int target)482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 if (tcp_epollin_ready(sk, target))
485 return true;
486 return sk_is_readable(sk);
487 }
488
489 /*
490 * Wait for a TCP event.
491 *
492 * Note that we don't need to lock the socket, as the upper poll layers
493 * take care of normal races (between the test and the event) and we don't
494 * go look at any of the socket buffers directly.
495 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 __poll_t mask;
499 struct sock *sk = sock->sk;
500 const struct tcp_sock *tp = tcp_sk(sk);
501 int state;
502
503 sock_poll_wait(file, sock, wait);
504
505 state = inet_sk_state_load(sk);
506 if (state == TCP_LISTEN)
507 return inet_csk_listen_poll(sk);
508
509 /* Socket is not locked. We are protected from async events
510 * by poll logic and correct handling of state changes
511 * made by other threads is impossible in any case.
512 */
513
514 mask = 0;
515
516 /*
517 * EPOLLHUP is certainly not done right. But poll() doesn't
518 * have a notion of HUP in just one direction, and for a
519 * socket the read side is more interesting.
520 *
521 * Some poll() documentation says that EPOLLHUP is incompatible
522 * with the EPOLLOUT/POLLWR flags, so somebody should check this
523 * all. But careful, it tends to be safer to return too many
524 * bits than too few, and you can easily break real applications
525 * if you don't tell them that something has hung up!
526 *
527 * Check-me.
528 *
529 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
530 * our fs/select.c). It means that after we received EOF,
531 * poll always returns immediately, making impossible poll() on write()
532 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
533 * if and only if shutdown has been made in both directions.
534 * Actually, it is interesting to look how Solaris and DUX
535 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
536 * then we could set it on SND_SHUTDOWN. BTW examples given
537 * in Stevens' books assume exactly this behaviour, it explains
538 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
539 *
540 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
541 * blocking on fresh not-connected or disconnected socket. --ANK
542 */
543 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
544 mask |= EPOLLHUP;
545 if (sk->sk_shutdown & RCV_SHUTDOWN)
546 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
547
548 /* Connected or passive Fast Open socket? */
549 if (state != TCP_SYN_SENT &&
550 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
551 int target = sock_rcvlowat(sk, 0, INT_MAX);
552 u16 urg_data = READ_ONCE(tp->urg_data);
553
554 if (unlikely(urg_data) &&
555 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
556 !sock_flag(sk, SOCK_URGINLINE))
557 target++;
558
559 if (tcp_stream_is_readable(sk, target))
560 mask |= EPOLLIN | EPOLLRDNORM;
561
562 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
563 if (__sk_stream_is_writeable(sk, 1)) {
564 mask |= EPOLLOUT | EPOLLWRNORM;
565 } else { /* send SIGIO later */
566 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
567 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
568
569 /* Race breaker. If space is freed after
570 * wspace test but before the flags are set,
571 * IO signal will be lost. Memory barrier
572 * pairs with the input side.
573 */
574 smp_mb__after_atomic();
575 if (__sk_stream_is_writeable(sk, 1))
576 mask |= EPOLLOUT | EPOLLWRNORM;
577 }
578 } else
579 mask |= EPOLLOUT | EPOLLWRNORM;
580
581 if (urg_data & TCP_URG_VALID)
582 mask |= EPOLLPRI;
583 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
584 /* Active TCP fastopen socket with defer_connect
585 * Return EPOLLOUT so application can call write()
586 * in order for kernel to generate SYN+data
587 */
588 mask |= EPOLLOUT | EPOLLWRNORM;
589 }
590 /* This barrier is coupled with smp_wmb() in tcp_reset() */
591 smp_rmb();
592 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
593 mask |= EPOLLERR;
594
595 return mask;
596 }
597 EXPORT_SYMBOL(tcp_poll);
598
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)599 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
600 {
601 struct tcp_sock *tp = tcp_sk(sk);
602 int answ;
603 bool slow;
604
605 switch (cmd) {
606 case SIOCINQ:
607 if (sk->sk_state == TCP_LISTEN)
608 return -EINVAL;
609
610 slow = lock_sock_fast(sk);
611 answ = tcp_inq(sk);
612 unlock_sock_fast(sk, slow);
613 break;
614 case SIOCATMARK:
615 answ = READ_ONCE(tp->urg_data) &&
616 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
617 break;
618 case SIOCOUTQ:
619 if (sk->sk_state == TCP_LISTEN)
620 return -EINVAL;
621
622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 answ = 0;
624 else
625 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
626 break;
627 case SIOCOUTQNSD:
628 if (sk->sk_state == TCP_LISTEN)
629 return -EINVAL;
630
631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 answ = 0;
633 else
634 answ = READ_ONCE(tp->write_seq) -
635 READ_ONCE(tp->snd_nxt);
636 break;
637 default:
638 return -ENOIOCTLCMD;
639 }
640
641 return put_user(answ, (int __user *)arg);
642 }
643 EXPORT_SYMBOL(tcp_ioctl);
644
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)645 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
646 {
647 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
648 tp->pushed_seq = tp->write_seq;
649 }
650
forced_push(const struct tcp_sock * tp)651 static inline bool forced_push(const struct tcp_sock *tp)
652 {
653 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
654 }
655
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)656 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
657 {
658 struct tcp_sock *tp = tcp_sk(sk);
659 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
660
661 tcb->seq = tcb->end_seq = tp->write_seq;
662 tcb->tcp_flags = TCPHDR_ACK;
663 __skb_header_release(skb);
664 tcp_add_write_queue_tail(sk, skb);
665 sk_wmem_queued_add(sk, skb->truesize);
666 sk_mem_charge(sk, skb->truesize);
667 if (tp->nonagle & TCP_NAGLE_PUSH)
668 tp->nonagle &= ~TCP_NAGLE_PUSH;
669
670 tcp_slow_start_after_idle_check(sk);
671 }
672
tcp_mark_urg(struct tcp_sock * tp,int flags)673 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
674 {
675 if (flags & MSG_OOB)
676 tp->snd_up = tp->write_seq;
677 }
678
679 /* If a not yet filled skb is pushed, do not send it if
680 * we have data packets in Qdisc or NIC queues :
681 * Because TX completion will happen shortly, it gives a chance
682 * to coalesce future sendmsg() payload into this skb, without
683 * need for a timer, and with no latency trade off.
684 * As packets containing data payload have a bigger truesize
685 * than pure acks (dataless) packets, the last checks prevent
686 * autocorking if we only have an ACK in Qdisc/NIC queues,
687 * or if TX completion was delayed after we processed ACK packet.
688 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)689 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
690 int size_goal)
691 {
692 return skb->len < size_goal &&
693 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
694 !tcp_rtx_queue_empty(sk) &&
695 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
696 tcp_skb_can_collapse_to(skb);
697 }
698
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)699 void tcp_push(struct sock *sk, int flags, int mss_now,
700 int nonagle, int size_goal)
701 {
702 struct tcp_sock *tp = tcp_sk(sk);
703 struct sk_buff *skb;
704
705 skb = tcp_write_queue_tail(sk);
706 if (!skb)
707 return;
708 if (!(flags & MSG_MORE) || forced_push(tp))
709 tcp_mark_push(tp, skb);
710
711 tcp_mark_urg(tp, flags);
712
713 if (tcp_should_autocork(sk, skb, size_goal)) {
714
715 /* avoid atomic op if TSQ_THROTTLED bit is already set */
716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
719 }
720 /* It is possible TX completion already happened
721 * before we set TSQ_THROTTLED.
722 */
723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 return;
725 }
726
727 if (flags & MSG_MORE)
728 nonagle = TCP_NAGLE_CORK;
729
730 __tcp_push_pending_frames(sk, mss_now, nonagle);
731 }
732
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
734 unsigned int offset, size_t len)
735 {
736 struct tcp_splice_state *tss = rd_desc->arg.data;
737 int ret;
738
739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
740 min(rd_desc->count, len), tss->flags);
741 if (ret > 0)
742 rd_desc->count -= ret;
743 return ret;
744 }
745
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
747 {
748 /* Store TCP splice context information in read_descriptor_t. */
749 read_descriptor_t rd_desc = {
750 .arg.data = tss,
751 .count = tss->len,
752 };
753
754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 }
756
757 /**
758 * tcp_splice_read - splice data from TCP socket to a pipe
759 * @sock: socket to splice from
760 * @ppos: position (not valid)
761 * @pipe: pipe to splice to
762 * @len: number of bytes to splice
763 * @flags: splice modifier flags
764 *
765 * Description:
766 * Will read pages from given socket and fill them into a pipe.
767 *
768 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
772 {
773 struct sock *sk = sock->sk;
774 struct tcp_splice_state tss = {
775 .pipe = pipe,
776 .len = len,
777 .flags = flags,
778 };
779 long timeo;
780 ssize_t spliced;
781 int ret;
782
783 sock_rps_record_flow(sk);
784 /*
785 * We can't seek on a socket input
786 */
787 if (unlikely(*ppos))
788 return -ESPIPE;
789
790 ret = spliced = 0;
791
792 lock_sock(sk);
793
794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
795 while (tss.len) {
796 ret = __tcp_splice_read(sk, &tss);
797 if (ret < 0)
798 break;
799 else if (!ret) {
800 if (spliced)
801 break;
802 if (sock_flag(sk, SOCK_DONE))
803 break;
804 if (sk->sk_err) {
805 ret = sock_error(sk);
806 break;
807 }
808 if (sk->sk_shutdown & RCV_SHUTDOWN)
809 break;
810 if (sk->sk_state == TCP_CLOSE) {
811 /*
812 * This occurs when user tries to read
813 * from never connected socket.
814 */
815 ret = -ENOTCONN;
816 break;
817 }
818 if (!timeo) {
819 ret = -EAGAIN;
820 break;
821 }
822 /* if __tcp_splice_read() got nothing while we have
823 * an skb in receive queue, we do not want to loop.
824 * This might happen with URG data.
825 */
826 if (!skb_queue_empty(&sk->sk_receive_queue))
827 break;
828 sk_wait_data(sk, &timeo, NULL);
829 if (signal_pending(current)) {
830 ret = sock_intr_errno(timeo);
831 break;
832 }
833 continue;
834 }
835 tss.len -= ret;
836 spliced += ret;
837
838 if (!timeo)
839 break;
840 release_sock(sk);
841 lock_sock(sk);
842
843 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
844 (sk->sk_shutdown & RCV_SHUTDOWN) ||
845 signal_pending(current))
846 break;
847 }
848
849 release_sock(sk);
850
851 if (spliced)
852 return spliced;
853
854 return ret;
855 }
856 EXPORT_SYMBOL(tcp_splice_read);
857
tcp_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)858 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
859 bool force_schedule)
860 {
861 struct sk_buff *skb;
862
863 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
864 if (likely(skb)) {
865 bool mem_scheduled;
866
867 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
868 if (force_schedule) {
869 mem_scheduled = true;
870 sk_forced_mem_schedule(sk, skb->truesize);
871 } else {
872 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
873 }
874 if (likely(mem_scheduled)) {
875 skb_reserve(skb, MAX_TCP_HEADER);
876 skb->ip_summed = CHECKSUM_PARTIAL;
877 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
878 return skb;
879 }
880 __kfree_skb(skb);
881 } else {
882 sk->sk_prot->enter_memory_pressure(sk);
883 sk_stream_moderate_sndbuf(sk);
884 }
885 return NULL;
886 }
887
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)888 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
889 int large_allowed)
890 {
891 struct tcp_sock *tp = tcp_sk(sk);
892 u32 new_size_goal, size_goal;
893
894 if (!large_allowed)
895 return mss_now;
896
897 /* Note : tcp_tso_autosize() will eventually split this later */
898 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
899
900 /* We try hard to avoid divides here */
901 size_goal = tp->gso_segs * mss_now;
902 if (unlikely(new_size_goal < size_goal ||
903 new_size_goal >= size_goal + mss_now)) {
904 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
905 sk->sk_gso_max_segs);
906 size_goal = tp->gso_segs * mss_now;
907 }
908
909 return max(size_goal, mss_now);
910 }
911
tcp_send_mss(struct sock * sk,int * size_goal,int flags)912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
913 {
914 int mss_now;
915
916 mss_now = tcp_current_mss(sk);
917 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
918
919 return mss_now;
920 }
921
922 /* In some cases, both sendpage() and sendmsg() could have added
923 * an skb to the write queue, but failed adding payload on it.
924 * We need to remove it to consume less memory, but more
925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
926 * users.
927 */
tcp_remove_empty_skb(struct sock * sk)928 void tcp_remove_empty_skb(struct sock *sk)
929 {
930 struct sk_buff *skb = tcp_write_queue_tail(sk);
931
932 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
933 tcp_unlink_write_queue(skb, sk);
934 if (tcp_write_queue_empty(sk))
935 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
936 tcp_wmem_free_skb(sk, skb);
937 }
938 }
939
940 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)941 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
942 {
943 if (unlikely(skb_zcopy_pure(skb))) {
944 u32 extra = skb->truesize -
945 SKB_TRUESIZE(skb_end_offset(skb));
946
947 if (!sk_wmem_schedule(sk, extra))
948 return -ENOMEM;
949
950 sk_mem_charge(sk, extra);
951 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
952 }
953 return 0;
954 }
955
956
tcp_wmem_schedule(struct sock * sk,int copy)957 static int tcp_wmem_schedule(struct sock *sk, int copy)
958 {
959 int left;
960
961 if (likely(sk_wmem_schedule(sk, copy)))
962 return copy;
963
964 /* We could be in trouble if we have nothing queued.
965 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
966 * to guarantee some progress.
967 */
968 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
969 if (left > 0)
970 sk_forced_mem_schedule(sk, min(left, copy));
971 return min(copy, sk->sk_forward_alloc);
972 }
973
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)974 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
975 struct page *page, int offset, size_t *size)
976 {
977 struct sk_buff *skb = tcp_write_queue_tail(sk);
978 struct tcp_sock *tp = tcp_sk(sk);
979 bool can_coalesce;
980 int copy, i;
981
982 if (!skb || (copy = size_goal - skb->len) <= 0 ||
983 !tcp_skb_can_collapse_to(skb)) {
984 new_segment:
985 if (!sk_stream_memory_free(sk))
986 return NULL;
987
988 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
989 tcp_rtx_and_write_queues_empty(sk));
990 if (!skb)
991 return NULL;
992
993 #ifdef CONFIG_TLS_DEVICE
994 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
995 #endif
996 tcp_skb_entail(sk, skb);
997 copy = size_goal;
998 }
999
1000 if (copy > *size)
1001 copy = *size;
1002
1003 i = skb_shinfo(skb)->nr_frags;
1004 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1005 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1006 tcp_mark_push(tp, skb);
1007 goto new_segment;
1008 }
1009 if (tcp_downgrade_zcopy_pure(sk, skb))
1010 return NULL;
1011
1012 copy = tcp_wmem_schedule(sk, copy);
1013 if (!copy)
1014 return NULL;
1015
1016 if (can_coalesce) {
1017 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1018 } else {
1019 get_page(page);
1020 skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1021 }
1022
1023 if (!(flags & MSG_NO_SHARED_FRAGS))
1024 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1025
1026 skb->len += copy;
1027 skb->data_len += copy;
1028 skb->truesize += copy;
1029 sk_wmem_queued_add(sk, copy);
1030 sk_mem_charge(sk, copy);
1031 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1032 TCP_SKB_CB(skb)->end_seq += copy;
1033 tcp_skb_pcount_set(skb, 0);
1034
1035 *size = copy;
1036 return skb;
1037 }
1038
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1039 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1040 size_t size, int flags)
1041 {
1042 struct tcp_sock *tp = tcp_sk(sk);
1043 int mss_now, size_goal;
1044 int err;
1045 ssize_t copied;
1046 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1047
1048 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1049 WARN_ONCE(!sendpage_ok(page),
1050 "page must not be a Slab one and have page_count > 0"))
1051 return -EINVAL;
1052
1053 /* Wait for a connection to finish. One exception is TCP Fast Open
1054 * (passive side) where data is allowed to be sent before a connection
1055 * is fully established.
1056 */
1057 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1058 !tcp_passive_fastopen(sk)) {
1059 err = sk_stream_wait_connect(sk, &timeo);
1060 if (err != 0)
1061 goto out_err;
1062 }
1063
1064 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1065
1066 mss_now = tcp_send_mss(sk, &size_goal, flags);
1067 copied = 0;
1068
1069 err = -EPIPE;
1070 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1071 goto out_err;
1072
1073 while (size > 0) {
1074 struct sk_buff *skb;
1075 size_t copy = size;
1076
1077 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1078 if (!skb)
1079 goto wait_for_space;
1080
1081 if (!copied)
1082 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1083
1084 copied += copy;
1085 offset += copy;
1086 size -= copy;
1087 if (!size)
1088 goto out;
1089
1090 if (skb->len < size_goal || (flags & MSG_OOB))
1091 continue;
1092
1093 if (forced_push(tp)) {
1094 tcp_mark_push(tp, skb);
1095 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1096 } else if (skb == tcp_send_head(sk))
1097 tcp_push_one(sk, mss_now);
1098 continue;
1099
1100 wait_for_space:
1101 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1102 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1103 TCP_NAGLE_PUSH, size_goal);
1104
1105 err = sk_stream_wait_memory(sk, &timeo);
1106 if (err != 0)
1107 goto do_error;
1108
1109 mss_now = tcp_send_mss(sk, &size_goal, flags);
1110 }
1111
1112 out:
1113 if (copied) {
1114 tcp_tx_timestamp(sk, sk->sk_tsflags);
1115 if (!(flags & MSG_SENDPAGE_NOTLAST))
1116 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1117 }
1118 return copied;
1119
1120 do_error:
1121 tcp_remove_empty_skb(sk);
1122 if (copied)
1123 goto out;
1124 out_err:
1125 /* make sure we wake any epoll edge trigger waiter */
1126 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1127 sk->sk_write_space(sk);
1128 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1129 }
1130 return sk_stream_error(sk, flags, err);
1131 }
1132 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1133
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1134 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1135 size_t size, int flags)
1136 {
1137 if (!(sk->sk_route_caps & NETIF_F_SG))
1138 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1139
1140 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1141
1142 return do_tcp_sendpages(sk, page, offset, size, flags);
1143 }
1144 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1145
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1146 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1147 size_t size, int flags)
1148 {
1149 int ret;
1150
1151 lock_sock(sk);
1152 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1153 release_sock(sk);
1154
1155 return ret;
1156 }
1157 EXPORT_SYMBOL(tcp_sendpage);
1158
tcp_free_fastopen_req(struct tcp_sock * tp)1159 void tcp_free_fastopen_req(struct tcp_sock *tp)
1160 {
1161 if (tp->fastopen_req) {
1162 kfree(tp->fastopen_req);
1163 tp->fastopen_req = NULL;
1164 }
1165 }
1166
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1167 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1168 size_t size, struct ubuf_info *uarg)
1169 {
1170 struct tcp_sock *tp = tcp_sk(sk);
1171 struct inet_sock *inet = inet_sk(sk);
1172 struct sockaddr *uaddr = msg->msg_name;
1173 int err, flags;
1174
1175 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1176 TFO_CLIENT_ENABLE) ||
1177 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1178 uaddr->sa_family == AF_UNSPEC))
1179 return -EOPNOTSUPP;
1180 if (tp->fastopen_req)
1181 return -EALREADY; /* Another Fast Open is in progress */
1182
1183 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1184 sk->sk_allocation);
1185 if (unlikely(!tp->fastopen_req))
1186 return -ENOBUFS;
1187 tp->fastopen_req->data = msg;
1188 tp->fastopen_req->size = size;
1189 tp->fastopen_req->uarg = uarg;
1190
1191 if (inet->defer_connect) {
1192 err = tcp_connect(sk);
1193 /* Same failure procedure as in tcp_v4/6_connect */
1194 if (err) {
1195 tcp_set_state(sk, TCP_CLOSE);
1196 inet->inet_dport = 0;
1197 sk->sk_route_caps = 0;
1198 }
1199 }
1200 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1201 err = __inet_stream_connect(sk->sk_socket, uaddr,
1202 msg->msg_namelen, flags, 1);
1203 /* fastopen_req could already be freed in __inet_stream_connect
1204 * if the connection times out or gets rst
1205 */
1206 if (tp->fastopen_req) {
1207 *copied = tp->fastopen_req->copied;
1208 tcp_free_fastopen_req(tp);
1209 inet->defer_connect = 0;
1210 }
1211 return err;
1212 }
1213
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1214 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1215 {
1216 struct tcp_sock *tp = tcp_sk(sk);
1217 struct ubuf_info *uarg = NULL;
1218 struct sk_buff *skb;
1219 struct sockcm_cookie sockc;
1220 int flags, err, copied = 0;
1221 int mss_now = 0, size_goal, copied_syn = 0;
1222 int process_backlog = 0;
1223 bool zc = false;
1224 long timeo;
1225
1226 flags = msg->msg_flags;
1227
1228 if ((flags & MSG_ZEROCOPY) && size) {
1229 skb = tcp_write_queue_tail(sk);
1230
1231 if (msg->msg_ubuf) {
1232 uarg = msg->msg_ubuf;
1233 net_zcopy_get(uarg);
1234 zc = sk->sk_route_caps & NETIF_F_SG;
1235 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1236 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1237 if (!uarg) {
1238 err = -ENOBUFS;
1239 goto out_err;
1240 }
1241 zc = sk->sk_route_caps & NETIF_F_SG;
1242 if (!zc)
1243 uarg_to_msgzc(uarg)->zerocopy = 0;
1244 }
1245 }
1246
1247 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1248 !tp->repair) {
1249 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1250 if (err == -EINPROGRESS && copied_syn > 0)
1251 goto out;
1252 else if (err)
1253 goto out_err;
1254 }
1255
1256 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1257
1258 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1259
1260 /* Wait for a connection to finish. One exception is TCP Fast Open
1261 * (passive side) where data is allowed to be sent before a connection
1262 * is fully established.
1263 */
1264 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1265 !tcp_passive_fastopen(sk)) {
1266 err = sk_stream_wait_connect(sk, &timeo);
1267 if (err != 0)
1268 goto do_error;
1269 }
1270
1271 if (unlikely(tp->repair)) {
1272 if (tp->repair_queue == TCP_RECV_QUEUE) {
1273 copied = tcp_send_rcvq(sk, msg, size);
1274 goto out_nopush;
1275 }
1276
1277 err = -EINVAL;
1278 if (tp->repair_queue == TCP_NO_QUEUE)
1279 goto out_err;
1280
1281 /* 'common' sending to sendq */
1282 }
1283
1284 sockcm_init(&sockc, sk);
1285 if (msg->msg_controllen) {
1286 err = sock_cmsg_send(sk, msg, &sockc);
1287 if (unlikely(err)) {
1288 err = -EINVAL;
1289 goto out_err;
1290 }
1291 }
1292
1293 /* This should be in poll */
1294 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1295
1296 /* Ok commence sending. */
1297 copied = 0;
1298
1299 restart:
1300 mss_now = tcp_send_mss(sk, &size_goal, flags);
1301
1302 err = -EPIPE;
1303 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1304 goto do_error;
1305
1306 while (msg_data_left(msg)) {
1307 int copy = 0;
1308
1309 skb = tcp_write_queue_tail(sk);
1310 if (skb)
1311 copy = size_goal - skb->len;
1312
1313 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1314 bool first_skb;
1315
1316 new_segment:
1317 if (!sk_stream_memory_free(sk))
1318 goto wait_for_space;
1319
1320 if (unlikely(process_backlog >= 16)) {
1321 process_backlog = 0;
1322 if (sk_flush_backlog(sk))
1323 goto restart;
1324 }
1325 first_skb = tcp_rtx_and_write_queues_empty(sk);
1326 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1327 first_skb);
1328 if (!skb)
1329 goto wait_for_space;
1330
1331 process_backlog++;
1332
1333 tcp_skb_entail(sk, skb);
1334 copy = size_goal;
1335
1336 /* All packets are restored as if they have
1337 * already been sent. skb_mstamp_ns isn't set to
1338 * avoid wrong rtt estimation.
1339 */
1340 if (tp->repair)
1341 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1342 }
1343
1344 /* Try to append data to the end of skb. */
1345 if (copy > msg_data_left(msg))
1346 copy = msg_data_left(msg);
1347
1348 if (!zc) {
1349 bool merge = true;
1350 int i = skb_shinfo(skb)->nr_frags;
1351 struct page_frag *pfrag = sk_page_frag(sk);
1352
1353 if (!sk_page_frag_refill(sk, pfrag))
1354 goto wait_for_space;
1355
1356 if (!skb_can_coalesce(skb, i, pfrag->page,
1357 pfrag->offset)) {
1358 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1359 tcp_mark_push(tp, skb);
1360 goto new_segment;
1361 }
1362 merge = false;
1363 }
1364
1365 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1366
1367 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1368 if (tcp_downgrade_zcopy_pure(sk, skb))
1369 goto wait_for_space;
1370 skb_zcopy_downgrade_managed(skb);
1371 }
1372
1373 copy = tcp_wmem_schedule(sk, copy);
1374 if (!copy)
1375 goto wait_for_space;
1376
1377 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1378 pfrag->page,
1379 pfrag->offset,
1380 copy);
1381 if (err)
1382 goto do_error;
1383
1384 /* Update the skb. */
1385 if (merge) {
1386 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1387 } else {
1388 skb_fill_page_desc(skb, i, pfrag->page,
1389 pfrag->offset, copy);
1390 page_ref_inc(pfrag->page);
1391 }
1392 pfrag->offset += copy;
1393 } else {
1394 /* First append to a fragless skb builds initial
1395 * pure zerocopy skb
1396 */
1397 if (!skb->len)
1398 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1399
1400 if (!skb_zcopy_pure(skb)) {
1401 copy = tcp_wmem_schedule(sk, copy);
1402 if (!copy)
1403 goto wait_for_space;
1404 }
1405
1406 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1407 if (err == -EMSGSIZE || err == -EEXIST) {
1408 tcp_mark_push(tp, skb);
1409 goto new_segment;
1410 }
1411 if (err < 0)
1412 goto do_error;
1413 copy = err;
1414 }
1415
1416 if (!copied)
1417 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1418
1419 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1420 TCP_SKB_CB(skb)->end_seq += copy;
1421 tcp_skb_pcount_set(skb, 0);
1422
1423 copied += copy;
1424 if (!msg_data_left(msg)) {
1425 if (unlikely(flags & MSG_EOR))
1426 TCP_SKB_CB(skb)->eor = 1;
1427 goto out;
1428 }
1429
1430 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1431 continue;
1432
1433 if (forced_push(tp)) {
1434 tcp_mark_push(tp, skb);
1435 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1436 } else if (skb == tcp_send_head(sk))
1437 tcp_push_one(sk, mss_now);
1438 continue;
1439
1440 wait_for_space:
1441 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1442 if (copied)
1443 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1444 TCP_NAGLE_PUSH, size_goal);
1445
1446 err = sk_stream_wait_memory(sk, &timeo);
1447 if (err != 0)
1448 goto do_error;
1449
1450 mss_now = tcp_send_mss(sk, &size_goal, flags);
1451 }
1452
1453 out:
1454 if (copied) {
1455 tcp_tx_timestamp(sk, sockc.tsflags);
1456 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1457 }
1458 out_nopush:
1459 net_zcopy_put(uarg);
1460 return copied + copied_syn;
1461
1462 do_error:
1463 tcp_remove_empty_skb(sk);
1464
1465 if (copied + copied_syn)
1466 goto out;
1467 out_err:
1468 net_zcopy_put_abort(uarg, true);
1469 err = sk_stream_error(sk, flags, err);
1470 /* make sure we wake any epoll edge trigger waiter */
1471 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1472 sk->sk_write_space(sk);
1473 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1474 }
1475 return err;
1476 }
1477 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1478
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1479 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1480 {
1481 int ret;
1482
1483 lock_sock(sk);
1484 ret = tcp_sendmsg_locked(sk, msg, size);
1485 release_sock(sk);
1486
1487 return ret;
1488 }
1489 EXPORT_SYMBOL(tcp_sendmsg);
1490
1491 /*
1492 * Handle reading urgent data. BSD has very simple semantics for
1493 * this, no blocking and very strange errors 8)
1494 */
1495
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1496 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1497 {
1498 struct tcp_sock *tp = tcp_sk(sk);
1499
1500 /* No URG data to read. */
1501 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1502 tp->urg_data == TCP_URG_READ)
1503 return -EINVAL; /* Yes this is right ! */
1504
1505 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1506 return -ENOTCONN;
1507
1508 if (tp->urg_data & TCP_URG_VALID) {
1509 int err = 0;
1510 char c = tp->urg_data;
1511
1512 if (!(flags & MSG_PEEK))
1513 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1514
1515 /* Read urgent data. */
1516 msg->msg_flags |= MSG_OOB;
1517
1518 if (len > 0) {
1519 if (!(flags & MSG_TRUNC))
1520 err = memcpy_to_msg(msg, &c, 1);
1521 len = 1;
1522 } else
1523 msg->msg_flags |= MSG_TRUNC;
1524
1525 return err ? -EFAULT : len;
1526 }
1527
1528 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1529 return 0;
1530
1531 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1532 * the available implementations agree in this case:
1533 * this call should never block, independent of the
1534 * blocking state of the socket.
1535 * Mike <pall@rz.uni-karlsruhe.de>
1536 */
1537 return -EAGAIN;
1538 }
1539
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1540 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1541 {
1542 struct sk_buff *skb;
1543 int copied = 0, err = 0;
1544
1545 /* XXX -- need to support SO_PEEK_OFF */
1546
1547 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1548 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1549 if (err)
1550 return err;
1551 copied += skb->len;
1552 }
1553
1554 skb_queue_walk(&sk->sk_write_queue, skb) {
1555 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1556 if (err)
1557 break;
1558
1559 copied += skb->len;
1560 }
1561
1562 return err ?: copied;
1563 }
1564
1565 /* Clean up the receive buffer for full frames taken by the user,
1566 * then send an ACK if necessary. COPIED is the number of bytes
1567 * tcp_recvmsg has given to the user so far, it speeds up the
1568 * calculation of whether or not we must ACK for the sake of
1569 * a window update.
1570 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1571 static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1572 {
1573 struct tcp_sock *tp = tcp_sk(sk);
1574 bool time_to_ack = false;
1575
1576 if (inet_csk_ack_scheduled(sk)) {
1577 const struct inet_connection_sock *icsk = inet_csk(sk);
1578
1579 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1580 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1581 /*
1582 * If this read emptied read buffer, we send ACK, if
1583 * connection is not bidirectional, user drained
1584 * receive buffer and there was a small segment
1585 * in queue.
1586 */
1587 (copied > 0 &&
1588 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1589 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1590 !inet_csk_in_pingpong_mode(sk))) &&
1591 !atomic_read(&sk->sk_rmem_alloc)))
1592 time_to_ack = true;
1593 }
1594
1595 /* We send an ACK if we can now advertise a non-zero window
1596 * which has been raised "significantly".
1597 *
1598 * Even if window raised up to infinity, do not send window open ACK
1599 * in states, where we will not receive more. It is useless.
1600 */
1601 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1602 __u32 rcv_window_now = tcp_receive_window(tp);
1603
1604 /* Optimize, __tcp_select_window() is not cheap. */
1605 if (2*rcv_window_now <= tp->window_clamp) {
1606 __u32 new_window = __tcp_select_window(sk);
1607
1608 /* Send ACK now, if this read freed lots of space
1609 * in our buffer. Certainly, new_window is new window.
1610 * We can advertise it now, if it is not less than current one.
1611 * "Lots" means "at least twice" here.
1612 */
1613 if (new_window && new_window >= 2 * rcv_window_now)
1614 time_to_ack = true;
1615 }
1616 }
1617 if (time_to_ack)
1618 tcp_send_ack(sk);
1619 }
1620
tcp_cleanup_rbuf(struct sock * sk,int copied)1621 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1622 {
1623 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1624 struct tcp_sock *tp = tcp_sk(sk);
1625
1626 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1627 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1628 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1629 __tcp_cleanup_rbuf(sk, copied);
1630 }
1631
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1632 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1633 {
1634 __skb_unlink(skb, &sk->sk_receive_queue);
1635 if (likely(skb->destructor == sock_rfree)) {
1636 sock_rfree(skb);
1637 skb->destructor = NULL;
1638 skb->sk = NULL;
1639 return skb_attempt_defer_free(skb);
1640 }
1641 __kfree_skb(skb);
1642 }
1643
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1644 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1645 {
1646 struct sk_buff *skb;
1647 u32 offset;
1648
1649 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1650 offset = seq - TCP_SKB_CB(skb)->seq;
1651 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1652 pr_err_once("%s: found a SYN, please report !\n", __func__);
1653 offset--;
1654 }
1655 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1656 *off = offset;
1657 return skb;
1658 }
1659 /* This looks weird, but this can happen if TCP collapsing
1660 * splitted a fat GRO packet, while we released socket lock
1661 * in skb_splice_bits()
1662 */
1663 tcp_eat_recv_skb(sk, skb);
1664 }
1665 return NULL;
1666 }
1667 EXPORT_SYMBOL(tcp_recv_skb);
1668
1669 /*
1670 * This routine provides an alternative to tcp_recvmsg() for routines
1671 * that would like to handle copying from skbuffs directly in 'sendfile'
1672 * fashion.
1673 * Note:
1674 * - It is assumed that the socket was locked by the caller.
1675 * - The routine does not block.
1676 * - At present, there is no support for reading OOB data
1677 * or for 'peeking' the socket using this routine
1678 * (although both would be easy to implement).
1679 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1680 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1681 sk_read_actor_t recv_actor)
1682 {
1683 struct sk_buff *skb;
1684 struct tcp_sock *tp = tcp_sk(sk);
1685 u32 seq = tp->copied_seq;
1686 u32 offset;
1687 int copied = 0;
1688
1689 if (sk->sk_state == TCP_LISTEN)
1690 return -ENOTCONN;
1691 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1692 if (offset < skb->len) {
1693 int used;
1694 size_t len;
1695
1696 len = skb->len - offset;
1697 /* Stop reading if we hit a patch of urgent data */
1698 if (unlikely(tp->urg_data)) {
1699 u32 urg_offset = tp->urg_seq - seq;
1700 if (urg_offset < len)
1701 len = urg_offset;
1702 if (!len)
1703 break;
1704 }
1705 used = recv_actor(desc, skb, offset, len);
1706 if (used <= 0) {
1707 if (!copied)
1708 copied = used;
1709 break;
1710 }
1711 if (WARN_ON_ONCE(used > len))
1712 used = len;
1713 seq += used;
1714 copied += used;
1715 offset += used;
1716
1717 /* If recv_actor drops the lock (e.g. TCP splice
1718 * receive) the skb pointer might be invalid when
1719 * getting here: tcp_collapse might have deleted it
1720 * while aggregating skbs from the socket queue.
1721 */
1722 skb = tcp_recv_skb(sk, seq - 1, &offset);
1723 if (!skb)
1724 break;
1725 /* TCP coalescing might have appended data to the skb.
1726 * Try to splice more frags
1727 */
1728 if (offset + 1 != skb->len)
1729 continue;
1730 }
1731 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1732 tcp_eat_recv_skb(sk, skb);
1733 ++seq;
1734 break;
1735 }
1736 tcp_eat_recv_skb(sk, skb);
1737 if (!desc->count)
1738 break;
1739 WRITE_ONCE(tp->copied_seq, seq);
1740 }
1741 WRITE_ONCE(tp->copied_seq, seq);
1742
1743 tcp_rcv_space_adjust(sk);
1744
1745 /* Clean up data we have read: This will do ACK frames. */
1746 if (copied > 0) {
1747 tcp_recv_skb(sk, seq, &offset);
1748 tcp_cleanup_rbuf(sk, copied);
1749 }
1750 return copied;
1751 }
1752 EXPORT_SYMBOL(tcp_read_sock);
1753
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1754 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1755 {
1756 struct tcp_sock *tp = tcp_sk(sk);
1757 u32 seq = tp->copied_seq;
1758 struct sk_buff *skb;
1759 int copied = 0;
1760 u32 offset;
1761
1762 if (sk->sk_state == TCP_LISTEN)
1763 return -ENOTCONN;
1764
1765 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1766 u8 tcp_flags;
1767 int used;
1768
1769 __skb_unlink(skb, &sk->sk_receive_queue);
1770 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1771 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1772 used = recv_actor(sk, skb);
1773 consume_skb(skb);
1774 if (used < 0) {
1775 if (!copied)
1776 copied = used;
1777 break;
1778 }
1779 seq += used;
1780 copied += used;
1781
1782 if (tcp_flags & TCPHDR_FIN) {
1783 ++seq;
1784 break;
1785 }
1786 }
1787 WRITE_ONCE(tp->copied_seq, seq);
1788
1789 tcp_rcv_space_adjust(sk);
1790
1791 /* Clean up data we have read: This will do ACK frames. */
1792 if (copied > 0)
1793 __tcp_cleanup_rbuf(sk, copied);
1794
1795 return copied;
1796 }
1797 EXPORT_SYMBOL(tcp_read_skb);
1798
tcp_read_done(struct sock * sk,size_t len)1799 void tcp_read_done(struct sock *sk, size_t len)
1800 {
1801 struct tcp_sock *tp = tcp_sk(sk);
1802 u32 seq = tp->copied_seq;
1803 struct sk_buff *skb;
1804 size_t left;
1805 u32 offset;
1806
1807 if (sk->sk_state == TCP_LISTEN)
1808 return;
1809
1810 left = len;
1811 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1812 int used;
1813
1814 used = min_t(size_t, skb->len - offset, left);
1815 seq += used;
1816 left -= used;
1817
1818 if (skb->len > offset + used)
1819 break;
1820
1821 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1822 tcp_eat_recv_skb(sk, skb);
1823 ++seq;
1824 break;
1825 }
1826 tcp_eat_recv_skb(sk, skb);
1827 }
1828 WRITE_ONCE(tp->copied_seq, seq);
1829
1830 tcp_rcv_space_adjust(sk);
1831
1832 /* Clean up data we have read: This will do ACK frames. */
1833 if (left != len)
1834 tcp_cleanup_rbuf(sk, len - left);
1835 }
1836 EXPORT_SYMBOL(tcp_read_done);
1837
tcp_peek_len(struct socket * sock)1838 int tcp_peek_len(struct socket *sock)
1839 {
1840 return tcp_inq(sock->sk);
1841 }
1842 EXPORT_SYMBOL(tcp_peek_len);
1843
1844 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1845 int tcp_set_rcvlowat(struct sock *sk, int val)
1846 {
1847 int cap;
1848
1849 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1850 cap = sk->sk_rcvbuf >> 1;
1851 else
1852 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1853 val = min(val, cap);
1854 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1855
1856 /* Check if we need to signal EPOLLIN right now */
1857 tcp_data_ready(sk);
1858
1859 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1860 return 0;
1861
1862 val <<= 1;
1863 if (val > sk->sk_rcvbuf) {
1864 WRITE_ONCE(sk->sk_rcvbuf, val);
1865 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1866 }
1867 return 0;
1868 }
1869 EXPORT_SYMBOL(tcp_set_rcvlowat);
1870
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1871 void tcp_update_recv_tstamps(struct sk_buff *skb,
1872 struct scm_timestamping_internal *tss)
1873 {
1874 if (skb->tstamp)
1875 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1876 else
1877 tss->ts[0] = (struct timespec64) {0};
1878
1879 if (skb_hwtstamps(skb)->hwtstamp)
1880 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1881 else
1882 tss->ts[2] = (struct timespec64) {0};
1883 }
1884
1885 #ifdef CONFIG_MMU
1886 static const struct vm_operations_struct tcp_vm_ops = {
1887 };
1888
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1889 int tcp_mmap(struct file *file, struct socket *sock,
1890 struct vm_area_struct *vma)
1891 {
1892 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1893 return -EPERM;
1894 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1895
1896 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1897 vma->vm_flags |= VM_MIXEDMAP;
1898
1899 vma->vm_ops = &tcp_vm_ops;
1900 return 0;
1901 }
1902 EXPORT_SYMBOL(tcp_mmap);
1903
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1904 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1905 u32 *offset_frag)
1906 {
1907 skb_frag_t *frag;
1908
1909 if (unlikely(offset_skb >= skb->len))
1910 return NULL;
1911
1912 offset_skb -= skb_headlen(skb);
1913 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1914 return NULL;
1915
1916 frag = skb_shinfo(skb)->frags;
1917 while (offset_skb) {
1918 if (skb_frag_size(frag) > offset_skb) {
1919 *offset_frag = offset_skb;
1920 return frag;
1921 }
1922 offset_skb -= skb_frag_size(frag);
1923 ++frag;
1924 }
1925 *offset_frag = 0;
1926 return frag;
1927 }
1928
can_map_frag(const skb_frag_t * frag)1929 static bool can_map_frag(const skb_frag_t *frag)
1930 {
1931 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1932 }
1933
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1934 static int find_next_mappable_frag(const skb_frag_t *frag,
1935 int remaining_in_skb)
1936 {
1937 int offset = 0;
1938
1939 if (likely(can_map_frag(frag)))
1940 return 0;
1941
1942 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1943 offset += skb_frag_size(frag);
1944 ++frag;
1945 }
1946 return offset;
1947 }
1948
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1949 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1950 struct tcp_zerocopy_receive *zc,
1951 struct sk_buff *skb, u32 offset)
1952 {
1953 u32 frag_offset, partial_frag_remainder = 0;
1954 int mappable_offset;
1955 skb_frag_t *frag;
1956
1957 /* worst case: skip to next skb. try to improve on this case below */
1958 zc->recv_skip_hint = skb->len - offset;
1959
1960 /* Find the frag containing this offset (and how far into that frag) */
1961 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1962 if (!frag)
1963 return;
1964
1965 if (frag_offset) {
1966 struct skb_shared_info *info = skb_shinfo(skb);
1967
1968 /* We read part of the last frag, must recvmsg() rest of skb. */
1969 if (frag == &info->frags[info->nr_frags - 1])
1970 return;
1971
1972 /* Else, we must at least read the remainder in this frag. */
1973 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1974 zc->recv_skip_hint -= partial_frag_remainder;
1975 ++frag;
1976 }
1977
1978 /* partial_frag_remainder: If part way through a frag, must read rest.
1979 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1980 * in partial_frag_remainder.
1981 */
1982 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1983 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1984 }
1985
1986 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1987 int flags, struct scm_timestamping_internal *tss,
1988 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1989 static int receive_fallback_to_copy(struct sock *sk,
1990 struct tcp_zerocopy_receive *zc, int inq,
1991 struct scm_timestamping_internal *tss)
1992 {
1993 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1994 struct msghdr msg = {};
1995 struct iovec iov;
1996 int err;
1997
1998 zc->length = 0;
1999 zc->recv_skip_hint = 0;
2000
2001 if (copy_address != zc->copybuf_address)
2002 return -EINVAL;
2003
2004 err = import_single_range(READ, (void __user *)copy_address,
2005 inq, &iov, &msg.msg_iter);
2006 if (err)
2007 return err;
2008
2009 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2010 tss, &zc->msg_flags);
2011 if (err < 0)
2012 return err;
2013
2014 zc->copybuf_len = err;
2015 if (likely(zc->copybuf_len)) {
2016 struct sk_buff *skb;
2017 u32 offset;
2018
2019 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2020 if (skb)
2021 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2022 }
2023 return 0;
2024 }
2025
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)2026 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2027 struct sk_buff *skb, u32 copylen,
2028 u32 *offset, u32 *seq)
2029 {
2030 unsigned long copy_address = (unsigned long)zc->copybuf_address;
2031 struct msghdr msg = {};
2032 struct iovec iov;
2033 int err;
2034
2035 if (copy_address != zc->copybuf_address)
2036 return -EINVAL;
2037
2038 err = import_single_range(READ, (void __user *)copy_address,
2039 copylen, &iov, &msg.msg_iter);
2040 if (err)
2041 return err;
2042 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2043 if (err)
2044 return err;
2045 zc->recv_skip_hint -= copylen;
2046 *offset += copylen;
2047 *seq += copylen;
2048 return (__s32)copylen;
2049 }
2050
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)2051 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2052 struct sock *sk,
2053 struct sk_buff *skb,
2054 u32 *seq,
2055 s32 copybuf_len,
2056 struct scm_timestamping_internal *tss)
2057 {
2058 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2059
2060 if (!copylen)
2061 return 0;
2062 /* skb is null if inq < PAGE_SIZE. */
2063 if (skb) {
2064 offset = *seq - TCP_SKB_CB(skb)->seq;
2065 } else {
2066 skb = tcp_recv_skb(sk, *seq, &offset);
2067 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2068 tcp_update_recv_tstamps(skb, tss);
2069 zc->msg_flags |= TCP_CMSG_TS;
2070 }
2071 }
2072
2073 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2074 seq);
2075 return zc->copybuf_len < 0 ? 0 : copylen;
2076 }
2077
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2078 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2079 struct page **pending_pages,
2080 unsigned long pages_remaining,
2081 unsigned long *address,
2082 u32 *length,
2083 u32 *seq,
2084 struct tcp_zerocopy_receive *zc,
2085 u32 total_bytes_to_map,
2086 int err)
2087 {
2088 /* At least one page did not map. Try zapping if we skipped earlier. */
2089 if (err == -EBUSY &&
2090 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2091 u32 maybe_zap_len;
2092
2093 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2094 *length + /* Mapped or pending */
2095 (pages_remaining * PAGE_SIZE); /* Failed map. */
2096 zap_page_range(vma, *address, maybe_zap_len);
2097 err = 0;
2098 }
2099
2100 if (!err) {
2101 unsigned long leftover_pages = pages_remaining;
2102 int bytes_mapped;
2103
2104 /* We called zap_page_range, try to reinsert. */
2105 err = vm_insert_pages(vma, *address,
2106 pending_pages,
2107 &pages_remaining);
2108 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2109 *seq += bytes_mapped;
2110 *address += bytes_mapped;
2111 }
2112 if (err) {
2113 /* Either we were unable to zap, OR we zapped, retried an
2114 * insert, and still had an issue. Either ways, pages_remaining
2115 * is the number of pages we were unable to map, and we unroll
2116 * some state we speculatively touched before.
2117 */
2118 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2119
2120 *length -= bytes_not_mapped;
2121 zc->recv_skip_hint += bytes_not_mapped;
2122 }
2123 return err;
2124 }
2125
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2126 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2127 struct page **pages,
2128 unsigned int pages_to_map,
2129 unsigned long *address,
2130 u32 *length,
2131 u32 *seq,
2132 struct tcp_zerocopy_receive *zc,
2133 u32 total_bytes_to_map)
2134 {
2135 unsigned long pages_remaining = pages_to_map;
2136 unsigned int pages_mapped;
2137 unsigned int bytes_mapped;
2138 int err;
2139
2140 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2141 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2142 bytes_mapped = PAGE_SIZE * pages_mapped;
2143 /* Even if vm_insert_pages fails, it may have partially succeeded in
2144 * mapping (some but not all of the pages).
2145 */
2146 *seq += bytes_mapped;
2147 *address += bytes_mapped;
2148
2149 if (likely(!err))
2150 return 0;
2151
2152 /* Error: maybe zap and retry + rollback state for failed inserts. */
2153 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2154 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2155 err);
2156 }
2157
2158 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2159 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2160 struct tcp_zerocopy_receive *zc,
2161 struct scm_timestamping_internal *tss)
2162 {
2163 unsigned long msg_control_addr;
2164 struct msghdr cmsg_dummy;
2165
2166 msg_control_addr = (unsigned long)zc->msg_control;
2167 cmsg_dummy.msg_control = (void *)msg_control_addr;
2168 cmsg_dummy.msg_controllen =
2169 (__kernel_size_t)zc->msg_controllen;
2170 cmsg_dummy.msg_flags = in_compat_syscall()
2171 ? MSG_CMSG_COMPAT : 0;
2172 cmsg_dummy.msg_control_is_user = true;
2173 zc->msg_flags = 0;
2174 if (zc->msg_control == msg_control_addr &&
2175 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2176 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2177 zc->msg_control = (__u64)
2178 ((uintptr_t)cmsg_dummy.msg_control);
2179 zc->msg_controllen =
2180 (__u64)cmsg_dummy.msg_controllen;
2181 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2182 }
2183 }
2184
2185 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2186 static int tcp_zerocopy_receive(struct sock *sk,
2187 struct tcp_zerocopy_receive *zc,
2188 struct scm_timestamping_internal *tss)
2189 {
2190 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2191 unsigned long address = (unsigned long)zc->address;
2192 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2193 s32 copybuf_len = zc->copybuf_len;
2194 struct tcp_sock *tp = tcp_sk(sk);
2195 const skb_frag_t *frags = NULL;
2196 unsigned int pages_to_map = 0;
2197 struct vm_area_struct *vma;
2198 struct sk_buff *skb = NULL;
2199 u32 seq = tp->copied_seq;
2200 u32 total_bytes_to_map;
2201 int inq = tcp_inq(sk);
2202 int ret;
2203
2204 zc->copybuf_len = 0;
2205 zc->msg_flags = 0;
2206
2207 if (address & (PAGE_SIZE - 1) || address != zc->address)
2208 return -EINVAL;
2209
2210 if (sk->sk_state == TCP_LISTEN)
2211 return -ENOTCONN;
2212
2213 sock_rps_record_flow(sk);
2214
2215 if (inq && inq <= copybuf_len)
2216 return receive_fallback_to_copy(sk, zc, inq, tss);
2217
2218 if (inq < PAGE_SIZE) {
2219 zc->length = 0;
2220 zc->recv_skip_hint = inq;
2221 if (!inq && sock_flag(sk, SOCK_DONE))
2222 return -EIO;
2223 return 0;
2224 }
2225
2226 mmap_read_lock(current->mm);
2227
2228 vma = vma_lookup(current->mm, address);
2229 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2230 mmap_read_unlock(current->mm);
2231 return -EINVAL;
2232 }
2233 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2234 avail_len = min_t(u32, vma_len, inq);
2235 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2236 if (total_bytes_to_map) {
2237 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2238 zap_page_range(vma, address, total_bytes_to_map);
2239 zc->length = total_bytes_to_map;
2240 zc->recv_skip_hint = 0;
2241 } else {
2242 zc->length = avail_len;
2243 zc->recv_skip_hint = avail_len;
2244 }
2245 ret = 0;
2246 while (length + PAGE_SIZE <= zc->length) {
2247 int mappable_offset;
2248 struct page *page;
2249
2250 if (zc->recv_skip_hint < PAGE_SIZE) {
2251 u32 offset_frag;
2252
2253 if (skb) {
2254 if (zc->recv_skip_hint > 0)
2255 break;
2256 skb = skb->next;
2257 offset = seq - TCP_SKB_CB(skb)->seq;
2258 } else {
2259 skb = tcp_recv_skb(sk, seq, &offset);
2260 }
2261
2262 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2263 tcp_update_recv_tstamps(skb, tss);
2264 zc->msg_flags |= TCP_CMSG_TS;
2265 }
2266 zc->recv_skip_hint = skb->len - offset;
2267 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2268 if (!frags || offset_frag)
2269 break;
2270 }
2271
2272 mappable_offset = find_next_mappable_frag(frags,
2273 zc->recv_skip_hint);
2274 if (mappable_offset) {
2275 zc->recv_skip_hint = mappable_offset;
2276 break;
2277 }
2278 page = skb_frag_page(frags);
2279 prefetchw(page);
2280 pages[pages_to_map++] = page;
2281 length += PAGE_SIZE;
2282 zc->recv_skip_hint -= PAGE_SIZE;
2283 frags++;
2284 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2285 zc->recv_skip_hint < PAGE_SIZE) {
2286 /* Either full batch, or we're about to go to next skb
2287 * (and we cannot unroll failed ops across skbs).
2288 */
2289 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2290 pages_to_map,
2291 &address, &length,
2292 &seq, zc,
2293 total_bytes_to_map);
2294 if (ret)
2295 goto out;
2296 pages_to_map = 0;
2297 }
2298 }
2299 if (pages_to_map) {
2300 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2301 &address, &length, &seq,
2302 zc, total_bytes_to_map);
2303 }
2304 out:
2305 mmap_read_unlock(current->mm);
2306 /* Try to copy straggler data. */
2307 if (!ret)
2308 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2309
2310 if (length + copylen) {
2311 WRITE_ONCE(tp->copied_seq, seq);
2312 tcp_rcv_space_adjust(sk);
2313
2314 /* Clean up data we have read: This will do ACK frames. */
2315 tcp_recv_skb(sk, seq, &offset);
2316 tcp_cleanup_rbuf(sk, length + copylen);
2317 ret = 0;
2318 if (length == zc->length)
2319 zc->recv_skip_hint = 0;
2320 } else {
2321 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2322 ret = -EIO;
2323 }
2324 zc->length = length;
2325 return ret;
2326 }
2327 #endif
2328
2329 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2330 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2331 struct scm_timestamping_internal *tss)
2332 {
2333 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2334 bool has_timestamping = false;
2335
2336 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2337 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2338 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2339 if (new_tstamp) {
2340 struct __kernel_timespec kts = {
2341 .tv_sec = tss->ts[0].tv_sec,
2342 .tv_nsec = tss->ts[0].tv_nsec,
2343 };
2344 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2345 sizeof(kts), &kts);
2346 } else {
2347 struct __kernel_old_timespec ts_old = {
2348 .tv_sec = tss->ts[0].tv_sec,
2349 .tv_nsec = tss->ts[0].tv_nsec,
2350 };
2351 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2352 sizeof(ts_old), &ts_old);
2353 }
2354 } else {
2355 if (new_tstamp) {
2356 struct __kernel_sock_timeval stv = {
2357 .tv_sec = tss->ts[0].tv_sec,
2358 .tv_usec = tss->ts[0].tv_nsec / 1000,
2359 };
2360 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2361 sizeof(stv), &stv);
2362 } else {
2363 struct __kernel_old_timeval tv = {
2364 .tv_sec = tss->ts[0].tv_sec,
2365 .tv_usec = tss->ts[0].tv_nsec / 1000,
2366 };
2367 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2368 sizeof(tv), &tv);
2369 }
2370 }
2371 }
2372
2373 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2374 has_timestamping = true;
2375 else
2376 tss->ts[0] = (struct timespec64) {0};
2377 }
2378
2379 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2380 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2381 has_timestamping = true;
2382 else
2383 tss->ts[2] = (struct timespec64) {0};
2384 }
2385
2386 if (has_timestamping) {
2387 tss->ts[1] = (struct timespec64) {0};
2388 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2389 put_cmsg_scm_timestamping64(msg, tss);
2390 else
2391 put_cmsg_scm_timestamping(msg, tss);
2392 }
2393 }
2394
tcp_inq_hint(struct sock * sk)2395 static int tcp_inq_hint(struct sock *sk)
2396 {
2397 const struct tcp_sock *tp = tcp_sk(sk);
2398 u32 copied_seq = READ_ONCE(tp->copied_seq);
2399 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2400 int inq;
2401
2402 inq = rcv_nxt - copied_seq;
2403 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2404 lock_sock(sk);
2405 inq = tp->rcv_nxt - tp->copied_seq;
2406 release_sock(sk);
2407 }
2408 /* After receiving a FIN, tell the user-space to continue reading
2409 * by returning a non-zero inq.
2410 */
2411 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2412 inq = 1;
2413 return inq;
2414 }
2415
2416 /*
2417 * This routine copies from a sock struct into the user buffer.
2418 *
2419 * Technical note: in 2.3 we work on _locked_ socket, so that
2420 * tricks with *seq access order and skb->users are not required.
2421 * Probably, code can be easily improved even more.
2422 */
2423
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2424 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2425 int flags, struct scm_timestamping_internal *tss,
2426 int *cmsg_flags)
2427 {
2428 struct tcp_sock *tp = tcp_sk(sk);
2429 int copied = 0;
2430 u32 peek_seq;
2431 u32 *seq;
2432 unsigned long used;
2433 int err;
2434 int target; /* Read at least this many bytes */
2435 long timeo;
2436 struct sk_buff *skb, *last;
2437 u32 urg_hole = 0;
2438
2439 err = -ENOTCONN;
2440 if (sk->sk_state == TCP_LISTEN)
2441 goto out;
2442
2443 if (tp->recvmsg_inq) {
2444 *cmsg_flags = TCP_CMSG_INQ;
2445 msg->msg_get_inq = 1;
2446 }
2447 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2448
2449 /* Urgent data needs to be handled specially. */
2450 if (flags & MSG_OOB)
2451 goto recv_urg;
2452
2453 if (unlikely(tp->repair)) {
2454 err = -EPERM;
2455 if (!(flags & MSG_PEEK))
2456 goto out;
2457
2458 if (tp->repair_queue == TCP_SEND_QUEUE)
2459 goto recv_sndq;
2460
2461 err = -EINVAL;
2462 if (tp->repair_queue == TCP_NO_QUEUE)
2463 goto out;
2464
2465 /* 'common' recv queue MSG_PEEK-ing */
2466 }
2467
2468 seq = &tp->copied_seq;
2469 if (flags & MSG_PEEK) {
2470 peek_seq = tp->copied_seq;
2471 seq = &peek_seq;
2472 }
2473
2474 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2475
2476 do {
2477 u32 offset;
2478
2479 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2480 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2481 if (copied)
2482 break;
2483 if (signal_pending(current)) {
2484 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2485 break;
2486 }
2487 }
2488
2489 /* Next get a buffer. */
2490
2491 last = skb_peek_tail(&sk->sk_receive_queue);
2492 skb_queue_walk(&sk->sk_receive_queue, skb) {
2493 last = skb;
2494 /* Now that we have two receive queues this
2495 * shouldn't happen.
2496 */
2497 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2498 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2499 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2500 flags))
2501 break;
2502
2503 offset = *seq - TCP_SKB_CB(skb)->seq;
2504 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2505 pr_err_once("%s: found a SYN, please report !\n", __func__);
2506 offset--;
2507 }
2508 if (offset < skb->len)
2509 goto found_ok_skb;
2510 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2511 goto found_fin_ok;
2512 WARN(!(flags & MSG_PEEK),
2513 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2514 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2515 }
2516
2517 /* Well, if we have backlog, try to process it now yet. */
2518
2519 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2520 break;
2521
2522 if (copied) {
2523 if (!timeo ||
2524 sk->sk_err ||
2525 sk->sk_state == TCP_CLOSE ||
2526 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2527 signal_pending(current))
2528 break;
2529 } else {
2530 if (sock_flag(sk, SOCK_DONE))
2531 break;
2532
2533 if (sk->sk_err) {
2534 copied = sock_error(sk);
2535 break;
2536 }
2537
2538 if (sk->sk_shutdown & RCV_SHUTDOWN)
2539 break;
2540
2541 if (sk->sk_state == TCP_CLOSE) {
2542 /* This occurs when user tries to read
2543 * from never connected socket.
2544 */
2545 copied = -ENOTCONN;
2546 break;
2547 }
2548
2549 if (!timeo) {
2550 copied = -EAGAIN;
2551 break;
2552 }
2553
2554 if (signal_pending(current)) {
2555 copied = sock_intr_errno(timeo);
2556 break;
2557 }
2558 }
2559
2560 if (copied >= target) {
2561 /* Do not sleep, just process backlog. */
2562 __sk_flush_backlog(sk);
2563 } else {
2564 tcp_cleanup_rbuf(sk, copied);
2565 sk_wait_data(sk, &timeo, last);
2566 }
2567
2568 if ((flags & MSG_PEEK) &&
2569 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2570 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2571 current->comm,
2572 task_pid_nr(current));
2573 peek_seq = tp->copied_seq;
2574 }
2575 continue;
2576
2577 found_ok_skb:
2578 /* Ok so how much can we use? */
2579 used = skb->len - offset;
2580 if (len < used)
2581 used = len;
2582
2583 /* Do we have urgent data here? */
2584 if (unlikely(tp->urg_data)) {
2585 u32 urg_offset = tp->urg_seq - *seq;
2586 if (urg_offset < used) {
2587 if (!urg_offset) {
2588 if (!sock_flag(sk, SOCK_URGINLINE)) {
2589 WRITE_ONCE(*seq, *seq + 1);
2590 urg_hole++;
2591 offset++;
2592 used--;
2593 if (!used)
2594 goto skip_copy;
2595 }
2596 } else
2597 used = urg_offset;
2598 }
2599 }
2600
2601 if (!(flags & MSG_TRUNC)) {
2602 err = skb_copy_datagram_msg(skb, offset, msg, used);
2603 if (err) {
2604 /* Exception. Bailout! */
2605 if (!copied)
2606 copied = -EFAULT;
2607 break;
2608 }
2609 }
2610
2611 WRITE_ONCE(*seq, *seq + used);
2612 copied += used;
2613 len -= used;
2614
2615 tcp_rcv_space_adjust(sk);
2616
2617 skip_copy:
2618 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2619 WRITE_ONCE(tp->urg_data, 0);
2620 tcp_fast_path_check(sk);
2621 }
2622
2623 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2624 tcp_update_recv_tstamps(skb, tss);
2625 *cmsg_flags |= TCP_CMSG_TS;
2626 }
2627
2628 if (used + offset < skb->len)
2629 continue;
2630
2631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2632 goto found_fin_ok;
2633 if (!(flags & MSG_PEEK))
2634 tcp_eat_recv_skb(sk, skb);
2635 continue;
2636
2637 found_fin_ok:
2638 /* Process the FIN. */
2639 WRITE_ONCE(*seq, *seq + 1);
2640 if (!(flags & MSG_PEEK))
2641 tcp_eat_recv_skb(sk, skb);
2642 break;
2643 } while (len > 0);
2644
2645 /* According to UNIX98, msg_name/msg_namelen are ignored
2646 * on connected socket. I was just happy when found this 8) --ANK
2647 */
2648
2649 /* Clean up data we have read: This will do ACK frames. */
2650 tcp_cleanup_rbuf(sk, copied);
2651 return copied;
2652
2653 out:
2654 return err;
2655
2656 recv_urg:
2657 err = tcp_recv_urg(sk, msg, len, flags);
2658 goto out;
2659
2660 recv_sndq:
2661 err = tcp_peek_sndq(sk, msg, len);
2662 goto out;
2663 }
2664
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2665 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2666 int *addr_len)
2667 {
2668 int cmsg_flags = 0, ret;
2669 struct scm_timestamping_internal tss;
2670
2671 if (unlikely(flags & MSG_ERRQUEUE))
2672 return inet_recv_error(sk, msg, len, addr_len);
2673
2674 if (sk_can_busy_loop(sk) &&
2675 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2676 sk->sk_state == TCP_ESTABLISHED)
2677 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2678
2679 lock_sock(sk);
2680 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2681 release_sock(sk);
2682
2683 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2684 if (cmsg_flags & TCP_CMSG_TS)
2685 tcp_recv_timestamp(msg, sk, &tss);
2686 if (msg->msg_get_inq) {
2687 msg->msg_inq = tcp_inq_hint(sk);
2688 if (cmsg_flags & TCP_CMSG_INQ)
2689 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2690 sizeof(msg->msg_inq), &msg->msg_inq);
2691 }
2692 }
2693 return ret;
2694 }
2695 EXPORT_SYMBOL(tcp_recvmsg);
2696
tcp_set_state(struct sock * sk,int state)2697 void tcp_set_state(struct sock *sk, int state)
2698 {
2699 int oldstate = sk->sk_state;
2700
2701 /* We defined a new enum for TCP states that are exported in BPF
2702 * so as not force the internal TCP states to be frozen. The
2703 * following checks will detect if an internal state value ever
2704 * differs from the BPF value. If this ever happens, then we will
2705 * need to remap the internal value to the BPF value before calling
2706 * tcp_call_bpf_2arg.
2707 */
2708 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2709 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2710 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2711 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2712 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2713 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2714 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2715 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2716 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2717 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2718 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2719 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2720 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2721
2722 /* bpf uapi header bpf.h defines an anonymous enum with values
2723 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2724 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2725 * But clang built vmlinux does not have this enum in DWARF
2726 * since clang removes the above code before generating IR/debuginfo.
2727 * Let us explicitly emit the type debuginfo to ensure the
2728 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2729 * regardless of which compiler is used.
2730 */
2731 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2732
2733 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2734 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2735
2736 switch (state) {
2737 case TCP_ESTABLISHED:
2738 if (oldstate != TCP_ESTABLISHED)
2739 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2740 break;
2741
2742 case TCP_CLOSE:
2743 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2744 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2745
2746 sk->sk_prot->unhash(sk);
2747 if (inet_csk(sk)->icsk_bind_hash &&
2748 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2749 inet_put_port(sk);
2750 fallthrough;
2751 default:
2752 if (oldstate == TCP_ESTABLISHED)
2753 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2754 }
2755
2756 /* Change state AFTER socket is unhashed to avoid closed
2757 * socket sitting in hash tables.
2758 */
2759 inet_sk_state_store(sk, state);
2760 }
2761 EXPORT_SYMBOL_GPL(tcp_set_state);
2762
2763 /*
2764 * State processing on a close. This implements the state shift for
2765 * sending our FIN frame. Note that we only send a FIN for some
2766 * states. A shutdown() may have already sent the FIN, or we may be
2767 * closed.
2768 */
2769
2770 static const unsigned char new_state[16] = {
2771 /* current state: new state: action: */
2772 [0 /* (Invalid) */] = TCP_CLOSE,
2773 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774 [TCP_SYN_SENT] = TCP_CLOSE,
2775 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2776 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2777 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2778 [TCP_TIME_WAIT] = TCP_CLOSE,
2779 [TCP_CLOSE] = TCP_CLOSE,
2780 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2781 [TCP_LAST_ACK] = TCP_LAST_ACK,
2782 [TCP_LISTEN] = TCP_CLOSE,
2783 [TCP_CLOSING] = TCP_CLOSING,
2784 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2785 };
2786
tcp_close_state(struct sock * sk)2787 static int tcp_close_state(struct sock *sk)
2788 {
2789 int next = (int)new_state[sk->sk_state];
2790 int ns = next & TCP_STATE_MASK;
2791
2792 tcp_set_state(sk, ns);
2793
2794 return next & TCP_ACTION_FIN;
2795 }
2796
2797 /*
2798 * Shutdown the sending side of a connection. Much like close except
2799 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2800 */
2801
tcp_shutdown(struct sock * sk,int how)2802 void tcp_shutdown(struct sock *sk, int how)
2803 {
2804 /* We need to grab some memory, and put together a FIN,
2805 * and then put it into the queue to be sent.
2806 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2807 */
2808 if (!(how & SEND_SHUTDOWN))
2809 return;
2810
2811 /* If we've already sent a FIN, or it's a closed state, skip this. */
2812 if ((1 << sk->sk_state) &
2813 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2814 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2815 /* Clear out any half completed packets. FIN if needed. */
2816 if (tcp_close_state(sk))
2817 tcp_send_fin(sk);
2818 }
2819 }
2820 EXPORT_SYMBOL(tcp_shutdown);
2821
tcp_orphan_count_sum(void)2822 int tcp_orphan_count_sum(void)
2823 {
2824 int i, total = 0;
2825
2826 for_each_possible_cpu(i)
2827 total += per_cpu(tcp_orphan_count, i);
2828
2829 return max(total, 0);
2830 }
2831
2832 static int tcp_orphan_cache;
2833 static struct timer_list tcp_orphan_timer;
2834 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2835
tcp_orphan_update(struct timer_list * unused)2836 static void tcp_orphan_update(struct timer_list *unused)
2837 {
2838 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2839 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2840 }
2841
tcp_too_many_orphans(int shift)2842 static bool tcp_too_many_orphans(int shift)
2843 {
2844 return READ_ONCE(tcp_orphan_cache) << shift >
2845 READ_ONCE(sysctl_tcp_max_orphans);
2846 }
2847
tcp_check_oom(struct sock * sk,int shift)2848 bool tcp_check_oom(struct sock *sk, int shift)
2849 {
2850 bool too_many_orphans, out_of_socket_memory;
2851
2852 too_many_orphans = tcp_too_many_orphans(shift);
2853 out_of_socket_memory = tcp_out_of_memory(sk);
2854
2855 if (too_many_orphans)
2856 net_info_ratelimited("too many orphaned sockets\n");
2857 if (out_of_socket_memory)
2858 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2859 return too_many_orphans || out_of_socket_memory;
2860 }
2861
__tcp_close(struct sock * sk,long timeout)2862 void __tcp_close(struct sock *sk, long timeout)
2863 {
2864 struct sk_buff *skb;
2865 int data_was_unread = 0;
2866 int state;
2867
2868 sk->sk_shutdown = SHUTDOWN_MASK;
2869
2870 if (sk->sk_state == TCP_LISTEN) {
2871 tcp_set_state(sk, TCP_CLOSE);
2872
2873 /* Special case. */
2874 inet_csk_listen_stop(sk);
2875
2876 goto adjudge_to_death;
2877 }
2878
2879 /* We need to flush the recv. buffs. We do this only on the
2880 * descriptor close, not protocol-sourced closes, because the
2881 * reader process may not have drained the data yet!
2882 */
2883 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2884 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2885
2886 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2887 len--;
2888 data_was_unread += len;
2889 __kfree_skb(skb);
2890 }
2891
2892 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2893 if (sk->sk_state == TCP_CLOSE)
2894 goto adjudge_to_death;
2895
2896 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2897 * data was lost. To witness the awful effects of the old behavior of
2898 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2899 * GET in an FTP client, suspend the process, wait for the client to
2900 * advertise a zero window, then kill -9 the FTP client, wheee...
2901 * Note: timeout is always zero in such a case.
2902 */
2903 if (unlikely(tcp_sk(sk)->repair)) {
2904 sk->sk_prot->disconnect(sk, 0);
2905 } else if (data_was_unread) {
2906 /* Unread data was tossed, zap the connection. */
2907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2908 tcp_set_state(sk, TCP_CLOSE);
2909 tcp_send_active_reset(sk, sk->sk_allocation);
2910 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2911 /* Check zero linger _after_ checking for unread data. */
2912 sk->sk_prot->disconnect(sk, 0);
2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2914 } else if (tcp_close_state(sk)) {
2915 /* We FIN if the application ate all the data before
2916 * zapping the connection.
2917 */
2918
2919 /* RED-PEN. Formally speaking, we have broken TCP state
2920 * machine. State transitions:
2921 *
2922 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2923 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2924 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2925 *
2926 * are legal only when FIN has been sent (i.e. in window),
2927 * rather than queued out of window. Purists blame.
2928 *
2929 * F.e. "RFC state" is ESTABLISHED,
2930 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2931 *
2932 * The visible declinations are that sometimes
2933 * we enter time-wait state, when it is not required really
2934 * (harmless), do not send active resets, when they are
2935 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2936 * they look as CLOSING or LAST_ACK for Linux)
2937 * Probably, I missed some more holelets.
2938 * --ANK
2939 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2940 * in a single packet! (May consider it later but will
2941 * probably need API support or TCP_CORK SYN-ACK until
2942 * data is written and socket is closed.)
2943 */
2944 tcp_send_fin(sk);
2945 }
2946
2947 sk_stream_wait_close(sk, timeout);
2948
2949 adjudge_to_death:
2950 state = sk->sk_state;
2951 sock_hold(sk);
2952 sock_orphan(sk);
2953
2954 local_bh_disable();
2955 bh_lock_sock(sk);
2956 /* remove backlog if any, without releasing ownership. */
2957 __release_sock(sk);
2958
2959 this_cpu_inc(tcp_orphan_count);
2960
2961 /* Have we already been destroyed by a softirq or backlog? */
2962 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2963 goto out;
2964
2965 /* This is a (useful) BSD violating of the RFC. There is a
2966 * problem with TCP as specified in that the other end could
2967 * keep a socket open forever with no application left this end.
2968 * We use a 1 minute timeout (about the same as BSD) then kill
2969 * our end. If they send after that then tough - BUT: long enough
2970 * that we won't make the old 4*rto = almost no time - whoops
2971 * reset mistake.
2972 *
2973 * Nope, it was not mistake. It is really desired behaviour
2974 * f.e. on http servers, when such sockets are useless, but
2975 * consume significant resources. Let's do it with special
2976 * linger2 option. --ANK
2977 */
2978
2979 if (sk->sk_state == TCP_FIN_WAIT2) {
2980 struct tcp_sock *tp = tcp_sk(sk);
2981 if (tp->linger2 < 0) {
2982 tcp_set_state(sk, TCP_CLOSE);
2983 tcp_send_active_reset(sk, GFP_ATOMIC);
2984 __NET_INC_STATS(sock_net(sk),
2985 LINUX_MIB_TCPABORTONLINGER);
2986 } else {
2987 const int tmo = tcp_fin_time(sk);
2988
2989 if (tmo > TCP_TIMEWAIT_LEN) {
2990 inet_csk_reset_keepalive_timer(sk,
2991 tmo - TCP_TIMEWAIT_LEN);
2992 } else {
2993 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2994 goto out;
2995 }
2996 }
2997 }
2998 if (sk->sk_state != TCP_CLOSE) {
2999 if (tcp_check_oom(sk, 0)) {
3000 tcp_set_state(sk, TCP_CLOSE);
3001 tcp_send_active_reset(sk, GFP_ATOMIC);
3002 __NET_INC_STATS(sock_net(sk),
3003 LINUX_MIB_TCPABORTONMEMORY);
3004 } else if (!check_net(sock_net(sk))) {
3005 /* Not possible to send reset; just close */
3006 tcp_set_state(sk, TCP_CLOSE);
3007 }
3008 }
3009
3010 if (sk->sk_state == TCP_CLOSE) {
3011 struct request_sock *req;
3012
3013 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3014 lockdep_sock_is_held(sk));
3015 /* We could get here with a non-NULL req if the socket is
3016 * aborted (e.g., closed with unread data) before 3WHS
3017 * finishes.
3018 */
3019 if (req)
3020 reqsk_fastopen_remove(sk, req, false);
3021 inet_csk_destroy_sock(sk);
3022 }
3023 /* Otherwise, socket is reprieved until protocol close. */
3024
3025 out:
3026 bh_unlock_sock(sk);
3027 local_bh_enable();
3028 }
3029
tcp_close(struct sock * sk,long timeout)3030 void tcp_close(struct sock *sk, long timeout)
3031 {
3032 lock_sock(sk);
3033 __tcp_close(sk, timeout);
3034 release_sock(sk);
3035 sock_put(sk);
3036 }
3037 EXPORT_SYMBOL(tcp_close);
3038
3039 /* These states need RST on ABORT according to RFC793 */
3040
tcp_need_reset(int state)3041 static inline bool tcp_need_reset(int state)
3042 {
3043 return (1 << state) &
3044 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3045 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3046 }
3047
tcp_rtx_queue_purge(struct sock * sk)3048 static void tcp_rtx_queue_purge(struct sock *sk)
3049 {
3050 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3051
3052 tcp_sk(sk)->highest_sack = NULL;
3053 while (p) {
3054 struct sk_buff *skb = rb_to_skb(p);
3055
3056 p = rb_next(p);
3057 /* Since we are deleting whole queue, no need to
3058 * list_del(&skb->tcp_tsorted_anchor)
3059 */
3060 tcp_rtx_queue_unlink(skb, sk);
3061 tcp_wmem_free_skb(sk, skb);
3062 }
3063 }
3064
tcp_write_queue_purge(struct sock * sk)3065 void tcp_write_queue_purge(struct sock *sk)
3066 {
3067 struct sk_buff *skb;
3068
3069 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3070 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3071 tcp_skb_tsorted_anchor_cleanup(skb);
3072 tcp_wmem_free_skb(sk, skb);
3073 }
3074 tcp_rtx_queue_purge(sk);
3075 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3076 tcp_clear_all_retrans_hints(tcp_sk(sk));
3077 tcp_sk(sk)->packets_out = 0;
3078 inet_csk(sk)->icsk_backoff = 0;
3079 }
3080
tcp_disconnect(struct sock * sk,int flags)3081 int tcp_disconnect(struct sock *sk, int flags)
3082 {
3083 struct inet_sock *inet = inet_sk(sk);
3084 struct inet_connection_sock *icsk = inet_csk(sk);
3085 struct tcp_sock *tp = tcp_sk(sk);
3086 int old_state = sk->sk_state;
3087 u32 seq;
3088
3089 if (old_state != TCP_CLOSE)
3090 tcp_set_state(sk, TCP_CLOSE);
3091
3092 /* ABORT function of RFC793 */
3093 if (old_state == TCP_LISTEN) {
3094 inet_csk_listen_stop(sk);
3095 } else if (unlikely(tp->repair)) {
3096 sk->sk_err = ECONNABORTED;
3097 } else if (tcp_need_reset(old_state) ||
3098 (tp->snd_nxt != tp->write_seq &&
3099 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3100 /* The last check adjusts for discrepancy of Linux wrt. RFC
3101 * states
3102 */
3103 tcp_send_active_reset(sk, gfp_any());
3104 sk->sk_err = ECONNRESET;
3105 } else if (old_state == TCP_SYN_SENT)
3106 sk->sk_err = ECONNRESET;
3107
3108 tcp_clear_xmit_timers(sk);
3109 __skb_queue_purge(&sk->sk_receive_queue);
3110 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3111 WRITE_ONCE(tp->urg_data, 0);
3112 tcp_write_queue_purge(sk);
3113 tcp_fastopen_active_disable_ofo_check(sk);
3114 skb_rbtree_purge(&tp->out_of_order_queue);
3115
3116 inet->inet_dport = 0;
3117
3118 inet_bhash2_reset_saddr(sk);
3119
3120 sk->sk_shutdown = 0;
3121 sock_reset_flag(sk, SOCK_DONE);
3122 tp->srtt_us = 0;
3123 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3124 tp->rcv_rtt_last_tsecr = 0;
3125
3126 seq = tp->write_seq + tp->max_window + 2;
3127 if (!seq)
3128 seq = 1;
3129 WRITE_ONCE(tp->write_seq, seq);
3130
3131 icsk->icsk_backoff = 0;
3132 icsk->icsk_probes_out = 0;
3133 icsk->icsk_probes_tstamp = 0;
3134 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3135 icsk->icsk_rto_min = TCP_RTO_MIN;
3136 icsk->icsk_delack_max = TCP_DELACK_MAX;
3137 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3138 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3139 tp->snd_cwnd_cnt = 0;
3140 tp->is_cwnd_limited = 0;
3141 tp->max_packets_out = 0;
3142 tp->window_clamp = 0;
3143 tp->delivered = 0;
3144 tp->delivered_ce = 0;
3145 if (icsk->icsk_ca_ops->release)
3146 icsk->icsk_ca_ops->release(sk);
3147 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3148 icsk->icsk_ca_initialized = 0;
3149 tcp_set_ca_state(sk, TCP_CA_Open);
3150 tp->is_sack_reneg = 0;
3151 tcp_clear_retrans(tp);
3152 tp->total_retrans = 0;
3153 inet_csk_delack_init(sk);
3154 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3155 * issue in __tcp_select_window()
3156 */
3157 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3158 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3159 __sk_dst_reset(sk);
3160 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3161 tcp_saved_syn_free(tp);
3162 tp->compressed_ack = 0;
3163 tp->segs_in = 0;
3164 tp->segs_out = 0;
3165 tp->bytes_sent = 0;
3166 tp->bytes_acked = 0;
3167 tp->bytes_received = 0;
3168 tp->bytes_retrans = 0;
3169 tp->data_segs_in = 0;
3170 tp->data_segs_out = 0;
3171 tp->duplicate_sack[0].start_seq = 0;
3172 tp->duplicate_sack[0].end_seq = 0;
3173 tp->dsack_dups = 0;
3174 tp->reord_seen = 0;
3175 tp->retrans_out = 0;
3176 tp->sacked_out = 0;
3177 tp->tlp_high_seq = 0;
3178 tp->last_oow_ack_time = 0;
3179 /* There's a bubble in the pipe until at least the first ACK. */
3180 tp->app_limited = ~0U;
3181 tp->rate_app_limited = 1;
3182 tp->rack.mstamp = 0;
3183 tp->rack.advanced = 0;
3184 tp->rack.reo_wnd_steps = 1;
3185 tp->rack.last_delivered = 0;
3186 tp->rack.reo_wnd_persist = 0;
3187 tp->rack.dsack_seen = 0;
3188 tp->syn_data_acked = 0;
3189 tp->rx_opt.saw_tstamp = 0;
3190 tp->rx_opt.dsack = 0;
3191 tp->rx_opt.num_sacks = 0;
3192 tp->rcv_ooopack = 0;
3193
3194
3195 /* Clean up fastopen related fields */
3196 tcp_free_fastopen_req(tp);
3197 inet->defer_connect = 0;
3198 tp->fastopen_client_fail = 0;
3199
3200 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3201
3202 if (sk->sk_frag.page) {
3203 put_page(sk->sk_frag.page);
3204 sk->sk_frag.page = NULL;
3205 sk->sk_frag.offset = 0;
3206 }
3207 sk_error_report(sk);
3208 return 0;
3209 }
3210 EXPORT_SYMBOL(tcp_disconnect);
3211
tcp_can_repair_sock(const struct sock * sk)3212 static inline bool tcp_can_repair_sock(const struct sock *sk)
3213 {
3214 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3215 (sk->sk_state != TCP_LISTEN);
3216 }
3217
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3218 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3219 {
3220 struct tcp_repair_window opt;
3221
3222 if (!tp->repair)
3223 return -EPERM;
3224
3225 if (len != sizeof(opt))
3226 return -EINVAL;
3227
3228 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3229 return -EFAULT;
3230
3231 if (opt.max_window < opt.snd_wnd)
3232 return -EINVAL;
3233
3234 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3235 return -EINVAL;
3236
3237 if (after(opt.rcv_wup, tp->rcv_nxt))
3238 return -EINVAL;
3239
3240 tp->snd_wl1 = opt.snd_wl1;
3241 tp->snd_wnd = opt.snd_wnd;
3242 tp->max_window = opt.max_window;
3243
3244 tp->rcv_wnd = opt.rcv_wnd;
3245 tp->rcv_wup = opt.rcv_wup;
3246
3247 return 0;
3248 }
3249
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3250 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3251 unsigned int len)
3252 {
3253 struct tcp_sock *tp = tcp_sk(sk);
3254 struct tcp_repair_opt opt;
3255 size_t offset = 0;
3256
3257 while (len >= sizeof(opt)) {
3258 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3259 return -EFAULT;
3260
3261 offset += sizeof(opt);
3262 len -= sizeof(opt);
3263
3264 switch (opt.opt_code) {
3265 case TCPOPT_MSS:
3266 tp->rx_opt.mss_clamp = opt.opt_val;
3267 tcp_mtup_init(sk);
3268 break;
3269 case TCPOPT_WINDOW:
3270 {
3271 u16 snd_wscale = opt.opt_val & 0xFFFF;
3272 u16 rcv_wscale = opt.opt_val >> 16;
3273
3274 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3275 return -EFBIG;
3276
3277 tp->rx_opt.snd_wscale = snd_wscale;
3278 tp->rx_opt.rcv_wscale = rcv_wscale;
3279 tp->rx_opt.wscale_ok = 1;
3280 }
3281 break;
3282 case TCPOPT_SACK_PERM:
3283 if (opt.opt_val != 0)
3284 return -EINVAL;
3285
3286 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3287 break;
3288 case TCPOPT_TIMESTAMP:
3289 if (opt.opt_val != 0)
3290 return -EINVAL;
3291
3292 tp->rx_opt.tstamp_ok = 1;
3293 break;
3294 }
3295 }
3296
3297 return 0;
3298 }
3299
3300 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3301 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3302
tcp_enable_tx_delay(void)3303 static void tcp_enable_tx_delay(void)
3304 {
3305 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3306 static int __tcp_tx_delay_enabled = 0;
3307
3308 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3309 static_branch_enable(&tcp_tx_delay_enabled);
3310 pr_info("TCP_TX_DELAY enabled\n");
3311 }
3312 }
3313 }
3314
3315 /* When set indicates to always queue non-full frames. Later the user clears
3316 * this option and we transmit any pending partial frames in the queue. This is
3317 * meant to be used alongside sendfile() to get properly filled frames when the
3318 * user (for example) must write out headers with a write() call first and then
3319 * use sendfile to send out the data parts.
3320 *
3321 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3322 * TCP_NODELAY.
3323 */
__tcp_sock_set_cork(struct sock * sk,bool on)3324 void __tcp_sock_set_cork(struct sock *sk, bool on)
3325 {
3326 struct tcp_sock *tp = tcp_sk(sk);
3327
3328 if (on) {
3329 tp->nonagle |= TCP_NAGLE_CORK;
3330 } else {
3331 tp->nonagle &= ~TCP_NAGLE_CORK;
3332 if (tp->nonagle & TCP_NAGLE_OFF)
3333 tp->nonagle |= TCP_NAGLE_PUSH;
3334 tcp_push_pending_frames(sk);
3335 }
3336 }
3337
tcp_sock_set_cork(struct sock * sk,bool on)3338 void tcp_sock_set_cork(struct sock *sk, bool on)
3339 {
3340 lock_sock(sk);
3341 __tcp_sock_set_cork(sk, on);
3342 release_sock(sk);
3343 }
3344 EXPORT_SYMBOL(tcp_sock_set_cork);
3345
3346 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3347 * remembered, but it is not activated until cork is cleared.
3348 *
3349 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3350 * even TCP_CORK for currently queued segments.
3351 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3352 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3353 {
3354 if (on) {
3355 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3356 tcp_push_pending_frames(sk);
3357 } else {
3358 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3359 }
3360 }
3361
tcp_sock_set_nodelay(struct sock * sk)3362 void tcp_sock_set_nodelay(struct sock *sk)
3363 {
3364 lock_sock(sk);
3365 __tcp_sock_set_nodelay(sk, true);
3366 release_sock(sk);
3367 }
3368 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3369
__tcp_sock_set_quickack(struct sock * sk,int val)3370 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3371 {
3372 if (!val) {
3373 inet_csk_enter_pingpong_mode(sk);
3374 return;
3375 }
3376
3377 inet_csk_exit_pingpong_mode(sk);
3378 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3379 inet_csk_ack_scheduled(sk)) {
3380 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3381 tcp_cleanup_rbuf(sk, 1);
3382 if (!(val & 1))
3383 inet_csk_enter_pingpong_mode(sk);
3384 }
3385 }
3386
tcp_sock_set_quickack(struct sock * sk,int val)3387 void tcp_sock_set_quickack(struct sock *sk, int val)
3388 {
3389 lock_sock(sk);
3390 __tcp_sock_set_quickack(sk, val);
3391 release_sock(sk);
3392 }
3393 EXPORT_SYMBOL(tcp_sock_set_quickack);
3394
tcp_sock_set_syncnt(struct sock * sk,int val)3395 int tcp_sock_set_syncnt(struct sock *sk, int val)
3396 {
3397 if (val < 1 || val > MAX_TCP_SYNCNT)
3398 return -EINVAL;
3399
3400 lock_sock(sk);
3401 inet_csk(sk)->icsk_syn_retries = val;
3402 release_sock(sk);
3403 return 0;
3404 }
3405 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3406
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3407 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3408 {
3409 lock_sock(sk);
3410 inet_csk(sk)->icsk_user_timeout = val;
3411 release_sock(sk);
3412 }
3413 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3414
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3415 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3416 {
3417 struct tcp_sock *tp = tcp_sk(sk);
3418
3419 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3420 return -EINVAL;
3421
3422 tp->keepalive_time = val * HZ;
3423 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3424 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3425 u32 elapsed = keepalive_time_elapsed(tp);
3426
3427 if (tp->keepalive_time > elapsed)
3428 elapsed = tp->keepalive_time - elapsed;
3429 else
3430 elapsed = 0;
3431 inet_csk_reset_keepalive_timer(sk, elapsed);
3432 }
3433
3434 return 0;
3435 }
3436
tcp_sock_set_keepidle(struct sock * sk,int val)3437 int tcp_sock_set_keepidle(struct sock *sk, int val)
3438 {
3439 int err;
3440
3441 lock_sock(sk);
3442 err = tcp_sock_set_keepidle_locked(sk, val);
3443 release_sock(sk);
3444 return err;
3445 }
3446 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3447
tcp_sock_set_keepintvl(struct sock * sk,int val)3448 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3449 {
3450 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3451 return -EINVAL;
3452
3453 lock_sock(sk);
3454 tcp_sk(sk)->keepalive_intvl = val * HZ;
3455 release_sock(sk);
3456 return 0;
3457 }
3458 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3459
tcp_sock_set_keepcnt(struct sock * sk,int val)3460 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3461 {
3462 if (val < 1 || val > MAX_TCP_KEEPCNT)
3463 return -EINVAL;
3464
3465 lock_sock(sk);
3466 tcp_sk(sk)->keepalive_probes = val;
3467 release_sock(sk);
3468 return 0;
3469 }
3470 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3471
tcp_set_window_clamp(struct sock * sk,int val)3472 int tcp_set_window_clamp(struct sock *sk, int val)
3473 {
3474 struct tcp_sock *tp = tcp_sk(sk);
3475
3476 if (!val) {
3477 if (sk->sk_state != TCP_CLOSE)
3478 return -EINVAL;
3479 tp->window_clamp = 0;
3480 } else {
3481 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3482 SOCK_MIN_RCVBUF / 2 : val;
3483 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3484 }
3485 return 0;
3486 }
3487
3488 /*
3489 * Socket option code for TCP.
3490 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3491 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3492 sockptr_t optval, unsigned int optlen)
3493 {
3494 struct tcp_sock *tp = tcp_sk(sk);
3495 struct inet_connection_sock *icsk = inet_csk(sk);
3496 struct net *net = sock_net(sk);
3497 int val;
3498 int err = 0;
3499
3500 /* These are data/string values, all the others are ints */
3501 switch (optname) {
3502 case TCP_CONGESTION: {
3503 char name[TCP_CA_NAME_MAX];
3504
3505 if (optlen < 1)
3506 return -EINVAL;
3507
3508 val = strncpy_from_sockptr(name, optval,
3509 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3510 if (val < 0)
3511 return -EFAULT;
3512 name[val] = 0;
3513
3514 sockopt_lock_sock(sk);
3515 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3516 sockopt_ns_capable(sock_net(sk)->user_ns,
3517 CAP_NET_ADMIN));
3518 sockopt_release_sock(sk);
3519 return err;
3520 }
3521 case TCP_ULP: {
3522 char name[TCP_ULP_NAME_MAX];
3523
3524 if (optlen < 1)
3525 return -EINVAL;
3526
3527 val = strncpy_from_sockptr(name, optval,
3528 min_t(long, TCP_ULP_NAME_MAX - 1,
3529 optlen));
3530 if (val < 0)
3531 return -EFAULT;
3532 name[val] = 0;
3533
3534 sockopt_lock_sock(sk);
3535 err = tcp_set_ulp(sk, name);
3536 sockopt_release_sock(sk);
3537 return err;
3538 }
3539 case TCP_FASTOPEN_KEY: {
3540 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3541 __u8 *backup_key = NULL;
3542
3543 /* Allow a backup key as well to facilitate key rotation
3544 * First key is the active one.
3545 */
3546 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3547 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3548 return -EINVAL;
3549
3550 if (copy_from_sockptr(key, optval, optlen))
3551 return -EFAULT;
3552
3553 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3554 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3555
3556 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3557 }
3558 default:
3559 /* fallthru */
3560 break;
3561 }
3562
3563 if (optlen < sizeof(int))
3564 return -EINVAL;
3565
3566 if (copy_from_sockptr(&val, optval, sizeof(val)))
3567 return -EFAULT;
3568
3569 sockopt_lock_sock(sk);
3570
3571 switch (optname) {
3572 case TCP_MAXSEG:
3573 /* Values greater than interface MTU won't take effect. However
3574 * at the point when this call is done we typically don't yet
3575 * know which interface is going to be used
3576 */
3577 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3578 err = -EINVAL;
3579 break;
3580 }
3581 tp->rx_opt.user_mss = val;
3582 break;
3583
3584 case TCP_NODELAY:
3585 __tcp_sock_set_nodelay(sk, val);
3586 break;
3587
3588 case TCP_THIN_LINEAR_TIMEOUTS:
3589 if (val < 0 || val > 1)
3590 err = -EINVAL;
3591 else
3592 tp->thin_lto = val;
3593 break;
3594
3595 case TCP_THIN_DUPACK:
3596 if (val < 0 || val > 1)
3597 err = -EINVAL;
3598 break;
3599
3600 case TCP_REPAIR:
3601 if (!tcp_can_repair_sock(sk))
3602 err = -EPERM;
3603 else if (val == TCP_REPAIR_ON) {
3604 tp->repair = 1;
3605 sk->sk_reuse = SK_FORCE_REUSE;
3606 tp->repair_queue = TCP_NO_QUEUE;
3607 } else if (val == TCP_REPAIR_OFF) {
3608 tp->repair = 0;
3609 sk->sk_reuse = SK_NO_REUSE;
3610 tcp_send_window_probe(sk);
3611 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3612 tp->repair = 0;
3613 sk->sk_reuse = SK_NO_REUSE;
3614 } else
3615 err = -EINVAL;
3616
3617 break;
3618
3619 case TCP_REPAIR_QUEUE:
3620 if (!tp->repair)
3621 err = -EPERM;
3622 else if ((unsigned int)val < TCP_QUEUES_NR)
3623 tp->repair_queue = val;
3624 else
3625 err = -EINVAL;
3626 break;
3627
3628 case TCP_QUEUE_SEQ:
3629 if (sk->sk_state != TCP_CLOSE) {
3630 err = -EPERM;
3631 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3632 if (!tcp_rtx_queue_empty(sk))
3633 err = -EPERM;
3634 else
3635 WRITE_ONCE(tp->write_seq, val);
3636 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3637 if (tp->rcv_nxt != tp->copied_seq) {
3638 err = -EPERM;
3639 } else {
3640 WRITE_ONCE(tp->rcv_nxt, val);
3641 WRITE_ONCE(tp->copied_seq, val);
3642 }
3643 } else {
3644 err = -EINVAL;
3645 }
3646 break;
3647
3648 case TCP_REPAIR_OPTIONS:
3649 if (!tp->repair)
3650 err = -EINVAL;
3651 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3652 err = tcp_repair_options_est(sk, optval, optlen);
3653 else
3654 err = -EPERM;
3655 break;
3656
3657 case TCP_CORK:
3658 __tcp_sock_set_cork(sk, val);
3659 break;
3660
3661 case TCP_KEEPIDLE:
3662 err = tcp_sock_set_keepidle_locked(sk, val);
3663 break;
3664 case TCP_KEEPINTVL:
3665 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3666 err = -EINVAL;
3667 else
3668 tp->keepalive_intvl = val * HZ;
3669 break;
3670 case TCP_KEEPCNT:
3671 if (val < 1 || val > MAX_TCP_KEEPCNT)
3672 err = -EINVAL;
3673 else
3674 tp->keepalive_probes = val;
3675 break;
3676 case TCP_SYNCNT:
3677 if (val < 1 || val > MAX_TCP_SYNCNT)
3678 err = -EINVAL;
3679 else
3680 icsk->icsk_syn_retries = val;
3681 break;
3682
3683 case TCP_SAVE_SYN:
3684 /* 0: disable, 1: enable, 2: start from ether_header */
3685 if (val < 0 || val > 2)
3686 err = -EINVAL;
3687 else
3688 tp->save_syn = val;
3689 break;
3690
3691 case TCP_LINGER2:
3692 if (val < 0)
3693 tp->linger2 = -1;
3694 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3695 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3696 else
3697 tp->linger2 = val * HZ;
3698 break;
3699
3700 case TCP_DEFER_ACCEPT:
3701 /* Translate value in seconds to number of retransmits */
3702 icsk->icsk_accept_queue.rskq_defer_accept =
3703 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3704 TCP_RTO_MAX / HZ);
3705 break;
3706
3707 case TCP_WINDOW_CLAMP:
3708 err = tcp_set_window_clamp(sk, val);
3709 break;
3710
3711 case TCP_QUICKACK:
3712 __tcp_sock_set_quickack(sk, val);
3713 break;
3714
3715 #ifdef CONFIG_TCP_MD5SIG
3716 case TCP_MD5SIG:
3717 case TCP_MD5SIG_EXT:
3718 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3719 break;
3720 #endif
3721 case TCP_USER_TIMEOUT:
3722 /* Cap the max time in ms TCP will retry or probe the window
3723 * before giving up and aborting (ETIMEDOUT) a connection.
3724 */
3725 if (val < 0)
3726 err = -EINVAL;
3727 else
3728 icsk->icsk_user_timeout = val;
3729 break;
3730
3731 case TCP_FASTOPEN:
3732 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3733 TCPF_LISTEN))) {
3734 tcp_fastopen_init_key_once(net);
3735
3736 fastopen_queue_tune(sk, val);
3737 } else {
3738 err = -EINVAL;
3739 }
3740 break;
3741 case TCP_FASTOPEN_CONNECT:
3742 if (val > 1 || val < 0) {
3743 err = -EINVAL;
3744 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3745 TFO_CLIENT_ENABLE) {
3746 if (sk->sk_state == TCP_CLOSE)
3747 tp->fastopen_connect = val;
3748 else
3749 err = -EINVAL;
3750 } else {
3751 err = -EOPNOTSUPP;
3752 }
3753 break;
3754 case TCP_FASTOPEN_NO_COOKIE:
3755 if (val > 1 || val < 0)
3756 err = -EINVAL;
3757 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3758 err = -EINVAL;
3759 else
3760 tp->fastopen_no_cookie = val;
3761 break;
3762 case TCP_TIMESTAMP:
3763 if (!tp->repair)
3764 err = -EPERM;
3765 else
3766 tp->tsoffset = val - tcp_time_stamp_raw();
3767 break;
3768 case TCP_REPAIR_WINDOW:
3769 err = tcp_repair_set_window(tp, optval, optlen);
3770 break;
3771 case TCP_NOTSENT_LOWAT:
3772 tp->notsent_lowat = val;
3773 sk->sk_write_space(sk);
3774 break;
3775 case TCP_INQ:
3776 if (val > 1 || val < 0)
3777 err = -EINVAL;
3778 else
3779 tp->recvmsg_inq = val;
3780 break;
3781 case TCP_TX_DELAY:
3782 if (val)
3783 tcp_enable_tx_delay();
3784 tp->tcp_tx_delay = val;
3785 break;
3786 default:
3787 err = -ENOPROTOOPT;
3788 break;
3789 }
3790
3791 sockopt_release_sock(sk);
3792 return err;
3793 }
3794
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3795 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3796 unsigned int optlen)
3797 {
3798 const struct inet_connection_sock *icsk = inet_csk(sk);
3799
3800 if (level != SOL_TCP)
3801 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3802 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3803 optval, optlen);
3804 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3805 }
3806 EXPORT_SYMBOL(tcp_setsockopt);
3807
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3808 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3809 struct tcp_info *info)
3810 {
3811 u64 stats[__TCP_CHRONO_MAX], total = 0;
3812 enum tcp_chrono i;
3813
3814 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3815 stats[i] = tp->chrono_stat[i - 1];
3816 if (i == tp->chrono_type)
3817 stats[i] += tcp_jiffies32 - tp->chrono_start;
3818 stats[i] *= USEC_PER_SEC / HZ;
3819 total += stats[i];
3820 }
3821
3822 info->tcpi_busy_time = total;
3823 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3824 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3825 }
3826
3827 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3828 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3829 {
3830 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3831 const struct inet_connection_sock *icsk = inet_csk(sk);
3832 unsigned long rate;
3833 u32 now;
3834 u64 rate64;
3835 bool slow;
3836
3837 memset(info, 0, sizeof(*info));
3838 if (sk->sk_type != SOCK_STREAM)
3839 return;
3840
3841 info->tcpi_state = inet_sk_state_load(sk);
3842
3843 /* Report meaningful fields for all TCP states, including listeners */
3844 rate = READ_ONCE(sk->sk_pacing_rate);
3845 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3846 info->tcpi_pacing_rate = rate64;
3847
3848 rate = READ_ONCE(sk->sk_max_pacing_rate);
3849 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3850 info->tcpi_max_pacing_rate = rate64;
3851
3852 info->tcpi_reordering = tp->reordering;
3853 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3854
3855 if (info->tcpi_state == TCP_LISTEN) {
3856 /* listeners aliased fields :
3857 * tcpi_unacked -> Number of children ready for accept()
3858 * tcpi_sacked -> max backlog
3859 */
3860 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3861 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3862 return;
3863 }
3864
3865 slow = lock_sock_fast(sk);
3866
3867 info->tcpi_ca_state = icsk->icsk_ca_state;
3868 info->tcpi_retransmits = icsk->icsk_retransmits;
3869 info->tcpi_probes = icsk->icsk_probes_out;
3870 info->tcpi_backoff = icsk->icsk_backoff;
3871
3872 if (tp->rx_opt.tstamp_ok)
3873 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3874 if (tcp_is_sack(tp))
3875 info->tcpi_options |= TCPI_OPT_SACK;
3876 if (tp->rx_opt.wscale_ok) {
3877 info->tcpi_options |= TCPI_OPT_WSCALE;
3878 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3879 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3880 }
3881
3882 if (tp->ecn_flags & TCP_ECN_OK)
3883 info->tcpi_options |= TCPI_OPT_ECN;
3884 if (tp->ecn_flags & TCP_ECN_SEEN)
3885 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3886 if (tp->syn_data_acked)
3887 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3888
3889 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3890 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3891 info->tcpi_snd_mss = tp->mss_cache;
3892 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3893
3894 info->tcpi_unacked = tp->packets_out;
3895 info->tcpi_sacked = tp->sacked_out;
3896
3897 info->tcpi_lost = tp->lost_out;
3898 info->tcpi_retrans = tp->retrans_out;
3899
3900 now = tcp_jiffies32;
3901 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3902 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3903 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3904
3905 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3906 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3907 info->tcpi_rtt = tp->srtt_us >> 3;
3908 info->tcpi_rttvar = tp->mdev_us >> 2;
3909 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3910 info->tcpi_advmss = tp->advmss;
3911
3912 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3913 info->tcpi_rcv_space = tp->rcvq_space.space;
3914
3915 info->tcpi_total_retrans = tp->total_retrans;
3916
3917 info->tcpi_bytes_acked = tp->bytes_acked;
3918 info->tcpi_bytes_received = tp->bytes_received;
3919 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3920 tcp_get_info_chrono_stats(tp, info);
3921
3922 info->tcpi_segs_out = tp->segs_out;
3923
3924 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3925 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3926 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3927
3928 info->tcpi_min_rtt = tcp_min_rtt(tp);
3929 info->tcpi_data_segs_out = tp->data_segs_out;
3930
3931 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3932 rate64 = tcp_compute_delivery_rate(tp);
3933 if (rate64)
3934 info->tcpi_delivery_rate = rate64;
3935 info->tcpi_delivered = tp->delivered;
3936 info->tcpi_delivered_ce = tp->delivered_ce;
3937 info->tcpi_bytes_sent = tp->bytes_sent;
3938 info->tcpi_bytes_retrans = tp->bytes_retrans;
3939 info->tcpi_dsack_dups = tp->dsack_dups;
3940 info->tcpi_reord_seen = tp->reord_seen;
3941 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3942 info->tcpi_snd_wnd = tp->snd_wnd;
3943 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3944 unlock_sock_fast(sk, slow);
3945 }
3946 EXPORT_SYMBOL_GPL(tcp_get_info);
3947
tcp_opt_stats_get_size(void)3948 static size_t tcp_opt_stats_get_size(void)
3949 {
3950 return
3951 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3952 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3953 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3954 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3955 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3956 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3957 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3958 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3959 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3960 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3961 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3962 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3963 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3964 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3965 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3966 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3967 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3968 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3969 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3970 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3971 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3972 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3973 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3974 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3975 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3976 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3977 0;
3978 }
3979
3980 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3981 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3982 {
3983 if (skb->protocol == htons(ETH_P_IP))
3984 return ip_hdr(skb)->ttl;
3985 else if (skb->protocol == htons(ETH_P_IPV6))
3986 return ipv6_hdr(skb)->hop_limit;
3987 else
3988 return 0;
3989 }
3990
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3991 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3992 const struct sk_buff *orig_skb,
3993 const struct sk_buff *ack_skb)
3994 {
3995 const struct tcp_sock *tp = tcp_sk(sk);
3996 struct sk_buff *stats;
3997 struct tcp_info info;
3998 unsigned long rate;
3999 u64 rate64;
4000
4001 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4002 if (!stats)
4003 return NULL;
4004
4005 tcp_get_info_chrono_stats(tp, &info);
4006 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4007 info.tcpi_busy_time, TCP_NLA_PAD);
4008 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4009 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4010 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4011 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4012 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4013 tp->data_segs_out, TCP_NLA_PAD);
4014 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4015 tp->total_retrans, TCP_NLA_PAD);
4016
4017 rate = READ_ONCE(sk->sk_pacing_rate);
4018 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4019 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4020
4021 rate64 = tcp_compute_delivery_rate(tp);
4022 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4023
4024 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4025 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4026 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4027
4028 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4029 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4030 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4031 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4032 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4033
4034 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4035 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4036
4037 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4038 TCP_NLA_PAD);
4039 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4040 TCP_NLA_PAD);
4041 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4042 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4043 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4044 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4045 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4046 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4047 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4048 TCP_NLA_PAD);
4049 if (ack_skb)
4050 nla_put_u8(stats, TCP_NLA_TTL,
4051 tcp_skb_ttl_or_hop_limit(ack_skb));
4052
4053 return stats;
4054 }
4055
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4056 int do_tcp_getsockopt(struct sock *sk, int level,
4057 int optname, sockptr_t optval, sockptr_t optlen)
4058 {
4059 struct inet_connection_sock *icsk = inet_csk(sk);
4060 struct tcp_sock *tp = tcp_sk(sk);
4061 struct net *net = sock_net(sk);
4062 int val, len;
4063
4064 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4065 return -EFAULT;
4066
4067 len = min_t(unsigned int, len, sizeof(int));
4068
4069 if (len < 0)
4070 return -EINVAL;
4071
4072 switch (optname) {
4073 case TCP_MAXSEG:
4074 val = tp->mss_cache;
4075 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4076 val = tp->rx_opt.user_mss;
4077 if (tp->repair)
4078 val = tp->rx_opt.mss_clamp;
4079 break;
4080 case TCP_NODELAY:
4081 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4082 break;
4083 case TCP_CORK:
4084 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4085 break;
4086 case TCP_KEEPIDLE:
4087 val = keepalive_time_when(tp) / HZ;
4088 break;
4089 case TCP_KEEPINTVL:
4090 val = keepalive_intvl_when(tp) / HZ;
4091 break;
4092 case TCP_KEEPCNT:
4093 val = keepalive_probes(tp);
4094 break;
4095 case TCP_SYNCNT:
4096 val = icsk->icsk_syn_retries ? :
4097 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4098 break;
4099 case TCP_LINGER2:
4100 val = tp->linger2;
4101 if (val >= 0)
4102 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4103 break;
4104 case TCP_DEFER_ACCEPT:
4105 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4106 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4107 break;
4108 case TCP_WINDOW_CLAMP:
4109 val = tp->window_clamp;
4110 break;
4111 case TCP_INFO: {
4112 struct tcp_info info;
4113
4114 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4115 return -EFAULT;
4116
4117 tcp_get_info(sk, &info);
4118
4119 len = min_t(unsigned int, len, sizeof(info));
4120 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4121 return -EFAULT;
4122 if (copy_to_sockptr(optval, &info, len))
4123 return -EFAULT;
4124 return 0;
4125 }
4126 case TCP_CC_INFO: {
4127 const struct tcp_congestion_ops *ca_ops;
4128 union tcp_cc_info info;
4129 size_t sz = 0;
4130 int attr;
4131
4132 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4133 return -EFAULT;
4134
4135 ca_ops = icsk->icsk_ca_ops;
4136 if (ca_ops && ca_ops->get_info)
4137 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4138
4139 len = min_t(unsigned int, len, sz);
4140 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4141 return -EFAULT;
4142 if (copy_to_sockptr(optval, &info, len))
4143 return -EFAULT;
4144 return 0;
4145 }
4146 case TCP_QUICKACK:
4147 val = !inet_csk_in_pingpong_mode(sk);
4148 break;
4149
4150 case TCP_CONGESTION:
4151 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4152 return -EFAULT;
4153 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4154 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4155 return -EFAULT;
4156 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4157 return -EFAULT;
4158 return 0;
4159
4160 case TCP_ULP:
4161 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4162 return -EFAULT;
4163 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4164 if (!icsk->icsk_ulp_ops) {
4165 len = 0;
4166 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4167 return -EFAULT;
4168 return 0;
4169 }
4170 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4171 return -EFAULT;
4172 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4173 return -EFAULT;
4174 return 0;
4175
4176 case TCP_FASTOPEN_KEY: {
4177 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4178 unsigned int key_len;
4179
4180 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4181 return -EFAULT;
4182
4183 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4184 TCP_FASTOPEN_KEY_LENGTH;
4185 len = min_t(unsigned int, len, key_len);
4186 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4187 return -EFAULT;
4188 if (copy_to_sockptr(optval, key, len))
4189 return -EFAULT;
4190 return 0;
4191 }
4192 case TCP_THIN_LINEAR_TIMEOUTS:
4193 val = tp->thin_lto;
4194 break;
4195
4196 case TCP_THIN_DUPACK:
4197 val = 0;
4198 break;
4199
4200 case TCP_REPAIR:
4201 val = tp->repair;
4202 break;
4203
4204 case TCP_REPAIR_QUEUE:
4205 if (tp->repair)
4206 val = tp->repair_queue;
4207 else
4208 return -EINVAL;
4209 break;
4210
4211 case TCP_REPAIR_WINDOW: {
4212 struct tcp_repair_window opt;
4213
4214 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4215 return -EFAULT;
4216
4217 if (len != sizeof(opt))
4218 return -EINVAL;
4219
4220 if (!tp->repair)
4221 return -EPERM;
4222
4223 opt.snd_wl1 = tp->snd_wl1;
4224 opt.snd_wnd = tp->snd_wnd;
4225 opt.max_window = tp->max_window;
4226 opt.rcv_wnd = tp->rcv_wnd;
4227 opt.rcv_wup = tp->rcv_wup;
4228
4229 if (copy_to_sockptr(optval, &opt, len))
4230 return -EFAULT;
4231 return 0;
4232 }
4233 case TCP_QUEUE_SEQ:
4234 if (tp->repair_queue == TCP_SEND_QUEUE)
4235 val = tp->write_seq;
4236 else if (tp->repair_queue == TCP_RECV_QUEUE)
4237 val = tp->rcv_nxt;
4238 else
4239 return -EINVAL;
4240 break;
4241
4242 case TCP_USER_TIMEOUT:
4243 val = icsk->icsk_user_timeout;
4244 break;
4245
4246 case TCP_FASTOPEN:
4247 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4248 break;
4249
4250 case TCP_FASTOPEN_CONNECT:
4251 val = tp->fastopen_connect;
4252 break;
4253
4254 case TCP_FASTOPEN_NO_COOKIE:
4255 val = tp->fastopen_no_cookie;
4256 break;
4257
4258 case TCP_TX_DELAY:
4259 val = tp->tcp_tx_delay;
4260 break;
4261
4262 case TCP_TIMESTAMP:
4263 val = tcp_time_stamp_raw() + tp->tsoffset;
4264 break;
4265 case TCP_NOTSENT_LOWAT:
4266 val = tp->notsent_lowat;
4267 break;
4268 case TCP_INQ:
4269 val = tp->recvmsg_inq;
4270 break;
4271 case TCP_SAVE_SYN:
4272 val = tp->save_syn;
4273 break;
4274 case TCP_SAVED_SYN: {
4275 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4276 return -EFAULT;
4277
4278 sockopt_lock_sock(sk);
4279 if (tp->saved_syn) {
4280 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4281 len = tcp_saved_syn_len(tp->saved_syn);
4282 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4283 sockopt_release_sock(sk);
4284 return -EFAULT;
4285 }
4286 sockopt_release_sock(sk);
4287 return -EINVAL;
4288 }
4289 len = tcp_saved_syn_len(tp->saved_syn);
4290 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4291 sockopt_release_sock(sk);
4292 return -EFAULT;
4293 }
4294 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4295 sockopt_release_sock(sk);
4296 return -EFAULT;
4297 }
4298 tcp_saved_syn_free(tp);
4299 sockopt_release_sock(sk);
4300 } else {
4301 sockopt_release_sock(sk);
4302 len = 0;
4303 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4304 return -EFAULT;
4305 }
4306 return 0;
4307 }
4308 #ifdef CONFIG_MMU
4309 case TCP_ZEROCOPY_RECEIVE: {
4310 struct scm_timestamping_internal tss;
4311 struct tcp_zerocopy_receive zc = {};
4312 int err;
4313
4314 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4315 return -EFAULT;
4316 if (len < 0 ||
4317 len < offsetofend(struct tcp_zerocopy_receive, length))
4318 return -EINVAL;
4319 if (unlikely(len > sizeof(zc))) {
4320 err = check_zeroed_sockptr(optval, sizeof(zc),
4321 len - sizeof(zc));
4322 if (err < 1)
4323 return err == 0 ? -EINVAL : err;
4324 len = sizeof(zc);
4325 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4326 return -EFAULT;
4327 }
4328 if (copy_from_sockptr(&zc, optval, len))
4329 return -EFAULT;
4330 if (zc.reserved)
4331 return -EINVAL;
4332 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4333 return -EINVAL;
4334 sockopt_lock_sock(sk);
4335 err = tcp_zerocopy_receive(sk, &zc, &tss);
4336 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4337 &zc, &len, err);
4338 sockopt_release_sock(sk);
4339 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4340 goto zerocopy_rcv_cmsg;
4341 switch (len) {
4342 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4343 goto zerocopy_rcv_cmsg;
4344 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4345 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4346 case offsetofend(struct tcp_zerocopy_receive, flags):
4347 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4348 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4349 case offsetofend(struct tcp_zerocopy_receive, err):
4350 goto zerocopy_rcv_sk_err;
4351 case offsetofend(struct tcp_zerocopy_receive, inq):
4352 goto zerocopy_rcv_inq;
4353 case offsetofend(struct tcp_zerocopy_receive, length):
4354 default:
4355 goto zerocopy_rcv_out;
4356 }
4357 zerocopy_rcv_cmsg:
4358 if (zc.msg_flags & TCP_CMSG_TS)
4359 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4360 else
4361 zc.msg_flags = 0;
4362 zerocopy_rcv_sk_err:
4363 if (!err)
4364 zc.err = sock_error(sk);
4365 zerocopy_rcv_inq:
4366 zc.inq = tcp_inq_hint(sk);
4367 zerocopy_rcv_out:
4368 if (!err && copy_to_sockptr(optval, &zc, len))
4369 err = -EFAULT;
4370 return err;
4371 }
4372 #endif
4373 default:
4374 return -ENOPROTOOPT;
4375 }
4376
4377 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4378 return -EFAULT;
4379 if (copy_to_sockptr(optval, &val, len))
4380 return -EFAULT;
4381 return 0;
4382 }
4383
tcp_bpf_bypass_getsockopt(int level,int optname)4384 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4385 {
4386 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4387 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4388 */
4389 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4390 return true;
4391
4392 return false;
4393 }
4394 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4395
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4396 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4397 int __user *optlen)
4398 {
4399 struct inet_connection_sock *icsk = inet_csk(sk);
4400
4401 if (level != SOL_TCP)
4402 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4403 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4404 optval, optlen);
4405 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4406 USER_SOCKPTR(optlen));
4407 }
4408 EXPORT_SYMBOL(tcp_getsockopt);
4409
4410 #ifdef CONFIG_TCP_MD5SIG
4411 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4412 static DEFINE_MUTEX(tcp_md5sig_mutex);
4413 static bool tcp_md5sig_pool_populated = false;
4414
__tcp_alloc_md5sig_pool(void)4415 static void __tcp_alloc_md5sig_pool(void)
4416 {
4417 struct crypto_ahash *hash;
4418 int cpu;
4419
4420 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4421 if (IS_ERR(hash))
4422 return;
4423
4424 for_each_possible_cpu(cpu) {
4425 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4426 struct ahash_request *req;
4427
4428 if (!scratch) {
4429 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4430 sizeof(struct tcphdr),
4431 GFP_KERNEL,
4432 cpu_to_node(cpu));
4433 if (!scratch)
4434 return;
4435 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4436 }
4437 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4438 continue;
4439
4440 req = ahash_request_alloc(hash, GFP_KERNEL);
4441 if (!req)
4442 return;
4443
4444 ahash_request_set_callback(req, 0, NULL, NULL);
4445
4446 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4447 }
4448 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4449 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4450 */
4451 smp_wmb();
4452 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4453 * and tcp_get_md5sig_pool().
4454 */
4455 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4456 }
4457
tcp_alloc_md5sig_pool(void)4458 bool tcp_alloc_md5sig_pool(void)
4459 {
4460 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4461 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4462 mutex_lock(&tcp_md5sig_mutex);
4463
4464 if (!tcp_md5sig_pool_populated) {
4465 __tcp_alloc_md5sig_pool();
4466 if (tcp_md5sig_pool_populated)
4467 static_branch_inc(&tcp_md5_needed);
4468 }
4469
4470 mutex_unlock(&tcp_md5sig_mutex);
4471 }
4472 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4473 return READ_ONCE(tcp_md5sig_pool_populated);
4474 }
4475 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4476
4477
4478 /**
4479 * tcp_get_md5sig_pool - get md5sig_pool for this user
4480 *
4481 * We use percpu structure, so if we succeed, we exit with preemption
4482 * and BH disabled, to make sure another thread or softirq handling
4483 * wont try to get same context.
4484 */
tcp_get_md5sig_pool(void)4485 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4486 {
4487 local_bh_disable();
4488
4489 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4490 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4491 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4492 smp_rmb();
4493 return this_cpu_ptr(&tcp_md5sig_pool);
4494 }
4495 local_bh_enable();
4496 return NULL;
4497 }
4498 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4499
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4500 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4501 const struct sk_buff *skb, unsigned int header_len)
4502 {
4503 struct scatterlist sg;
4504 const struct tcphdr *tp = tcp_hdr(skb);
4505 struct ahash_request *req = hp->md5_req;
4506 unsigned int i;
4507 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4508 skb_headlen(skb) - header_len : 0;
4509 const struct skb_shared_info *shi = skb_shinfo(skb);
4510 struct sk_buff *frag_iter;
4511
4512 sg_init_table(&sg, 1);
4513
4514 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4515 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4516 if (crypto_ahash_update(req))
4517 return 1;
4518
4519 for (i = 0; i < shi->nr_frags; ++i) {
4520 const skb_frag_t *f = &shi->frags[i];
4521 unsigned int offset = skb_frag_off(f);
4522 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4523
4524 sg_set_page(&sg, page, skb_frag_size(f),
4525 offset_in_page(offset));
4526 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4527 if (crypto_ahash_update(req))
4528 return 1;
4529 }
4530
4531 skb_walk_frags(skb, frag_iter)
4532 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4533 return 1;
4534
4535 return 0;
4536 }
4537 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4538
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4539 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4540 {
4541 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4542 struct scatterlist sg;
4543
4544 sg_init_one(&sg, key->key, keylen);
4545 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4546
4547 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4548 return data_race(crypto_ahash_update(hp->md5_req));
4549 }
4550 EXPORT_SYMBOL(tcp_md5_hash_key);
4551
4552 /* Called with rcu_read_lock() */
4553 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4554 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4555 const void *saddr, const void *daddr,
4556 int family, int dif, int sdif)
4557 {
4558 /*
4559 * This gets called for each TCP segment that arrives
4560 * so we want to be efficient.
4561 * We have 3 drop cases:
4562 * o No MD5 hash and one expected.
4563 * o MD5 hash and we're not expecting one.
4564 * o MD5 hash and its wrong.
4565 */
4566 const __u8 *hash_location = NULL;
4567 struct tcp_md5sig_key *hash_expected;
4568 const struct tcphdr *th = tcp_hdr(skb);
4569 struct tcp_sock *tp = tcp_sk(sk);
4570 int genhash, l3index;
4571 u8 newhash[16];
4572
4573 /* sdif set, means packet ingressed via a device
4574 * in an L3 domain and dif is set to the l3mdev
4575 */
4576 l3index = sdif ? dif : 0;
4577
4578 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4579 hash_location = tcp_parse_md5sig_option(th);
4580
4581 /* We've parsed the options - do we have a hash? */
4582 if (!hash_expected && !hash_location)
4583 return SKB_NOT_DROPPED_YET;
4584
4585 if (hash_expected && !hash_location) {
4586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4587 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4588 }
4589
4590 if (!hash_expected && hash_location) {
4591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4592 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4593 }
4594
4595 /* Check the signature.
4596 * To support dual stack listeners, we need to handle
4597 * IPv4-mapped case.
4598 */
4599 if (family == AF_INET)
4600 genhash = tcp_v4_md5_hash_skb(newhash,
4601 hash_expected,
4602 NULL, skb);
4603 else
4604 genhash = tp->af_specific->calc_md5_hash(newhash,
4605 hash_expected,
4606 NULL, skb);
4607
4608 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4610 if (family == AF_INET) {
4611 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4612 saddr, ntohs(th->source),
4613 daddr, ntohs(th->dest),
4614 genhash ? " tcp_v4_calc_md5_hash failed"
4615 : "", l3index);
4616 } else {
4617 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4618 genhash ? "failed" : "mismatch",
4619 saddr, ntohs(th->source),
4620 daddr, ntohs(th->dest), l3index);
4621 }
4622 return SKB_DROP_REASON_TCP_MD5FAILURE;
4623 }
4624 return SKB_NOT_DROPPED_YET;
4625 }
4626 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4627
4628 #endif
4629
tcp_done(struct sock * sk)4630 void tcp_done(struct sock *sk)
4631 {
4632 struct request_sock *req;
4633
4634 /* We might be called with a new socket, after
4635 * inet_csk_prepare_forced_close() has been called
4636 * so we can not use lockdep_sock_is_held(sk)
4637 */
4638 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4639
4640 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4641 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4642
4643 tcp_set_state(sk, TCP_CLOSE);
4644 tcp_clear_xmit_timers(sk);
4645 if (req)
4646 reqsk_fastopen_remove(sk, req, false);
4647
4648 sk->sk_shutdown = SHUTDOWN_MASK;
4649
4650 if (!sock_flag(sk, SOCK_DEAD))
4651 sk->sk_state_change(sk);
4652 else
4653 inet_csk_destroy_sock(sk);
4654 }
4655 EXPORT_SYMBOL_GPL(tcp_done);
4656
tcp_abort(struct sock * sk,int err)4657 int tcp_abort(struct sock *sk, int err)
4658 {
4659 int state = inet_sk_state_load(sk);
4660
4661 if (state == TCP_NEW_SYN_RECV) {
4662 struct request_sock *req = inet_reqsk(sk);
4663
4664 local_bh_disable();
4665 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4666 local_bh_enable();
4667 return 0;
4668 }
4669 if (state == TCP_TIME_WAIT) {
4670 struct inet_timewait_sock *tw = inet_twsk(sk);
4671
4672 refcount_inc(&tw->tw_refcnt);
4673 local_bh_disable();
4674 inet_twsk_deschedule_put(tw);
4675 local_bh_enable();
4676 return 0;
4677 }
4678
4679 /* Don't race with userspace socket closes such as tcp_close. */
4680 lock_sock(sk);
4681
4682 if (sk->sk_state == TCP_LISTEN) {
4683 tcp_set_state(sk, TCP_CLOSE);
4684 inet_csk_listen_stop(sk);
4685 }
4686
4687 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4688 local_bh_disable();
4689 bh_lock_sock(sk);
4690
4691 if (!sock_flag(sk, SOCK_DEAD)) {
4692 sk->sk_err = err;
4693 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4694 smp_wmb();
4695 sk_error_report(sk);
4696 if (tcp_need_reset(sk->sk_state))
4697 tcp_send_active_reset(sk, GFP_ATOMIC);
4698 tcp_done(sk);
4699 }
4700
4701 bh_unlock_sock(sk);
4702 local_bh_enable();
4703 tcp_write_queue_purge(sk);
4704 release_sock(sk);
4705 return 0;
4706 }
4707 EXPORT_SYMBOL_GPL(tcp_abort);
4708
4709 extern struct tcp_congestion_ops tcp_reno;
4710
4711 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4712 static int __init set_thash_entries(char *str)
4713 {
4714 ssize_t ret;
4715
4716 if (!str)
4717 return 0;
4718
4719 ret = kstrtoul(str, 0, &thash_entries);
4720 if (ret)
4721 return 0;
4722
4723 return 1;
4724 }
4725 __setup("thash_entries=", set_thash_entries);
4726
tcp_init_mem(void)4727 static void __init tcp_init_mem(void)
4728 {
4729 unsigned long limit = nr_free_buffer_pages() / 16;
4730
4731 limit = max(limit, 128UL);
4732 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4733 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4734 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4735 }
4736
tcp_init(void)4737 void __init tcp_init(void)
4738 {
4739 int max_rshare, max_wshare, cnt;
4740 unsigned long limit;
4741 unsigned int i;
4742
4743 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4744 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4745 sizeof_field(struct sk_buff, cb));
4746
4747 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4748
4749 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4750 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4751
4752 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4753 thash_entries, 21, /* one slot per 2 MB*/
4754 0, 64 * 1024);
4755 tcp_hashinfo.bind_bucket_cachep =
4756 kmem_cache_create("tcp_bind_bucket",
4757 sizeof(struct inet_bind_bucket), 0,
4758 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4759 SLAB_ACCOUNT,
4760 NULL);
4761 tcp_hashinfo.bind2_bucket_cachep =
4762 kmem_cache_create("tcp_bind2_bucket",
4763 sizeof(struct inet_bind2_bucket), 0,
4764 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4765 SLAB_ACCOUNT,
4766 NULL);
4767
4768 /* Size and allocate the main established and bind bucket
4769 * hash tables.
4770 *
4771 * The methodology is similar to that of the buffer cache.
4772 */
4773 tcp_hashinfo.ehash =
4774 alloc_large_system_hash("TCP established",
4775 sizeof(struct inet_ehash_bucket),
4776 thash_entries,
4777 17, /* one slot per 128 KB of memory */
4778 0,
4779 NULL,
4780 &tcp_hashinfo.ehash_mask,
4781 0,
4782 thash_entries ? 0 : 512 * 1024);
4783 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4784 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4785
4786 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4787 panic("TCP: failed to alloc ehash_locks");
4788 tcp_hashinfo.bhash =
4789 alloc_large_system_hash("TCP bind",
4790 2 * sizeof(struct inet_bind_hashbucket),
4791 tcp_hashinfo.ehash_mask + 1,
4792 17, /* one slot per 128 KB of memory */
4793 0,
4794 &tcp_hashinfo.bhash_size,
4795 NULL,
4796 0,
4797 64 * 1024);
4798 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4799 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4800 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4801 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4802 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4803 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4804 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4805 }
4806
4807 tcp_hashinfo.pernet = false;
4808
4809 cnt = tcp_hashinfo.ehash_mask + 1;
4810 sysctl_tcp_max_orphans = cnt / 2;
4811
4812 tcp_init_mem();
4813 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4814 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4815 max_wshare = min(4UL*1024*1024, limit);
4816 max_rshare = min(6UL*1024*1024, limit);
4817
4818 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4819 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4820 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4821
4822 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4823 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4824 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4825
4826 pr_info("Hash tables configured (established %u bind %u)\n",
4827 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4828
4829 tcp_v4_init();
4830 tcp_metrics_init();
4831 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4832 tcp_tasklet_init();
4833 mptcp_init();
4834 }
4835