1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #include <net/tcp.h>
38
39 #include <linux/compiler.h>
40 #include <linux/gfp.h>
41 #include <linux/module.h>
42
43 /* People can turn this off for buggy TCP's found in printers etc. */
44 int sysctl_tcp_retrans_collapse __read_mostly = 1;
45
46 /* People can turn this on to work with those rare, broken TCPs that
47 * interpret the window field as a signed quantity.
48 */
49 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
50
51 /* This limits the percentage of the congestion window which we
52 * will allow a single TSO frame to consume. Building TSO frames
53 * which are too large can cause TCP streams to be bursty.
54 */
55 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
56
57 int sysctl_tcp_mtu_probing __read_mostly = 0;
58 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
59
60 /* By default, RFC2861 behavior. */
61 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
62
63 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
64 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
65
66
67 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,const struct sk_buff * skb)68 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
69 {
70 struct tcp_sock *tp = tcp_sk(sk);
71 unsigned int prior_packets = tp->packets_out;
72
73 tcp_advance_send_head(sk, skb);
74 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
75
76 /* Don't override Nagle indefinitely with F-RTO */
77 if (tp->frto_counter == 2)
78 tp->frto_counter = 3;
79
80 tp->packets_out += tcp_skb_pcount(skb);
81 if (!prior_packets)
82 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
83 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
84 }
85
86 /* SND.NXT, if window was not shrunk.
87 * If window has been shrunk, what should we make? It is not clear at all.
88 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
89 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
90 * invalid. OK, let's make this for now:
91 */
tcp_acceptable_seq(const struct sock * sk)92 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
93 {
94 const struct tcp_sock *tp = tcp_sk(sk);
95
96 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
97 return tp->snd_nxt;
98 else
99 return tcp_wnd_end(tp);
100 }
101
102 /* Calculate mss to advertise in SYN segment.
103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
104 *
105 * 1. It is independent of path mtu.
106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108 * attached devices, because some buggy hosts are confused by
109 * large MSS.
110 * 4. We do not make 3, we advertise MSS, calculated from first
111 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
112 * This may be overridden via information stored in routing table.
113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114 * probably even Jumbo".
115 */
tcp_advertise_mss(struct sock * sk)116 static __u16 tcp_advertise_mss(struct sock *sk)
117 {
118 struct tcp_sock *tp = tcp_sk(sk);
119 const struct dst_entry *dst = __sk_dst_get(sk);
120 int mss = tp->advmss;
121
122 if (dst) {
123 unsigned int metric = dst_metric_advmss(dst);
124
125 if (metric < mss) {
126 mss = metric;
127 tp->advmss = mss;
128 }
129 }
130
131 return (__u16)mss;
132 }
133
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135 * This is the first part of cwnd validation mechanism. */
tcp_cwnd_restart(struct sock * sk,const struct dst_entry * dst)136 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
137 {
138 struct tcp_sock *tp = tcp_sk(sk);
139 s32 delta = tcp_time_stamp - tp->lsndtime;
140 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
141 u32 cwnd = tp->snd_cwnd;
142
143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
144
145 tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 restart_cwnd = min(restart_cwnd, cwnd);
147
148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 cwnd >>= 1;
150 tp->snd_cwnd = max(cwnd, restart_cwnd);
151 tp->snd_cwnd_stamp = tcp_time_stamp;
152 tp->snd_cwnd_used = 0;
153 }
154
155 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 struct sock *sk)
158 {
159 struct inet_connection_sock *icsk = inet_csk(sk);
160 const u32 now = tcp_time_stamp;
161
162 if (sysctl_tcp_slow_start_after_idle &&
163 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
164 tcp_cwnd_restart(sk, __sk_dst_get(sk));
165
166 tp->lsndtime = now;
167
168 /* If it is a reply for ato after last received
169 * packet, enter pingpong mode.
170 */
171 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
172 icsk->icsk_ack.pingpong = 1;
173 }
174
175 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts)176 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
177 {
178 tcp_dec_quickack_mode(sk, pkts);
179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
180 }
181
182 /* Determine a window scaling and initial window to offer.
183 * Based on the assumption that the given amount of space
184 * will be offered. Store the results in the tp structure.
185 * NOTE: for smooth operation initial space offering should
186 * be a multiple of mss if possible. We assume here that mss >= 1.
187 * This MUST be enforced by all callers.
188 */
tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)189 void tcp_select_initial_window(int __space, __u32 mss,
190 __u32 *rcv_wnd, __u32 *window_clamp,
191 int wscale_ok, __u8 *rcv_wscale,
192 __u32 init_rcv_wnd)
193 {
194 unsigned int space = (__space < 0 ? 0 : __space);
195
196 /* If no clamp set the clamp to the max possible scaled window */
197 if (*window_clamp == 0)
198 (*window_clamp) = (65535 << 14);
199 space = min(*window_clamp, space);
200
201 /* Quantize space offering to a multiple of mss if possible. */
202 if (space > mss)
203 space = (space / mss) * mss;
204
205 /* NOTE: offering an initial window larger than 32767
206 * will break some buggy TCP stacks. If the admin tells us
207 * it is likely we could be speaking with such a buggy stack
208 * we will truncate our initial window offering to 32K-1
209 * unless the remote has sent us a window scaling option,
210 * which we interpret as a sign the remote TCP is not
211 * misinterpreting the window field as a signed quantity.
212 */
213 if (sysctl_tcp_workaround_signed_windows)
214 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
215 else
216 (*rcv_wnd) = space;
217
218 (*rcv_wscale) = 0;
219 if (wscale_ok) {
220 /* Set window scaling on max possible window
221 * See RFC1323 for an explanation of the limit to 14
222 */
223 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
224 space = min_t(u32, space, *window_clamp);
225 while (space > 65535 && (*rcv_wscale) < 14) {
226 space >>= 1;
227 (*rcv_wscale)++;
228 }
229 }
230
231 /* Set initial window to a value enough for senders starting with
232 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
233 * a limit on the initial window when mss is larger than 1460.
234 */
235 if (mss > (1 << *rcv_wscale)) {
236 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
237 if (mss > 1460)
238 init_cwnd =
239 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
240 /* when initializing use the value from init_rcv_wnd
241 * rather than the default from above
242 */
243 if (init_rcv_wnd)
244 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
245 else
246 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
247 }
248
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
257 * frame.
258 */
tcp_select_window(struct sock * sk)259 static u16 tcp_select_window(struct sock *sk)
260 {
261 struct tcp_sock *tp = tcp_sk(sk);
262 u32 cur_win = tcp_receive_window(tp);
263 u32 new_win = __tcp_select_window(sk);
264
265 /* Never shrink the offered window */
266 if (new_win < cur_win) {
267 /* Danger Will Robinson!
268 * Don't update rcv_wup/rcv_wnd here or else
269 * we will not be able to advertise a zero
270 * window in time. --DaveM
271 *
272 * Relax Will Robinson.
273 */
274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 }
276 tp->rcv_wnd = new_win;
277 tp->rcv_wup = tp->rcv_nxt;
278
279 /* Make sure we do not exceed the maximum possible
280 * scaled window.
281 */
282 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
283 new_win = min(new_win, MAX_TCP_WINDOW);
284 else
285 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
286
287 /* RFC1323 scaling applied */
288 new_win >>= tp->rx_opt.rcv_wscale;
289
290 /* If we advertise zero window, disable fast path. */
291 if (new_win == 0)
292 tp->pred_flags = 0;
293
294 return new_win;
295 }
296
297 /* Packet ECN state for a SYN-ACK */
TCP_ECN_send_synack(const struct tcp_sock * tp,struct sk_buff * skb)298 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
299 {
300 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
301 if (!(tp->ecn_flags & TCP_ECN_OK))
302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
303 }
304
305 /* Packet ECN state for a SYN. */
TCP_ECN_send_syn(struct sock * sk,struct sk_buff * skb)306 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 tp->ecn_flags = 0;
311 if (sysctl_tcp_ecn == 1) {
312 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
313 tp->ecn_flags = TCP_ECN_OK;
314 }
315 }
316
317 static __inline__ void
TCP_ECN_make_synack(const struct request_sock * req,struct tcphdr * th)318 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
319 {
320 if (inet_rsk(req)->ecn_ok)
321 th->ece = 1;
322 }
323
324 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
325 * be sent.
326 */
TCP_ECN_send(struct sock * sk,struct sk_buff * skb,int tcp_header_len)327 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
328 int tcp_header_len)
329 {
330 struct tcp_sock *tp = tcp_sk(sk);
331
332 if (tp->ecn_flags & TCP_ECN_OK) {
333 /* Not-retransmitted data segment: set ECT and inject CWR. */
334 if (skb->len != tcp_header_len &&
335 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
336 INET_ECN_xmit(sk);
337 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
338 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
339 tcp_hdr(skb)->cwr = 1;
340 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
341 }
342 } else {
343 /* ACK or retransmitted segment: clear ECT|CE */
344 INET_ECN_dontxmit(sk);
345 }
346 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
347 tcp_hdr(skb)->ece = 1;
348 }
349 }
350
351 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
352 * auto increment end seqno.
353 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)354 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
355 {
356 skb->ip_summed = CHECKSUM_PARTIAL;
357 skb->csum = 0;
358
359 TCP_SKB_CB(skb)->tcp_flags = flags;
360 TCP_SKB_CB(skb)->sacked = 0;
361
362 skb_shinfo(skb)->gso_segs = 1;
363 skb_shinfo(skb)->gso_size = 0;
364 skb_shinfo(skb)->gso_type = 0;
365
366 TCP_SKB_CB(skb)->seq = seq;
367 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
368 seq++;
369 TCP_SKB_CB(skb)->end_seq = seq;
370 }
371
tcp_urg_mode(const struct tcp_sock * tp)372 static inline int tcp_urg_mode(const struct tcp_sock *tp)
373 {
374 return tp->snd_una != tp->snd_up;
375 }
376
377 #define OPTION_SACK_ADVERTISE (1 << 0)
378 #define OPTION_TS (1 << 1)
379 #define OPTION_MD5 (1 << 2)
380 #define OPTION_WSCALE (1 << 3)
381 #define OPTION_COOKIE_EXTENSION (1 << 4)
382
383 struct tcp_out_options {
384 u8 options; /* bit field of OPTION_* */
385 u8 ws; /* window scale, 0 to disable */
386 u8 num_sack_blocks; /* number of SACK blocks to include */
387 u8 hash_size; /* bytes in hash_location */
388 u16 mss; /* 0 to disable */
389 __u32 tsval, tsecr; /* need to include OPTION_TS */
390 __u8 *hash_location; /* temporary pointer, overloaded */
391 };
392
393 /* The sysctl int routines are generic, so check consistency here.
394 */
tcp_cookie_size_check(u8 desired)395 static u8 tcp_cookie_size_check(u8 desired)
396 {
397 int cookie_size;
398
399 if (desired > 0)
400 /* previously specified */
401 return desired;
402
403 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
404 if (cookie_size <= 0)
405 /* no default specified */
406 return 0;
407
408 if (cookie_size <= TCP_COOKIE_MIN)
409 /* value too small, specify minimum */
410 return TCP_COOKIE_MIN;
411
412 if (cookie_size >= TCP_COOKIE_MAX)
413 /* value too large, specify maximum */
414 return TCP_COOKIE_MAX;
415
416 if (cookie_size & 1)
417 /* 8-bit multiple, illegal, fix it */
418 cookie_size++;
419
420 return (u8)cookie_size;
421 }
422
423 /* Write previously computed TCP options to the packet.
424 *
425 * Beware: Something in the Internet is very sensitive to the ordering of
426 * TCP options, we learned this through the hard way, so be careful here.
427 * Luckily we can at least blame others for their non-compliance but from
428 * inter-operatibility perspective it seems that we're somewhat stuck with
429 * the ordering which we have been using if we want to keep working with
430 * those broken things (not that it currently hurts anybody as there isn't
431 * particular reason why the ordering would need to be changed).
432 *
433 * At least SACK_PERM as the first option is known to lead to a disaster
434 * (but it may well be that other scenarios fail similarly).
435 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)436 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
437 struct tcp_out_options *opts)
438 {
439 u8 options = opts->options; /* mungable copy */
440
441 /* Having both authentication and cookies for security is redundant,
442 * and there's certainly not enough room. Instead, the cookie-less
443 * extension variant is proposed.
444 *
445 * Consider the pessimal case with authentication. The options
446 * could look like:
447 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
448 */
449 if (unlikely(OPTION_MD5 & options)) {
450 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
451 *ptr++ = htonl((TCPOPT_COOKIE << 24) |
452 (TCPOLEN_COOKIE_BASE << 16) |
453 (TCPOPT_MD5SIG << 8) |
454 TCPOLEN_MD5SIG);
455 } else {
456 *ptr++ = htonl((TCPOPT_NOP << 24) |
457 (TCPOPT_NOP << 16) |
458 (TCPOPT_MD5SIG << 8) |
459 TCPOLEN_MD5SIG);
460 }
461 options &= ~OPTION_COOKIE_EXTENSION;
462 /* overload cookie hash location */
463 opts->hash_location = (__u8 *)ptr;
464 ptr += 4;
465 }
466
467 if (unlikely(opts->mss)) {
468 *ptr++ = htonl((TCPOPT_MSS << 24) |
469 (TCPOLEN_MSS << 16) |
470 opts->mss);
471 }
472
473 if (likely(OPTION_TS & options)) {
474 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 (TCPOLEN_SACK_PERM << 16) |
477 (TCPOPT_TIMESTAMP << 8) |
478 TCPOLEN_TIMESTAMP);
479 options &= ~OPTION_SACK_ADVERTISE;
480 } else {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_TIMESTAMP << 8) |
484 TCPOLEN_TIMESTAMP);
485 }
486 *ptr++ = htonl(opts->tsval);
487 *ptr++ = htonl(opts->tsecr);
488 }
489
490 /* Specification requires after timestamp, so do it now.
491 *
492 * Consider the pessimal case without authentication. The options
493 * could look like:
494 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
495 */
496 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
497 __u8 *cookie_copy = opts->hash_location;
498 u8 cookie_size = opts->hash_size;
499
500 /* 8-bit multiple handled in tcp_cookie_size_check() above,
501 * and elsewhere.
502 */
503 if (0x2 & cookie_size) {
504 __u8 *p = (__u8 *)ptr;
505
506 /* 16-bit multiple */
507 *p++ = TCPOPT_COOKIE;
508 *p++ = TCPOLEN_COOKIE_BASE + cookie_size;
509 *p++ = *cookie_copy++;
510 *p++ = *cookie_copy++;
511 ptr++;
512 cookie_size -= 2;
513 } else {
514 /* 32-bit multiple */
515 *ptr++ = htonl(((TCPOPT_NOP << 24) |
516 (TCPOPT_NOP << 16) |
517 (TCPOPT_COOKIE << 8) |
518 TCPOLEN_COOKIE_BASE) +
519 cookie_size);
520 }
521
522 if (cookie_size > 0) {
523 memcpy(ptr, cookie_copy, cookie_size);
524 ptr += (cookie_size / 4);
525 }
526 }
527
528 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
529 *ptr++ = htonl((TCPOPT_NOP << 24) |
530 (TCPOPT_NOP << 16) |
531 (TCPOPT_SACK_PERM << 8) |
532 TCPOLEN_SACK_PERM);
533 }
534
535 if (unlikely(OPTION_WSCALE & options)) {
536 *ptr++ = htonl((TCPOPT_NOP << 24) |
537 (TCPOPT_WINDOW << 16) |
538 (TCPOLEN_WINDOW << 8) |
539 opts->ws);
540 }
541
542 if (unlikely(opts->num_sack_blocks)) {
543 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
544 tp->duplicate_sack : tp->selective_acks;
545 int this_sack;
546
547 *ptr++ = htonl((TCPOPT_NOP << 24) |
548 (TCPOPT_NOP << 16) |
549 (TCPOPT_SACK << 8) |
550 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
551 TCPOLEN_SACK_PERBLOCK)));
552
553 for (this_sack = 0; this_sack < opts->num_sack_blocks;
554 ++this_sack) {
555 *ptr++ = htonl(sp[this_sack].start_seq);
556 *ptr++ = htonl(sp[this_sack].end_seq);
557 }
558
559 tp->rx_opt.dsack = 0;
560 }
561 }
562
563 /* Compute TCP options for SYN packets. This is not the final
564 * network wire format yet.
565 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)566 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb,
567 struct tcp_out_options *opts,
568 struct tcp_md5sig_key **md5)
569 {
570 struct tcp_sock *tp = tcp_sk(sk);
571 struct tcp_cookie_values *cvp = tp->cookie_values;
572 unsigned remaining = MAX_TCP_OPTION_SPACE;
573 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
574 tcp_cookie_size_check(cvp->cookie_desired) :
575 0;
576
577 #ifdef CONFIG_TCP_MD5SIG
578 *md5 = tp->af_specific->md5_lookup(sk, sk);
579 if (*md5) {
580 opts->options |= OPTION_MD5;
581 remaining -= TCPOLEN_MD5SIG_ALIGNED;
582 }
583 #else
584 *md5 = NULL;
585 #endif
586
587 /* We always get an MSS option. The option bytes which will be seen in
588 * normal data packets should timestamps be used, must be in the MSS
589 * advertised. But we subtract them from tp->mss_cache so that
590 * calculations in tcp_sendmsg are simpler etc. So account for this
591 * fact here if necessary. If we don't do this correctly, as a
592 * receiver we won't recognize data packets as being full sized when we
593 * should, and thus we won't abide by the delayed ACK rules correctly.
594 * SACKs don't matter, we never delay an ACK when we have any of those
595 * going out. */
596 opts->mss = tcp_advertise_mss(sk);
597 remaining -= TCPOLEN_MSS_ALIGNED;
598
599 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
600 opts->options |= OPTION_TS;
601 opts->tsval = TCP_SKB_CB(skb)->when;
602 opts->tsecr = tp->rx_opt.ts_recent;
603 remaining -= TCPOLEN_TSTAMP_ALIGNED;
604 }
605 if (likely(sysctl_tcp_window_scaling)) {
606 opts->ws = tp->rx_opt.rcv_wscale;
607 opts->options |= OPTION_WSCALE;
608 remaining -= TCPOLEN_WSCALE_ALIGNED;
609 }
610 if (likely(sysctl_tcp_sack)) {
611 opts->options |= OPTION_SACK_ADVERTISE;
612 if (unlikely(!(OPTION_TS & opts->options)))
613 remaining -= TCPOLEN_SACKPERM_ALIGNED;
614 }
615
616 /* Note that timestamps are required by the specification.
617 *
618 * Odd numbers of bytes are prohibited by the specification, ensuring
619 * that the cookie is 16-bit aligned, and the resulting cookie pair is
620 * 32-bit aligned.
621 */
622 if (*md5 == NULL &&
623 (OPTION_TS & opts->options) &&
624 cookie_size > 0) {
625 int need = TCPOLEN_COOKIE_BASE + cookie_size;
626
627 if (0x2 & need) {
628 /* 32-bit multiple */
629 need += 2; /* NOPs */
630
631 if (need > remaining) {
632 /* try shrinking cookie to fit */
633 cookie_size -= 2;
634 need -= 4;
635 }
636 }
637 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
638 cookie_size -= 4;
639 need -= 4;
640 }
641 if (TCP_COOKIE_MIN <= cookie_size) {
642 opts->options |= OPTION_COOKIE_EXTENSION;
643 opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
644 opts->hash_size = cookie_size;
645
646 /* Remember for future incarnations. */
647 cvp->cookie_desired = cookie_size;
648
649 if (cvp->cookie_desired != cvp->cookie_pair_size) {
650 /* Currently use random bytes as a nonce,
651 * assuming these are completely unpredictable
652 * by hostile users of the same system.
653 */
654 get_random_bytes(&cvp->cookie_pair[0],
655 cookie_size);
656 cvp->cookie_pair_size = cookie_size;
657 }
658
659 remaining -= need;
660 }
661 }
662 return MAX_TCP_OPTION_SPACE - remaining;
663 }
664
665 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(struct sock * sk,struct request_sock * req,unsigned mss,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5,struct tcp_extend_values * xvp)666 static unsigned tcp_synack_options(struct sock *sk,
667 struct request_sock *req,
668 unsigned mss, struct sk_buff *skb,
669 struct tcp_out_options *opts,
670 struct tcp_md5sig_key **md5,
671 struct tcp_extend_values *xvp)
672 {
673 struct inet_request_sock *ireq = inet_rsk(req);
674 unsigned remaining = MAX_TCP_OPTION_SPACE;
675 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
676 xvp->cookie_plus :
677 0;
678
679 #ifdef CONFIG_TCP_MD5SIG
680 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
681 if (*md5) {
682 opts->options |= OPTION_MD5;
683 remaining -= TCPOLEN_MD5SIG_ALIGNED;
684
685 /* We can't fit any SACK blocks in a packet with MD5 + TS
686 * options. There was discussion about disabling SACK
687 * rather than TS in order to fit in better with old,
688 * buggy kernels, but that was deemed to be unnecessary.
689 */
690 ireq->tstamp_ok &= !ireq->sack_ok;
691 }
692 #else
693 *md5 = NULL;
694 #endif
695
696 /* We always send an MSS option. */
697 opts->mss = mss;
698 remaining -= TCPOLEN_MSS_ALIGNED;
699
700 if (likely(ireq->wscale_ok)) {
701 opts->ws = ireq->rcv_wscale;
702 opts->options |= OPTION_WSCALE;
703 remaining -= TCPOLEN_WSCALE_ALIGNED;
704 }
705 if (likely(ireq->tstamp_ok)) {
706 opts->options |= OPTION_TS;
707 opts->tsval = TCP_SKB_CB(skb)->when;
708 opts->tsecr = req->ts_recent;
709 remaining -= TCPOLEN_TSTAMP_ALIGNED;
710 }
711 if (likely(ireq->sack_ok)) {
712 opts->options |= OPTION_SACK_ADVERTISE;
713 if (unlikely(!ireq->tstamp_ok))
714 remaining -= TCPOLEN_SACKPERM_ALIGNED;
715 }
716
717 /* Similar rationale to tcp_syn_options() applies here, too.
718 * If the <SYN> options fit, the same options should fit now!
719 */
720 if (*md5 == NULL &&
721 ireq->tstamp_ok &&
722 cookie_plus > TCPOLEN_COOKIE_BASE) {
723 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
724
725 if (0x2 & need) {
726 /* 32-bit multiple */
727 need += 2; /* NOPs */
728 }
729 if (need <= remaining) {
730 opts->options |= OPTION_COOKIE_EXTENSION;
731 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
732 remaining -= need;
733 } else {
734 /* There's no error return, so flag it. */
735 xvp->cookie_out_never = 1; /* true */
736 opts->hash_size = 0;
737 }
738 }
739 return MAX_TCP_OPTION_SPACE - remaining;
740 }
741
742 /* Compute TCP options for ESTABLISHED sockets. This is not the
743 * final wire format yet.
744 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)745 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb,
746 struct tcp_out_options *opts,
747 struct tcp_md5sig_key **md5)
748 {
749 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
750 struct tcp_sock *tp = tcp_sk(sk);
751 unsigned size = 0;
752 unsigned int eff_sacks;
753
754 #ifdef CONFIG_TCP_MD5SIG
755 *md5 = tp->af_specific->md5_lookup(sk, sk);
756 if (unlikely(*md5)) {
757 opts->options |= OPTION_MD5;
758 size += TCPOLEN_MD5SIG_ALIGNED;
759 }
760 #else
761 *md5 = NULL;
762 #endif
763
764 if (likely(tp->rx_opt.tstamp_ok)) {
765 opts->options |= OPTION_TS;
766 opts->tsval = tcb ? tcb->when : 0;
767 opts->tsecr = tp->rx_opt.ts_recent;
768 size += TCPOLEN_TSTAMP_ALIGNED;
769 }
770
771 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
772 if (unlikely(eff_sacks)) {
773 const unsigned remaining = MAX_TCP_OPTION_SPACE - size;
774 opts->num_sack_blocks =
775 min_t(unsigned, eff_sacks,
776 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
777 TCPOLEN_SACK_PERBLOCK);
778 size += TCPOLEN_SACK_BASE_ALIGNED +
779 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
780 }
781
782 return size;
783 }
784
785 /* This routine actually transmits TCP packets queued in by
786 * tcp_do_sendmsg(). This is used by both the initial
787 * transmission and possible later retransmissions.
788 * All SKB's seen here are completely headerless. It is our
789 * job to build the TCP header, and pass the packet down to
790 * IP so it can do the same plus pass the packet off to the
791 * device.
792 *
793 * We are working here with either a clone of the original
794 * SKB, or a fresh unique copy made by the retransmit engine.
795 */
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)796 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
797 gfp_t gfp_mask)
798 {
799 const struct inet_connection_sock *icsk = inet_csk(sk);
800 struct inet_sock *inet;
801 struct tcp_sock *tp;
802 struct tcp_skb_cb *tcb;
803 struct tcp_out_options opts;
804 unsigned tcp_options_size, tcp_header_size;
805 struct tcp_md5sig_key *md5;
806 struct tcphdr *th;
807 int err;
808
809 BUG_ON(!skb || !tcp_skb_pcount(skb));
810
811 /* If congestion control is doing timestamping, we must
812 * take such a timestamp before we potentially clone/copy.
813 */
814 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
815 __net_timestamp(skb);
816
817 if (likely(clone_it)) {
818 if (unlikely(skb_cloned(skb)))
819 skb = pskb_copy(skb, gfp_mask);
820 else
821 skb = skb_clone(skb, gfp_mask);
822 if (unlikely(!skb))
823 return -ENOBUFS;
824 }
825
826 inet = inet_sk(sk);
827 tp = tcp_sk(sk);
828 tcb = TCP_SKB_CB(skb);
829 memset(&opts, 0, sizeof(opts));
830
831 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
832 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
833 else
834 tcp_options_size = tcp_established_options(sk, skb, &opts,
835 &md5);
836 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
837
838 if (tcp_packets_in_flight(tp) == 0)
839 tcp_ca_event(sk, CA_EVENT_TX_START);
840
841 /* if no packet is in qdisc/device queue, then allow XPS to select
842 * another queue.
843 */
844 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
845
846 skb_push(skb, tcp_header_size);
847 skb_reset_transport_header(skb);
848 skb_set_owner_w(skb, sk);
849
850 /* Build TCP header and checksum it. */
851 th = tcp_hdr(skb);
852 th->source = inet->inet_sport;
853 th->dest = inet->inet_dport;
854 th->seq = htonl(tcb->seq);
855 th->ack_seq = htonl(tp->rcv_nxt);
856 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
857 tcb->tcp_flags);
858
859 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
860 /* RFC1323: The window in SYN & SYN/ACK segments
861 * is never scaled.
862 */
863 th->window = htons(min(tp->rcv_wnd, 65535U));
864 } else {
865 th->window = htons(tcp_select_window(sk));
866 }
867 th->check = 0;
868 th->urg_ptr = 0;
869
870 /* The urg_mode check is necessary during a below snd_una win probe */
871 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
872 if (before(tp->snd_up, tcb->seq + 0x10000)) {
873 th->urg_ptr = htons(tp->snd_up - tcb->seq);
874 th->urg = 1;
875 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
876 th->urg_ptr = htons(0xFFFF);
877 th->urg = 1;
878 }
879 }
880
881 tcp_options_write((__be32 *)(th + 1), tp, &opts);
882 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
883 TCP_ECN_send(sk, skb, tcp_header_size);
884
885 #ifdef CONFIG_TCP_MD5SIG
886 /* Calculate the MD5 hash, as we have all we need now */
887 if (md5) {
888 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
889 tp->af_specific->calc_md5_hash(opts.hash_location,
890 md5, sk, NULL, skb);
891 }
892 #endif
893
894 icsk->icsk_af_ops->send_check(sk, skb);
895
896 if (likely(tcb->tcp_flags & TCPHDR_ACK))
897 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
898
899 if (skb->len != tcp_header_size)
900 tcp_event_data_sent(tp, sk);
901
902 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
903 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
904 tcp_skb_pcount(skb));
905
906 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
907 if (likely(err <= 0))
908 return err;
909
910 tcp_enter_cwr(sk, 1);
911
912 return net_xmit_eval(err);
913 }
914
915 /* This routine just queues the buffer for sending.
916 *
917 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
918 * otherwise socket can stall.
919 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)920 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
921 {
922 struct tcp_sock *tp = tcp_sk(sk);
923
924 /* Advance write_seq and place onto the write_queue. */
925 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
926 skb_header_release(skb);
927 tcp_add_write_queue_tail(sk, skb);
928 sk->sk_wmem_queued += skb->truesize;
929 sk_mem_charge(sk, skb->truesize);
930 }
931
932 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)933 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
934 unsigned int mss_now)
935 {
936 /* Make sure we own this skb before messing gso_size/gso_segs */
937 WARN_ON_ONCE(skb_cloned(skb));
938
939 if (skb->len <= mss_now || !sk_can_gso(sk) ||
940 skb->ip_summed == CHECKSUM_NONE) {
941 /* Avoid the costly divide in the normal
942 * non-TSO case.
943 */
944 skb_shinfo(skb)->gso_segs = 1;
945 skb_shinfo(skb)->gso_size = 0;
946 skb_shinfo(skb)->gso_type = 0;
947 } else {
948 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
949 skb_shinfo(skb)->gso_size = mss_now;
950 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
951 }
952 }
953
954 /* When a modification to fackets out becomes necessary, we need to check
955 * skb is counted to fackets_out or not.
956 */
tcp_adjust_fackets_out(struct sock * sk,const struct sk_buff * skb,int decr)957 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
958 int decr)
959 {
960 struct tcp_sock *tp = tcp_sk(sk);
961
962 if (!tp->sacked_out || tcp_is_reno(tp))
963 return;
964
965 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
966 tp->fackets_out -= decr;
967 }
968
969 /* Pcount in the middle of the write queue got changed, we need to do various
970 * tweaks to fix counters
971 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)972 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
973 {
974 struct tcp_sock *tp = tcp_sk(sk);
975
976 tp->packets_out -= decr;
977
978 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
979 tp->sacked_out -= decr;
980 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
981 tp->retrans_out -= decr;
982 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
983 tp->lost_out -= decr;
984
985 /* Reno case is special. Sigh... */
986 if (tcp_is_reno(tp) && decr > 0)
987 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
988
989 tcp_adjust_fackets_out(sk, skb, decr);
990
991 if (tp->lost_skb_hint &&
992 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
993 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
994 tp->lost_cnt_hint -= decr;
995
996 tcp_verify_left_out(tp);
997 }
998
999 /* Function to create two new TCP segments. Shrinks the given segment
1000 * to the specified size and appends a new segment with the rest of the
1001 * packet to the list. This won't be called frequently, I hope.
1002 * Remember, these are still headerless SKBs at this point.
1003 */
tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now)1004 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1005 unsigned int mss_now)
1006 {
1007 struct tcp_sock *tp = tcp_sk(sk);
1008 struct sk_buff *buff;
1009 int nsize, old_factor;
1010 int nlen;
1011 u8 flags;
1012
1013 if (WARN_ON(len > skb->len))
1014 return -EINVAL;
1015
1016 nsize = skb_headlen(skb) - len;
1017 if (nsize < 0)
1018 nsize = 0;
1019
1020 if (skb_unclone(skb, GFP_ATOMIC))
1021 return -ENOMEM;
1022
1023 /* Get a new skb... force flag on. */
1024 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1025 if (buff == NULL)
1026 return -ENOMEM; /* We'll just try again later. */
1027
1028 sk->sk_wmem_queued += buff->truesize;
1029 sk_mem_charge(sk, buff->truesize);
1030 nlen = skb->len - len - nsize;
1031 buff->truesize += nlen;
1032 skb->truesize -= nlen;
1033
1034 /* Correct the sequence numbers. */
1035 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1036 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1037 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1038
1039 /* PSH and FIN should only be set in the second packet. */
1040 flags = TCP_SKB_CB(skb)->tcp_flags;
1041 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1042 TCP_SKB_CB(buff)->tcp_flags = flags;
1043 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1044
1045 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1046 /* Copy and checksum data tail into the new buffer. */
1047 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1048 skb_put(buff, nsize),
1049 nsize, 0);
1050
1051 skb_trim(skb, len);
1052
1053 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1054 } else {
1055 skb->ip_summed = CHECKSUM_PARTIAL;
1056 skb_split(skb, buff, len);
1057 }
1058
1059 buff->ip_summed = skb->ip_summed;
1060
1061 /* Looks stupid, but our code really uses when of
1062 * skbs, which it never sent before. --ANK
1063 */
1064 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1065 buff->tstamp = skb->tstamp;
1066
1067 old_factor = tcp_skb_pcount(skb);
1068
1069 /* Fix up tso_factor for both original and new SKB. */
1070 tcp_set_skb_tso_segs(sk, skb, mss_now);
1071 tcp_set_skb_tso_segs(sk, buff, mss_now);
1072
1073 /* If this packet has been sent out already, we must
1074 * adjust the various packet counters.
1075 */
1076 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1077 int diff = old_factor - tcp_skb_pcount(skb) -
1078 tcp_skb_pcount(buff);
1079
1080 if (diff)
1081 tcp_adjust_pcount(sk, skb, diff);
1082 }
1083
1084 /* Link BUFF into the send queue. */
1085 skb_header_release(buff);
1086 tcp_insert_write_queue_after(skb, buff, sk);
1087
1088 return 0;
1089 }
1090
1091 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1092 * eventually). The difference is that pulled data not copied, but
1093 * immediately discarded.
1094 */
__pskb_trim_head(struct sk_buff * skb,int len)1095 static void __pskb_trim_head(struct sk_buff *skb, int len)
1096 {
1097 int i, k, eat;
1098
1099 eat = min_t(int, len, skb_headlen(skb));
1100 if (eat) {
1101 __skb_pull(skb, eat);
1102 len -= eat;
1103 if (!len)
1104 return;
1105 }
1106 eat = len;
1107 k = 0;
1108 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1109 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1110
1111 if (size <= eat) {
1112 skb_frag_unref(skb, i);
1113 eat -= size;
1114 } else {
1115 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1116 if (eat) {
1117 skb_shinfo(skb)->frags[k].page_offset += eat;
1118 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1119 eat = 0;
1120 }
1121 k++;
1122 }
1123 }
1124 skb_shinfo(skb)->nr_frags = k;
1125
1126 skb_reset_tail_pointer(skb);
1127 skb->data_len -= len;
1128 skb->len = skb->data_len;
1129 }
1130
1131 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1132 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1133 {
1134 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1135 return -ENOMEM;
1136
1137 __pskb_trim_head(skb, len);
1138
1139 TCP_SKB_CB(skb)->seq += len;
1140 skb->ip_summed = CHECKSUM_PARTIAL;
1141
1142 skb->truesize -= len;
1143 sk->sk_wmem_queued -= len;
1144 sk_mem_uncharge(sk, len);
1145 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1146
1147 /* Any change of skb->len requires recalculation of tso factor. */
1148 if (tcp_skb_pcount(skb) > 1)
1149 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1150
1151 return 0;
1152 }
1153
1154 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(const struct sock * sk,int pmtu)1155 int tcp_mtu_to_mss(const struct sock *sk, int pmtu)
1156 {
1157 const struct tcp_sock *tp = tcp_sk(sk);
1158 const struct inet_connection_sock *icsk = inet_csk(sk);
1159 int mss_now;
1160
1161 /* Calculate base mss without TCP options:
1162 It is MMS_S - sizeof(tcphdr) of rfc1122
1163 */
1164 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1165
1166 /* Clamp it (mss_clamp does not include tcp options) */
1167 if (mss_now > tp->rx_opt.mss_clamp)
1168 mss_now = tp->rx_opt.mss_clamp;
1169
1170 /* Now subtract optional transport overhead */
1171 mss_now -= icsk->icsk_ext_hdr_len;
1172
1173 /* Then reserve room for full set of TCP options and 8 bytes of data */
1174 if (mss_now < 48)
1175 mss_now = 48;
1176
1177 /* Now subtract TCP options size, not including SACKs */
1178 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1179
1180 return mss_now;
1181 }
1182
1183 /* Inverse of above */
tcp_mss_to_mtu(const struct sock * sk,int mss)1184 int tcp_mss_to_mtu(const struct sock *sk, int mss)
1185 {
1186 const struct tcp_sock *tp = tcp_sk(sk);
1187 const struct inet_connection_sock *icsk = inet_csk(sk);
1188 int mtu;
1189
1190 mtu = mss +
1191 tp->tcp_header_len +
1192 icsk->icsk_ext_hdr_len +
1193 icsk->icsk_af_ops->net_header_len;
1194
1195 return mtu;
1196 }
1197
1198 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1199 void tcp_mtup_init(struct sock *sk)
1200 {
1201 struct tcp_sock *tp = tcp_sk(sk);
1202 struct inet_connection_sock *icsk = inet_csk(sk);
1203
1204 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1205 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1206 icsk->icsk_af_ops->net_header_len;
1207 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1208 icsk->icsk_mtup.probe_size = 0;
1209 }
1210 EXPORT_SYMBOL(tcp_mtup_init);
1211
1212 /* This function synchronize snd mss to current pmtu/exthdr set.
1213
1214 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1215 for TCP options, but includes only bare TCP header.
1216
1217 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1218 It is minimum of user_mss and mss received with SYN.
1219 It also does not include TCP options.
1220
1221 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1222
1223 tp->mss_cache is current effective sending mss, including
1224 all tcp options except for SACKs. It is evaluated,
1225 taking into account current pmtu, but never exceeds
1226 tp->rx_opt.mss_clamp.
1227
1228 NOTE1. rfc1122 clearly states that advertised MSS
1229 DOES NOT include either tcp or ip options.
1230
1231 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1232 are READ ONLY outside this function. --ANK (980731)
1233 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1234 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1235 {
1236 struct tcp_sock *tp = tcp_sk(sk);
1237 struct inet_connection_sock *icsk = inet_csk(sk);
1238 int mss_now;
1239
1240 if (icsk->icsk_mtup.search_high > pmtu)
1241 icsk->icsk_mtup.search_high = pmtu;
1242
1243 mss_now = tcp_mtu_to_mss(sk, pmtu);
1244 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1245
1246 /* And store cached results */
1247 icsk->icsk_pmtu_cookie = pmtu;
1248 if (icsk->icsk_mtup.enabled)
1249 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1250 tp->mss_cache = mss_now;
1251
1252 return mss_now;
1253 }
1254 EXPORT_SYMBOL(tcp_sync_mss);
1255
1256 /* Compute the current effective MSS, taking SACKs and IP options,
1257 * and even PMTU discovery events into account.
1258 */
tcp_current_mss(struct sock * sk)1259 unsigned int tcp_current_mss(struct sock *sk)
1260 {
1261 const struct tcp_sock *tp = tcp_sk(sk);
1262 const struct dst_entry *dst = __sk_dst_get(sk);
1263 u32 mss_now;
1264 unsigned header_len;
1265 struct tcp_out_options opts;
1266 struct tcp_md5sig_key *md5;
1267
1268 mss_now = tp->mss_cache;
1269
1270 if (dst) {
1271 u32 mtu = dst_mtu(dst);
1272 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1273 mss_now = tcp_sync_mss(sk, mtu);
1274 }
1275
1276 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1277 sizeof(struct tcphdr);
1278 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1279 * some common options. If this is an odd packet (because we have SACK
1280 * blocks etc) then our calculated header_len will be different, and
1281 * we have to adjust mss_now correspondingly */
1282 if (header_len != tp->tcp_header_len) {
1283 int delta = (int) header_len - tp->tcp_header_len;
1284 mss_now -= delta;
1285 }
1286
1287 return mss_now;
1288 }
1289
1290 /* Congestion window validation. (RFC2861) */
tcp_cwnd_validate(struct sock * sk)1291 static void tcp_cwnd_validate(struct sock *sk)
1292 {
1293 struct tcp_sock *tp = tcp_sk(sk);
1294
1295 if (tp->packets_out >= tp->snd_cwnd) {
1296 /* Network is feed fully. */
1297 tp->snd_cwnd_used = 0;
1298 tp->snd_cwnd_stamp = tcp_time_stamp;
1299 } else {
1300 /* Network starves. */
1301 if (tp->packets_out > tp->snd_cwnd_used)
1302 tp->snd_cwnd_used = tp->packets_out;
1303
1304 if (sysctl_tcp_slow_start_after_idle &&
1305 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1306 tcp_cwnd_application_limited(sk);
1307 }
1308 }
1309
1310 /* Returns the portion of skb which can be sent right away without
1311 * introducing MSS oddities to segment boundaries. In rare cases where
1312 * mss_now != mss_cache, we will request caller to create a small skb
1313 * per input skb which could be mostly avoided here (if desired).
1314 *
1315 * We explicitly want to create a request for splitting write queue tail
1316 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1317 * thus all the complexity (cwnd_len is always MSS multiple which we
1318 * return whenever allowed by the other factors). Basically we need the
1319 * modulo only when the receiver window alone is the limiting factor or
1320 * when we would be allowed to send the split-due-to-Nagle skb fully.
1321 */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs)1322 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1323 unsigned int mss_now, unsigned int max_segs)
1324 {
1325 const struct tcp_sock *tp = tcp_sk(sk);
1326 u32 needed, window, max_len;
1327
1328 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1329 max_len = mss_now * max_segs;
1330
1331 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1332 return max_len;
1333
1334 needed = min(skb->len, window);
1335
1336 if (max_len <= needed)
1337 return max_len;
1338
1339 return needed - needed % mss_now;
1340 }
1341
1342 /* Can at least one segment of SKB be sent right now, according to the
1343 * congestion window rules? If so, return how many segments are allowed.
1344 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1345 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1346 const struct sk_buff *skb)
1347 {
1348 u32 in_flight, cwnd;
1349
1350 /* Don't be strict about the congestion window for the final FIN. */
1351 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1352 tcp_skb_pcount(skb) == 1)
1353 return 1;
1354
1355 in_flight = tcp_packets_in_flight(tp);
1356 cwnd = tp->snd_cwnd;
1357 if (in_flight < cwnd)
1358 return (cwnd - in_flight);
1359
1360 return 0;
1361 }
1362
1363 /* Initialize TSO state of a skb.
1364 * This must be invoked the first time we consider transmitting
1365 * SKB onto the wire.
1366 */
tcp_init_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1367 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1368 unsigned int mss_now)
1369 {
1370 int tso_segs = tcp_skb_pcount(skb);
1371
1372 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1373 tcp_set_skb_tso_segs(sk, skb, mss_now);
1374 tso_segs = tcp_skb_pcount(skb);
1375 }
1376 return tso_segs;
1377 }
1378
1379 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1380 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1381 {
1382 return after(tp->snd_sml, tp->snd_una) &&
1383 !after(tp->snd_sml, tp->snd_nxt);
1384 }
1385
1386 /* Return 0, if packet can be sent now without violation Nagle's rules:
1387 * 1. It is full sized.
1388 * 2. Or it contains FIN. (already checked by caller)
1389 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1390 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1391 * With Minshall's modification: all sent small packets are ACKed.
1392 */
tcp_nagle_check(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned mss_now,int nonagle)1393 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1394 const struct sk_buff *skb,
1395 unsigned mss_now, int nonagle)
1396 {
1397 return skb->len < mss_now &&
1398 ((nonagle & TCP_NAGLE_CORK) ||
1399 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1400 }
1401
1402 /* Return non-zero if the Nagle test allows this packet to be
1403 * sent now.
1404 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1405 static inline int tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1406 unsigned int cur_mss, int nonagle)
1407 {
1408 /* Nagle rule does not apply to frames, which sit in the middle of the
1409 * write_queue (they have no chances to get new data).
1410 *
1411 * This is implemented in the callers, where they modify the 'nonagle'
1412 * argument based upon the location of SKB in the send queue.
1413 */
1414 if (nonagle & TCP_NAGLE_PUSH)
1415 return 1;
1416
1417 /* Don't use the nagle rule for urgent data (or for the final FIN).
1418 * Nagle can be ignored during F-RTO too (see RFC4138).
1419 */
1420 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1421 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1422 return 1;
1423
1424 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1425 return 1;
1426
1427 return 0;
1428 }
1429
1430 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1431 static inline int tcp_snd_wnd_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1432 unsigned int cur_mss)
1433 {
1434 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1435
1436 if (skb->len > cur_mss)
1437 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1438
1439 return !after(end_seq, tcp_wnd_end(tp));
1440 }
1441
1442 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1443 * should be put on the wire right now. If so, it returns the number of
1444 * packets allowed by the congestion window.
1445 */
tcp_snd_test(const struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1446 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1447 unsigned int cur_mss, int nonagle)
1448 {
1449 const struct tcp_sock *tp = tcp_sk(sk);
1450 unsigned int cwnd_quota;
1451
1452 tcp_init_tso_segs(sk, skb, cur_mss);
1453
1454 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1455 return 0;
1456
1457 cwnd_quota = tcp_cwnd_test(tp, skb);
1458 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1459 cwnd_quota = 0;
1460
1461 return cwnd_quota;
1462 }
1463
1464 /* Test if sending is allowed right now. */
tcp_may_send_now(struct sock * sk)1465 int tcp_may_send_now(struct sock *sk)
1466 {
1467 const struct tcp_sock *tp = tcp_sk(sk);
1468 struct sk_buff *skb = tcp_send_head(sk);
1469
1470 return skb &&
1471 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1472 (tcp_skb_is_last(sk, skb) ?
1473 tp->nonagle : TCP_NAGLE_PUSH));
1474 }
1475
1476 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1477 * which is put after SKB on the list. It is very much like
1478 * tcp_fragment() except that it may make several kinds of assumptions
1479 * in order to speed up the splitting operation. In particular, we
1480 * know that all the data is in scatter-gather pages, and that the
1481 * packet has never been sent out before (and thus is not cloned).
1482 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1483 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1484 unsigned int mss_now, gfp_t gfp)
1485 {
1486 struct sk_buff *buff;
1487 int nlen = skb->len - len;
1488 u8 flags;
1489
1490 /* All of a TSO frame must be composed of paged data. */
1491 if (skb->len != skb->data_len)
1492 return tcp_fragment(sk, skb, len, mss_now);
1493
1494 buff = sk_stream_alloc_skb(sk, 0, gfp);
1495 if (unlikely(buff == NULL))
1496 return -ENOMEM;
1497
1498 sk->sk_wmem_queued += buff->truesize;
1499 sk_mem_charge(sk, buff->truesize);
1500 buff->truesize += nlen;
1501 skb->truesize -= nlen;
1502
1503 /* Correct the sequence numbers. */
1504 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1505 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1506 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1507
1508 /* PSH and FIN should only be set in the second packet. */
1509 flags = TCP_SKB_CB(skb)->tcp_flags;
1510 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1511 TCP_SKB_CB(buff)->tcp_flags = flags;
1512
1513 /* This packet was never sent out yet, so no SACK bits. */
1514 TCP_SKB_CB(buff)->sacked = 0;
1515
1516 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1517 skb_split(skb, buff, len);
1518
1519 /* Fix up tso_factor for both original and new SKB. */
1520 tcp_set_skb_tso_segs(sk, skb, mss_now);
1521 tcp_set_skb_tso_segs(sk, buff, mss_now);
1522
1523 /* Link BUFF into the send queue. */
1524 skb_header_release(buff);
1525 tcp_insert_write_queue_after(skb, buff, sk);
1526
1527 return 0;
1528 }
1529
1530 /* Try to defer sending, if possible, in order to minimize the amount
1531 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1532 *
1533 * This algorithm is from John Heffner.
1534 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb)1535 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1536 {
1537 struct tcp_sock *tp = tcp_sk(sk);
1538 const struct inet_connection_sock *icsk = inet_csk(sk);
1539 u32 send_win, cong_win, limit, in_flight;
1540 int win_divisor;
1541
1542 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1543 goto send_now;
1544
1545 if (icsk->icsk_ca_state != TCP_CA_Open)
1546 goto send_now;
1547
1548 /* Defer for less than two clock ticks. */
1549 if (tp->tso_deferred &&
1550 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1551 goto send_now;
1552
1553 in_flight = tcp_packets_in_flight(tp);
1554
1555 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1556
1557 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1558
1559 /* From in_flight test above, we know that cwnd > in_flight. */
1560 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1561
1562 limit = min(send_win, cong_win);
1563
1564 /* If a full-sized TSO skb can be sent, do it. */
1565 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1566 sk->sk_gso_max_segs * tp->mss_cache))
1567 goto send_now;
1568
1569 /* Middle in queue won't get any more data, full sendable already? */
1570 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1571 goto send_now;
1572
1573 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1574 if (win_divisor) {
1575 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1576
1577 /* If at least some fraction of a window is available,
1578 * just use it.
1579 */
1580 chunk /= win_divisor;
1581 if (limit >= chunk)
1582 goto send_now;
1583 } else {
1584 /* Different approach, try not to defer past a single
1585 * ACK. Receiver should ACK every other full sized
1586 * frame, so if we have space for more than 3 frames
1587 * then send now.
1588 */
1589 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1590 goto send_now;
1591 }
1592
1593 /* Ok, it looks like it is advisable to defer.
1594 * Do not rearm the timer if already set to not break TCP ACK clocking.
1595 */
1596 if (!tp->tso_deferred)
1597 tp->tso_deferred = 1 | (jiffies << 1);
1598
1599 return 1;
1600
1601 send_now:
1602 tp->tso_deferred = 0;
1603 return 0;
1604 }
1605
1606 /* Create a new MTU probe if we are ready.
1607 * MTU probe is regularly attempting to increase the path MTU by
1608 * deliberately sending larger packets. This discovers routing
1609 * changes resulting in larger path MTUs.
1610 *
1611 * Returns 0 if we should wait to probe (no cwnd available),
1612 * 1 if a probe was sent,
1613 * -1 otherwise
1614 */
tcp_mtu_probe(struct sock * sk)1615 static int tcp_mtu_probe(struct sock *sk)
1616 {
1617 struct tcp_sock *tp = tcp_sk(sk);
1618 struct inet_connection_sock *icsk = inet_csk(sk);
1619 struct sk_buff *skb, *nskb, *next;
1620 int len;
1621 int probe_size;
1622 int size_needed;
1623 int copy;
1624 int mss_now;
1625
1626 /* Not currently probing/verifying,
1627 * not in recovery,
1628 * have enough cwnd, and
1629 * not SACKing (the variable headers throw things off) */
1630 if (!icsk->icsk_mtup.enabled ||
1631 icsk->icsk_mtup.probe_size ||
1632 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1633 tp->snd_cwnd < 11 ||
1634 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1635 return -1;
1636
1637 /* Very simple search strategy: just double the MSS. */
1638 mss_now = tcp_current_mss(sk);
1639 probe_size = 2 * tp->mss_cache;
1640 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1641 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1642 /* TODO: set timer for probe_converge_event */
1643 return -1;
1644 }
1645
1646 /* Have enough data in the send queue to probe? */
1647 if (tp->write_seq - tp->snd_nxt < size_needed)
1648 return -1;
1649
1650 if (tp->snd_wnd < size_needed)
1651 return -1;
1652 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1653 return 0;
1654
1655 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1656 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1657 if (!tcp_packets_in_flight(tp))
1658 return -1;
1659 else
1660 return 0;
1661 }
1662
1663 /* We're allowed to probe. Build it now. */
1664 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1665 return -1;
1666 sk->sk_wmem_queued += nskb->truesize;
1667 sk_mem_charge(sk, nskb->truesize);
1668
1669 skb = tcp_send_head(sk);
1670
1671 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1672 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1673 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1674 TCP_SKB_CB(nskb)->sacked = 0;
1675 nskb->csum = 0;
1676 nskb->ip_summed = skb->ip_summed;
1677
1678 tcp_insert_write_queue_before(nskb, skb, sk);
1679
1680 len = 0;
1681 tcp_for_write_queue_from_safe(skb, next, sk) {
1682 copy = min_t(int, skb->len, probe_size - len);
1683 if (nskb->ip_summed)
1684 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1685 else
1686 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1687 skb_put(nskb, copy),
1688 copy, nskb->csum);
1689
1690 if (skb->len <= copy) {
1691 /* We've eaten all the data from this skb.
1692 * Throw it away. */
1693 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1694 tcp_unlink_write_queue(skb, sk);
1695 sk_wmem_free_skb(sk, skb);
1696 } else {
1697 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1698 ~(TCPHDR_FIN|TCPHDR_PSH);
1699 if (!skb_shinfo(skb)->nr_frags) {
1700 skb_pull(skb, copy);
1701 if (skb->ip_summed != CHECKSUM_PARTIAL)
1702 skb->csum = csum_partial(skb->data,
1703 skb->len, 0);
1704 } else {
1705 __pskb_trim_head(skb, copy);
1706 tcp_set_skb_tso_segs(sk, skb, mss_now);
1707 }
1708 TCP_SKB_CB(skb)->seq += copy;
1709 }
1710
1711 len += copy;
1712
1713 if (len >= probe_size)
1714 break;
1715 }
1716 tcp_init_tso_segs(sk, nskb, nskb->len);
1717
1718 /* We're ready to send. If this fails, the probe will
1719 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1720 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1721 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1722 /* Decrement cwnd here because we are sending
1723 * effectively two packets. */
1724 tp->snd_cwnd--;
1725 tcp_event_new_data_sent(sk, nskb);
1726
1727 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1728 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1729 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1730
1731 return 1;
1732 }
1733
1734 return -1;
1735 }
1736
1737 /* This routine writes packets to the network. It advances the
1738 * send_head. This happens as incoming acks open up the remote
1739 * window for us.
1740 *
1741 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1742 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1743 * account rare use of URG, this is not a big flaw.
1744 *
1745 * Returns 1, if no segments are in flight and we have queued segments, but
1746 * cannot send anything now because of SWS or another problem.
1747 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)1748 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1749 int push_one, gfp_t gfp)
1750 {
1751 struct tcp_sock *tp = tcp_sk(sk);
1752 struct sk_buff *skb;
1753 unsigned int tso_segs, sent_pkts;
1754 int cwnd_quota;
1755 int result;
1756
1757 sent_pkts = 0;
1758
1759 if (!push_one) {
1760 /* Do MTU probing. */
1761 result = tcp_mtu_probe(sk);
1762 if (!result) {
1763 return 0;
1764 } else if (result > 0) {
1765 sent_pkts = 1;
1766 }
1767 }
1768
1769 while ((skb = tcp_send_head(sk))) {
1770 unsigned int limit;
1771
1772 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1773 BUG_ON(!tso_segs);
1774
1775 cwnd_quota = tcp_cwnd_test(tp, skb);
1776 if (!cwnd_quota)
1777 break;
1778
1779 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1780 break;
1781
1782 if (tso_segs == 1) {
1783 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1784 (tcp_skb_is_last(sk, skb) ?
1785 nonagle : TCP_NAGLE_PUSH))))
1786 break;
1787 } else {
1788 if (!push_one && tcp_tso_should_defer(sk, skb))
1789 break;
1790 }
1791
1792 limit = mss_now;
1793 if (tso_segs > 1 && !tcp_urg_mode(tp))
1794 limit = tcp_mss_split_point(sk, skb, mss_now,
1795 min_t(unsigned int,
1796 cwnd_quota,
1797 sk->sk_gso_max_segs));
1798
1799 if (skb->len > limit &&
1800 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1801 break;
1802
1803 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1804
1805 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1806 break;
1807
1808 /* Advance the send_head. This one is sent out.
1809 * This call will increment packets_out.
1810 */
1811 tcp_event_new_data_sent(sk, skb);
1812
1813 tcp_minshall_update(tp, mss_now, skb);
1814 sent_pkts += tcp_skb_pcount(skb);
1815
1816 if (push_one)
1817 break;
1818 }
1819 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
1820 tp->prr_out += sent_pkts;
1821
1822 if (likely(sent_pkts)) {
1823 tcp_cwnd_validate(sk);
1824 return 0;
1825 }
1826 return !tp->packets_out && tcp_send_head(sk);
1827 }
1828
1829 /* Push out any pending frames which were held back due to
1830 * TCP_CORK or attempt at coalescing tiny packets.
1831 * The socket must be locked by the caller.
1832 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)1833 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1834 int nonagle)
1835 {
1836 /* If we are closed, the bytes will have to remain here.
1837 * In time closedown will finish, we empty the write queue and
1838 * all will be happy.
1839 */
1840 if (unlikely(sk->sk_state == TCP_CLOSE))
1841 return;
1842
1843 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
1844 tcp_check_probe_timer(sk);
1845 }
1846
1847 /* Send _single_ skb sitting at the send head. This function requires
1848 * true push pending frames to setup probe timer etc.
1849 */
tcp_push_one(struct sock * sk,unsigned int mss_now)1850 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1851 {
1852 struct sk_buff *skb = tcp_send_head(sk);
1853
1854 BUG_ON(!skb || skb->len < mss_now);
1855
1856 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
1857 }
1858
1859 /* This function returns the amount that we can raise the
1860 * usable window based on the following constraints
1861 *
1862 * 1. The window can never be shrunk once it is offered (RFC 793)
1863 * 2. We limit memory per socket
1864 *
1865 * RFC 1122:
1866 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1867 * RECV.NEXT + RCV.WIN fixed until:
1868 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1869 *
1870 * i.e. don't raise the right edge of the window until you can raise
1871 * it at least MSS bytes.
1872 *
1873 * Unfortunately, the recommended algorithm breaks header prediction,
1874 * since header prediction assumes th->window stays fixed.
1875 *
1876 * Strictly speaking, keeping th->window fixed violates the receiver
1877 * side SWS prevention criteria. The problem is that under this rule
1878 * a stream of single byte packets will cause the right side of the
1879 * window to always advance by a single byte.
1880 *
1881 * Of course, if the sender implements sender side SWS prevention
1882 * then this will not be a problem.
1883 *
1884 * BSD seems to make the following compromise:
1885 *
1886 * If the free space is less than the 1/4 of the maximum
1887 * space available and the free space is less than 1/2 mss,
1888 * then set the window to 0.
1889 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1890 * Otherwise, just prevent the window from shrinking
1891 * and from being larger than the largest representable value.
1892 *
1893 * This prevents incremental opening of the window in the regime
1894 * where TCP is limited by the speed of the reader side taking
1895 * data out of the TCP receive queue. It does nothing about
1896 * those cases where the window is constrained on the sender side
1897 * because the pipeline is full.
1898 *
1899 * BSD also seems to "accidentally" limit itself to windows that are a
1900 * multiple of MSS, at least until the free space gets quite small.
1901 * This would appear to be a side effect of the mbuf implementation.
1902 * Combining these two algorithms results in the observed behavior
1903 * of having a fixed window size at almost all times.
1904 *
1905 * Below we obtain similar behavior by forcing the offered window to
1906 * a multiple of the mss when it is feasible to do so.
1907 *
1908 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1909 * Regular options like TIMESTAMP are taken into account.
1910 */
__tcp_select_window(struct sock * sk)1911 u32 __tcp_select_window(struct sock *sk)
1912 {
1913 struct inet_connection_sock *icsk = inet_csk(sk);
1914 struct tcp_sock *tp = tcp_sk(sk);
1915 /* MSS for the peer's data. Previous versions used mss_clamp
1916 * here. I don't know if the value based on our guesses
1917 * of peer's MSS is better for the performance. It's more correct
1918 * but may be worse for the performance because of rcv_mss
1919 * fluctuations. --SAW 1998/11/1
1920 */
1921 int mss = icsk->icsk_ack.rcv_mss;
1922 int free_space = tcp_space(sk);
1923 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1924 int window;
1925
1926 if (mss > full_space)
1927 mss = full_space;
1928
1929 if (free_space < (full_space >> 1)) {
1930 icsk->icsk_ack.quick = 0;
1931
1932 if (sk_under_memory_pressure(sk))
1933 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1934 4U * tp->advmss);
1935
1936 if (free_space < mss)
1937 return 0;
1938 }
1939
1940 if (free_space > tp->rcv_ssthresh)
1941 free_space = tp->rcv_ssthresh;
1942
1943 /* Don't do rounding if we are using window scaling, since the
1944 * scaled window will not line up with the MSS boundary anyway.
1945 */
1946 window = tp->rcv_wnd;
1947 if (tp->rx_opt.rcv_wscale) {
1948 window = free_space;
1949
1950 /* Advertise enough space so that it won't get scaled away.
1951 * Import case: prevent zero window announcement if
1952 * 1<<rcv_wscale > mss.
1953 */
1954 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1955 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1956 << tp->rx_opt.rcv_wscale);
1957 } else {
1958 /* Get the largest window that is a nice multiple of mss.
1959 * Window clamp already applied above.
1960 * If our current window offering is within 1 mss of the
1961 * free space we just keep it. This prevents the divide
1962 * and multiply from happening most of the time.
1963 * We also don't do any window rounding when the free space
1964 * is too small.
1965 */
1966 if (window <= free_space - mss || window > free_space)
1967 window = (free_space / mss) * mss;
1968 else if (mss == full_space &&
1969 free_space > window + (full_space >> 1))
1970 window = free_space;
1971 }
1972
1973 return window;
1974 }
1975
1976 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)1977 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
1978 {
1979 struct tcp_sock *tp = tcp_sk(sk);
1980 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1981 int skb_size, next_skb_size;
1982
1983 skb_size = skb->len;
1984 next_skb_size = next_skb->len;
1985
1986 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1987
1988 tcp_highest_sack_combine(sk, next_skb, skb);
1989
1990 tcp_unlink_write_queue(next_skb, sk);
1991
1992 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1993 next_skb_size);
1994
1995 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1996 skb->ip_summed = CHECKSUM_PARTIAL;
1997
1998 if (skb->ip_summed != CHECKSUM_PARTIAL)
1999 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2000
2001 /* Update sequence range on original skb. */
2002 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2003
2004 /* Merge over control information. This moves PSH/FIN etc. over */
2005 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2006
2007 /* All done, get rid of second SKB and account for it so
2008 * packet counting does not break.
2009 */
2010 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2011
2012 /* changed transmit queue under us so clear hints */
2013 tcp_clear_retrans_hints_partial(tp);
2014 if (next_skb == tp->retransmit_skb_hint)
2015 tp->retransmit_skb_hint = skb;
2016
2017 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2018
2019 sk_wmem_free_skb(sk, next_skb);
2020 }
2021
2022 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2023 static int tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2024 {
2025 if (tcp_skb_pcount(skb) > 1)
2026 return 0;
2027 /* TODO: SACK collapsing could be used to remove this condition */
2028 if (skb_shinfo(skb)->nr_frags != 0)
2029 return 0;
2030 if (skb_cloned(skb))
2031 return 0;
2032 if (skb == tcp_send_head(sk))
2033 return 0;
2034 /* Some heurestics for collapsing over SACK'd could be invented */
2035 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2036 return 0;
2037
2038 return 1;
2039 }
2040
2041 /* Collapse packets in the retransmit queue to make to create
2042 * less packets on the wire. This is only done on retransmission.
2043 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2044 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2045 int space)
2046 {
2047 struct tcp_sock *tp = tcp_sk(sk);
2048 struct sk_buff *skb = to, *tmp;
2049 int first = 1;
2050
2051 if (!sysctl_tcp_retrans_collapse)
2052 return;
2053 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2054 return;
2055
2056 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2057 if (!tcp_can_collapse(sk, skb))
2058 break;
2059
2060 space -= skb->len;
2061
2062 if (first) {
2063 first = 0;
2064 continue;
2065 }
2066
2067 if (space < 0)
2068 break;
2069 /* Punt if not enough space exists in the first SKB for
2070 * the data in the second
2071 */
2072 if (skb->len > skb_availroom(to))
2073 break;
2074
2075 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2076 break;
2077
2078 tcp_collapse_retrans(sk, to);
2079 }
2080 }
2081
2082 /* This retransmits one SKB. Policy decisions and retransmit queue
2083 * state updates are done by the caller. Returns non-zero if an
2084 * error occurred which prevented the send.
2085 */
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2086 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2087 {
2088 struct tcp_sock *tp = tcp_sk(sk);
2089 struct inet_connection_sock *icsk = inet_csk(sk);
2090 unsigned int cur_mss;
2091 int err;
2092
2093 /* Inconslusive MTU probe */
2094 if (icsk->icsk_mtup.probe_size) {
2095 icsk->icsk_mtup.probe_size = 0;
2096 }
2097
2098 /* Do not sent more than we queued. 1/4 is reserved for possible
2099 * copying overhead: fragmentation, tunneling, mangling etc.
2100 */
2101 if (atomic_read(&sk->sk_wmem_alloc) >
2102 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2103 return -EAGAIN;
2104
2105 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2106 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2107 BUG();
2108 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2109 return -ENOMEM;
2110 }
2111
2112 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2113 return -EHOSTUNREACH; /* Routing failure or similar. */
2114
2115 cur_mss = tcp_current_mss(sk);
2116
2117 /* If receiver has shrunk his window, and skb is out of
2118 * new window, do not retransmit it. The exception is the
2119 * case, when window is shrunk to zero. In this case
2120 * our retransmit serves as a zero window probe.
2121 */
2122 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2123 TCP_SKB_CB(skb)->seq != tp->snd_una)
2124 return -EAGAIN;
2125
2126 if (skb->len > cur_mss) {
2127 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2128 return -ENOMEM; /* We'll try again later. */
2129 } else {
2130 int oldpcount = tcp_skb_pcount(skb);
2131
2132 if (unlikely(oldpcount > 1)) {
2133 if (skb_unclone(skb, GFP_ATOMIC))
2134 return -ENOMEM;
2135 tcp_init_tso_segs(sk, skb, cur_mss);
2136 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2137 }
2138 }
2139
2140 tcp_retrans_try_collapse(sk, skb, cur_mss);
2141
2142 /* Some Solaris stacks overoptimize and ignore the FIN on a
2143 * retransmit when old data is attached. So strip it off
2144 * since it is cheap to do so and saves bytes on the network.
2145 */
2146 if (skb->len > 0 &&
2147 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2148 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2149 if (!pskb_trim(skb, 0)) {
2150 /* Reuse, even though it does some unnecessary work */
2151 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2152 TCP_SKB_CB(skb)->tcp_flags);
2153 skb->ip_summed = CHECKSUM_NONE;
2154 }
2155 }
2156
2157 /* Make a copy, if the first transmission SKB clone we made
2158 * is still in somebody's hands, else make a clone.
2159 */
2160 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2161
2162 /* make sure skb->data is aligned on arches that require it
2163 * and check if ack-trimming & collapsing extended the headroom
2164 * beyond what csum_start can cover.
2165 */
2166 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2167 skb_headroom(skb) >= 0xFFFF)) {
2168 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2169 GFP_ATOMIC);
2170 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2171 -ENOBUFS;
2172 } else {
2173 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2174 }
2175
2176 if (err == 0) {
2177 /* Update global TCP statistics. */
2178 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2179
2180 tp->total_retrans++;
2181
2182 #if FASTRETRANS_DEBUG > 0
2183 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2184 if (net_ratelimit())
2185 printk(KERN_DEBUG "retrans_out leaked.\n");
2186 }
2187 #endif
2188 if (!tp->retrans_out)
2189 tp->lost_retrans_low = tp->snd_nxt;
2190 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2191 tp->retrans_out += tcp_skb_pcount(skb);
2192
2193 /* Save stamp of the first retransmit. */
2194 if (!tp->retrans_stamp)
2195 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2196
2197 tp->undo_retrans += tcp_skb_pcount(skb);
2198
2199 /* snd_nxt is stored to detect loss of retransmitted segment,
2200 * see tcp_input.c tcp_sacktag_write_queue().
2201 */
2202 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2203 }
2204 return err;
2205 }
2206
2207 /* Check if we forward retransmits are possible in the current
2208 * window/congestion state.
2209 */
tcp_can_forward_retransmit(struct sock * sk)2210 static int tcp_can_forward_retransmit(struct sock *sk)
2211 {
2212 const struct inet_connection_sock *icsk = inet_csk(sk);
2213 const struct tcp_sock *tp = tcp_sk(sk);
2214
2215 /* Forward retransmissions are possible only during Recovery. */
2216 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2217 return 0;
2218
2219 /* No forward retransmissions in Reno are possible. */
2220 if (tcp_is_reno(tp))
2221 return 0;
2222
2223 /* Yeah, we have to make difficult choice between forward transmission
2224 * and retransmission... Both ways have their merits...
2225 *
2226 * For now we do not retransmit anything, while we have some new
2227 * segments to send. In the other cases, follow rule 3 for
2228 * NextSeg() specified in RFC3517.
2229 */
2230
2231 if (tcp_may_send_now(sk))
2232 return 0;
2233
2234 return 1;
2235 }
2236
2237 /* This gets called after a retransmit timeout, and the initially
2238 * retransmitted data is acknowledged. It tries to continue
2239 * resending the rest of the retransmit queue, until either
2240 * we've sent it all or the congestion window limit is reached.
2241 * If doing SACK, the first ACK which comes back for a timeout
2242 * based retransmit packet might feed us FACK information again.
2243 * If so, we use it to avoid unnecessarily retransmissions.
2244 */
tcp_xmit_retransmit_queue(struct sock * sk)2245 void tcp_xmit_retransmit_queue(struct sock *sk)
2246 {
2247 const struct inet_connection_sock *icsk = inet_csk(sk);
2248 struct tcp_sock *tp = tcp_sk(sk);
2249 struct sk_buff *skb;
2250 struct sk_buff *hole = NULL;
2251 u32 last_lost;
2252 int mib_idx;
2253 int fwd_rexmitting = 0;
2254
2255 if (!tp->packets_out)
2256 return;
2257
2258 if (!tp->lost_out)
2259 tp->retransmit_high = tp->snd_una;
2260
2261 if (tp->retransmit_skb_hint) {
2262 skb = tp->retransmit_skb_hint;
2263 last_lost = TCP_SKB_CB(skb)->end_seq;
2264 if (after(last_lost, tp->retransmit_high))
2265 last_lost = tp->retransmit_high;
2266 } else {
2267 skb = tcp_write_queue_head(sk);
2268 last_lost = tp->snd_una;
2269 }
2270
2271 tcp_for_write_queue_from(skb, sk) {
2272 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2273
2274 if (skb == tcp_send_head(sk))
2275 break;
2276 /* we could do better than to assign each time */
2277 if (hole == NULL)
2278 tp->retransmit_skb_hint = skb;
2279
2280 /* Assume this retransmit will generate
2281 * only one packet for congestion window
2282 * calculation purposes. This works because
2283 * tcp_retransmit_skb() will chop up the
2284 * packet to be MSS sized and all the
2285 * packet counting works out.
2286 */
2287 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2288 return;
2289
2290 if (fwd_rexmitting) {
2291 begin_fwd:
2292 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2293 break;
2294 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2295
2296 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2297 tp->retransmit_high = last_lost;
2298 if (!tcp_can_forward_retransmit(sk))
2299 break;
2300 /* Backtrack if necessary to non-L'ed skb */
2301 if (hole != NULL) {
2302 skb = hole;
2303 hole = NULL;
2304 }
2305 fwd_rexmitting = 1;
2306 goto begin_fwd;
2307
2308 } else if (!(sacked & TCPCB_LOST)) {
2309 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2310 hole = skb;
2311 continue;
2312
2313 } else {
2314 last_lost = TCP_SKB_CB(skb)->end_seq;
2315 if (icsk->icsk_ca_state != TCP_CA_Loss)
2316 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2317 else
2318 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2319 }
2320
2321 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2322 continue;
2323
2324 if (tcp_retransmit_skb(sk, skb)) {
2325 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2326 return;
2327 }
2328 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2329
2330 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
2331 tp->prr_out += tcp_skb_pcount(skb);
2332
2333 if (skb == tcp_write_queue_head(sk))
2334 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2335 inet_csk(sk)->icsk_rto,
2336 TCP_RTO_MAX);
2337 }
2338 }
2339
2340 /* Send a fin. The caller locks the socket for us. This cannot be
2341 * allowed to fail queueing a FIN frame under any circumstances.
2342 */
tcp_send_fin(struct sock * sk)2343 void tcp_send_fin(struct sock *sk)
2344 {
2345 struct tcp_sock *tp = tcp_sk(sk);
2346 struct sk_buff *skb = tcp_write_queue_tail(sk);
2347 int mss_now;
2348
2349 /* Optimization, tack on the FIN if we have a queue of
2350 * unsent frames. But be careful about outgoing SACKS
2351 * and IP options.
2352 */
2353 mss_now = tcp_current_mss(sk);
2354
2355 if (tcp_send_head(sk) != NULL) {
2356 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2357 TCP_SKB_CB(skb)->end_seq++;
2358 tp->write_seq++;
2359 } else {
2360 /* Socket is locked, keep trying until memory is available. */
2361 for (;;) {
2362 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2363 sk->sk_allocation);
2364 if (skb)
2365 break;
2366 yield();
2367 }
2368
2369 /* Reserve space for headers and prepare control bits. */
2370 skb_reserve(skb, MAX_TCP_HEADER);
2371 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2372 tcp_init_nondata_skb(skb, tp->write_seq,
2373 TCPHDR_ACK | TCPHDR_FIN);
2374 tcp_queue_skb(sk, skb);
2375 }
2376 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2377 }
2378
2379 /* We get here when a process closes a file descriptor (either due to
2380 * an explicit close() or as a byproduct of exit()'ing) and there
2381 * was unread data in the receive queue. This behavior is recommended
2382 * by RFC 2525, section 2.17. -DaveM
2383 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)2384 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2385 {
2386 struct sk_buff *skb;
2387
2388 /* NOTE: No TCP options attached and we never retransmit this. */
2389 skb = alloc_skb(MAX_TCP_HEADER, priority);
2390 if (!skb) {
2391 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2392 return;
2393 }
2394
2395 /* Reserve space for headers and prepare control bits. */
2396 skb_reserve(skb, MAX_TCP_HEADER);
2397 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2398 TCPHDR_ACK | TCPHDR_RST);
2399 /* Send it off. */
2400 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2401 if (tcp_transmit_skb(sk, skb, 0, priority))
2402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2403
2404 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2405 }
2406
2407 /* Send a crossed SYN-ACK during socket establishment.
2408 * WARNING: This routine must only be called when we have already sent
2409 * a SYN packet that crossed the incoming SYN that caused this routine
2410 * to get called. If this assumption fails then the initial rcv_wnd
2411 * and rcv_wscale values will not be correct.
2412 */
tcp_send_synack(struct sock * sk)2413 int tcp_send_synack(struct sock *sk)
2414 {
2415 struct sk_buff *skb;
2416
2417 skb = tcp_write_queue_head(sk);
2418 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2419 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2420 return -EFAULT;
2421 }
2422 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2423 if (skb_cloned(skb)) {
2424 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2425 if (nskb == NULL)
2426 return -ENOMEM;
2427 tcp_unlink_write_queue(skb, sk);
2428 skb_header_release(nskb);
2429 __tcp_add_write_queue_head(sk, nskb);
2430 sk_wmem_free_skb(sk, skb);
2431 sk->sk_wmem_queued += nskb->truesize;
2432 sk_mem_charge(sk, nskb->truesize);
2433 skb = nskb;
2434 }
2435
2436 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2437 TCP_ECN_send_synack(tcp_sk(sk), skb);
2438 }
2439 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2440 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2441 }
2442
2443 /* Prepare a SYN-ACK. */
tcp_make_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct request_values * rvp)2444 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2445 struct request_sock *req,
2446 struct request_values *rvp)
2447 {
2448 struct tcp_out_options opts;
2449 struct tcp_extend_values *xvp = tcp_xv(rvp);
2450 struct inet_request_sock *ireq = inet_rsk(req);
2451 struct tcp_sock *tp = tcp_sk(sk);
2452 const struct tcp_cookie_values *cvp = tp->cookie_values;
2453 struct tcphdr *th;
2454 struct sk_buff *skb;
2455 struct tcp_md5sig_key *md5;
2456 int tcp_header_size;
2457 int mss;
2458 int s_data_desired = 0;
2459
2460 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2461 s_data_desired = cvp->s_data_desired;
2462 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15 + s_data_desired, 1, GFP_ATOMIC);
2463 if (skb == NULL)
2464 return NULL;
2465
2466 /* Reserve space for headers. */
2467 skb_reserve(skb, MAX_TCP_HEADER);
2468
2469 skb_dst_set(skb, dst_clone(dst));
2470
2471 mss = dst_metric_advmss(dst);
2472 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2473 mss = tp->rx_opt.user_mss;
2474
2475 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2476 __u8 rcv_wscale;
2477 /* Set this up on the first call only */
2478 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2479
2480 /* limit the window selection if the user enforce a smaller rx buffer */
2481 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2482 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2483 req->window_clamp = tcp_full_space(sk);
2484
2485 /* tcp_full_space because it is guaranteed to be the first packet */
2486 tcp_select_initial_window(tcp_full_space(sk),
2487 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2488 &req->rcv_wnd,
2489 &req->window_clamp,
2490 ireq->wscale_ok,
2491 &rcv_wscale,
2492 dst_metric(dst, RTAX_INITRWND));
2493 ireq->rcv_wscale = rcv_wscale;
2494 }
2495
2496 memset(&opts, 0, sizeof(opts));
2497 #ifdef CONFIG_SYN_COOKIES
2498 if (unlikely(req->cookie_ts))
2499 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2500 else
2501 #endif
2502 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2503 tcp_header_size = tcp_synack_options(sk, req, mss,
2504 skb, &opts, &md5, xvp)
2505 + sizeof(*th);
2506
2507 skb_push(skb, tcp_header_size);
2508 skb_reset_transport_header(skb);
2509
2510 th = tcp_hdr(skb);
2511 memset(th, 0, sizeof(struct tcphdr));
2512 th->syn = 1;
2513 th->ack = 1;
2514 TCP_ECN_make_synack(req, th);
2515 th->source = ireq->loc_port;
2516 th->dest = ireq->rmt_port;
2517 /* Setting of flags are superfluous here for callers (and ECE is
2518 * not even correctly set)
2519 */
2520 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2521 TCPHDR_SYN | TCPHDR_ACK);
2522
2523 if (OPTION_COOKIE_EXTENSION & opts.options) {
2524 if (s_data_desired) {
2525 u8 *buf = skb_put(skb, s_data_desired);
2526
2527 /* copy data directly from the listening socket. */
2528 memcpy(buf, cvp->s_data_payload, s_data_desired);
2529 TCP_SKB_CB(skb)->end_seq += s_data_desired;
2530 }
2531
2532 if (opts.hash_size > 0) {
2533 __u32 workspace[SHA_WORKSPACE_WORDS];
2534 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2535 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2536
2537 /* Secret recipe depends on the Timestamp, (future)
2538 * Sequence and Acknowledgment Numbers, Initiator
2539 * Cookie, and others handled by IP variant caller.
2540 */
2541 *tail-- ^= opts.tsval;
2542 *tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2543 *tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2544
2545 /* recommended */
2546 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2547 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2548
2549 sha_transform((__u32 *)&xvp->cookie_bakery[0],
2550 (char *)mess,
2551 &workspace[0]);
2552 opts.hash_location =
2553 (__u8 *)&xvp->cookie_bakery[0];
2554 }
2555 }
2556
2557 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2558 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2559
2560 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2561 th->window = htons(min(req->rcv_wnd, 65535U));
2562 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2563 th->doff = (tcp_header_size >> 2);
2564 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2565
2566 #ifdef CONFIG_TCP_MD5SIG
2567 /* Okay, we have all we need - do the md5 hash if needed */
2568 if (md5) {
2569 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2570 md5, NULL, req, skb);
2571 }
2572 #endif
2573
2574 return skb;
2575 }
2576 EXPORT_SYMBOL(tcp_make_synack);
2577
2578 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)2579 static void tcp_connect_init(struct sock *sk)
2580 {
2581 const struct dst_entry *dst = __sk_dst_get(sk);
2582 struct tcp_sock *tp = tcp_sk(sk);
2583 __u8 rcv_wscale;
2584
2585 /* We'll fix this up when we get a response from the other end.
2586 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2587 */
2588 tp->tcp_header_len = sizeof(struct tcphdr) +
2589 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2590
2591 #ifdef CONFIG_TCP_MD5SIG
2592 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2593 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2594 #endif
2595
2596 /* If user gave his TCP_MAXSEG, record it to clamp */
2597 if (tp->rx_opt.user_mss)
2598 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2599 tp->max_window = 0;
2600 tcp_mtup_init(sk);
2601 tcp_sync_mss(sk, dst_mtu(dst));
2602
2603 if (!tp->window_clamp)
2604 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2605 tp->advmss = dst_metric_advmss(dst);
2606 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2607 tp->advmss = tp->rx_opt.user_mss;
2608
2609 tcp_initialize_rcv_mss(sk);
2610
2611 /* limit the window selection if the user enforce a smaller rx buffer */
2612 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2613 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2614 tp->window_clamp = tcp_full_space(sk);
2615
2616 tcp_select_initial_window(tcp_full_space(sk),
2617 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2618 &tp->rcv_wnd,
2619 &tp->window_clamp,
2620 sysctl_tcp_window_scaling,
2621 &rcv_wscale,
2622 dst_metric(dst, RTAX_INITRWND));
2623
2624 tp->rx_opt.rcv_wscale = rcv_wscale;
2625 tp->rcv_ssthresh = tp->rcv_wnd;
2626
2627 sk->sk_err = 0;
2628 sock_reset_flag(sk, SOCK_DONE);
2629 tp->snd_wnd = 0;
2630 tcp_init_wl(tp, 0);
2631 tp->snd_una = tp->write_seq;
2632 tp->snd_sml = tp->write_seq;
2633 tp->snd_up = tp->write_seq;
2634 tp->rcv_nxt = 0;
2635 tp->rcv_wup = 0;
2636 tp->copied_seq = 0;
2637
2638 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2639 inet_csk(sk)->icsk_retransmits = 0;
2640 tcp_clear_retrans(tp);
2641 }
2642
2643 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)2644 int tcp_connect(struct sock *sk)
2645 {
2646 struct tcp_sock *tp = tcp_sk(sk);
2647 struct sk_buff *buff;
2648 int err;
2649
2650 tcp_connect_init(sk);
2651
2652 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2653 if (unlikely(buff == NULL))
2654 return -ENOBUFS;
2655
2656 /* Reserve space for headers. */
2657 skb_reserve(buff, MAX_TCP_HEADER);
2658
2659 tp->snd_nxt = tp->write_seq;
2660 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2661 TCP_ECN_send_syn(sk, buff);
2662
2663 /* Send it off. */
2664 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2665 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2666 skb_header_release(buff);
2667 __tcp_add_write_queue_tail(sk, buff);
2668 sk->sk_wmem_queued += buff->truesize;
2669 sk_mem_charge(sk, buff->truesize);
2670 tp->packets_out += tcp_skb_pcount(buff);
2671 err = tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2672 if (err == -ECONNREFUSED)
2673 return err;
2674
2675 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2676 * in order to make this packet get counted in tcpOutSegs.
2677 */
2678 tp->snd_nxt = tp->write_seq;
2679 tp->pushed_seq = tp->write_seq;
2680 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2681
2682 /* Timer for repeating the SYN until an answer. */
2683 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2684 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2685 return 0;
2686 }
2687 EXPORT_SYMBOL(tcp_connect);
2688
2689 /* Send out a delayed ack, the caller does the policy checking
2690 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2691 * for details.
2692 */
tcp_send_delayed_ack(struct sock * sk)2693 void tcp_send_delayed_ack(struct sock *sk)
2694 {
2695 struct inet_connection_sock *icsk = inet_csk(sk);
2696 int ato = icsk->icsk_ack.ato;
2697 unsigned long timeout;
2698
2699 if (ato > TCP_DELACK_MIN) {
2700 const struct tcp_sock *tp = tcp_sk(sk);
2701 int max_ato = HZ / 2;
2702
2703 if (icsk->icsk_ack.pingpong ||
2704 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2705 max_ato = TCP_DELACK_MAX;
2706
2707 /* Slow path, intersegment interval is "high". */
2708
2709 /* If some rtt estimate is known, use it to bound delayed ack.
2710 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2711 * directly.
2712 */
2713 if (tp->srtt) {
2714 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2715
2716 if (rtt < max_ato)
2717 max_ato = rtt;
2718 }
2719
2720 ato = min(ato, max_ato);
2721 }
2722
2723 /* Stay within the limit we were given */
2724 timeout = jiffies + ato;
2725
2726 /* Use new timeout only if there wasn't a older one earlier. */
2727 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2728 /* If delack timer was blocked or is about to expire,
2729 * send ACK now.
2730 */
2731 if (icsk->icsk_ack.blocked ||
2732 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2733 tcp_send_ack(sk);
2734 return;
2735 }
2736
2737 if (!time_before(timeout, icsk->icsk_ack.timeout))
2738 timeout = icsk->icsk_ack.timeout;
2739 }
2740 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2741 icsk->icsk_ack.timeout = timeout;
2742 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2743 }
2744
2745 /* This routine sends an ack and also updates the window. */
tcp_send_ack(struct sock * sk)2746 void tcp_send_ack(struct sock *sk)
2747 {
2748 struct sk_buff *buff;
2749
2750 /* If we have been reset, we may not send again. */
2751 if (sk->sk_state == TCP_CLOSE)
2752 return;
2753
2754 /* We are not putting this on the write queue, so
2755 * tcp_transmit_skb() will set the ownership to this
2756 * sock.
2757 */
2758 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2759 if (buff == NULL) {
2760 inet_csk_schedule_ack(sk);
2761 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2762 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2763 TCP_DELACK_MAX, TCP_RTO_MAX);
2764 return;
2765 }
2766
2767 /* Reserve space for headers and prepare control bits. */
2768 skb_reserve(buff, MAX_TCP_HEADER);
2769 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
2770
2771 /* Send it off, this clears delayed acks for us. */
2772 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2773 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2774 }
2775
2776 /* This routine sends a packet with an out of date sequence
2777 * number. It assumes the other end will try to ack it.
2778 *
2779 * Question: what should we make while urgent mode?
2780 * 4.4BSD forces sending single byte of data. We cannot send
2781 * out of window data, because we have SND.NXT==SND.MAX...
2782 *
2783 * Current solution: to send TWO zero-length segments in urgent mode:
2784 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2785 * out-of-date with SND.UNA-1 to probe window.
2786 */
tcp_xmit_probe_skb(struct sock * sk,int urgent)2787 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2788 {
2789 struct tcp_sock *tp = tcp_sk(sk);
2790 struct sk_buff *skb;
2791
2792 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2793 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2794 if (skb == NULL)
2795 return -1;
2796
2797 /* Reserve space for headers and set control bits. */
2798 skb_reserve(skb, MAX_TCP_HEADER);
2799 /* Use a previous sequence. This should cause the other
2800 * end to send an ack. Don't queue or clone SKB, just
2801 * send it.
2802 */
2803 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
2804 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2805 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2806 }
2807
2808 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk)2809 int tcp_write_wakeup(struct sock *sk)
2810 {
2811 struct tcp_sock *tp = tcp_sk(sk);
2812 struct sk_buff *skb;
2813
2814 if (sk->sk_state == TCP_CLOSE)
2815 return -1;
2816
2817 if ((skb = tcp_send_head(sk)) != NULL &&
2818 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2819 int err;
2820 unsigned int mss = tcp_current_mss(sk);
2821 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2822
2823 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2824 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2825
2826 /* We are probing the opening of a window
2827 * but the window size is != 0
2828 * must have been a result SWS avoidance ( sender )
2829 */
2830 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2831 skb->len > mss) {
2832 seg_size = min(seg_size, mss);
2833 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
2834 if (tcp_fragment(sk, skb, seg_size, mss))
2835 return -1;
2836 } else if (!tcp_skb_pcount(skb))
2837 tcp_set_skb_tso_segs(sk, skb, mss);
2838
2839 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
2840 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2841 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2842 if (!err)
2843 tcp_event_new_data_sent(sk, skb);
2844 return err;
2845 } else {
2846 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2847 tcp_xmit_probe_skb(sk, 1);
2848 return tcp_xmit_probe_skb(sk, 0);
2849 }
2850 }
2851
2852 /* A window probe timeout has occurred. If window is not closed send
2853 * a partial packet else a zero probe.
2854 */
tcp_send_probe0(struct sock * sk)2855 void tcp_send_probe0(struct sock *sk)
2856 {
2857 struct inet_connection_sock *icsk = inet_csk(sk);
2858 struct tcp_sock *tp = tcp_sk(sk);
2859 int err;
2860
2861 err = tcp_write_wakeup(sk);
2862
2863 if (tp->packets_out || !tcp_send_head(sk)) {
2864 /* Cancel probe timer, if it is not required. */
2865 icsk->icsk_probes_out = 0;
2866 icsk->icsk_backoff = 0;
2867 return;
2868 }
2869
2870 if (err <= 0) {
2871 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2872 icsk->icsk_backoff++;
2873 icsk->icsk_probes_out++;
2874 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2875 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2876 TCP_RTO_MAX);
2877 } else {
2878 /* If packet was not sent due to local congestion,
2879 * do not backoff and do not remember icsk_probes_out.
2880 * Let local senders to fight for local resources.
2881 *
2882 * Use accumulated backoff yet.
2883 */
2884 if (!icsk->icsk_probes_out)
2885 icsk->icsk_probes_out = 1;
2886 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2887 min(icsk->icsk_rto << icsk->icsk_backoff,
2888 TCP_RESOURCE_PROBE_INTERVAL),
2889 TCP_RTO_MAX);
2890 }
2891 }
2892