1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET (1024)
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct zone_reclaim_stat reclaim_stat;
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148 };
149
150 struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157
158 /*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163 struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166 };
167
168 struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171
172 struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
178 struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181 };
182
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
186 int current_threshold;
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191 };
192
193 struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202 };
203
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208 };
209
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212
213 /*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
223 */
224 struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
257 */
258 struct mem_cgroup_lru_info info;
259 int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
264 #endif
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
269
270 bool oom_lock;
271 atomic_t under_oom;
272
273 atomic_t refcnt;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
287
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
290
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
293
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 /*
306 * percpu counter.
307 */
308 struct mem_cgroup_stat_cpu *stat;
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
315
316 #ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318 #endif
319 };
320
321 /* Stuffs for move charges at task migration. */
322 /*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326 enum move_type {
327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
329 NR_MOVE_TYPE,
330 };
331
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 spinlock_t lock; /* for from, to */
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
338 unsigned long moved_charge;
339 unsigned long moved_swap;
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342 } mc = {
343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 };
346
move_anon(void)347 static bool move_anon(void)
348 {
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351 }
352
move_file(void)353 static bool move_file(void)
354 {
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357 }
358
359 /*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
366 enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
373 NR_CHARGE_TYPE,
374 };
375
376 /* for encoding cft->private value on file */
377 #define _MEM (0)
378 #define _MEMSWAP (1)
379 #define _OOM_TYPE (2)
380 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val) ((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL (0)
385
386 /*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
396
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
401
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
sock_update_memcg(struct sock * sk)403 void sock_update_memcg(struct sock *sk)
404 {
405 if (mem_cgroup_sockets_enabled) {
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432 }
433 EXPORT_SYMBOL(sock_update_memcg);
434
sock_release_memcg(struct sock * sk)435 void sock_release_memcg(struct sock *sk)
436 {
437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443 }
444
445 #ifdef CONFIG_INET
tcp_proto_cgroup(struct mem_cgroup * memcg)446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447 {
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452 }
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
458
459 static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup * memcg,int nid,int zid)460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461 {
462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 }
464
mem_cgroup_css(struct mem_cgroup * memcg)465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466 {
467 return &memcg->css;
468 }
469
470 static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct mem_cgroup * memcg,struct page * page)471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472 {
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
475
476 return mem_cgroup_zoneinfo(memcg, nid, zid);
477 }
478
479 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)480 soft_limit_tree_node_zone(int nid, int zid)
481 {
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 }
484
485 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)486 soft_limit_tree_from_page(struct page *page)
487 {
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 }
493
494 static void
__mem_cgroup_insert_exceeded(struct mem_cgroup * memcg,struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long long new_usage_in_excess)495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
499 {
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526 }
527
528 static void
__mem_cgroup_remove_exceeded(struct mem_cgroup * memcg,struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532 {
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537 }
538
539 static void
mem_cgroup_remove_exceeded(struct mem_cgroup * memcg,struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543 {
544 spin_lock(&mctz->lock);
545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 spin_unlock(&mctz->lock);
547 }
548
549
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 unsigned long long excess;
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
562 */
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
570 if (excess || mz->on_tree) {
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 /*
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
578 */
579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 spin_unlock(&mctz->lock);
581 }
582 }
583 }
584
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 {
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
591 for_each_node(node) {
592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 mctz = soft_limit_tree_node_zone(node, zone);
595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 }
597 }
598 }
599
600 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602 {
603 struct rb_node *rightmost = NULL;
604 struct mem_cgroup_per_zone *mz;
605
606 retry:
607 mz = NULL;
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
621 goto retry;
622 done:
623 return mz;
624 }
625
626 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635 }
636
637 /*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 enum mem_cgroup_stat_index idx)
658 {
659 long val = 0;
660 int cpu;
661
662 get_online_cpus();
663 for_each_online_cpu(cpu)
664 val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 put_online_cpus();
671 return val;
672 }
673
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 bool charge)
676 {
677 int val = (charge) ? 1 : -1;
678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 }
680
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 enum mem_cgroup_events_index idx)
683 {
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
688 val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 return val;
695 }
696
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,bool anon,int nr_pages)697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 bool anon, int nr_pages)
699 {
700 preempt_disable();
701
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
712
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 else {
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 nr_pages = -nr_pages; /* for event */
719 }
720
721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722
723 preempt_enable();
724 }
725
726 unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup * memcg,int nid,int zid,unsigned int lru_mask)727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 unsigned int lru_mask)
729 {
730 struct mem_cgroup_per_zone *mz;
731 enum lru_list lru;
732 unsigned long ret = 0;
733
734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
739 }
740 return ret;
741 }
742
743 static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 int nid, unsigned int lru_mask)
746 {
747 u64 total = 0;
748 int zid;
749
750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
753
754 return total;
755 }
756
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 unsigned int lru_mask)
759 {
760 int nid;
761 u64 total = 0;
762
763 for_each_node_state(nid, N_HIGH_MEMORY)
764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 return total;
766 }
767
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
770 {
771 unsigned long val, next;
772
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
775 /* from time_after() in jiffies.h */
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
792 }
793 return false;
794 }
795
796 /*
797 * Check events in order.
798 *
799 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801 {
802 preempt_disable();
803 /* threshold event is triggered in finer grain than soft limit */
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 preempt_enable();
816
817 mem_cgroup_threshold(memcg);
818 if (unlikely(do_softlimit))
819 mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 if (unlikely(do_numainfo))
822 atomic_inc(&memcg->numainfo_events);
823 #endif
824 } else
825 preempt_enable();
826 }
827
mem_cgroup_from_cont(struct cgroup * cont)828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829 {
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833 }
834
mem_cgroup_from_task(struct task_struct * p)835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836 {
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847 }
848
try_get_mem_cgroup_from_mm(struct mm_struct * mm)849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850 {
851 struct mem_cgroup *memcg = NULL;
852
853 if (!mm)
854 return NULL;
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
864 break;
865 } while (!css_tryget(&memcg->css));
866 rcu_read_unlock();
867 return memcg;
868 }
869
870 /**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
890 {
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
893
894 if (mem_cgroup_disabled())
895 return NULL;
896
897 if (!root)
898 root = root_mem_cgroup;
899
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
902
903 if (prev && prev != root)
904 css_put(&prev->css);
905
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
911
912 while (!memcg) {
913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 struct cgroup_subsys_state *css;
915
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
927
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
936 rcu_read_unlock();
937
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
950 }
951
952 /**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
959 {
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964 }
965
966 /*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971 #define for_each_mem_cgroup_tree(iter, root) \
972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(root, iter, NULL))
975
976 #define for_each_mem_cgroup(iter) \
977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
978 iter != NULL; \
979 iter = mem_cgroup_iter(NULL, iter, NULL))
980
mem_cgroup_is_root(struct mem_cgroup * memcg)981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982 {
983 return (memcg == root_mem_cgroup);
984 }
985
mem_cgroup_count_vm_event(struct mm_struct * mm,enum vm_event_item idx)986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987 {
988 struct mem_cgroup *memcg;
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
996 goto out;
997
998 switch (idx) {
999 case PGFAULT:
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 break;
1005 default:
1006 BUG();
1007 }
1008 out:
1009 rcu_read_unlock();
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
1013 /**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024 {
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032 }
1033
1034 /*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
1047
1048 /**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
mem_cgroup_lru_add_list(struct zone * zone,struct page * page,enum lru_list lru)1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
1062 {
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1066
1067 if (mem_cgroup_disabled())
1068 return &zone->lruvec;
1069
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1087 mz->lru_size[lru] += 1 << compound_order(page);
1088 return &mz->lruvec;
1089 }
1090
1091 /**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
1100 */
mem_cgroup_lru_del_list(struct page * page,enum lru_list lru)1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 {
1103 struct mem_cgroup_per_zone *mz;
1104 struct mem_cgroup *memcg;
1105 struct page_cgroup *pc;
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
1117 }
1118
mem_cgroup_lru_del(struct page * page)1119 void mem_cgroup_lru_del(struct page *page)
1120 {
1121 mem_cgroup_lru_del_list(page, page_lru(page));
1122 }
1123
1124 /**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
mem_cgroup_lru_move_lists(struct zone * zone,struct page * page,enum lru_list from,enum lru_list to)1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
1142 {
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
1146 }
1147
1148 /*
1149 * Checks whether given mem is same or in the root_mem_cgroup's
1150 * hierarchy subtree
1151 */
mem_cgroup_same_or_subtree(const struct mem_cgroup * root_memcg,struct mem_cgroup * memcg)1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154 {
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
1158 }
1159
1160 return true;
1161 }
1162
task_in_mem_cgroup(struct task_struct * task,const struct mem_cgroup * memcg)1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 {
1165 int ret;
1166 struct mem_cgroup *curr = NULL;
1167 struct task_struct *p;
1168
1169 p = find_lock_task_mm(task);
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
1185 if (!curr)
1186 return 0;
1187 /*
1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 */
1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 css_put(&curr->css);
1195 return ret;
1196 }
1197
mem_cgroup_inactive_anon_is_low(struct mem_cgroup * memcg,struct zone * zone)1198 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1199 {
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
1203 unsigned long inactive;
1204 unsigned long active;
1205 unsigned long gb;
1206
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
1211
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
1218 return inactive * inactive_ratio < active;
1219 }
1220
mem_cgroup_inactive_file_is_low(struct mem_cgroup * memcg,struct zone * zone)1221 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1222 {
1223 unsigned long active;
1224 unsigned long inactive;
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
1227
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
1232
1233 return (active > inactive);
1234 }
1235
mem_cgroup_get_reclaim_stat(struct mem_cgroup * memcg,struct zone * zone)1236 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1238 {
1239 int nid = zone_to_nid(zone);
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242
1243 return &mz->reclaim_stat;
1244 }
1245
1246 struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page * page)1247 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248 {
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1251
1252 if (mem_cgroup_disabled())
1253 return NULL;
1254
1255 pc = lookup_page_cgroup(page);
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1261 return &mz->reclaim_stat;
1262 }
1263
1264 #define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1266
1267 /**
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
1270 *
1271 * Returns the maximum amount of memory @mem can be charged with, in
1272 * pages.
1273 */
mem_cgroup_margin(struct mem_cgroup * memcg)1274 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1275 {
1276 unsigned long long margin;
1277
1278 margin = res_counter_margin(&memcg->res);
1279 if (do_swap_account)
1280 margin = min(margin, res_counter_margin(&memcg->memsw));
1281 return margin >> PAGE_SHIFT;
1282 }
1283
mem_cgroup_swappiness(struct mem_cgroup * memcg)1284 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1285 {
1286 struct cgroup *cgrp = memcg->css.cgroup;
1287
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1291
1292 return memcg->swappiness;
1293 }
1294
1295 /*
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1300 *
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1308 */
1309
1310 /* for quick checking without looking up memcg */
1311 atomic_t memcg_moving __read_mostly;
1312
mem_cgroup_start_move(struct mem_cgroup * memcg)1313 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1314 {
1315 atomic_inc(&memcg_moving);
1316 atomic_inc(&memcg->moving_account);
1317 synchronize_rcu();
1318 }
1319
mem_cgroup_end_move(struct mem_cgroup * memcg)1320 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1321 {
1322 /*
1323 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 * We check NULL in callee rather than caller.
1325 */
1326 if (memcg) {
1327 atomic_dec(&memcg_moving);
1328 atomic_dec(&memcg->moving_account);
1329 }
1330 }
1331
1332 /*
1333 * 2 routines for checking "mem" is under move_account() or not.
1334 *
1335 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1336 * is used for avoiding races in accounting. If true,
1337 * pc->mem_cgroup may be overwritten.
1338 *
1339 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340 * under hierarchy of moving cgroups. This is for
1341 * waiting at hith-memory prressure caused by "move".
1342 */
1343
mem_cgroup_stolen(struct mem_cgroup * memcg)1344 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1345 {
1346 VM_BUG_ON(!rcu_read_lock_held());
1347 return atomic_read(&memcg->moving_account) > 0;
1348 }
1349
mem_cgroup_under_move(struct mem_cgroup * memcg)1350 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1351 {
1352 struct mem_cgroup *from;
1353 struct mem_cgroup *to;
1354 bool ret = false;
1355 /*
1356 * Unlike task_move routines, we access mc.to, mc.from not under
1357 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1358 */
1359 spin_lock(&mc.lock);
1360 from = mc.from;
1361 to = mc.to;
1362 if (!from)
1363 goto unlock;
1364
1365 ret = mem_cgroup_same_or_subtree(memcg, from)
1366 || mem_cgroup_same_or_subtree(memcg, to);
1367 unlock:
1368 spin_unlock(&mc.lock);
1369 return ret;
1370 }
1371
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1372 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1373 {
1374 if (mc.moving_task && current != mc.moving_task) {
1375 if (mem_cgroup_under_move(memcg)) {
1376 DEFINE_WAIT(wait);
1377 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 /* moving charge context might have finished. */
1379 if (mc.moving_task)
1380 schedule();
1381 finish_wait(&mc.waitq, &wait);
1382 return true;
1383 }
1384 }
1385 return false;
1386 }
1387
1388 /*
1389 * Take this lock when
1390 * - a code tries to modify page's memcg while it's USED.
1391 * - a code tries to modify page state accounting in a memcg.
1392 * see mem_cgroup_stolen(), too.
1393 */
move_lock_mem_cgroup(struct mem_cgroup * memcg,unsigned long * flags)1394 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396 {
1397 spin_lock_irqsave(&memcg->move_lock, *flags);
1398 }
1399
move_unlock_mem_cgroup(struct mem_cgroup * memcg,unsigned long * flags)1400 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 unsigned long *flags)
1402 {
1403 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1404 }
1405
1406 /**
1407 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1408 * @memcg: The memory cgroup that went over limit
1409 * @p: Task that is going to be killed
1410 *
1411 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412 * enabled
1413 */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1414 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1415 {
1416 struct cgroup *task_cgrp;
1417 struct cgroup *mem_cgrp;
1418 /*
1419 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 * on the assumption that OOM is serialized for memory controller.
1421 * If this assumption is broken, revisit this code.
1422 */
1423 static char memcg_name[PATH_MAX];
1424 int ret;
1425
1426 if (!memcg || !p)
1427 return;
1428
1429 rcu_read_lock();
1430
1431 mem_cgrp = memcg->css.cgroup;
1432 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1433
1434 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1436 /*
1437 * Unfortunately, we are unable to convert to a useful name
1438 * But we'll still print out the usage information
1439 */
1440 rcu_read_unlock();
1441 goto done;
1442 }
1443 rcu_read_unlock();
1444
1445 printk(KERN_INFO "Task in %s killed", memcg_name);
1446
1447 rcu_read_lock();
1448 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 if (ret < 0) {
1450 rcu_read_unlock();
1451 goto done;
1452 }
1453 rcu_read_unlock();
1454
1455 /*
1456 * Continues from above, so we don't need an KERN_ level
1457 */
1458 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459 done:
1460
1461 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 "failcnt %llu\n",
1467 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1470 }
1471
1472 /*
1473 * This function returns the number of memcg under hierarchy tree. Returns
1474 * 1(self count) if no children.
1475 */
mem_cgroup_count_children(struct mem_cgroup * memcg)1476 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1477 {
1478 int num = 0;
1479 struct mem_cgroup *iter;
1480
1481 for_each_mem_cgroup_tree(iter, memcg)
1482 num++;
1483 return num;
1484 }
1485
1486 /*
1487 * Return the memory (and swap, if configured) limit for a memcg.
1488 */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1489 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1490 {
1491 u64 limit;
1492
1493 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1494
1495 /*
1496 * Do not consider swap space if we cannot swap due to swappiness
1497 */
1498 if (mem_cgroup_swappiness(memcg)) {
1499 u64 memsw;
1500
1501 limit += total_swap_pages << PAGE_SHIFT;
1502 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1503
1504 /*
1505 * If memsw is finite and limits the amount of swap space
1506 * available to this memcg, return that limit.
1507 */
1508 limit = min(limit, memsw);
1509 }
1510
1511 return limit;
1512 }
1513
mem_cgroup_reclaim(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned long flags)1514 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1515 gfp_t gfp_mask,
1516 unsigned long flags)
1517 {
1518 unsigned long total = 0;
1519 bool noswap = false;
1520 int loop;
1521
1522 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1523 noswap = true;
1524 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1525 noswap = true;
1526
1527 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1528 if (loop)
1529 drain_all_stock_async(memcg);
1530 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1531 /*
1532 * Allow limit shrinkers, which are triggered directly
1533 * by userspace, to catch signals and stop reclaim
1534 * after minimal progress, regardless of the margin.
1535 */
1536 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1537 break;
1538 if (mem_cgroup_margin(memcg))
1539 break;
1540 /*
1541 * If nothing was reclaimed after two attempts, there
1542 * may be no reclaimable pages in this hierarchy.
1543 */
1544 if (loop && !total)
1545 break;
1546 }
1547 return total;
1548 }
1549
1550 /**
1551 * test_mem_cgroup_node_reclaimable
1552 * @mem: the target memcg
1553 * @nid: the node ID to be checked.
1554 * @noswap : specify true here if the user wants flle only information.
1555 *
1556 * This function returns whether the specified memcg contains any
1557 * reclaimable pages on a node. Returns true if there are any reclaimable
1558 * pages in the node.
1559 */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1560 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1561 int nid, bool noswap)
1562 {
1563 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1564 return true;
1565 if (noswap || !total_swap_pages)
1566 return false;
1567 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1568 return true;
1569 return false;
1570
1571 }
1572 #if MAX_NUMNODES > 1
1573
1574 /*
1575 * Always updating the nodemask is not very good - even if we have an empty
1576 * list or the wrong list here, we can start from some node and traverse all
1577 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1578 *
1579 */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1580 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1581 {
1582 int nid;
1583 /*
1584 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1585 * pagein/pageout changes since the last update.
1586 */
1587 if (!atomic_read(&memcg->numainfo_events))
1588 return;
1589 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1590 return;
1591
1592 /* make a nodemask where this memcg uses memory from */
1593 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1594
1595 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1596
1597 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1598 node_clear(nid, memcg->scan_nodes);
1599 }
1600
1601 atomic_set(&memcg->numainfo_events, 0);
1602 atomic_set(&memcg->numainfo_updating, 0);
1603 }
1604
1605 /*
1606 * Selecting a node where we start reclaim from. Because what we need is just
1607 * reducing usage counter, start from anywhere is O,K. Considering
1608 * memory reclaim from current node, there are pros. and cons.
1609 *
1610 * Freeing memory from current node means freeing memory from a node which
1611 * we'll use or we've used. So, it may make LRU bad. And if several threads
1612 * hit limits, it will see a contention on a node. But freeing from remote
1613 * node means more costs for memory reclaim because of memory latency.
1614 *
1615 * Now, we use round-robin. Better algorithm is welcomed.
1616 */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1617 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1618 {
1619 int node;
1620
1621 mem_cgroup_may_update_nodemask(memcg);
1622 node = memcg->last_scanned_node;
1623
1624 node = next_node(node, memcg->scan_nodes);
1625 if (node == MAX_NUMNODES)
1626 node = first_node(memcg->scan_nodes);
1627 /*
1628 * We call this when we hit limit, not when pages are added to LRU.
1629 * No LRU may hold pages because all pages are UNEVICTABLE or
1630 * memcg is too small and all pages are not on LRU. In that case,
1631 * we use curret node.
1632 */
1633 if (unlikely(node == MAX_NUMNODES))
1634 node = numa_node_id();
1635
1636 memcg->last_scanned_node = node;
1637 return node;
1638 }
1639
1640 /*
1641 * Check all nodes whether it contains reclaimable pages or not.
1642 * For quick scan, we make use of scan_nodes. This will allow us to skip
1643 * unused nodes. But scan_nodes is lazily updated and may not cotain
1644 * enough new information. We need to do double check.
1645 */
mem_cgroup_reclaimable(struct mem_cgroup * memcg,bool noswap)1646 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1647 {
1648 int nid;
1649
1650 /*
1651 * quick check...making use of scan_node.
1652 * We can skip unused nodes.
1653 */
1654 if (!nodes_empty(memcg->scan_nodes)) {
1655 for (nid = first_node(memcg->scan_nodes);
1656 nid < MAX_NUMNODES;
1657 nid = next_node(nid, memcg->scan_nodes)) {
1658
1659 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1660 return true;
1661 }
1662 }
1663 /*
1664 * Check rest of nodes.
1665 */
1666 for_each_node_state(nid, N_HIGH_MEMORY) {
1667 if (node_isset(nid, memcg->scan_nodes))
1668 continue;
1669 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1670 return true;
1671 }
1672 return false;
1673 }
1674
1675 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1676 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1677 {
1678 return 0;
1679 }
1680
mem_cgroup_reclaimable(struct mem_cgroup * memcg,bool noswap)1681 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1682 {
1683 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1684 }
1685 #endif
1686
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1687 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688 struct zone *zone,
1689 gfp_t gfp_mask,
1690 unsigned long *total_scanned)
1691 {
1692 struct mem_cgroup *victim = NULL;
1693 int total = 0;
1694 int loop = 0;
1695 unsigned long excess;
1696 unsigned long nr_scanned;
1697 struct mem_cgroup_reclaim_cookie reclaim = {
1698 .zone = zone,
1699 .priority = 0,
1700 };
1701
1702 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1703
1704 while (1) {
1705 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1706 if (!victim) {
1707 loop++;
1708 if (loop >= 2) {
1709 /*
1710 * If we have not been able to reclaim
1711 * anything, it might because there are
1712 * no reclaimable pages under this hierarchy
1713 */
1714 if (!total)
1715 break;
1716 /*
1717 * We want to do more targeted reclaim.
1718 * excess >> 2 is not to excessive so as to
1719 * reclaim too much, nor too less that we keep
1720 * coming back to reclaim from this cgroup
1721 */
1722 if (total >= (excess >> 2) ||
1723 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1724 break;
1725 }
1726 continue;
1727 }
1728 if (!mem_cgroup_reclaimable(victim, false))
1729 continue;
1730 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1731 zone, &nr_scanned);
1732 *total_scanned += nr_scanned;
1733 if (!res_counter_soft_limit_excess(&root_memcg->res))
1734 break;
1735 }
1736 mem_cgroup_iter_break(root_memcg, victim);
1737 return total;
1738 }
1739
1740 /*
1741 * Check OOM-Killer is already running under our hierarchy.
1742 * If someone is running, return false.
1743 * Has to be called with memcg_oom_lock
1744 */
mem_cgroup_oom_lock(struct mem_cgroup * memcg)1745 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1746 {
1747 struct mem_cgroup *iter, *failed = NULL;
1748
1749 for_each_mem_cgroup_tree(iter, memcg) {
1750 if (iter->oom_lock) {
1751 /*
1752 * this subtree of our hierarchy is already locked
1753 * so we cannot give a lock.
1754 */
1755 failed = iter;
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
1758 } else
1759 iter->oom_lock = true;
1760 }
1761
1762 if (!failed)
1763 return true;
1764
1765 /*
1766 * OK, we failed to lock the whole subtree so we have to clean up
1767 * what we set up to the failing subtree
1768 */
1769 for_each_mem_cgroup_tree(iter, memcg) {
1770 if (iter == failed) {
1771 mem_cgroup_iter_break(memcg, iter);
1772 break;
1773 }
1774 iter->oom_lock = false;
1775 }
1776 return false;
1777 }
1778
1779 /*
1780 * Has to be called with memcg_oom_lock
1781 */
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1782 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783 {
1784 struct mem_cgroup *iter;
1785
1786 for_each_mem_cgroup_tree(iter, memcg)
1787 iter->oom_lock = false;
1788 return 0;
1789 }
1790
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1791 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1792 {
1793 struct mem_cgroup *iter;
1794
1795 for_each_mem_cgroup_tree(iter, memcg)
1796 atomic_inc(&iter->under_oom);
1797 }
1798
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1799 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1800 {
1801 struct mem_cgroup *iter;
1802
1803 /*
1804 * When a new child is created while the hierarchy is under oom,
1805 * mem_cgroup_oom_lock() may not be called. We have to use
1806 * atomic_add_unless() here.
1807 */
1808 for_each_mem_cgroup_tree(iter, memcg)
1809 atomic_add_unless(&iter->under_oom, -1, 0);
1810 }
1811
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1814
1815 struct oom_wait_info {
1816 struct mem_cgroup *memcg;
1817 wait_queue_t wait;
1818 };
1819
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1820 static int memcg_oom_wake_function(wait_queue_t *wait,
1821 unsigned mode, int sync, void *arg)
1822 {
1823 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1824 struct mem_cgroup *oom_wait_memcg;
1825 struct oom_wait_info *oom_wait_info;
1826
1827 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1828 oom_wait_memcg = oom_wait_info->memcg;
1829
1830 /*
1831 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1832 * Then we can use css_is_ancestor without taking care of RCU.
1833 */
1834 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1835 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1836 return 0;
1837 return autoremove_wake_function(wait, mode, sync, arg);
1838 }
1839
memcg_wakeup_oom(struct mem_cgroup * memcg)1840 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1841 {
1842 /* for filtering, pass "memcg" as argument. */
1843 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1844 }
1845
memcg_oom_recover(struct mem_cgroup * memcg)1846 static void memcg_oom_recover(struct mem_cgroup *memcg)
1847 {
1848 if (memcg && atomic_read(&memcg->under_oom))
1849 memcg_wakeup_oom(memcg);
1850 }
1851
1852 /*
1853 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1854 */
mem_cgroup_handle_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1855 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1856 {
1857 struct oom_wait_info owait;
1858 bool locked, need_to_kill;
1859
1860 owait.memcg = memcg;
1861 owait.wait.flags = 0;
1862 owait.wait.func = memcg_oom_wake_function;
1863 owait.wait.private = current;
1864 INIT_LIST_HEAD(&owait.wait.task_list);
1865 need_to_kill = true;
1866 mem_cgroup_mark_under_oom(memcg);
1867
1868 /* At first, try to OOM lock hierarchy under memcg.*/
1869 spin_lock(&memcg_oom_lock);
1870 locked = mem_cgroup_oom_lock(memcg);
1871 /*
1872 * Even if signal_pending(), we can't quit charge() loop without
1873 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1874 * under OOM is always welcomed, use TASK_KILLABLE here.
1875 */
1876 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1877 if (!locked || memcg->oom_kill_disable)
1878 need_to_kill = false;
1879 if (locked)
1880 mem_cgroup_oom_notify(memcg);
1881 spin_unlock(&memcg_oom_lock);
1882
1883 if (need_to_kill) {
1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1885 mem_cgroup_out_of_memory(memcg, mask, order);
1886 } else {
1887 schedule();
1888 finish_wait(&memcg_oom_waitq, &owait.wait);
1889 }
1890 spin_lock(&memcg_oom_lock);
1891 if (locked)
1892 mem_cgroup_oom_unlock(memcg);
1893 memcg_wakeup_oom(memcg);
1894 spin_unlock(&memcg_oom_lock);
1895
1896 mem_cgroup_unmark_under_oom(memcg);
1897
1898 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1899 return false;
1900 /* Give chance to dying process */
1901 schedule_timeout_uninterruptible(1);
1902 return true;
1903 }
1904
1905 /*
1906 * Currently used to update mapped file statistics, but the routine can be
1907 * generalized to update other statistics as well.
1908 *
1909 * Notes: Race condition
1910 *
1911 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1912 * it tends to be costly. But considering some conditions, we doesn't need
1913 * to do so _always_.
1914 *
1915 * Considering "charge", lock_page_cgroup() is not required because all
1916 * file-stat operations happen after a page is attached to radix-tree. There
1917 * are no race with "charge".
1918 *
1919 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1920 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1921 * if there are race with "uncharge". Statistics itself is properly handled
1922 * by flags.
1923 *
1924 * Considering "move", this is an only case we see a race. To make the race
1925 * small, we check mm->moving_account and detect there are possibility of race
1926 * If there is, we take a lock.
1927 */
1928
__mem_cgroup_begin_update_page_stat(struct page * page,bool * locked,unsigned long * flags)1929 void __mem_cgroup_begin_update_page_stat(struct page *page,
1930 bool *locked, unsigned long *flags)
1931 {
1932 struct mem_cgroup *memcg;
1933 struct page_cgroup *pc;
1934
1935 pc = lookup_page_cgroup(page);
1936 again:
1937 memcg = pc->mem_cgroup;
1938 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1939 return;
1940 /*
1941 * If this memory cgroup is not under account moving, we don't
1942 * need to take move_lock_page_cgroup(). Because we already hold
1943 * rcu_read_lock(), any calls to move_account will be delayed until
1944 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1945 */
1946 if (!mem_cgroup_stolen(memcg))
1947 return;
1948
1949 move_lock_mem_cgroup(memcg, flags);
1950 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1951 move_unlock_mem_cgroup(memcg, flags);
1952 goto again;
1953 }
1954 *locked = true;
1955 }
1956
__mem_cgroup_end_update_page_stat(struct page * page,unsigned long * flags)1957 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1958 {
1959 struct page_cgroup *pc = lookup_page_cgroup(page);
1960
1961 /*
1962 * It's guaranteed that pc->mem_cgroup never changes while
1963 * lock is held because a routine modifies pc->mem_cgroup
1964 * should take move_lock_page_cgroup().
1965 */
1966 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1967 }
1968
mem_cgroup_update_page_stat(struct page * page,enum mem_cgroup_page_stat_item idx,int val)1969 void mem_cgroup_update_page_stat(struct page *page,
1970 enum mem_cgroup_page_stat_item idx, int val)
1971 {
1972 struct mem_cgroup *memcg;
1973 struct page_cgroup *pc = lookup_page_cgroup(page);
1974 unsigned long uninitialized_var(flags);
1975
1976 if (mem_cgroup_disabled())
1977 return;
1978
1979 memcg = pc->mem_cgroup;
1980 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1981 return;
1982
1983 switch (idx) {
1984 case MEMCG_NR_FILE_MAPPED:
1985 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1986 break;
1987 default:
1988 BUG();
1989 }
1990
1991 this_cpu_add(memcg->stat->count[idx], val);
1992 }
1993
1994 /*
1995 * size of first charge trial. "32" comes from vmscan.c's magic value.
1996 * TODO: maybe necessary to use big numbers in big irons.
1997 */
1998 #define CHARGE_BATCH 32U
1999 struct memcg_stock_pcp {
2000 struct mem_cgroup *cached; /* this never be root cgroup */
2001 unsigned int nr_pages;
2002 struct work_struct work;
2003 unsigned long flags;
2004 #define FLUSHING_CACHED_CHARGE (0)
2005 };
2006 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2007 static DEFINE_MUTEX(percpu_charge_mutex);
2008
2009 /*
2010 * Try to consume stocked charge on this cpu. If success, one page is consumed
2011 * from local stock and true is returned. If the stock is 0 or charges from a
2012 * cgroup which is not current target, returns false. This stock will be
2013 * refilled.
2014 */
consume_stock(struct mem_cgroup * memcg)2015 static bool consume_stock(struct mem_cgroup *memcg)
2016 {
2017 struct memcg_stock_pcp *stock;
2018 bool ret = true;
2019
2020 stock = &get_cpu_var(memcg_stock);
2021 if (memcg == stock->cached && stock->nr_pages)
2022 stock->nr_pages--;
2023 else /* need to call res_counter_charge */
2024 ret = false;
2025 put_cpu_var(memcg_stock);
2026 return ret;
2027 }
2028
2029 /*
2030 * Returns stocks cached in percpu to res_counter and reset cached information.
2031 */
drain_stock(struct memcg_stock_pcp * stock)2032 static void drain_stock(struct memcg_stock_pcp *stock)
2033 {
2034 struct mem_cgroup *old = stock->cached;
2035
2036 if (stock->nr_pages) {
2037 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2038
2039 res_counter_uncharge(&old->res, bytes);
2040 if (do_swap_account)
2041 res_counter_uncharge(&old->memsw, bytes);
2042 stock->nr_pages = 0;
2043 }
2044 stock->cached = NULL;
2045 }
2046
2047 /*
2048 * This must be called under preempt disabled or must be called by
2049 * a thread which is pinned to local cpu.
2050 */
drain_local_stock(struct work_struct * dummy)2051 static void drain_local_stock(struct work_struct *dummy)
2052 {
2053 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2054 drain_stock(stock);
2055 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2056 }
2057
2058 /*
2059 * Cache charges(val) which is from res_counter, to local per_cpu area.
2060 * This will be consumed by consume_stock() function, later.
2061 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2062 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2063 {
2064 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2065
2066 if (stock->cached != memcg) { /* reset if necessary */
2067 drain_stock(stock);
2068 stock->cached = memcg;
2069 }
2070 stock->nr_pages += nr_pages;
2071 put_cpu_var(memcg_stock);
2072 }
2073
2074 /*
2075 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2076 * of the hierarchy under it. sync flag says whether we should block
2077 * until the work is done.
2078 */
drain_all_stock(struct mem_cgroup * root_memcg,bool sync)2079 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2080 {
2081 int cpu, curcpu;
2082
2083 /* Notify other cpus that system-wide "drain" is running */
2084 get_online_cpus();
2085 curcpu = get_cpu();
2086 for_each_online_cpu(cpu) {
2087 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2088 struct mem_cgroup *memcg;
2089
2090 memcg = stock->cached;
2091 if (!memcg || !stock->nr_pages)
2092 continue;
2093 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2094 continue;
2095 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2096 if (cpu == curcpu)
2097 drain_local_stock(&stock->work);
2098 else
2099 schedule_work_on(cpu, &stock->work);
2100 }
2101 }
2102 put_cpu();
2103
2104 if (!sync)
2105 goto out;
2106
2107 for_each_online_cpu(cpu) {
2108 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2109 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2110 flush_work(&stock->work);
2111 }
2112 out:
2113 put_online_cpus();
2114 }
2115
2116 /*
2117 * Tries to drain stocked charges in other cpus. This function is asynchronous
2118 * and just put a work per cpu for draining localy on each cpu. Caller can
2119 * expects some charges will be back to res_counter later but cannot wait for
2120 * it.
2121 */
drain_all_stock_async(struct mem_cgroup * root_memcg)2122 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2123 {
2124 /*
2125 * If someone calls draining, avoid adding more kworker runs.
2126 */
2127 if (!mutex_trylock(&percpu_charge_mutex))
2128 return;
2129 drain_all_stock(root_memcg, false);
2130 mutex_unlock(&percpu_charge_mutex);
2131 }
2132
2133 /* This is a synchronous drain interface. */
drain_all_stock_sync(struct mem_cgroup * root_memcg)2134 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2135 {
2136 /* called when force_empty is called */
2137 mutex_lock(&percpu_charge_mutex);
2138 drain_all_stock(root_memcg, true);
2139 mutex_unlock(&percpu_charge_mutex);
2140 }
2141
2142 /*
2143 * This function drains percpu counter value from DEAD cpu and
2144 * move it to local cpu. Note that this function can be preempted.
2145 */
mem_cgroup_drain_pcp_counter(struct mem_cgroup * memcg,int cpu)2146 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2147 {
2148 int i;
2149
2150 spin_lock(&memcg->pcp_counter_lock);
2151 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2152 long x = per_cpu(memcg->stat->count[i], cpu);
2153
2154 per_cpu(memcg->stat->count[i], cpu) = 0;
2155 memcg->nocpu_base.count[i] += x;
2156 }
2157 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2158 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2159
2160 per_cpu(memcg->stat->events[i], cpu) = 0;
2161 memcg->nocpu_base.events[i] += x;
2162 }
2163 spin_unlock(&memcg->pcp_counter_lock);
2164 }
2165
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)2166 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2167 unsigned long action,
2168 void *hcpu)
2169 {
2170 int cpu = (unsigned long)hcpu;
2171 struct memcg_stock_pcp *stock;
2172 struct mem_cgroup *iter;
2173
2174 if (action == CPU_ONLINE)
2175 return NOTIFY_OK;
2176
2177 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2178 return NOTIFY_OK;
2179
2180 for_each_mem_cgroup(iter)
2181 mem_cgroup_drain_pcp_counter(iter, cpu);
2182
2183 stock = &per_cpu(memcg_stock, cpu);
2184 drain_stock(stock);
2185 return NOTIFY_OK;
2186 }
2187
2188
2189 /* See __mem_cgroup_try_charge() for details */
2190 enum {
2191 CHARGE_OK, /* success */
2192 CHARGE_RETRY, /* need to retry but retry is not bad */
2193 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2194 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2195 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2196 };
2197
mem_cgroup_do_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages,bool oom_check)2198 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2199 unsigned int nr_pages, bool oom_check)
2200 {
2201 unsigned long csize = nr_pages * PAGE_SIZE;
2202 struct mem_cgroup *mem_over_limit;
2203 struct res_counter *fail_res;
2204 unsigned long flags = 0;
2205 int ret;
2206
2207 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2208
2209 if (likely(!ret)) {
2210 if (!do_swap_account)
2211 return CHARGE_OK;
2212 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2213 if (likely(!ret))
2214 return CHARGE_OK;
2215
2216 res_counter_uncharge(&memcg->res, csize);
2217 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2218 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2219 } else
2220 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2221 /*
2222 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2223 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2224 *
2225 * Never reclaim on behalf of optional batching, retry with a
2226 * single page instead.
2227 */
2228 if (nr_pages == CHARGE_BATCH)
2229 return CHARGE_RETRY;
2230
2231 if (!(gfp_mask & __GFP_WAIT))
2232 return CHARGE_WOULDBLOCK;
2233
2234 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2235 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2236 return CHARGE_RETRY;
2237 /*
2238 * Even though the limit is exceeded at this point, reclaim
2239 * may have been able to free some pages. Retry the charge
2240 * before killing the task.
2241 *
2242 * Only for regular pages, though: huge pages are rather
2243 * unlikely to succeed so close to the limit, and we fall back
2244 * to regular pages anyway in case of failure.
2245 */
2246 if (nr_pages == 1 && ret)
2247 return CHARGE_RETRY;
2248
2249 /*
2250 * At task move, charge accounts can be doubly counted. So, it's
2251 * better to wait until the end of task_move if something is going on.
2252 */
2253 if (mem_cgroup_wait_acct_move(mem_over_limit))
2254 return CHARGE_RETRY;
2255
2256 /* If we don't need to call oom-killer at el, return immediately */
2257 if (!oom_check)
2258 return CHARGE_NOMEM;
2259 /* check OOM */
2260 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2261 return CHARGE_OOM_DIE;
2262
2263 return CHARGE_RETRY;
2264 }
2265
2266 /*
2267 * __mem_cgroup_try_charge() does
2268 * 1. detect memcg to be charged against from passed *mm and *ptr,
2269 * 2. update res_counter
2270 * 3. call memory reclaim if necessary.
2271 *
2272 * In some special case, if the task is fatal, fatal_signal_pending() or
2273 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2274 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2275 * as possible without any hazards. 2: all pages should have a valid
2276 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2277 * pointer, that is treated as a charge to root_mem_cgroup.
2278 *
2279 * So __mem_cgroup_try_charge() will return
2280 * 0 ... on success, filling *ptr with a valid memcg pointer.
2281 * -ENOMEM ... charge failure because of resource limits.
2282 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2283 *
2284 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2285 * the oom-killer can be invoked.
2286 */
__mem_cgroup_try_charge(struct mm_struct * mm,gfp_t gfp_mask,unsigned int nr_pages,struct mem_cgroup ** ptr,bool oom)2287 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2288 gfp_t gfp_mask,
2289 unsigned int nr_pages,
2290 struct mem_cgroup **ptr,
2291 bool oom)
2292 {
2293 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2294 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2295 struct mem_cgroup *memcg = NULL;
2296 int ret;
2297
2298 /*
2299 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2300 * in system level. So, allow to go ahead dying process in addition to
2301 * MEMDIE process.
2302 */
2303 if (unlikely(test_thread_flag(TIF_MEMDIE)
2304 || fatal_signal_pending(current)))
2305 goto bypass;
2306
2307 /*
2308 * We always charge the cgroup the mm_struct belongs to.
2309 * The mm_struct's mem_cgroup changes on task migration if the
2310 * thread group leader migrates. It's possible that mm is not
2311 * set, if so charge the init_mm (happens for pagecache usage).
2312 */
2313 if (!*ptr && !mm)
2314 *ptr = root_mem_cgroup;
2315 again:
2316 if (*ptr) { /* css should be a valid one */
2317 memcg = *ptr;
2318 VM_BUG_ON(css_is_removed(&memcg->css));
2319 if (mem_cgroup_is_root(memcg))
2320 goto done;
2321 if (nr_pages == 1 && consume_stock(memcg))
2322 goto done;
2323 css_get(&memcg->css);
2324 } else {
2325 struct task_struct *p;
2326
2327 rcu_read_lock();
2328 p = rcu_dereference(mm->owner);
2329 /*
2330 * Because we don't have task_lock(), "p" can exit.
2331 * In that case, "memcg" can point to root or p can be NULL with
2332 * race with swapoff. Then, we have small risk of mis-accouning.
2333 * But such kind of mis-account by race always happens because
2334 * we don't have cgroup_mutex(). It's overkill and we allo that
2335 * small race, here.
2336 * (*) swapoff at el will charge against mm-struct not against
2337 * task-struct. So, mm->owner can be NULL.
2338 */
2339 memcg = mem_cgroup_from_task(p);
2340 if (!memcg)
2341 memcg = root_mem_cgroup;
2342 if (mem_cgroup_is_root(memcg)) {
2343 rcu_read_unlock();
2344 goto done;
2345 }
2346 if (nr_pages == 1 && consume_stock(memcg)) {
2347 /*
2348 * It seems dagerous to access memcg without css_get().
2349 * But considering how consume_stok works, it's not
2350 * necessary. If consume_stock success, some charges
2351 * from this memcg are cached on this cpu. So, we
2352 * don't need to call css_get()/css_tryget() before
2353 * calling consume_stock().
2354 */
2355 rcu_read_unlock();
2356 goto done;
2357 }
2358 /* after here, we may be blocked. we need to get refcnt */
2359 if (!css_tryget(&memcg->css)) {
2360 rcu_read_unlock();
2361 goto again;
2362 }
2363 rcu_read_unlock();
2364 }
2365
2366 do {
2367 bool oom_check;
2368
2369 /* If killed, bypass charge */
2370 if (fatal_signal_pending(current)) {
2371 css_put(&memcg->css);
2372 goto bypass;
2373 }
2374
2375 oom_check = false;
2376 if (oom && !nr_oom_retries) {
2377 oom_check = true;
2378 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2379 }
2380
2381 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2382 switch (ret) {
2383 case CHARGE_OK:
2384 break;
2385 case CHARGE_RETRY: /* not in OOM situation but retry */
2386 batch = nr_pages;
2387 css_put(&memcg->css);
2388 memcg = NULL;
2389 goto again;
2390 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2391 css_put(&memcg->css);
2392 goto nomem;
2393 case CHARGE_NOMEM: /* OOM routine works */
2394 if (!oom) {
2395 css_put(&memcg->css);
2396 goto nomem;
2397 }
2398 /* If oom, we never return -ENOMEM */
2399 nr_oom_retries--;
2400 break;
2401 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2402 css_put(&memcg->css);
2403 goto bypass;
2404 }
2405 } while (ret != CHARGE_OK);
2406
2407 if (batch > nr_pages)
2408 refill_stock(memcg, batch - nr_pages);
2409 css_put(&memcg->css);
2410 done:
2411 *ptr = memcg;
2412 return 0;
2413 nomem:
2414 *ptr = NULL;
2415 return -ENOMEM;
2416 bypass:
2417 *ptr = root_mem_cgroup;
2418 return -EINTR;
2419 }
2420
2421 /*
2422 * Somemtimes we have to undo a charge we got by try_charge().
2423 * This function is for that and do uncharge, put css's refcnt.
2424 * gotten by try_charge().
2425 */
__mem_cgroup_cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2426 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2427 unsigned int nr_pages)
2428 {
2429 if (!mem_cgroup_is_root(memcg)) {
2430 unsigned long bytes = nr_pages * PAGE_SIZE;
2431
2432 res_counter_uncharge(&memcg->res, bytes);
2433 if (do_swap_account)
2434 res_counter_uncharge(&memcg->memsw, bytes);
2435 }
2436 }
2437
2438 /*
2439 * A helper function to get mem_cgroup from ID. must be called under
2440 * rcu_read_lock(). The caller must check css_is_removed() or some if
2441 * it's concern. (dropping refcnt from swap can be called against removed
2442 * memcg.)
2443 */
mem_cgroup_lookup(unsigned short id)2444 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2445 {
2446 struct cgroup_subsys_state *css;
2447
2448 /* ID 0 is unused ID */
2449 if (!id)
2450 return NULL;
2451 css = css_lookup(&mem_cgroup_subsys, id);
2452 if (!css)
2453 return NULL;
2454 return container_of(css, struct mem_cgroup, css);
2455 }
2456
try_get_mem_cgroup_from_page(struct page * page)2457 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2458 {
2459 struct mem_cgroup *memcg = NULL;
2460 struct page_cgroup *pc;
2461 unsigned short id;
2462 swp_entry_t ent;
2463
2464 VM_BUG_ON(!PageLocked(page));
2465
2466 pc = lookup_page_cgroup(page);
2467 lock_page_cgroup(pc);
2468 if (PageCgroupUsed(pc)) {
2469 memcg = pc->mem_cgroup;
2470 if (memcg && !css_tryget(&memcg->css))
2471 memcg = NULL;
2472 } else if (PageSwapCache(page)) {
2473 ent.val = page_private(page);
2474 id = lookup_swap_cgroup_id(ent);
2475 rcu_read_lock();
2476 memcg = mem_cgroup_lookup(id);
2477 if (memcg && !css_tryget(&memcg->css))
2478 memcg = NULL;
2479 rcu_read_unlock();
2480 }
2481 unlock_page_cgroup(pc);
2482 return memcg;
2483 }
2484
__mem_cgroup_commit_charge(struct mem_cgroup * memcg,struct page * page,unsigned int nr_pages,enum charge_type ctype,bool lrucare)2485 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2486 struct page *page,
2487 unsigned int nr_pages,
2488 enum charge_type ctype,
2489 bool lrucare)
2490 {
2491 struct page_cgroup *pc = lookup_page_cgroup(page);
2492 struct zone *uninitialized_var(zone);
2493 bool was_on_lru = false;
2494 bool anon;
2495
2496 lock_page_cgroup(pc);
2497 if (unlikely(PageCgroupUsed(pc))) {
2498 unlock_page_cgroup(pc);
2499 __mem_cgroup_cancel_charge(memcg, nr_pages);
2500 return;
2501 }
2502 /*
2503 * we don't need page_cgroup_lock about tail pages, becase they are not
2504 * accessed by any other context at this point.
2505 */
2506
2507 /*
2508 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2509 * may already be on some other mem_cgroup's LRU. Take care of it.
2510 */
2511 if (lrucare) {
2512 zone = page_zone(page);
2513 spin_lock_irq(&zone->lru_lock);
2514 if (PageLRU(page)) {
2515 ClearPageLRU(page);
2516 del_page_from_lru_list(zone, page, page_lru(page));
2517 was_on_lru = true;
2518 }
2519 }
2520
2521 pc->mem_cgroup = memcg;
2522 /*
2523 * We access a page_cgroup asynchronously without lock_page_cgroup().
2524 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2525 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2526 * before USED bit, we need memory barrier here.
2527 * See mem_cgroup_add_lru_list(), etc.
2528 */
2529 smp_wmb();
2530 SetPageCgroupUsed(pc);
2531
2532 if (lrucare) {
2533 if (was_on_lru) {
2534 VM_BUG_ON(PageLRU(page));
2535 SetPageLRU(page);
2536 add_page_to_lru_list(zone, page, page_lru(page));
2537 }
2538 spin_unlock_irq(&zone->lru_lock);
2539 }
2540
2541 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2542 anon = true;
2543 else
2544 anon = false;
2545
2546 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2547 unlock_page_cgroup(pc);
2548
2549 /*
2550 * "charge_statistics" updated event counter. Then, check it.
2551 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2552 * if they exceeds softlimit.
2553 */
2554 memcg_check_events(memcg, page);
2555 }
2556
2557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2558
2559 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2560 /*
2561 * Because tail pages are not marked as "used", set it. We're under
2562 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2563 * charge/uncharge will be never happen and move_account() is done under
2564 * compound_lock(), so we don't have to take care of races.
2565 */
mem_cgroup_split_huge_fixup(struct page * head)2566 void mem_cgroup_split_huge_fixup(struct page *head)
2567 {
2568 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2569 struct page_cgroup *pc;
2570 int i;
2571
2572 if (mem_cgroup_disabled())
2573 return;
2574 for (i = 1; i < HPAGE_PMD_NR; i++) {
2575 pc = head_pc + i;
2576 pc->mem_cgroup = head_pc->mem_cgroup;
2577 smp_wmb();/* see __commit_charge() */
2578 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2579 }
2580 }
2581 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2582
2583 /**
2584 * mem_cgroup_move_account - move account of the page
2585 * @page: the page
2586 * @nr_pages: number of regular pages (>1 for huge pages)
2587 * @pc: page_cgroup of the page.
2588 * @from: mem_cgroup which the page is moved from.
2589 * @to: mem_cgroup which the page is moved to. @from != @to.
2590 * @uncharge: whether we should call uncharge and css_put against @from.
2591 *
2592 * The caller must confirm following.
2593 * - page is not on LRU (isolate_page() is useful.)
2594 * - compound_lock is held when nr_pages > 1
2595 *
2596 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2597 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2598 * true, this function does "uncharge" from old cgroup, but it doesn't if
2599 * @uncharge is false, so a caller should do "uncharge".
2600 */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct page_cgroup * pc,struct mem_cgroup * from,struct mem_cgroup * to,bool uncharge)2601 static int mem_cgroup_move_account(struct page *page,
2602 unsigned int nr_pages,
2603 struct page_cgroup *pc,
2604 struct mem_cgroup *from,
2605 struct mem_cgroup *to,
2606 bool uncharge)
2607 {
2608 unsigned long flags;
2609 int ret;
2610 bool anon = PageAnon(page);
2611
2612 VM_BUG_ON(from == to);
2613 VM_BUG_ON(PageLRU(page));
2614 /*
2615 * The page is isolated from LRU. So, collapse function
2616 * will not handle this page. But page splitting can happen.
2617 * Do this check under compound_page_lock(). The caller should
2618 * hold it.
2619 */
2620 ret = -EBUSY;
2621 if (nr_pages > 1 && !PageTransHuge(page))
2622 goto out;
2623
2624 lock_page_cgroup(pc);
2625
2626 ret = -EINVAL;
2627 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2628 goto unlock;
2629
2630 move_lock_mem_cgroup(from, &flags);
2631
2632 if (!anon && page_mapped(page)) {
2633 /* Update mapped_file data for mem_cgroup */
2634 preempt_disable();
2635 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2636 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 preempt_enable();
2638 }
2639 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2640 if (uncharge)
2641 /* This is not "cancel", but cancel_charge does all we need. */
2642 __mem_cgroup_cancel_charge(from, nr_pages);
2643
2644 /* caller should have done css_get */
2645 pc->mem_cgroup = to;
2646 mem_cgroup_charge_statistics(to, anon, nr_pages);
2647 /*
2648 * We charges against "to" which may not have any tasks. Then, "to"
2649 * can be under rmdir(). But in current implementation, caller of
2650 * this function is just force_empty() and move charge, so it's
2651 * guaranteed that "to" is never removed. So, we don't check rmdir
2652 * status here.
2653 */
2654 move_unlock_mem_cgroup(from, &flags);
2655 ret = 0;
2656 unlock:
2657 unlock_page_cgroup(pc);
2658 /*
2659 * check events
2660 */
2661 memcg_check_events(to, page);
2662 memcg_check_events(from, page);
2663 out:
2664 return ret;
2665 }
2666
2667 /*
2668 * move charges to its parent.
2669 */
2670
mem_cgroup_move_parent(struct page * page,struct page_cgroup * pc,struct mem_cgroup * child,gfp_t gfp_mask)2671 static int mem_cgroup_move_parent(struct page *page,
2672 struct page_cgroup *pc,
2673 struct mem_cgroup *child,
2674 gfp_t gfp_mask)
2675 {
2676 struct cgroup *cg = child->css.cgroup;
2677 struct cgroup *pcg = cg->parent;
2678 struct mem_cgroup *parent;
2679 unsigned int nr_pages;
2680 unsigned long uninitialized_var(flags);
2681 int ret;
2682
2683 /* Is ROOT ? */
2684 if (!pcg)
2685 return -EINVAL;
2686
2687 ret = -EBUSY;
2688 if (!get_page_unless_zero(page))
2689 goto out;
2690 if (isolate_lru_page(page))
2691 goto put;
2692
2693 nr_pages = hpage_nr_pages(page);
2694
2695 parent = mem_cgroup_from_cont(pcg);
2696 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2697 if (ret)
2698 goto put_back;
2699
2700 if (nr_pages > 1)
2701 flags = compound_lock_irqsave(page);
2702
2703 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2704 if (ret)
2705 __mem_cgroup_cancel_charge(parent, nr_pages);
2706
2707 if (nr_pages > 1)
2708 compound_unlock_irqrestore(page, flags);
2709 put_back:
2710 putback_lru_page(page);
2711 put:
2712 put_page(page);
2713 out:
2714 return ret;
2715 }
2716
2717 /*
2718 * Charge the memory controller for page usage.
2719 * Return
2720 * 0 if the charge was successful
2721 * < 0 if the cgroup is over its limit
2722 */
mem_cgroup_charge_common(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,enum charge_type ctype)2723 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2724 gfp_t gfp_mask, enum charge_type ctype)
2725 {
2726 struct mem_cgroup *memcg = NULL;
2727 unsigned int nr_pages = 1;
2728 bool oom = true;
2729 int ret;
2730
2731 if (PageTransHuge(page)) {
2732 nr_pages <<= compound_order(page);
2733 VM_BUG_ON(!PageTransHuge(page));
2734 /*
2735 * Never OOM-kill a process for a huge page. The
2736 * fault handler will fall back to regular pages.
2737 */
2738 oom = false;
2739 }
2740
2741 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2742 if (ret == -ENOMEM)
2743 return ret;
2744 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2745 return 0;
2746 }
2747
mem_cgroup_newpage_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)2748 int mem_cgroup_newpage_charge(struct page *page,
2749 struct mm_struct *mm, gfp_t gfp_mask)
2750 {
2751 if (mem_cgroup_disabled())
2752 return 0;
2753 VM_BUG_ON(page_mapped(page));
2754 VM_BUG_ON(page->mapping && !PageAnon(page));
2755 VM_BUG_ON(!mm);
2756 return mem_cgroup_charge_common(page, mm, gfp_mask,
2757 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2758 }
2759
2760 static void
2761 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2762 enum charge_type ctype);
2763
mem_cgroup_cache_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)2764 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2765 gfp_t gfp_mask)
2766 {
2767 struct mem_cgroup *memcg = NULL;
2768 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2769 int ret;
2770
2771 if (mem_cgroup_disabled())
2772 return 0;
2773 if (PageCompound(page))
2774 return 0;
2775
2776 if (unlikely(!mm))
2777 mm = &init_mm;
2778 if (!page_is_file_cache(page))
2779 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2780
2781 if (!PageSwapCache(page))
2782 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2783 else { /* page is swapcache/shmem */
2784 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2785 if (!ret)
2786 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2787 }
2788 return ret;
2789 }
2790
2791 /*
2792 * While swap-in, try_charge -> commit or cancel, the page is locked.
2793 * And when try_charge() successfully returns, one refcnt to memcg without
2794 * struct page_cgroup is acquired. This refcnt will be consumed by
2795 * "commit()" or removed by "cancel()"
2796 */
mem_cgroup_try_charge_swapin(struct mm_struct * mm,struct page * page,gfp_t mask,struct mem_cgroup ** memcgp)2797 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2798 struct page *page,
2799 gfp_t mask, struct mem_cgroup **memcgp)
2800 {
2801 struct mem_cgroup *memcg;
2802 int ret;
2803
2804 *memcgp = NULL;
2805
2806 if (mem_cgroup_disabled())
2807 return 0;
2808
2809 if (!do_swap_account)
2810 goto charge_cur_mm;
2811 /*
2812 * A racing thread's fault, or swapoff, may have already updated
2813 * the pte, and even removed page from swap cache: in those cases
2814 * do_swap_page()'s pte_same() test will fail; but there's also a
2815 * KSM case which does need to charge the page.
2816 */
2817 if (!PageSwapCache(page))
2818 goto charge_cur_mm;
2819 memcg = try_get_mem_cgroup_from_page(page);
2820 if (!memcg)
2821 goto charge_cur_mm;
2822 *memcgp = memcg;
2823 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2824 css_put(&memcg->css);
2825 if (ret == -EINTR)
2826 ret = 0;
2827 return ret;
2828 charge_cur_mm:
2829 if (unlikely(!mm))
2830 mm = &init_mm;
2831 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2832 if (ret == -EINTR)
2833 ret = 0;
2834 return ret;
2835 }
2836
2837 static void
__mem_cgroup_commit_charge_swapin(struct page * page,struct mem_cgroup * memcg,enum charge_type ctype)2838 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2839 enum charge_type ctype)
2840 {
2841 if (mem_cgroup_disabled())
2842 return;
2843 if (!memcg)
2844 return;
2845 cgroup_exclude_rmdir(&memcg->css);
2846
2847 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2848 /*
2849 * Now swap is on-memory. This means this page may be
2850 * counted both as mem and swap....double count.
2851 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2852 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2853 * may call delete_from_swap_cache() before reach here.
2854 */
2855 if (do_swap_account && PageSwapCache(page)) {
2856 swp_entry_t ent = {.val = page_private(page)};
2857 struct mem_cgroup *swap_memcg;
2858 unsigned short id;
2859
2860 id = swap_cgroup_record(ent, 0);
2861 rcu_read_lock();
2862 swap_memcg = mem_cgroup_lookup(id);
2863 if (swap_memcg) {
2864 /*
2865 * This recorded memcg can be obsolete one. So, avoid
2866 * calling css_tryget
2867 */
2868 if (!mem_cgroup_is_root(swap_memcg))
2869 res_counter_uncharge(&swap_memcg->memsw,
2870 PAGE_SIZE);
2871 mem_cgroup_swap_statistics(swap_memcg, false);
2872 mem_cgroup_put(swap_memcg);
2873 }
2874 rcu_read_unlock();
2875 }
2876 /*
2877 * At swapin, we may charge account against cgroup which has no tasks.
2878 * So, rmdir()->pre_destroy() can be called while we do this charge.
2879 * In that case, we need to call pre_destroy() again. check it here.
2880 */
2881 cgroup_release_and_wakeup_rmdir(&memcg->css);
2882 }
2883
mem_cgroup_commit_charge_swapin(struct page * page,struct mem_cgroup * memcg)2884 void mem_cgroup_commit_charge_swapin(struct page *page,
2885 struct mem_cgroup *memcg)
2886 {
2887 __mem_cgroup_commit_charge_swapin(page, memcg,
2888 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2889 }
2890
mem_cgroup_cancel_charge_swapin(struct mem_cgroup * memcg)2891 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2892 {
2893 if (mem_cgroup_disabled())
2894 return;
2895 if (!memcg)
2896 return;
2897 __mem_cgroup_cancel_charge(memcg, 1);
2898 }
2899
mem_cgroup_do_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages,const enum charge_type ctype)2900 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2901 unsigned int nr_pages,
2902 const enum charge_type ctype)
2903 {
2904 struct memcg_batch_info *batch = NULL;
2905 bool uncharge_memsw = true;
2906
2907 /* If swapout, usage of swap doesn't decrease */
2908 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2909 uncharge_memsw = false;
2910
2911 batch = ¤t->memcg_batch;
2912 /*
2913 * In usual, we do css_get() when we remember memcg pointer.
2914 * But in this case, we keep res->usage until end of a series of
2915 * uncharges. Then, it's ok to ignore memcg's refcnt.
2916 */
2917 if (!batch->memcg)
2918 batch->memcg = memcg;
2919 /*
2920 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2921 * In those cases, all pages freed continuously can be expected to be in
2922 * the same cgroup and we have chance to coalesce uncharges.
2923 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2924 * because we want to do uncharge as soon as possible.
2925 */
2926
2927 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2928 goto direct_uncharge;
2929
2930 if (nr_pages > 1)
2931 goto direct_uncharge;
2932
2933 /*
2934 * In typical case, batch->memcg == mem. This means we can
2935 * merge a series of uncharges to an uncharge of res_counter.
2936 * If not, we uncharge res_counter ony by one.
2937 */
2938 if (batch->memcg != memcg)
2939 goto direct_uncharge;
2940 /* remember freed charge and uncharge it later */
2941 batch->nr_pages++;
2942 if (uncharge_memsw)
2943 batch->memsw_nr_pages++;
2944 return;
2945 direct_uncharge:
2946 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2947 if (uncharge_memsw)
2948 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2949 if (unlikely(batch->memcg != memcg))
2950 memcg_oom_recover(memcg);
2951 }
2952
2953 /*
2954 * uncharge if !page_mapped(page)
2955 */
2956 static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page * page,enum charge_type ctype)2957 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2958 {
2959 struct mem_cgroup *memcg = NULL;
2960 unsigned int nr_pages = 1;
2961 struct page_cgroup *pc;
2962 bool anon;
2963
2964 if (mem_cgroup_disabled())
2965 return NULL;
2966
2967 if (PageSwapCache(page))
2968 return NULL;
2969
2970 if (PageTransHuge(page)) {
2971 nr_pages <<= compound_order(page);
2972 VM_BUG_ON(!PageTransHuge(page));
2973 }
2974 /*
2975 * Check if our page_cgroup is valid
2976 */
2977 pc = lookup_page_cgroup(page);
2978 if (unlikely(!PageCgroupUsed(pc)))
2979 return NULL;
2980
2981 lock_page_cgroup(pc);
2982
2983 memcg = pc->mem_cgroup;
2984
2985 if (!PageCgroupUsed(pc))
2986 goto unlock_out;
2987
2988 anon = PageAnon(page);
2989
2990 switch (ctype) {
2991 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 /*
2993 * Generally PageAnon tells if it's the anon statistics to be
2994 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2995 * used before page reached the stage of being marked PageAnon.
2996 */
2997 anon = true;
2998 /* fallthrough */
2999 case MEM_CGROUP_CHARGE_TYPE_DROP:
3000 /* See mem_cgroup_prepare_migration() */
3001 if (page_mapped(page) || PageCgroupMigration(pc))
3002 goto unlock_out;
3003 break;
3004 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3005 if (!PageAnon(page)) { /* Shared memory */
3006 if (page->mapping && !page_is_file_cache(page))
3007 goto unlock_out;
3008 } else if (page_mapped(page)) /* Anon */
3009 goto unlock_out;
3010 break;
3011 default:
3012 break;
3013 }
3014
3015 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3016
3017 ClearPageCgroupUsed(pc);
3018 /*
3019 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3020 * freed from LRU. This is safe because uncharged page is expected not
3021 * to be reused (freed soon). Exception is SwapCache, it's handled by
3022 * special functions.
3023 */
3024
3025 unlock_page_cgroup(pc);
3026 /*
3027 * even after unlock, we have memcg->res.usage here and this memcg
3028 * will never be freed.
3029 */
3030 memcg_check_events(memcg, page);
3031 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3032 mem_cgroup_swap_statistics(memcg, true);
3033 mem_cgroup_get(memcg);
3034 }
3035 if (!mem_cgroup_is_root(memcg))
3036 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3037
3038 return memcg;
3039
3040 unlock_out:
3041 unlock_page_cgroup(pc);
3042 return NULL;
3043 }
3044
mem_cgroup_uncharge_page(struct page * page)3045 void mem_cgroup_uncharge_page(struct page *page)
3046 {
3047 /* early check. */
3048 if (page_mapped(page))
3049 return;
3050 VM_BUG_ON(page->mapping && !PageAnon(page));
3051 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3052 }
3053
mem_cgroup_uncharge_cache_page(struct page * page)3054 void mem_cgroup_uncharge_cache_page(struct page *page)
3055 {
3056 VM_BUG_ON(page_mapped(page));
3057 VM_BUG_ON(page->mapping);
3058 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3059 }
3060
3061 /*
3062 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3063 * In that cases, pages are freed continuously and we can expect pages
3064 * are in the same memcg. All these calls itself limits the number of
3065 * pages freed at once, then uncharge_start/end() is called properly.
3066 * This may be called prural(2) times in a context,
3067 */
3068
mem_cgroup_uncharge_start(void)3069 void mem_cgroup_uncharge_start(void)
3070 {
3071 current->memcg_batch.do_batch++;
3072 /* We can do nest. */
3073 if (current->memcg_batch.do_batch == 1) {
3074 current->memcg_batch.memcg = NULL;
3075 current->memcg_batch.nr_pages = 0;
3076 current->memcg_batch.memsw_nr_pages = 0;
3077 }
3078 }
3079
mem_cgroup_uncharge_end(void)3080 void mem_cgroup_uncharge_end(void)
3081 {
3082 struct memcg_batch_info *batch = ¤t->memcg_batch;
3083
3084 if (!batch->do_batch)
3085 return;
3086
3087 batch->do_batch--;
3088 if (batch->do_batch) /* If stacked, do nothing. */
3089 return;
3090
3091 if (!batch->memcg)
3092 return;
3093 /*
3094 * This "batch->memcg" is valid without any css_get/put etc...
3095 * bacause we hide charges behind us.
3096 */
3097 if (batch->nr_pages)
3098 res_counter_uncharge(&batch->memcg->res,
3099 batch->nr_pages * PAGE_SIZE);
3100 if (batch->memsw_nr_pages)
3101 res_counter_uncharge(&batch->memcg->memsw,
3102 batch->memsw_nr_pages * PAGE_SIZE);
3103 memcg_oom_recover(batch->memcg);
3104 /* forget this pointer (for sanity check) */
3105 batch->memcg = NULL;
3106 }
3107
3108 #ifdef CONFIG_SWAP
3109 /*
3110 * called after __delete_from_swap_cache() and drop "page" account.
3111 * memcg information is recorded to swap_cgroup of "ent"
3112 */
3113 void
mem_cgroup_uncharge_swapcache(struct page * page,swp_entry_t ent,bool swapout)3114 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3115 {
3116 struct mem_cgroup *memcg;
3117 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3118
3119 if (!swapout) /* this was a swap cache but the swap is unused ! */
3120 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3121
3122 memcg = __mem_cgroup_uncharge_common(page, ctype);
3123
3124 /*
3125 * record memcg information, if swapout && memcg != NULL,
3126 * mem_cgroup_get() was called in uncharge().
3127 */
3128 if (do_swap_account && swapout && memcg)
3129 swap_cgroup_record(ent, css_id(&memcg->css));
3130 }
3131 #endif
3132
3133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3134 /*
3135 * called from swap_entry_free(). remove record in swap_cgroup and
3136 * uncharge "memsw" account.
3137 */
mem_cgroup_uncharge_swap(swp_entry_t ent)3138 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3139 {
3140 struct mem_cgroup *memcg;
3141 unsigned short id;
3142
3143 if (!do_swap_account)
3144 return;
3145
3146 id = swap_cgroup_record(ent, 0);
3147 rcu_read_lock();
3148 memcg = mem_cgroup_lookup(id);
3149 if (memcg) {
3150 /*
3151 * We uncharge this because swap is freed.
3152 * This memcg can be obsolete one. We avoid calling css_tryget
3153 */
3154 if (!mem_cgroup_is_root(memcg))
3155 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3156 mem_cgroup_swap_statistics(memcg, false);
3157 mem_cgroup_put(memcg);
3158 }
3159 rcu_read_unlock();
3160 }
3161
3162 /**
3163 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3164 * @entry: swap entry to be moved
3165 * @from: mem_cgroup which the entry is moved from
3166 * @to: mem_cgroup which the entry is moved to
3167 * @need_fixup: whether we should fixup res_counters and refcounts.
3168 *
3169 * It succeeds only when the swap_cgroup's record for this entry is the same
3170 * as the mem_cgroup's id of @from.
3171 *
3172 * Returns 0 on success, -EINVAL on failure.
3173 *
3174 * The caller must have charged to @to, IOW, called res_counter_charge() about
3175 * both res and memsw, and called css_get().
3176 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to,bool need_fixup)3177 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3178 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3179 {
3180 unsigned short old_id, new_id;
3181
3182 old_id = css_id(&from->css);
3183 new_id = css_id(&to->css);
3184
3185 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3186 mem_cgroup_swap_statistics(from, false);
3187 mem_cgroup_swap_statistics(to, true);
3188 /*
3189 * This function is only called from task migration context now.
3190 * It postpones res_counter and refcount handling till the end
3191 * of task migration(mem_cgroup_clear_mc()) for performance
3192 * improvement. But we cannot postpone mem_cgroup_get(to)
3193 * because if the process that has been moved to @to does
3194 * swap-in, the refcount of @to might be decreased to 0.
3195 */
3196 mem_cgroup_get(to);
3197 if (need_fixup) {
3198 if (!mem_cgroup_is_root(from))
3199 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3200 mem_cgroup_put(from);
3201 /*
3202 * we charged both to->res and to->memsw, so we should
3203 * uncharge to->res.
3204 */
3205 if (!mem_cgroup_is_root(to))
3206 res_counter_uncharge(&to->res, PAGE_SIZE);
3207 }
3208 return 0;
3209 }
3210 return -EINVAL;
3211 }
3212 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to,bool need_fixup)3213 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3214 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3215 {
3216 return -EINVAL;
3217 }
3218 #endif
3219
3220 /*
3221 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3222 * page belongs to.
3223 */
mem_cgroup_prepare_migration(struct page * page,struct page * newpage,struct mem_cgroup ** memcgp,gfp_t gfp_mask)3224 int mem_cgroup_prepare_migration(struct page *page,
3225 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3226 {
3227 struct mem_cgroup *memcg = NULL;
3228 struct page_cgroup *pc;
3229 enum charge_type ctype;
3230 int ret = 0;
3231
3232 *memcgp = NULL;
3233
3234 VM_BUG_ON(PageTransHuge(page));
3235 if (mem_cgroup_disabled())
3236 return 0;
3237
3238 pc = lookup_page_cgroup(page);
3239 lock_page_cgroup(pc);
3240 if (PageCgroupUsed(pc)) {
3241 memcg = pc->mem_cgroup;
3242 css_get(&memcg->css);
3243 /*
3244 * At migrating an anonymous page, its mapcount goes down
3245 * to 0 and uncharge() will be called. But, even if it's fully
3246 * unmapped, migration may fail and this page has to be
3247 * charged again. We set MIGRATION flag here and delay uncharge
3248 * until end_migration() is called
3249 *
3250 * Corner Case Thinking
3251 * A)
3252 * When the old page was mapped as Anon and it's unmap-and-freed
3253 * while migration was ongoing.
3254 * If unmap finds the old page, uncharge() of it will be delayed
3255 * until end_migration(). If unmap finds a new page, it's
3256 * uncharged when it make mapcount to be 1->0. If unmap code
3257 * finds swap_migration_entry, the new page will not be mapped
3258 * and end_migration() will find it(mapcount==0).
3259 *
3260 * B)
3261 * When the old page was mapped but migraion fails, the kernel
3262 * remaps it. A charge for it is kept by MIGRATION flag even
3263 * if mapcount goes down to 0. We can do remap successfully
3264 * without charging it again.
3265 *
3266 * C)
3267 * The "old" page is under lock_page() until the end of
3268 * migration, so, the old page itself will not be swapped-out.
3269 * If the new page is swapped out before end_migraton, our
3270 * hook to usual swap-out path will catch the event.
3271 */
3272 if (PageAnon(page))
3273 SetPageCgroupMigration(pc);
3274 }
3275 unlock_page_cgroup(pc);
3276 /*
3277 * If the page is not charged at this point,
3278 * we return here.
3279 */
3280 if (!memcg)
3281 return 0;
3282
3283 *memcgp = memcg;
3284 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3285 css_put(&memcg->css);/* drop extra refcnt */
3286 if (ret) {
3287 if (PageAnon(page)) {
3288 lock_page_cgroup(pc);
3289 ClearPageCgroupMigration(pc);
3290 unlock_page_cgroup(pc);
3291 /*
3292 * The old page may be fully unmapped while we kept it.
3293 */
3294 mem_cgroup_uncharge_page(page);
3295 }
3296 /* we'll need to revisit this error code (we have -EINTR) */
3297 return -ENOMEM;
3298 }
3299 /*
3300 * We charge new page before it's used/mapped. So, even if unlock_page()
3301 * is called before end_migration, we can catch all events on this new
3302 * page. In the case new page is migrated but not remapped, new page's
3303 * mapcount will be finally 0 and we call uncharge in end_migration().
3304 */
3305 if (PageAnon(page))
3306 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3307 else if (page_is_file_cache(page))
3308 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3309 else
3310 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3311 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3312 return ret;
3313 }
3314
3315 /* remove redundant charge if migration failed*/
mem_cgroup_end_migration(struct mem_cgroup * memcg,struct page * oldpage,struct page * newpage,bool migration_ok)3316 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3317 struct page *oldpage, struct page *newpage, bool migration_ok)
3318 {
3319 struct page *used, *unused;
3320 struct page_cgroup *pc;
3321 bool anon;
3322
3323 if (!memcg)
3324 return;
3325 /* blocks rmdir() */
3326 cgroup_exclude_rmdir(&memcg->css);
3327 if (!migration_ok) {
3328 used = oldpage;
3329 unused = newpage;
3330 } else {
3331 used = newpage;
3332 unused = oldpage;
3333 }
3334 /*
3335 * We disallowed uncharge of pages under migration because mapcount
3336 * of the page goes down to zero, temporarly.
3337 * Clear the flag and check the page should be charged.
3338 */
3339 pc = lookup_page_cgroup(oldpage);
3340 lock_page_cgroup(pc);
3341 ClearPageCgroupMigration(pc);
3342 unlock_page_cgroup(pc);
3343 anon = PageAnon(used);
3344 __mem_cgroup_uncharge_common(unused,
3345 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3346 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3347
3348 /*
3349 * If a page is a file cache, radix-tree replacement is very atomic
3350 * and we can skip this check. When it was an Anon page, its mapcount
3351 * goes down to 0. But because we added MIGRATION flage, it's not
3352 * uncharged yet. There are several case but page->mapcount check
3353 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3354 * check. (see prepare_charge() also)
3355 */
3356 if (anon)
3357 mem_cgroup_uncharge_page(used);
3358 /*
3359 * At migration, we may charge account against cgroup which has no
3360 * tasks.
3361 * So, rmdir()->pre_destroy() can be called while we do this charge.
3362 * In that case, we need to call pre_destroy() again. check it here.
3363 */
3364 cgroup_release_and_wakeup_rmdir(&memcg->css);
3365 }
3366
3367 /*
3368 * At replace page cache, newpage is not under any memcg but it's on
3369 * LRU. So, this function doesn't touch res_counter but handles LRU
3370 * in correct way. Both pages are locked so we cannot race with uncharge.
3371 */
mem_cgroup_replace_page_cache(struct page * oldpage,struct page * newpage)3372 void mem_cgroup_replace_page_cache(struct page *oldpage,
3373 struct page *newpage)
3374 {
3375 struct mem_cgroup *memcg;
3376 struct page_cgroup *pc;
3377 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3378
3379 if (mem_cgroup_disabled())
3380 return;
3381
3382 pc = lookup_page_cgroup(oldpage);
3383 /* fix accounting on old pages */
3384 lock_page_cgroup(pc);
3385 memcg = pc->mem_cgroup;
3386 mem_cgroup_charge_statistics(memcg, false, -1);
3387 ClearPageCgroupUsed(pc);
3388 unlock_page_cgroup(pc);
3389
3390 if (PageSwapBacked(oldpage))
3391 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3392
3393 /*
3394 * Even if newpage->mapping was NULL before starting replacement,
3395 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3396 * LRU while we overwrite pc->mem_cgroup.
3397 */
3398 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3399 }
3400
3401 #ifdef CONFIG_DEBUG_VM
lookup_page_cgroup_used(struct page * page)3402 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3403 {
3404 struct page_cgroup *pc;
3405
3406 pc = lookup_page_cgroup(page);
3407 /*
3408 * Can be NULL while feeding pages into the page allocator for
3409 * the first time, i.e. during boot or memory hotplug;
3410 * or when mem_cgroup_disabled().
3411 */
3412 if (likely(pc) && PageCgroupUsed(pc))
3413 return pc;
3414 return NULL;
3415 }
3416
mem_cgroup_bad_page_check(struct page * page)3417 bool mem_cgroup_bad_page_check(struct page *page)
3418 {
3419 if (mem_cgroup_disabled())
3420 return false;
3421
3422 return lookup_page_cgroup_used(page) != NULL;
3423 }
3424
mem_cgroup_print_bad_page(struct page * page)3425 void mem_cgroup_print_bad_page(struct page *page)
3426 {
3427 struct page_cgroup *pc;
3428
3429 pc = lookup_page_cgroup_used(page);
3430 if (pc) {
3431 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3432 pc, pc->flags, pc->mem_cgroup);
3433 }
3434 }
3435 #endif
3436
3437 static DEFINE_MUTEX(set_limit_mutex);
3438
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long long val)3439 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3440 unsigned long long val)
3441 {
3442 int retry_count;
3443 u64 memswlimit, memlimit;
3444 int ret = 0;
3445 int children = mem_cgroup_count_children(memcg);
3446 u64 curusage, oldusage;
3447 int enlarge;
3448
3449 /*
3450 * For keeping hierarchical_reclaim simple, how long we should retry
3451 * is depends on callers. We set our retry-count to be function
3452 * of # of children which we should visit in this loop.
3453 */
3454 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3455
3456 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3457
3458 enlarge = 0;
3459 while (retry_count) {
3460 if (signal_pending(current)) {
3461 ret = -EINTR;
3462 break;
3463 }
3464 /*
3465 * Rather than hide all in some function, I do this in
3466 * open coded manner. You see what this really does.
3467 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3468 */
3469 mutex_lock(&set_limit_mutex);
3470 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3471 if (memswlimit < val) {
3472 ret = -EINVAL;
3473 mutex_unlock(&set_limit_mutex);
3474 break;
3475 }
3476
3477 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3478 if (memlimit < val)
3479 enlarge = 1;
3480
3481 ret = res_counter_set_limit(&memcg->res, val);
3482 if (!ret) {
3483 if (memswlimit == val)
3484 memcg->memsw_is_minimum = true;
3485 else
3486 memcg->memsw_is_minimum = false;
3487 }
3488 mutex_unlock(&set_limit_mutex);
3489
3490 if (!ret)
3491 break;
3492
3493 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3494 MEM_CGROUP_RECLAIM_SHRINK);
3495 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3496 /* Usage is reduced ? */
3497 if (curusage >= oldusage)
3498 retry_count--;
3499 else
3500 oldusage = curusage;
3501 }
3502 if (!ret && enlarge)
3503 memcg_oom_recover(memcg);
3504
3505 return ret;
3506 }
3507
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long long val)3508 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3509 unsigned long long val)
3510 {
3511 int retry_count;
3512 u64 memlimit, memswlimit, oldusage, curusage;
3513 int children = mem_cgroup_count_children(memcg);
3514 int ret = -EBUSY;
3515 int enlarge = 0;
3516
3517 /* see mem_cgroup_resize_res_limit */
3518 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3519 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3520 while (retry_count) {
3521 if (signal_pending(current)) {
3522 ret = -EINTR;
3523 break;
3524 }
3525 /*
3526 * Rather than hide all in some function, I do this in
3527 * open coded manner. You see what this really does.
3528 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3529 */
3530 mutex_lock(&set_limit_mutex);
3531 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3532 if (memlimit > val) {
3533 ret = -EINVAL;
3534 mutex_unlock(&set_limit_mutex);
3535 break;
3536 }
3537 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3538 if (memswlimit < val)
3539 enlarge = 1;
3540 ret = res_counter_set_limit(&memcg->memsw, val);
3541 if (!ret) {
3542 if (memlimit == val)
3543 memcg->memsw_is_minimum = true;
3544 else
3545 memcg->memsw_is_minimum = false;
3546 }
3547 mutex_unlock(&set_limit_mutex);
3548
3549 if (!ret)
3550 break;
3551
3552 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3553 MEM_CGROUP_RECLAIM_NOSWAP |
3554 MEM_CGROUP_RECLAIM_SHRINK);
3555 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3556 /* Usage is reduced ? */
3557 if (curusage >= oldusage)
3558 retry_count--;
3559 else
3560 oldusage = curusage;
3561 }
3562 if (!ret && enlarge)
3563 memcg_oom_recover(memcg);
3564 return ret;
3565 }
3566
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)3567 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3568 gfp_t gfp_mask,
3569 unsigned long *total_scanned)
3570 {
3571 unsigned long nr_reclaimed = 0;
3572 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3573 unsigned long reclaimed;
3574 int loop = 0;
3575 struct mem_cgroup_tree_per_zone *mctz;
3576 unsigned long long excess;
3577 unsigned long nr_scanned;
3578
3579 if (order > 0)
3580 return 0;
3581
3582 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3583 /*
3584 * This loop can run a while, specially if mem_cgroup's continuously
3585 * keep exceeding their soft limit and putting the system under
3586 * pressure
3587 */
3588 do {
3589 if (next_mz)
3590 mz = next_mz;
3591 else
3592 mz = mem_cgroup_largest_soft_limit_node(mctz);
3593 if (!mz)
3594 break;
3595
3596 nr_scanned = 0;
3597 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3598 gfp_mask, &nr_scanned);
3599 nr_reclaimed += reclaimed;
3600 *total_scanned += nr_scanned;
3601 spin_lock(&mctz->lock);
3602
3603 /*
3604 * If we failed to reclaim anything from this memory cgroup
3605 * it is time to move on to the next cgroup
3606 */
3607 next_mz = NULL;
3608 if (!reclaimed) {
3609 do {
3610 /*
3611 * Loop until we find yet another one.
3612 *
3613 * By the time we get the soft_limit lock
3614 * again, someone might have aded the
3615 * group back on the RB tree. Iterate to
3616 * make sure we get a different mem.
3617 * mem_cgroup_largest_soft_limit_node returns
3618 * NULL if no other cgroup is present on
3619 * the tree
3620 */
3621 next_mz =
3622 __mem_cgroup_largest_soft_limit_node(mctz);
3623 if (next_mz == mz)
3624 css_put(&next_mz->memcg->css);
3625 else /* next_mz == NULL or other memcg */
3626 break;
3627 } while (1);
3628 }
3629 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3630 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3631 /*
3632 * One school of thought says that we should not add
3633 * back the node to the tree if reclaim returns 0.
3634 * But our reclaim could return 0, simply because due
3635 * to priority we are exposing a smaller subset of
3636 * memory to reclaim from. Consider this as a longer
3637 * term TODO.
3638 */
3639 /* If excess == 0, no tree ops */
3640 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3641 spin_unlock(&mctz->lock);
3642 css_put(&mz->memcg->css);
3643 loop++;
3644 /*
3645 * Could not reclaim anything and there are no more
3646 * mem cgroups to try or we seem to be looping without
3647 * reclaiming anything.
3648 */
3649 if (!nr_reclaimed &&
3650 (next_mz == NULL ||
3651 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3652 break;
3653 } while (!nr_reclaimed);
3654 if (next_mz)
3655 css_put(&next_mz->memcg->css);
3656 return nr_reclaimed;
3657 }
3658
3659 /*
3660 * This routine traverse page_cgroup in given list and drop them all.
3661 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3662 */
mem_cgroup_force_empty_list(struct mem_cgroup * memcg,int node,int zid,enum lru_list lru)3663 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3664 int node, int zid, enum lru_list lru)
3665 {
3666 struct mem_cgroup_per_zone *mz;
3667 unsigned long flags, loop;
3668 struct list_head *list;
3669 struct page *busy;
3670 struct zone *zone;
3671 int ret = 0;
3672
3673 zone = &NODE_DATA(node)->node_zones[zid];
3674 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3675 list = &mz->lruvec.lists[lru];
3676
3677 loop = mz->lru_size[lru];
3678 /* give some margin against EBUSY etc...*/
3679 loop += 256;
3680 busy = NULL;
3681 while (loop--) {
3682 struct page_cgroup *pc;
3683 struct page *page;
3684
3685 ret = 0;
3686 spin_lock_irqsave(&zone->lru_lock, flags);
3687 if (list_empty(list)) {
3688 spin_unlock_irqrestore(&zone->lru_lock, flags);
3689 break;
3690 }
3691 page = list_entry(list->prev, struct page, lru);
3692 if (busy == page) {
3693 list_move(&page->lru, list);
3694 busy = NULL;
3695 spin_unlock_irqrestore(&zone->lru_lock, flags);
3696 continue;
3697 }
3698 spin_unlock_irqrestore(&zone->lru_lock, flags);
3699
3700 pc = lookup_page_cgroup(page);
3701
3702 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3703 if (ret == -ENOMEM || ret == -EINTR)
3704 break;
3705
3706 if (ret == -EBUSY || ret == -EINVAL) {
3707 /* found lock contention or "pc" is obsolete. */
3708 busy = page;
3709 cond_resched();
3710 } else
3711 busy = NULL;
3712 }
3713
3714 if (!ret && !list_empty(list))
3715 return -EBUSY;
3716 return ret;
3717 }
3718
3719 /*
3720 * make mem_cgroup's charge to be 0 if there is no task.
3721 * This enables deleting this mem_cgroup.
3722 */
mem_cgroup_force_empty(struct mem_cgroup * memcg,bool free_all)3723 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3724 {
3725 int ret;
3726 int node, zid, shrink;
3727 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3728 struct cgroup *cgrp = memcg->css.cgroup;
3729
3730 css_get(&memcg->css);
3731
3732 shrink = 0;
3733 /* should free all ? */
3734 if (free_all)
3735 goto try_to_free;
3736 move_account:
3737 do {
3738 ret = -EBUSY;
3739 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3740 goto out;
3741 ret = -EINTR;
3742 if (signal_pending(current))
3743 goto out;
3744 /* This is for making all *used* pages to be on LRU. */
3745 lru_add_drain_all();
3746 drain_all_stock_sync(memcg);
3747 ret = 0;
3748 mem_cgroup_start_move(memcg);
3749 for_each_node_state(node, N_HIGH_MEMORY) {
3750 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3751 enum lru_list lru;
3752 for_each_lru(lru) {
3753 ret = mem_cgroup_force_empty_list(memcg,
3754 node, zid, lru);
3755 if (ret)
3756 break;
3757 }
3758 }
3759 if (ret)
3760 break;
3761 }
3762 mem_cgroup_end_move(memcg);
3763 memcg_oom_recover(memcg);
3764 /* it seems parent cgroup doesn't have enough mem */
3765 if (ret == -ENOMEM)
3766 goto try_to_free;
3767 cond_resched();
3768 /* "ret" should also be checked to ensure all lists are empty. */
3769 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3770 out:
3771 css_put(&memcg->css);
3772 return ret;
3773
3774 try_to_free:
3775 /* returns EBUSY if there is a task or if we come here twice. */
3776 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3777 ret = -EBUSY;
3778 goto out;
3779 }
3780 /* we call try-to-free pages for make this cgroup empty */
3781 lru_add_drain_all();
3782 /* try to free all pages in this cgroup */
3783 shrink = 1;
3784 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3785 int progress;
3786
3787 if (signal_pending(current)) {
3788 ret = -EINTR;
3789 goto out;
3790 }
3791 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3792 false);
3793 if (!progress) {
3794 nr_retries--;
3795 /* maybe some writeback is necessary */
3796 congestion_wait(BLK_RW_ASYNC, HZ/10);
3797 }
3798
3799 }
3800 lru_add_drain();
3801 /* try move_account...there may be some *locked* pages. */
3802 goto move_account;
3803 }
3804
mem_cgroup_force_empty_write(struct cgroup * cont,unsigned int event)3805 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3806 {
3807 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3808 }
3809
3810
mem_cgroup_hierarchy_read(struct cgroup * cont,struct cftype * cft)3811 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3812 {
3813 return mem_cgroup_from_cont(cont)->use_hierarchy;
3814 }
3815
mem_cgroup_hierarchy_write(struct cgroup * cont,struct cftype * cft,u64 val)3816 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3817 u64 val)
3818 {
3819 int retval = 0;
3820 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3821 struct cgroup *parent = cont->parent;
3822 struct mem_cgroup *parent_memcg = NULL;
3823
3824 if (parent)
3825 parent_memcg = mem_cgroup_from_cont(parent);
3826
3827 cgroup_lock();
3828 /*
3829 * If parent's use_hierarchy is set, we can't make any modifications
3830 * in the child subtrees. If it is unset, then the change can
3831 * occur, provided the current cgroup has no children.
3832 *
3833 * For the root cgroup, parent_mem is NULL, we allow value to be
3834 * set if there are no children.
3835 */
3836 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3837 (val == 1 || val == 0)) {
3838 if (list_empty(&cont->children))
3839 memcg->use_hierarchy = val;
3840 else
3841 retval = -EBUSY;
3842 } else
3843 retval = -EINVAL;
3844 cgroup_unlock();
3845
3846 return retval;
3847 }
3848
3849
mem_cgroup_recursive_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)3850 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3851 enum mem_cgroup_stat_index idx)
3852 {
3853 struct mem_cgroup *iter;
3854 long val = 0;
3855
3856 /* Per-cpu values can be negative, use a signed accumulator */
3857 for_each_mem_cgroup_tree(iter, memcg)
3858 val += mem_cgroup_read_stat(iter, idx);
3859
3860 if (val < 0) /* race ? */
3861 val = 0;
3862 return val;
3863 }
3864
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3865 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3866 {
3867 u64 val;
3868
3869 if (!mem_cgroup_is_root(memcg)) {
3870 if (!swap)
3871 return res_counter_read_u64(&memcg->res, RES_USAGE);
3872 else
3873 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3874 }
3875
3876 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3877 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3878
3879 if (swap)
3880 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3881
3882 return val << PAGE_SHIFT;
3883 }
3884
mem_cgroup_read(struct cgroup * cont,struct cftype * cft)3885 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3886 {
3887 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3888 u64 val;
3889 int type, name;
3890
3891 type = MEMFILE_TYPE(cft->private);
3892 name = MEMFILE_ATTR(cft->private);
3893 switch (type) {
3894 case _MEM:
3895 if (name == RES_USAGE)
3896 val = mem_cgroup_usage(memcg, false);
3897 else
3898 val = res_counter_read_u64(&memcg->res, name);
3899 break;
3900 case _MEMSWAP:
3901 if (name == RES_USAGE)
3902 val = mem_cgroup_usage(memcg, true);
3903 else
3904 val = res_counter_read_u64(&memcg->memsw, name);
3905 break;
3906 default:
3907 BUG();
3908 }
3909 return val;
3910 }
3911 /*
3912 * The user of this function is...
3913 * RES_LIMIT.
3914 */
mem_cgroup_write(struct cgroup * cont,struct cftype * cft,const char * buffer)3915 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3916 const char *buffer)
3917 {
3918 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3919 int type, name;
3920 unsigned long long val;
3921 int ret;
3922
3923 type = MEMFILE_TYPE(cft->private);
3924 name = MEMFILE_ATTR(cft->private);
3925 switch (name) {
3926 case RES_LIMIT:
3927 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3928 ret = -EINVAL;
3929 break;
3930 }
3931 /* This function does all necessary parse...reuse it */
3932 ret = res_counter_memparse_write_strategy(buffer, &val);
3933 if (ret)
3934 break;
3935 if (type == _MEM)
3936 ret = mem_cgroup_resize_limit(memcg, val);
3937 else
3938 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3939 break;
3940 case RES_SOFT_LIMIT:
3941 ret = res_counter_memparse_write_strategy(buffer, &val);
3942 if (ret)
3943 break;
3944 /*
3945 * For memsw, soft limits are hard to implement in terms
3946 * of semantics, for now, we support soft limits for
3947 * control without swap
3948 */
3949 if (type == _MEM)
3950 ret = res_counter_set_soft_limit(&memcg->res, val);
3951 else
3952 ret = -EINVAL;
3953 break;
3954 default:
3955 ret = -EINVAL; /* should be BUG() ? */
3956 break;
3957 }
3958 return ret;
3959 }
3960
memcg_get_hierarchical_limit(struct mem_cgroup * memcg,unsigned long long * mem_limit,unsigned long long * memsw_limit)3961 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3962 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3963 {
3964 struct cgroup *cgroup;
3965 unsigned long long min_limit, min_memsw_limit, tmp;
3966
3967 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3968 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3969 cgroup = memcg->css.cgroup;
3970 if (!memcg->use_hierarchy)
3971 goto out;
3972
3973 while (cgroup->parent) {
3974 cgroup = cgroup->parent;
3975 memcg = mem_cgroup_from_cont(cgroup);
3976 if (!memcg->use_hierarchy)
3977 break;
3978 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3979 min_limit = min(min_limit, tmp);
3980 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3981 min_memsw_limit = min(min_memsw_limit, tmp);
3982 }
3983 out:
3984 *mem_limit = min_limit;
3985 *memsw_limit = min_memsw_limit;
3986 }
3987
mem_cgroup_reset(struct cgroup * cont,unsigned int event)3988 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3989 {
3990 struct mem_cgroup *memcg;
3991 int type, name;
3992
3993 memcg = mem_cgroup_from_cont(cont);
3994 type = MEMFILE_TYPE(event);
3995 name = MEMFILE_ATTR(event);
3996 switch (name) {
3997 case RES_MAX_USAGE:
3998 if (type == _MEM)
3999 res_counter_reset_max(&memcg->res);
4000 else
4001 res_counter_reset_max(&memcg->memsw);
4002 break;
4003 case RES_FAILCNT:
4004 if (type == _MEM)
4005 res_counter_reset_failcnt(&memcg->res);
4006 else
4007 res_counter_reset_failcnt(&memcg->memsw);
4008 break;
4009 }
4010
4011 return 0;
4012 }
4013
mem_cgroup_move_charge_read(struct cgroup * cgrp,struct cftype * cft)4014 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4015 struct cftype *cft)
4016 {
4017 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4018 }
4019
4020 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4021 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4022 struct cftype *cft, u64 val)
4023 {
4024 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4025
4026 if (val >= (1 << NR_MOVE_TYPE))
4027 return -EINVAL;
4028 /*
4029 * We check this value several times in both in can_attach() and
4030 * attach(), so we need cgroup lock to prevent this value from being
4031 * inconsistent.
4032 */
4033 cgroup_lock();
4034 memcg->move_charge_at_immigrate = val;
4035 cgroup_unlock();
4036
4037 return 0;
4038 }
4039 #else
mem_cgroup_move_charge_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4040 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4041 struct cftype *cft, u64 val)
4042 {
4043 return -ENOSYS;
4044 }
4045 #endif
4046
4047
4048 /* For read statistics */
4049 enum {
4050 MCS_CACHE,
4051 MCS_RSS,
4052 MCS_FILE_MAPPED,
4053 MCS_PGPGIN,
4054 MCS_PGPGOUT,
4055 MCS_SWAP,
4056 MCS_PGFAULT,
4057 MCS_PGMAJFAULT,
4058 MCS_INACTIVE_ANON,
4059 MCS_ACTIVE_ANON,
4060 MCS_INACTIVE_FILE,
4061 MCS_ACTIVE_FILE,
4062 MCS_UNEVICTABLE,
4063 NR_MCS_STAT,
4064 };
4065
4066 struct mcs_total_stat {
4067 s64 stat[NR_MCS_STAT];
4068 };
4069
4070 struct {
4071 char *local_name;
4072 char *total_name;
4073 } memcg_stat_strings[NR_MCS_STAT] = {
4074 {"cache", "total_cache"},
4075 {"rss", "total_rss"},
4076 {"mapped_file", "total_mapped_file"},
4077 {"pgpgin", "total_pgpgin"},
4078 {"pgpgout", "total_pgpgout"},
4079 {"swap", "total_swap"},
4080 {"pgfault", "total_pgfault"},
4081 {"pgmajfault", "total_pgmajfault"},
4082 {"inactive_anon", "total_inactive_anon"},
4083 {"active_anon", "total_active_anon"},
4084 {"inactive_file", "total_inactive_file"},
4085 {"active_file", "total_active_file"},
4086 {"unevictable", "total_unevictable"}
4087 };
4088
4089
4090 static void
mem_cgroup_get_local_stat(struct mem_cgroup * memcg,struct mcs_total_stat * s)4091 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4092 {
4093 s64 val;
4094
4095 /* per cpu stat */
4096 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4097 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4098 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4099 s->stat[MCS_RSS] += val * PAGE_SIZE;
4100 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4101 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4102 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4103 s->stat[MCS_PGPGIN] += val;
4104 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4105 s->stat[MCS_PGPGOUT] += val;
4106 if (do_swap_account) {
4107 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4108 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4109 }
4110 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4111 s->stat[MCS_PGFAULT] += val;
4112 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4113 s->stat[MCS_PGMAJFAULT] += val;
4114
4115 /* per zone stat */
4116 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4117 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4118 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4119 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4120 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4121 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4122 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4123 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4124 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4125 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4126 }
4127
4128 static void
mem_cgroup_get_total_stat(struct mem_cgroup * memcg,struct mcs_total_stat * s)4129 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4130 {
4131 struct mem_cgroup *iter;
4132
4133 for_each_mem_cgroup_tree(iter, memcg)
4134 mem_cgroup_get_local_stat(iter, s);
4135 }
4136
4137 #ifdef CONFIG_NUMA
mem_control_numa_stat_show(struct seq_file * m,void * arg)4138 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4139 {
4140 int nid;
4141 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4142 unsigned long node_nr;
4143 struct cgroup *cont = m->private;
4144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4145
4146 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4147 seq_printf(m, "total=%lu", total_nr);
4148 for_each_node_state(nid, N_HIGH_MEMORY) {
4149 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4150 seq_printf(m, " N%d=%lu", nid, node_nr);
4151 }
4152 seq_putc(m, '\n');
4153
4154 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4155 seq_printf(m, "file=%lu", file_nr);
4156 for_each_node_state(nid, N_HIGH_MEMORY) {
4157 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4158 LRU_ALL_FILE);
4159 seq_printf(m, " N%d=%lu", nid, node_nr);
4160 }
4161 seq_putc(m, '\n');
4162
4163 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4164 seq_printf(m, "anon=%lu", anon_nr);
4165 for_each_node_state(nid, N_HIGH_MEMORY) {
4166 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4167 LRU_ALL_ANON);
4168 seq_printf(m, " N%d=%lu", nid, node_nr);
4169 }
4170 seq_putc(m, '\n');
4171
4172 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4173 seq_printf(m, "unevictable=%lu", unevictable_nr);
4174 for_each_node_state(nid, N_HIGH_MEMORY) {
4175 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4176 BIT(LRU_UNEVICTABLE));
4177 seq_printf(m, " N%d=%lu", nid, node_nr);
4178 }
4179 seq_putc(m, '\n');
4180 return 0;
4181 }
4182 #endif /* CONFIG_NUMA */
4183
mem_control_stat_show(struct cgroup * cont,struct cftype * cft,struct cgroup_map_cb * cb)4184 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4185 struct cgroup_map_cb *cb)
4186 {
4187 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4188 struct mcs_total_stat mystat;
4189 int i;
4190
4191 memset(&mystat, 0, sizeof(mystat));
4192 mem_cgroup_get_local_stat(memcg, &mystat);
4193
4194
4195 for (i = 0; i < NR_MCS_STAT; i++) {
4196 if (i == MCS_SWAP && !do_swap_account)
4197 continue;
4198 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4199 }
4200
4201 /* Hierarchical information */
4202 {
4203 unsigned long long limit, memsw_limit;
4204 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4205 cb->fill(cb, "hierarchical_memory_limit", limit);
4206 if (do_swap_account)
4207 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4208 }
4209
4210 memset(&mystat, 0, sizeof(mystat));
4211 mem_cgroup_get_total_stat(memcg, &mystat);
4212 for (i = 0; i < NR_MCS_STAT; i++) {
4213 if (i == MCS_SWAP && !do_swap_account)
4214 continue;
4215 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4216 }
4217
4218 #ifdef CONFIG_DEBUG_VM
4219 {
4220 int nid, zid;
4221 struct mem_cgroup_per_zone *mz;
4222 unsigned long recent_rotated[2] = {0, 0};
4223 unsigned long recent_scanned[2] = {0, 0};
4224
4225 for_each_online_node(nid)
4226 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4227 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4228
4229 recent_rotated[0] +=
4230 mz->reclaim_stat.recent_rotated[0];
4231 recent_rotated[1] +=
4232 mz->reclaim_stat.recent_rotated[1];
4233 recent_scanned[0] +=
4234 mz->reclaim_stat.recent_scanned[0];
4235 recent_scanned[1] +=
4236 mz->reclaim_stat.recent_scanned[1];
4237 }
4238 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4239 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4240 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4241 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4242 }
4243 #endif
4244
4245 return 0;
4246 }
4247
mem_cgroup_swappiness_read(struct cgroup * cgrp,struct cftype * cft)4248 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4249 {
4250 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4251
4252 return mem_cgroup_swappiness(memcg);
4253 }
4254
mem_cgroup_swappiness_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4255 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4256 u64 val)
4257 {
4258 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4259 struct mem_cgroup *parent;
4260
4261 if (val > 100)
4262 return -EINVAL;
4263
4264 if (cgrp->parent == NULL)
4265 return -EINVAL;
4266
4267 parent = mem_cgroup_from_cont(cgrp->parent);
4268
4269 cgroup_lock();
4270
4271 /* If under hierarchy, only empty-root can set this value */
4272 if ((parent->use_hierarchy) ||
4273 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4274 cgroup_unlock();
4275 return -EINVAL;
4276 }
4277
4278 memcg->swappiness = val;
4279
4280 cgroup_unlock();
4281
4282 return 0;
4283 }
4284
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4285 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4286 {
4287 struct mem_cgroup_threshold_ary *t;
4288 u64 usage;
4289 int i;
4290
4291 rcu_read_lock();
4292 if (!swap)
4293 t = rcu_dereference(memcg->thresholds.primary);
4294 else
4295 t = rcu_dereference(memcg->memsw_thresholds.primary);
4296
4297 if (!t)
4298 goto unlock;
4299
4300 usage = mem_cgroup_usage(memcg, swap);
4301
4302 /*
4303 * current_threshold points to threshold just below usage.
4304 * If it's not true, a threshold was crossed after last
4305 * call of __mem_cgroup_threshold().
4306 */
4307 i = t->current_threshold;
4308
4309 /*
4310 * Iterate backward over array of thresholds starting from
4311 * current_threshold and check if a threshold is crossed.
4312 * If none of thresholds below usage is crossed, we read
4313 * only one element of the array here.
4314 */
4315 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4316 eventfd_signal(t->entries[i].eventfd, 1);
4317
4318 /* i = current_threshold + 1 */
4319 i++;
4320
4321 /*
4322 * Iterate forward over array of thresholds starting from
4323 * current_threshold+1 and check if a threshold is crossed.
4324 * If none of thresholds above usage is crossed, we read
4325 * only one element of the array here.
4326 */
4327 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4328 eventfd_signal(t->entries[i].eventfd, 1);
4329
4330 /* Update current_threshold */
4331 t->current_threshold = i - 1;
4332 unlock:
4333 rcu_read_unlock();
4334 }
4335
mem_cgroup_threshold(struct mem_cgroup * memcg)4336 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4337 {
4338 while (memcg) {
4339 __mem_cgroup_threshold(memcg, false);
4340 if (do_swap_account)
4341 __mem_cgroup_threshold(memcg, true);
4342
4343 memcg = parent_mem_cgroup(memcg);
4344 }
4345 }
4346
compare_thresholds(const void * a,const void * b)4347 static int compare_thresholds(const void *a, const void *b)
4348 {
4349 const struct mem_cgroup_threshold *_a = a;
4350 const struct mem_cgroup_threshold *_b = b;
4351
4352 if (_a->threshold > _b->threshold)
4353 return 1;
4354
4355 if (_a->threshold < _b->threshold)
4356 return -1;
4357
4358 return 0;
4359 }
4360
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4361 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4362 {
4363 struct mem_cgroup_eventfd_list *ev;
4364
4365 list_for_each_entry(ev, &memcg->oom_notify, list)
4366 eventfd_signal(ev->eventfd, 1);
4367 return 0;
4368 }
4369
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4370 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4371 {
4372 struct mem_cgroup *iter;
4373
4374 for_each_mem_cgroup_tree(iter, memcg)
4375 mem_cgroup_oom_notify_cb(iter);
4376 }
4377
mem_cgroup_usage_register_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd,const char * args)4378 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4379 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4380 {
4381 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4382 struct mem_cgroup_thresholds *thresholds;
4383 struct mem_cgroup_threshold_ary *new;
4384 int type = MEMFILE_TYPE(cft->private);
4385 u64 threshold, usage;
4386 int i, size, ret;
4387
4388 ret = res_counter_memparse_write_strategy(args, &threshold);
4389 if (ret)
4390 return ret;
4391
4392 mutex_lock(&memcg->thresholds_lock);
4393
4394 if (type == _MEM)
4395 thresholds = &memcg->thresholds;
4396 else if (type == _MEMSWAP)
4397 thresholds = &memcg->memsw_thresholds;
4398 else
4399 BUG();
4400
4401 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4402
4403 /* Check if a threshold crossed before adding a new one */
4404 if (thresholds->primary)
4405 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4406
4407 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4408
4409 /* Allocate memory for new array of thresholds */
4410 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4411 GFP_KERNEL);
4412 if (!new) {
4413 ret = -ENOMEM;
4414 goto unlock;
4415 }
4416 new->size = size;
4417
4418 /* Copy thresholds (if any) to new array */
4419 if (thresholds->primary) {
4420 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4421 sizeof(struct mem_cgroup_threshold));
4422 }
4423
4424 /* Add new threshold */
4425 new->entries[size - 1].eventfd = eventfd;
4426 new->entries[size - 1].threshold = threshold;
4427
4428 /* Sort thresholds. Registering of new threshold isn't time-critical */
4429 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4430 compare_thresholds, NULL);
4431
4432 /* Find current threshold */
4433 new->current_threshold = -1;
4434 for (i = 0; i < size; i++) {
4435 if (new->entries[i].threshold < usage) {
4436 /*
4437 * new->current_threshold will not be used until
4438 * rcu_assign_pointer(), so it's safe to increment
4439 * it here.
4440 */
4441 ++new->current_threshold;
4442 }
4443 }
4444
4445 /* Free old spare buffer and save old primary buffer as spare */
4446 kfree(thresholds->spare);
4447 thresholds->spare = thresholds->primary;
4448
4449 rcu_assign_pointer(thresholds->primary, new);
4450
4451 /* To be sure that nobody uses thresholds */
4452 synchronize_rcu();
4453
4454 unlock:
4455 mutex_unlock(&memcg->thresholds_lock);
4456
4457 return ret;
4458 }
4459
mem_cgroup_usage_unregister_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd)4460 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4461 struct cftype *cft, struct eventfd_ctx *eventfd)
4462 {
4463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4464 struct mem_cgroup_thresholds *thresholds;
4465 struct mem_cgroup_threshold_ary *new;
4466 int type = MEMFILE_TYPE(cft->private);
4467 u64 usage;
4468 int i, j, size;
4469
4470 mutex_lock(&memcg->thresholds_lock);
4471 if (type == _MEM)
4472 thresholds = &memcg->thresholds;
4473 else if (type == _MEMSWAP)
4474 thresholds = &memcg->memsw_thresholds;
4475 else
4476 BUG();
4477
4478 if (!thresholds->primary)
4479 goto unlock;
4480
4481 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4482
4483 /* Check if a threshold crossed before removing */
4484 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4485
4486 /* Calculate new number of threshold */
4487 size = 0;
4488 for (i = 0; i < thresholds->primary->size; i++) {
4489 if (thresholds->primary->entries[i].eventfd != eventfd)
4490 size++;
4491 }
4492
4493 new = thresholds->spare;
4494
4495 /* Set thresholds array to NULL if we don't have thresholds */
4496 if (!size) {
4497 kfree(new);
4498 new = NULL;
4499 goto swap_buffers;
4500 }
4501
4502 new->size = size;
4503
4504 /* Copy thresholds and find current threshold */
4505 new->current_threshold = -1;
4506 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4507 if (thresholds->primary->entries[i].eventfd == eventfd)
4508 continue;
4509
4510 new->entries[j] = thresholds->primary->entries[i];
4511 if (new->entries[j].threshold < usage) {
4512 /*
4513 * new->current_threshold will not be used
4514 * until rcu_assign_pointer(), so it's safe to increment
4515 * it here.
4516 */
4517 ++new->current_threshold;
4518 }
4519 j++;
4520 }
4521
4522 swap_buffers:
4523 /* Swap primary and spare array */
4524 thresholds->spare = thresholds->primary;
4525 /* If all events are unregistered, free the spare array */
4526 if (!new) {
4527 kfree(thresholds->spare);
4528 thresholds->spare = NULL;
4529 }
4530
4531 rcu_assign_pointer(thresholds->primary, new);
4532
4533 /* To be sure that nobody uses thresholds */
4534 synchronize_rcu();
4535 unlock:
4536 mutex_unlock(&memcg->thresholds_lock);
4537 }
4538
mem_cgroup_oom_register_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd,const char * args)4539 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4540 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4541 {
4542 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4543 struct mem_cgroup_eventfd_list *event;
4544 int type = MEMFILE_TYPE(cft->private);
4545
4546 BUG_ON(type != _OOM_TYPE);
4547 event = kmalloc(sizeof(*event), GFP_KERNEL);
4548 if (!event)
4549 return -ENOMEM;
4550
4551 spin_lock(&memcg_oom_lock);
4552
4553 event->eventfd = eventfd;
4554 list_add(&event->list, &memcg->oom_notify);
4555
4556 /* already in OOM ? */
4557 if (atomic_read(&memcg->under_oom))
4558 eventfd_signal(eventfd, 1);
4559 spin_unlock(&memcg_oom_lock);
4560
4561 return 0;
4562 }
4563
mem_cgroup_oom_unregister_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd)4564 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4565 struct cftype *cft, struct eventfd_ctx *eventfd)
4566 {
4567 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4568 struct mem_cgroup_eventfd_list *ev, *tmp;
4569 int type = MEMFILE_TYPE(cft->private);
4570
4571 BUG_ON(type != _OOM_TYPE);
4572
4573 spin_lock(&memcg_oom_lock);
4574
4575 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4576 if (ev->eventfd == eventfd) {
4577 list_del(&ev->list);
4578 kfree(ev);
4579 }
4580 }
4581
4582 spin_unlock(&memcg_oom_lock);
4583 }
4584
mem_cgroup_oom_control_read(struct cgroup * cgrp,struct cftype * cft,struct cgroup_map_cb * cb)4585 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4586 struct cftype *cft, struct cgroup_map_cb *cb)
4587 {
4588 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4589
4590 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4591
4592 if (atomic_read(&memcg->under_oom))
4593 cb->fill(cb, "under_oom", 1);
4594 else
4595 cb->fill(cb, "under_oom", 0);
4596 return 0;
4597 }
4598
mem_cgroup_oom_control_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4599 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4600 struct cftype *cft, u64 val)
4601 {
4602 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4603 struct mem_cgroup *parent;
4604
4605 /* cannot set to root cgroup and only 0 and 1 are allowed */
4606 if (!cgrp->parent || !((val == 0) || (val == 1)))
4607 return -EINVAL;
4608
4609 parent = mem_cgroup_from_cont(cgrp->parent);
4610
4611 cgroup_lock();
4612 /* oom-kill-disable is a flag for subhierarchy. */
4613 if ((parent->use_hierarchy) ||
4614 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4615 cgroup_unlock();
4616 return -EINVAL;
4617 }
4618 memcg->oom_kill_disable = val;
4619 if (!val)
4620 memcg_oom_recover(memcg);
4621 cgroup_unlock();
4622 return 0;
4623 }
4624
4625 #ifdef CONFIG_NUMA
4626 static const struct file_operations mem_control_numa_stat_file_operations = {
4627 .read = seq_read,
4628 .llseek = seq_lseek,
4629 .release = single_release,
4630 };
4631
mem_control_numa_stat_open(struct inode * unused,struct file * file)4632 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4633 {
4634 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4635
4636 file->f_op = &mem_control_numa_stat_file_operations;
4637 return single_open(file, mem_control_numa_stat_show, cont);
4638 }
4639 #endif /* CONFIG_NUMA */
4640
4641 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
register_kmem_files(struct cgroup * cont,struct cgroup_subsys * ss)4642 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4643 {
4644 /*
4645 * Part of this would be better living in a separate allocation
4646 * function, leaving us with just the cgroup tree population work.
4647 * We, however, depend on state such as network's proto_list that
4648 * is only initialized after cgroup creation. I found the less
4649 * cumbersome way to deal with it to defer it all to populate time
4650 */
4651 return mem_cgroup_sockets_init(cont, ss);
4652 };
4653
kmem_cgroup_destroy(struct cgroup * cont)4654 static void kmem_cgroup_destroy(struct cgroup *cont)
4655 {
4656 mem_cgroup_sockets_destroy(cont);
4657 }
4658 #else
register_kmem_files(struct cgroup * cont,struct cgroup_subsys * ss)4659 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4660 {
4661 return 0;
4662 }
4663
kmem_cgroup_destroy(struct cgroup * cont)4664 static void kmem_cgroup_destroy(struct cgroup *cont)
4665 {
4666 }
4667 #endif
4668
4669 static struct cftype mem_cgroup_files[] = {
4670 {
4671 .name = "usage_in_bytes",
4672 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4673 .read_u64 = mem_cgroup_read,
4674 .register_event = mem_cgroup_usage_register_event,
4675 .unregister_event = mem_cgroup_usage_unregister_event,
4676 },
4677 {
4678 .name = "max_usage_in_bytes",
4679 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4680 .trigger = mem_cgroup_reset,
4681 .read_u64 = mem_cgroup_read,
4682 },
4683 {
4684 .name = "limit_in_bytes",
4685 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4686 .write_string = mem_cgroup_write,
4687 .read_u64 = mem_cgroup_read,
4688 },
4689 {
4690 .name = "soft_limit_in_bytes",
4691 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4692 .write_string = mem_cgroup_write,
4693 .read_u64 = mem_cgroup_read,
4694 },
4695 {
4696 .name = "failcnt",
4697 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4698 .trigger = mem_cgroup_reset,
4699 .read_u64 = mem_cgroup_read,
4700 },
4701 {
4702 .name = "stat",
4703 .read_map = mem_control_stat_show,
4704 },
4705 {
4706 .name = "force_empty",
4707 .trigger = mem_cgroup_force_empty_write,
4708 },
4709 {
4710 .name = "use_hierarchy",
4711 .write_u64 = mem_cgroup_hierarchy_write,
4712 .read_u64 = mem_cgroup_hierarchy_read,
4713 },
4714 {
4715 .name = "swappiness",
4716 .read_u64 = mem_cgroup_swappiness_read,
4717 .write_u64 = mem_cgroup_swappiness_write,
4718 },
4719 {
4720 .name = "move_charge_at_immigrate",
4721 .read_u64 = mem_cgroup_move_charge_read,
4722 .write_u64 = mem_cgroup_move_charge_write,
4723 },
4724 {
4725 .name = "oom_control",
4726 .read_map = mem_cgroup_oom_control_read,
4727 .write_u64 = mem_cgroup_oom_control_write,
4728 .register_event = mem_cgroup_oom_register_event,
4729 .unregister_event = mem_cgroup_oom_unregister_event,
4730 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4731 },
4732 #ifdef CONFIG_NUMA
4733 {
4734 .name = "numa_stat",
4735 .open = mem_control_numa_stat_open,
4736 .mode = S_IRUGO,
4737 },
4738 #endif
4739 };
4740
4741 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4742 static struct cftype memsw_cgroup_files[] = {
4743 {
4744 .name = "memsw.usage_in_bytes",
4745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4746 .read_u64 = mem_cgroup_read,
4747 .register_event = mem_cgroup_usage_register_event,
4748 .unregister_event = mem_cgroup_usage_unregister_event,
4749 },
4750 {
4751 .name = "memsw.max_usage_in_bytes",
4752 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4753 .trigger = mem_cgroup_reset,
4754 .read_u64 = mem_cgroup_read,
4755 },
4756 {
4757 .name = "memsw.limit_in_bytes",
4758 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4759 .write_string = mem_cgroup_write,
4760 .read_u64 = mem_cgroup_read,
4761 },
4762 {
4763 .name = "memsw.failcnt",
4764 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4765 .trigger = mem_cgroup_reset,
4766 .read_u64 = mem_cgroup_read,
4767 },
4768 };
4769
register_memsw_files(struct cgroup * cont,struct cgroup_subsys * ss)4770 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4771 {
4772 if (!do_swap_account)
4773 return 0;
4774 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4775 ARRAY_SIZE(memsw_cgroup_files));
4776 };
4777 #else
register_memsw_files(struct cgroup * cont,struct cgroup_subsys * ss)4778 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4779 {
4780 return 0;
4781 }
4782 #endif
4783
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4784 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4785 {
4786 struct mem_cgroup_per_node *pn;
4787 struct mem_cgroup_per_zone *mz;
4788 enum lru_list lru;
4789 int zone, tmp = node;
4790 /*
4791 * This routine is called against possible nodes.
4792 * But it's BUG to call kmalloc() against offline node.
4793 *
4794 * TODO: this routine can waste much memory for nodes which will
4795 * never be onlined. It's better to use memory hotplug callback
4796 * function.
4797 */
4798 if (!node_state(node, N_NORMAL_MEMORY))
4799 tmp = -1;
4800 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4801 if (!pn)
4802 return 1;
4803
4804 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4805 mz = &pn->zoneinfo[zone];
4806 for_each_lru(lru)
4807 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4808 mz->usage_in_excess = 0;
4809 mz->on_tree = false;
4810 mz->memcg = memcg;
4811 }
4812 memcg->info.nodeinfo[node] = pn;
4813 return 0;
4814 }
4815
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4816 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4817 {
4818 kfree(memcg->info.nodeinfo[node]);
4819 }
4820
mem_cgroup_alloc(void)4821 static struct mem_cgroup *mem_cgroup_alloc(void)
4822 {
4823 struct mem_cgroup *memcg;
4824 int size = sizeof(struct mem_cgroup);
4825
4826 /* Can be very big if MAX_NUMNODES is very big */
4827 if (size < PAGE_SIZE)
4828 memcg = kzalloc(size, GFP_KERNEL);
4829 else
4830 memcg = vzalloc(size);
4831
4832 if (!memcg)
4833 return NULL;
4834
4835 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4836 if (!memcg->stat)
4837 goto out_free;
4838 spin_lock_init(&memcg->pcp_counter_lock);
4839 return memcg;
4840
4841 out_free:
4842 if (size < PAGE_SIZE)
4843 kfree(memcg);
4844 else
4845 vfree(memcg);
4846 return NULL;
4847 }
4848
4849 /*
4850 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4851 * but in process context. The work_freeing structure is overlaid
4852 * on the rcu_freeing structure, which itself is overlaid on memsw.
4853 */
vfree_work(struct work_struct * work)4854 static void vfree_work(struct work_struct *work)
4855 {
4856 struct mem_cgroup *memcg;
4857
4858 memcg = container_of(work, struct mem_cgroup, work_freeing);
4859 vfree(memcg);
4860 }
vfree_rcu(struct rcu_head * rcu_head)4861 static void vfree_rcu(struct rcu_head *rcu_head)
4862 {
4863 struct mem_cgroup *memcg;
4864
4865 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4866 INIT_WORK(&memcg->work_freeing, vfree_work);
4867 schedule_work(&memcg->work_freeing);
4868 }
4869
4870 /*
4871 * At destroying mem_cgroup, references from swap_cgroup can remain.
4872 * (scanning all at force_empty is too costly...)
4873 *
4874 * Instead of clearing all references at force_empty, we remember
4875 * the number of reference from swap_cgroup and free mem_cgroup when
4876 * it goes down to 0.
4877 *
4878 * Removal of cgroup itself succeeds regardless of refs from swap.
4879 */
4880
__mem_cgroup_free(struct mem_cgroup * memcg)4881 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4882 {
4883 int node;
4884
4885 mem_cgroup_remove_from_trees(memcg);
4886 free_css_id(&mem_cgroup_subsys, &memcg->css);
4887
4888 for_each_node(node)
4889 free_mem_cgroup_per_zone_info(memcg, node);
4890
4891 free_percpu(memcg->stat);
4892 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4893 kfree_rcu(memcg, rcu_freeing);
4894 else
4895 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4896 }
4897
mem_cgroup_get(struct mem_cgroup * memcg)4898 static void mem_cgroup_get(struct mem_cgroup *memcg)
4899 {
4900 atomic_inc(&memcg->refcnt);
4901 }
4902
__mem_cgroup_put(struct mem_cgroup * memcg,int count)4903 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4904 {
4905 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4906 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4907 __mem_cgroup_free(memcg);
4908 if (parent)
4909 mem_cgroup_put(parent);
4910 }
4911 }
4912
mem_cgroup_put(struct mem_cgroup * memcg)4913 static void mem_cgroup_put(struct mem_cgroup *memcg)
4914 {
4915 __mem_cgroup_put(memcg, 1);
4916 }
4917
4918 /*
4919 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4920 */
parent_mem_cgroup(struct mem_cgroup * memcg)4921 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4922 {
4923 if (!memcg->res.parent)
4924 return NULL;
4925 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4926 }
4927 EXPORT_SYMBOL(parent_mem_cgroup);
4928
4929 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
enable_swap_cgroup(void)4930 static void __init enable_swap_cgroup(void)
4931 {
4932 if (!mem_cgroup_disabled() && really_do_swap_account)
4933 do_swap_account = 1;
4934 }
4935 #else
enable_swap_cgroup(void)4936 static void __init enable_swap_cgroup(void)
4937 {
4938 }
4939 #endif
4940
mem_cgroup_soft_limit_tree_init(void)4941 static int mem_cgroup_soft_limit_tree_init(void)
4942 {
4943 struct mem_cgroup_tree_per_node *rtpn;
4944 struct mem_cgroup_tree_per_zone *rtpz;
4945 int tmp, node, zone;
4946
4947 for_each_node(node) {
4948 tmp = node;
4949 if (!node_state(node, N_NORMAL_MEMORY))
4950 tmp = -1;
4951 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4952 if (!rtpn)
4953 goto err_cleanup;
4954
4955 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4956
4957 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4958 rtpz = &rtpn->rb_tree_per_zone[zone];
4959 rtpz->rb_root = RB_ROOT;
4960 spin_lock_init(&rtpz->lock);
4961 }
4962 }
4963 return 0;
4964
4965 err_cleanup:
4966 for_each_node(node) {
4967 if (!soft_limit_tree.rb_tree_per_node[node])
4968 break;
4969 kfree(soft_limit_tree.rb_tree_per_node[node]);
4970 soft_limit_tree.rb_tree_per_node[node] = NULL;
4971 }
4972 return 1;
4973
4974 }
4975
4976 static struct cgroup_subsys_state * __ref
mem_cgroup_create(struct cgroup * cont)4977 mem_cgroup_create(struct cgroup *cont)
4978 {
4979 struct mem_cgroup *memcg, *parent;
4980 long error = -ENOMEM;
4981 int node;
4982
4983 memcg = mem_cgroup_alloc();
4984 if (!memcg)
4985 return ERR_PTR(error);
4986
4987 for_each_node(node)
4988 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4989 goto free_out;
4990
4991 /* root ? */
4992 if (cont->parent == NULL) {
4993 int cpu;
4994 enable_swap_cgroup();
4995 parent = NULL;
4996 if (mem_cgroup_soft_limit_tree_init())
4997 goto free_out;
4998 root_mem_cgroup = memcg;
4999 for_each_possible_cpu(cpu) {
5000 struct memcg_stock_pcp *stock =
5001 &per_cpu(memcg_stock, cpu);
5002 INIT_WORK(&stock->work, drain_local_stock);
5003 }
5004 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5005 } else {
5006 parent = mem_cgroup_from_cont(cont->parent);
5007 memcg->use_hierarchy = parent->use_hierarchy;
5008 memcg->oom_kill_disable = parent->oom_kill_disable;
5009 }
5010
5011 if (parent && parent->use_hierarchy) {
5012 res_counter_init(&memcg->res, &parent->res);
5013 res_counter_init(&memcg->memsw, &parent->memsw);
5014 /*
5015 * We increment refcnt of the parent to ensure that we can
5016 * safely access it on res_counter_charge/uncharge.
5017 * This refcnt will be decremented when freeing this
5018 * mem_cgroup(see mem_cgroup_put).
5019 */
5020 mem_cgroup_get(parent);
5021 } else {
5022 res_counter_init(&memcg->res, NULL);
5023 res_counter_init(&memcg->memsw, NULL);
5024 }
5025 memcg->last_scanned_node = MAX_NUMNODES;
5026 INIT_LIST_HEAD(&memcg->oom_notify);
5027
5028 if (parent)
5029 memcg->swappiness = mem_cgroup_swappiness(parent);
5030 atomic_set(&memcg->refcnt, 1);
5031 memcg->move_charge_at_immigrate = 0;
5032 mutex_init(&memcg->thresholds_lock);
5033 spin_lock_init(&memcg->move_lock);
5034 return &memcg->css;
5035 free_out:
5036 __mem_cgroup_free(memcg);
5037 return ERR_PTR(error);
5038 }
5039
mem_cgroup_pre_destroy(struct cgroup * cont)5040 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5043
5044 return mem_cgroup_force_empty(memcg, false);
5045 }
5046
mem_cgroup_destroy(struct cgroup * cont)5047 static void mem_cgroup_destroy(struct cgroup *cont)
5048 {
5049 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5050
5051 kmem_cgroup_destroy(cont);
5052
5053 mem_cgroup_put(memcg);
5054 }
5055
mem_cgroup_populate(struct cgroup_subsys * ss,struct cgroup * cont)5056 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5057 struct cgroup *cont)
5058 {
5059 int ret;
5060
5061 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5062 ARRAY_SIZE(mem_cgroup_files));
5063
5064 if (!ret)
5065 ret = register_memsw_files(cont, ss);
5066
5067 if (!ret)
5068 ret = register_kmem_files(cont, ss);
5069
5070 return ret;
5071 }
5072
5073 #ifdef CONFIG_MMU
5074 /* Handlers for move charge at task migration. */
5075 #define PRECHARGE_COUNT_AT_ONCE 256
mem_cgroup_do_precharge(unsigned long count)5076 static int mem_cgroup_do_precharge(unsigned long count)
5077 {
5078 int ret = 0;
5079 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5080 struct mem_cgroup *memcg = mc.to;
5081
5082 if (mem_cgroup_is_root(memcg)) {
5083 mc.precharge += count;
5084 /* we don't need css_get for root */
5085 return ret;
5086 }
5087 /* try to charge at once */
5088 if (count > 1) {
5089 struct res_counter *dummy;
5090 /*
5091 * "memcg" cannot be under rmdir() because we've already checked
5092 * by cgroup_lock_live_cgroup() that it is not removed and we
5093 * are still under the same cgroup_mutex. So we can postpone
5094 * css_get().
5095 */
5096 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5097 goto one_by_one;
5098 if (do_swap_account && res_counter_charge(&memcg->memsw,
5099 PAGE_SIZE * count, &dummy)) {
5100 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5101 goto one_by_one;
5102 }
5103 mc.precharge += count;
5104 return ret;
5105 }
5106 one_by_one:
5107 /* fall back to one by one charge */
5108 while (count--) {
5109 if (signal_pending(current)) {
5110 ret = -EINTR;
5111 break;
5112 }
5113 if (!batch_count--) {
5114 batch_count = PRECHARGE_COUNT_AT_ONCE;
5115 cond_resched();
5116 }
5117 ret = __mem_cgroup_try_charge(NULL,
5118 GFP_KERNEL, 1, &memcg, false);
5119 if (ret)
5120 /* mem_cgroup_clear_mc() will do uncharge later */
5121 return ret;
5122 mc.precharge++;
5123 }
5124 return ret;
5125 }
5126
5127 /**
5128 * get_mctgt_type - get target type of moving charge
5129 * @vma: the vma the pte to be checked belongs
5130 * @addr: the address corresponding to the pte to be checked
5131 * @ptent: the pte to be checked
5132 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5133 *
5134 * Returns
5135 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5136 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5137 * move charge. if @target is not NULL, the page is stored in target->page
5138 * with extra refcnt got(Callers should handle it).
5139 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5140 * target for charge migration. if @target is not NULL, the entry is stored
5141 * in target->ent.
5142 *
5143 * Called with pte lock held.
5144 */
5145 union mc_target {
5146 struct page *page;
5147 swp_entry_t ent;
5148 };
5149
5150 enum mc_target_type {
5151 MC_TARGET_NONE = 0,
5152 MC_TARGET_PAGE,
5153 MC_TARGET_SWAP,
5154 };
5155
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5156 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5157 unsigned long addr, pte_t ptent)
5158 {
5159 struct page *page = vm_normal_page(vma, addr, ptent);
5160
5161 if (!page || !page_mapped(page))
5162 return NULL;
5163 if (PageAnon(page)) {
5164 /* we don't move shared anon */
5165 if (!move_anon() || page_mapcount(page) > 2)
5166 return NULL;
5167 } else if (!move_file())
5168 /* we ignore mapcount for file pages */
5169 return NULL;
5170 if (!get_page_unless_zero(page))
5171 return NULL;
5172
5173 return page;
5174 }
5175
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5176 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5177 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5178 {
5179 int usage_count;
5180 struct page *page = NULL;
5181 swp_entry_t ent = pte_to_swp_entry(ptent);
5182
5183 if (!move_anon() || non_swap_entry(ent))
5184 return NULL;
5185 usage_count = mem_cgroup_count_swap_user(ent, &page);
5186 if (usage_count > 1) { /* we don't move shared anon */
5187 if (page)
5188 put_page(page);
5189 return NULL;
5190 }
5191 if (do_swap_account)
5192 entry->val = ent.val;
5193
5194 return page;
5195 }
5196
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5197 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5198 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5199 {
5200 struct page *page = NULL;
5201 struct inode *inode;
5202 struct address_space *mapping;
5203 pgoff_t pgoff;
5204
5205 if (!vma->vm_file) /* anonymous vma */
5206 return NULL;
5207 if (!move_file())
5208 return NULL;
5209
5210 inode = vma->vm_file->f_path.dentry->d_inode;
5211 mapping = vma->vm_file->f_mapping;
5212 if (pte_none(ptent))
5213 pgoff = linear_page_index(vma, addr);
5214 else /* pte_file(ptent) is true */
5215 pgoff = pte_to_pgoff(ptent);
5216
5217 /* page is moved even if it's not RSS of this task(page-faulted). */
5218 page = find_get_page(mapping, pgoff);
5219
5220 #ifdef CONFIG_SWAP
5221 /* shmem/tmpfs may report page out on swap: account for that too. */
5222 if (radix_tree_exceptional_entry(page)) {
5223 swp_entry_t swap = radix_to_swp_entry(page);
5224 if (do_swap_account)
5225 *entry = swap;
5226 page = find_get_page(&swapper_space, swap.val);
5227 }
5228 #endif
5229 return page;
5230 }
5231
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5232 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5233 unsigned long addr, pte_t ptent, union mc_target *target)
5234 {
5235 struct page *page = NULL;
5236 struct page_cgroup *pc;
5237 enum mc_target_type ret = MC_TARGET_NONE;
5238 swp_entry_t ent = { .val = 0 };
5239
5240 if (pte_present(ptent))
5241 page = mc_handle_present_pte(vma, addr, ptent);
5242 else if (is_swap_pte(ptent))
5243 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5244 else if (pte_none(ptent) || pte_file(ptent))
5245 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5246
5247 if (!page && !ent.val)
5248 return ret;
5249 if (page) {
5250 pc = lookup_page_cgroup(page);
5251 /*
5252 * Do only loose check w/o page_cgroup lock.
5253 * mem_cgroup_move_account() checks the pc is valid or not under
5254 * the lock.
5255 */
5256 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5257 ret = MC_TARGET_PAGE;
5258 if (target)
5259 target->page = page;
5260 }
5261 if (!ret || !target)
5262 put_page(page);
5263 }
5264 /* There is a swap entry and a page doesn't exist or isn't charged */
5265 if (ent.val && !ret &&
5266 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5267 ret = MC_TARGET_SWAP;
5268 if (target)
5269 target->ent = ent;
5270 }
5271 return ret;
5272 }
5273
5274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5275 /*
5276 * We don't consider swapping or file mapped pages because THP does not
5277 * support them for now.
5278 * Caller should make sure that pmd_trans_huge(pmd) is true.
5279 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5280 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5281 unsigned long addr, pmd_t pmd, union mc_target *target)
5282 {
5283 struct page *page = NULL;
5284 struct page_cgroup *pc;
5285 enum mc_target_type ret = MC_TARGET_NONE;
5286
5287 page = pmd_page(pmd);
5288 VM_BUG_ON(!page || !PageHead(page));
5289 if (!move_anon())
5290 return ret;
5291 pc = lookup_page_cgroup(page);
5292 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5293 ret = MC_TARGET_PAGE;
5294 if (target) {
5295 get_page(page);
5296 target->page = page;
5297 }
5298 }
5299 return ret;
5300 }
5301 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5302 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5303 unsigned long addr, pmd_t pmd, union mc_target *target)
5304 {
5305 return MC_TARGET_NONE;
5306 }
5307 #endif
5308
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5309 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5310 unsigned long addr, unsigned long end,
5311 struct mm_walk *walk)
5312 {
5313 struct vm_area_struct *vma = walk->private;
5314 pte_t *pte;
5315 spinlock_t *ptl;
5316
5317 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5318 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5319 mc.precharge += HPAGE_PMD_NR;
5320 spin_unlock(&vma->vm_mm->page_table_lock);
5321 return 0;
5322 }
5323
5324 if (pmd_trans_unstable(pmd))
5325 return 0;
5326 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5327 for (; addr != end; pte++, addr += PAGE_SIZE)
5328 if (get_mctgt_type(vma, addr, *pte, NULL))
5329 mc.precharge++; /* increment precharge temporarily */
5330 pte_unmap_unlock(pte - 1, ptl);
5331 cond_resched();
5332
5333 return 0;
5334 }
5335
mem_cgroup_count_precharge(struct mm_struct * mm)5336 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5337 {
5338 unsigned long precharge;
5339 struct vm_area_struct *vma;
5340
5341 down_read(&mm->mmap_sem);
5342 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5343 struct mm_walk mem_cgroup_count_precharge_walk = {
5344 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5345 .mm = mm,
5346 .private = vma,
5347 };
5348 if (is_vm_hugetlb_page(vma))
5349 continue;
5350 walk_page_range(vma->vm_start, vma->vm_end,
5351 &mem_cgroup_count_precharge_walk);
5352 }
5353 up_read(&mm->mmap_sem);
5354
5355 precharge = mc.precharge;
5356 mc.precharge = 0;
5357
5358 return precharge;
5359 }
5360
mem_cgroup_precharge_mc(struct mm_struct * mm)5361 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5362 {
5363 unsigned long precharge = mem_cgroup_count_precharge(mm);
5364
5365 VM_BUG_ON(mc.moving_task);
5366 mc.moving_task = current;
5367 return mem_cgroup_do_precharge(precharge);
5368 }
5369
5370 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5371 static void __mem_cgroup_clear_mc(void)
5372 {
5373 struct mem_cgroup *from = mc.from;
5374 struct mem_cgroup *to = mc.to;
5375
5376 /* we must uncharge all the leftover precharges from mc.to */
5377 if (mc.precharge) {
5378 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5379 mc.precharge = 0;
5380 }
5381 /*
5382 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5383 * we must uncharge here.
5384 */
5385 if (mc.moved_charge) {
5386 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5387 mc.moved_charge = 0;
5388 }
5389 /* we must fixup refcnts and charges */
5390 if (mc.moved_swap) {
5391 /* uncharge swap account from the old cgroup */
5392 if (!mem_cgroup_is_root(mc.from))
5393 res_counter_uncharge(&mc.from->memsw,
5394 PAGE_SIZE * mc.moved_swap);
5395 __mem_cgroup_put(mc.from, mc.moved_swap);
5396
5397 if (!mem_cgroup_is_root(mc.to)) {
5398 /*
5399 * we charged both to->res and to->memsw, so we should
5400 * uncharge to->res.
5401 */
5402 res_counter_uncharge(&mc.to->res,
5403 PAGE_SIZE * mc.moved_swap);
5404 }
5405 /* we've already done mem_cgroup_get(mc.to) */
5406 mc.moved_swap = 0;
5407 }
5408 memcg_oom_recover(from);
5409 memcg_oom_recover(to);
5410 wake_up_all(&mc.waitq);
5411 }
5412
mem_cgroup_clear_mc(void)5413 static void mem_cgroup_clear_mc(void)
5414 {
5415 struct mem_cgroup *from = mc.from;
5416
5417 /*
5418 * we must clear moving_task before waking up waiters at the end of
5419 * task migration.
5420 */
5421 mc.moving_task = NULL;
5422 __mem_cgroup_clear_mc();
5423 spin_lock(&mc.lock);
5424 mc.from = NULL;
5425 mc.to = NULL;
5426 spin_unlock(&mc.lock);
5427 mem_cgroup_end_move(from);
5428 }
5429
mem_cgroup_can_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5430 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5431 struct cgroup_taskset *tset)
5432 {
5433 struct task_struct *p = cgroup_taskset_first(tset);
5434 int ret = 0;
5435 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5436
5437 if (memcg->move_charge_at_immigrate) {
5438 struct mm_struct *mm;
5439 struct mem_cgroup *from = mem_cgroup_from_task(p);
5440
5441 VM_BUG_ON(from == memcg);
5442
5443 mm = get_task_mm(p);
5444 if (!mm)
5445 return 0;
5446 /* We move charges only when we move a owner of the mm */
5447 if (mm->owner == p) {
5448 VM_BUG_ON(mc.from);
5449 VM_BUG_ON(mc.to);
5450 VM_BUG_ON(mc.precharge);
5451 VM_BUG_ON(mc.moved_charge);
5452 VM_BUG_ON(mc.moved_swap);
5453 mem_cgroup_start_move(from);
5454 spin_lock(&mc.lock);
5455 mc.from = from;
5456 mc.to = memcg;
5457 spin_unlock(&mc.lock);
5458 /* We set mc.moving_task later */
5459
5460 ret = mem_cgroup_precharge_mc(mm);
5461 if (ret)
5462 mem_cgroup_clear_mc();
5463 }
5464 mmput(mm);
5465 }
5466 return ret;
5467 }
5468
mem_cgroup_cancel_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5469 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5470 struct cgroup_taskset *tset)
5471 {
5472 mem_cgroup_clear_mc();
5473 }
5474
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5475 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5476 unsigned long addr, unsigned long end,
5477 struct mm_walk *walk)
5478 {
5479 int ret = 0;
5480 struct vm_area_struct *vma = walk->private;
5481 pte_t *pte;
5482 spinlock_t *ptl;
5483 enum mc_target_type target_type;
5484 union mc_target target;
5485 struct page *page;
5486 struct page_cgroup *pc;
5487
5488 /*
5489 * We don't take compound_lock() here but no race with splitting thp
5490 * happens because:
5491 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5492 * under splitting, which means there's no concurrent thp split,
5493 * - if another thread runs into split_huge_page() just after we
5494 * entered this if-block, the thread must wait for page table lock
5495 * to be unlocked in __split_huge_page_splitting(), where the main
5496 * part of thp split is not executed yet.
5497 */
5498 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5499 if (mc.precharge < HPAGE_PMD_NR) {
5500 spin_unlock(&vma->vm_mm->page_table_lock);
5501 return 0;
5502 }
5503 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5504 if (target_type == MC_TARGET_PAGE) {
5505 page = target.page;
5506 if (!isolate_lru_page(page)) {
5507 pc = lookup_page_cgroup(page);
5508 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5509 pc, mc.from, mc.to,
5510 false)) {
5511 mc.precharge -= HPAGE_PMD_NR;
5512 mc.moved_charge += HPAGE_PMD_NR;
5513 }
5514 putback_lru_page(page);
5515 }
5516 put_page(page);
5517 }
5518 spin_unlock(&vma->vm_mm->page_table_lock);
5519 return 0;
5520 }
5521
5522 if (pmd_trans_unstable(pmd))
5523 return 0;
5524 retry:
5525 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5526 for (; addr != end; addr += PAGE_SIZE) {
5527 pte_t ptent = *(pte++);
5528 swp_entry_t ent;
5529
5530 if (!mc.precharge)
5531 break;
5532
5533 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5534 case MC_TARGET_PAGE:
5535 page = target.page;
5536 if (isolate_lru_page(page))
5537 goto put;
5538 pc = lookup_page_cgroup(page);
5539 if (!mem_cgroup_move_account(page, 1, pc,
5540 mc.from, mc.to, false)) {
5541 mc.precharge--;
5542 /* we uncharge from mc.from later. */
5543 mc.moved_charge++;
5544 }
5545 putback_lru_page(page);
5546 put: /* get_mctgt_type() gets the page */
5547 put_page(page);
5548 break;
5549 case MC_TARGET_SWAP:
5550 ent = target.ent;
5551 if (!mem_cgroup_move_swap_account(ent,
5552 mc.from, mc.to, false)) {
5553 mc.precharge--;
5554 /* we fixup refcnts and charges later. */
5555 mc.moved_swap++;
5556 }
5557 break;
5558 default:
5559 break;
5560 }
5561 }
5562 pte_unmap_unlock(pte - 1, ptl);
5563 cond_resched();
5564
5565 if (addr != end) {
5566 /*
5567 * We have consumed all precharges we got in can_attach().
5568 * We try charge one by one, but don't do any additional
5569 * charges to mc.to if we have failed in charge once in attach()
5570 * phase.
5571 */
5572 ret = mem_cgroup_do_precharge(1);
5573 if (!ret)
5574 goto retry;
5575 }
5576
5577 return ret;
5578 }
5579
mem_cgroup_move_charge(struct mm_struct * mm)5580 static void mem_cgroup_move_charge(struct mm_struct *mm)
5581 {
5582 struct vm_area_struct *vma;
5583
5584 lru_add_drain_all();
5585 retry:
5586 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5587 /*
5588 * Someone who are holding the mmap_sem might be waiting in
5589 * waitq. So we cancel all extra charges, wake up all waiters,
5590 * and retry. Because we cancel precharges, we might not be able
5591 * to move enough charges, but moving charge is a best-effort
5592 * feature anyway, so it wouldn't be a big problem.
5593 */
5594 __mem_cgroup_clear_mc();
5595 cond_resched();
5596 goto retry;
5597 }
5598 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5599 int ret;
5600 struct mm_walk mem_cgroup_move_charge_walk = {
5601 .pmd_entry = mem_cgroup_move_charge_pte_range,
5602 .mm = mm,
5603 .private = vma,
5604 };
5605 if (is_vm_hugetlb_page(vma))
5606 continue;
5607 ret = walk_page_range(vma->vm_start, vma->vm_end,
5608 &mem_cgroup_move_charge_walk);
5609 if (ret)
5610 /*
5611 * means we have consumed all precharges and failed in
5612 * doing additional charge. Just abandon here.
5613 */
5614 break;
5615 }
5616 up_read(&mm->mmap_sem);
5617 }
5618
mem_cgroup_move_task(struct cgroup * cont,struct cgroup_taskset * tset)5619 static void mem_cgroup_move_task(struct cgroup *cont,
5620 struct cgroup_taskset *tset)
5621 {
5622 struct task_struct *p = cgroup_taskset_first(tset);
5623 struct mm_struct *mm = get_task_mm(p);
5624
5625 if (mm) {
5626 if (mc.to)
5627 mem_cgroup_move_charge(mm);
5628 put_swap_token(mm);
5629 mmput(mm);
5630 }
5631 if (mc.to)
5632 mem_cgroup_clear_mc();
5633 }
5634 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5635 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5636 struct cgroup_taskset *tset)
5637 {
5638 return 0;
5639 }
mem_cgroup_cancel_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5640 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5641 struct cgroup_taskset *tset)
5642 {
5643 }
mem_cgroup_move_task(struct cgroup * cont,struct cgroup_taskset * tset)5644 static void mem_cgroup_move_task(struct cgroup *cont,
5645 struct cgroup_taskset *tset)
5646 {
5647 }
5648 #endif
5649
5650 struct cgroup_subsys mem_cgroup_subsys = {
5651 .name = "memory",
5652 .subsys_id = mem_cgroup_subsys_id,
5653 .create = mem_cgroup_create,
5654 .pre_destroy = mem_cgroup_pre_destroy,
5655 .destroy = mem_cgroup_destroy,
5656 .populate = mem_cgroup_populate,
5657 .can_attach = mem_cgroup_can_attach,
5658 .cancel_attach = mem_cgroup_cancel_attach,
5659 .attach = mem_cgroup_move_task,
5660 .early_init = 0,
5661 .use_id = 1,
5662 };
5663
5664 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
enable_swap_account(char * s)5665 static int __init enable_swap_account(char *s)
5666 {
5667 /* consider enabled if no parameter or 1 is given */
5668 if (!strcmp(s, "1"))
5669 really_do_swap_account = 1;
5670 else if (!strcmp(s, "0"))
5671 really_do_swap_account = 0;
5672 return 1;
5673 }
5674 __setup("swapaccount=", enable_swap_account);
5675
5676 #endif
5677