1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		(0)
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 	MEM_CGROUP_STAT_NSTATS,
93 };
94 
95 enum mem_cgroup_events_index {
96 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
97 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
98 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
100 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 	MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104  * Per memcg event counter is incremented at every pagein/pageout. With THP,
105  * it will be incremated by the number of pages. This counter is used for
106  * for trigger some periodic events. This is straightforward and better
107  * than using jiffies etc. to handle periodic memcg event.
108  */
109 enum mem_cgroup_events_target {
110 	MEM_CGROUP_TARGET_THRESH,
111 	MEM_CGROUP_TARGET_SOFTLIMIT,
112 	MEM_CGROUP_TARGET_NUMAINFO,
113 	MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET	(1024)
118 
119 struct mem_cgroup_stat_cpu {
120 	long count[MEM_CGROUP_STAT_NSTATS];
121 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 	unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124 
125 struct mem_cgroup_reclaim_iter {
126 	/* css_id of the last scanned hierarchy member */
127 	int position;
128 	/* scan generation, increased every round-trip */
129 	unsigned int generation;
130 };
131 
132 /*
133  * per-zone information in memory controller.
134  */
135 struct mem_cgroup_per_zone {
136 	struct lruvec		lruvec;
137 	unsigned long		lru_size[NR_LRU_LISTS];
138 
139 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140 
141 	struct zone_reclaim_stat reclaim_stat;
142 	struct rb_node		tree_node;	/* RB tree node */
143 	unsigned long long	usage_in_excess;/* Set to the value by which */
144 						/* the soft limit is exceeded*/
145 	bool			on_tree;
146 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147 						/* use container_of	   */
148 };
149 
150 struct mem_cgroup_per_node {
151 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_lru_info {
155 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157 
158 /*
159  * Cgroups above their limits are maintained in a RB-Tree, independent of
160  * their hierarchy representation
161  */
162 
163 struct mem_cgroup_tree_per_zone {
164 	struct rb_root rb_root;
165 	spinlock_t lock;
166 };
167 
168 struct mem_cgroup_tree_per_node {
169 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171 
172 struct mem_cgroup_tree {
173 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175 
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177 
178 struct mem_cgroup_threshold {
179 	struct eventfd_ctx *eventfd;
180 	u64 threshold;
181 };
182 
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 	/* An array index points to threshold just below usage. */
186 	int current_threshold;
187 	/* Size of entries[] */
188 	unsigned int size;
189 	/* Array of thresholds */
190 	struct mem_cgroup_threshold entries[0];
191 };
192 
193 struct mem_cgroup_thresholds {
194 	/* Primary thresholds array */
195 	struct mem_cgroup_threshold_ary *primary;
196 	/*
197 	 * Spare threshold array.
198 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 	 * It must be able to store at least primary->size - 1 entries.
200 	 */
201 	struct mem_cgroup_threshold_ary *spare;
202 };
203 
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 	struct list_head list;
207 	struct eventfd_ctx *eventfd;
208 };
209 
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212 
213 /*
214  * The memory controller data structure. The memory controller controls both
215  * page cache and RSS per cgroup. We would eventually like to provide
216  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217  * to help the administrator determine what knobs to tune.
218  *
219  * TODO: Add a water mark for the memory controller. Reclaim will begin when
220  * we hit the water mark. May be even add a low water mark, such that
221  * no reclaim occurs from a cgroup at it's low water mark, this is
222  * a feature that will be implemented much later in the future.
223  */
224 struct mem_cgroup {
225 	struct cgroup_subsys_state css;
226 	/*
227 	 * the counter to account for memory usage
228 	 */
229 	struct res_counter res;
230 
231 	union {
232 		/*
233 		 * the counter to account for mem+swap usage.
234 		 */
235 		struct res_counter memsw;
236 
237 		/*
238 		 * rcu_freeing is used only when freeing struct mem_cgroup,
239 		 * so put it into a union to avoid wasting more memory.
240 		 * It must be disjoint from the css field.  It could be
241 		 * in a union with the res field, but res plays a much
242 		 * larger part in mem_cgroup life than memsw, and might
243 		 * be of interest, even at time of free, when debugging.
244 		 * So share rcu_head with the less interesting memsw.
245 		 */
246 		struct rcu_head rcu_freeing;
247 		/*
248 		 * But when using vfree(), that cannot be done at
249 		 * interrupt time, so we must then queue the work.
250 		 */
251 		struct work_struct work_freeing;
252 	};
253 
254 	/*
255 	 * Per cgroup active and inactive list, similar to the
256 	 * per zone LRU lists.
257 	 */
258 	struct mem_cgroup_lru_info info;
259 	int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 	nodemask_t	scan_nodes;
262 	atomic_t	numainfo_events;
263 	atomic_t	numainfo_updating;
264 #endif
265 	/*
266 	 * Should the accounting and control be hierarchical, per subtree?
267 	 */
268 	bool use_hierarchy;
269 
270 	bool		oom_lock;
271 	atomic_t	under_oom;
272 
273 	atomic_t	refcnt;
274 
275 	int	swappiness;
276 	/* OOM-Killer disable */
277 	int		oom_kill_disable;
278 
279 	/* set when res.limit == memsw.limit */
280 	bool		memsw_is_minimum;
281 
282 	/* protect arrays of thresholds */
283 	struct mutex thresholds_lock;
284 
285 	/* thresholds for memory usage. RCU-protected */
286 	struct mem_cgroup_thresholds thresholds;
287 
288 	/* thresholds for mem+swap usage. RCU-protected */
289 	struct mem_cgroup_thresholds memsw_thresholds;
290 
291 	/* For oom notifier event fd */
292 	struct list_head oom_notify;
293 
294 	/*
295 	 * Should we move charges of a task when a task is moved into this
296 	 * mem_cgroup ? And what type of charges should we move ?
297 	 */
298 	unsigned long 	move_charge_at_immigrate;
299 	/*
300 	 * set > 0 if pages under this cgroup are moving to other cgroup.
301 	 */
302 	atomic_t	moving_account;
303 	/* taken only while moving_account > 0 */
304 	spinlock_t	move_lock;
305 	/*
306 	 * percpu counter.
307 	 */
308 	struct mem_cgroup_stat_cpu *stat;
309 	/*
310 	 * used when a cpu is offlined or other synchronizations
311 	 * See mem_cgroup_read_stat().
312 	 */
313 	struct mem_cgroup_stat_cpu nocpu_base;
314 	spinlock_t pcp_counter_lock;
315 
316 #ifdef CONFIG_INET
317 	struct tcp_memcontrol tcp_mem;
318 #endif
319 };
320 
321 /* Stuffs for move charges at task migration. */
322 /*
323  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324  * left-shifted bitmap of these types.
325  */
326 enum move_type {
327 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
328 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
329 	NR_MOVE_TYPE,
330 };
331 
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 	spinlock_t	  lock; /* for from, to */
335 	struct mem_cgroup *from;
336 	struct mem_cgroup *to;
337 	unsigned long precharge;
338 	unsigned long moved_charge;
339 	unsigned long moved_swap;
340 	struct task_struct *moving_task;	/* a task moving charges */
341 	wait_queue_head_t waitq;		/* a waitq for other context */
342 } mc = {
343 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 };
346 
move_anon(void)347 static bool move_anon(void)
348 {
349 	return test_bit(MOVE_CHARGE_TYPE_ANON,
350 					&mc.to->move_charge_at_immigrate);
351 }
352 
move_file(void)353 static bool move_file(void)
354 {
355 	return test_bit(MOVE_CHARGE_TYPE_FILE,
356 					&mc.to->move_charge_at_immigrate);
357 }
358 
359 /*
360  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361  * limit reclaim to prevent infinite loops, if they ever occur.
362  */
363 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
364 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
365 
366 enum charge_type {
367 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
370 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
371 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
372 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
373 	NR_CHARGE_TYPE,
374 };
375 
376 /* for encoding cft->private value on file */
377 #define _MEM			(0)
378 #define _MEMSWAP		(1)
379 #define _OOM_TYPE		(2)
380 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
381 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val)	((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL		(0)
385 
386 /*
387  * Reclaim flags for mem_cgroup_hierarchical_reclaim
388  */
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393 
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
396 
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
401 
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
sock_update_memcg(struct sock * sk)403 void sock_update_memcg(struct sock *sk)
404 {
405 	if (mem_cgroup_sockets_enabled) {
406 		struct mem_cgroup *memcg;
407 
408 		BUG_ON(!sk->sk_prot->proto_cgroup);
409 
410 		/* Socket cloning can throw us here with sk_cgrp already
411 		 * filled. It won't however, necessarily happen from
412 		 * process context. So the test for root memcg given
413 		 * the current task's memcg won't help us in this case.
414 		 *
415 		 * Respecting the original socket's memcg is a better
416 		 * decision in this case.
417 		 */
418 		if (sk->sk_cgrp) {
419 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 			mem_cgroup_get(sk->sk_cgrp->memcg);
421 			return;
422 		}
423 
424 		rcu_read_lock();
425 		memcg = mem_cgroup_from_task(current);
426 		if (!mem_cgroup_is_root(memcg)) {
427 			mem_cgroup_get(memcg);
428 			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 		}
430 		rcu_read_unlock();
431 	}
432 }
433 EXPORT_SYMBOL(sock_update_memcg);
434 
sock_release_memcg(struct sock * sk)435 void sock_release_memcg(struct sock *sk)
436 {
437 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 		struct mem_cgroup *memcg;
439 		WARN_ON(!sk->sk_cgrp->memcg);
440 		memcg = sk->sk_cgrp->memcg;
441 		mem_cgroup_put(memcg);
442 	}
443 }
444 
445 #ifdef CONFIG_INET
tcp_proto_cgroup(struct mem_cgroup * memcg)446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447 {
448 	if (!memcg || mem_cgroup_is_root(memcg))
449 		return NULL;
450 
451 	return &memcg->tcp_mem.cg_proto;
452 }
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456 
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
458 
459 static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup * memcg,int nid,int zid)460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461 {
462 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 }
464 
mem_cgroup_css(struct mem_cgroup * memcg)465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466 {
467 	return &memcg->css;
468 }
469 
470 static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct mem_cgroup * memcg,struct page * page)471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472 {
473 	int nid = page_to_nid(page);
474 	int zid = page_zonenum(page);
475 
476 	return mem_cgroup_zoneinfo(memcg, nid, zid);
477 }
478 
479 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)480 soft_limit_tree_node_zone(int nid, int zid)
481 {
482 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 }
484 
485 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)486 soft_limit_tree_from_page(struct page *page)
487 {
488 	int nid = page_to_nid(page);
489 	int zid = page_zonenum(page);
490 
491 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 }
493 
494 static void
__mem_cgroup_insert_exceeded(struct mem_cgroup * memcg,struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long long new_usage_in_excess)495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 				struct mem_cgroup_per_zone *mz,
497 				struct mem_cgroup_tree_per_zone *mctz,
498 				unsigned long long new_usage_in_excess)
499 {
500 	struct rb_node **p = &mctz->rb_root.rb_node;
501 	struct rb_node *parent = NULL;
502 	struct mem_cgroup_per_zone *mz_node;
503 
504 	if (mz->on_tree)
505 		return;
506 
507 	mz->usage_in_excess = new_usage_in_excess;
508 	if (!mz->usage_in_excess)
509 		return;
510 	while (*p) {
511 		parent = *p;
512 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 					tree_node);
514 		if (mz->usage_in_excess < mz_node->usage_in_excess)
515 			p = &(*p)->rb_left;
516 		/*
517 		 * We can't avoid mem cgroups that are over their soft
518 		 * limit by the same amount
519 		 */
520 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 			p = &(*p)->rb_right;
522 	}
523 	rb_link_node(&mz->tree_node, parent, p);
524 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 	mz->on_tree = true;
526 }
527 
528 static void
__mem_cgroup_remove_exceeded(struct mem_cgroup * memcg,struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 				struct mem_cgroup_per_zone *mz,
531 				struct mem_cgroup_tree_per_zone *mctz)
532 {
533 	if (!mz->on_tree)
534 		return;
535 	rb_erase(&mz->tree_node, &mctz->rb_root);
536 	mz->on_tree = false;
537 }
538 
539 static void
mem_cgroup_remove_exceeded(struct mem_cgroup * memcg,struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 				struct mem_cgroup_per_zone *mz,
542 				struct mem_cgroup_tree_per_zone *mctz)
543 {
544 	spin_lock(&mctz->lock);
545 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 	spin_unlock(&mctz->lock);
547 }
548 
549 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 	unsigned long long excess;
553 	struct mem_cgroup_per_zone *mz;
554 	struct mem_cgroup_tree_per_zone *mctz;
555 	int nid = page_to_nid(page);
556 	int zid = page_zonenum(page);
557 	mctz = soft_limit_tree_from_page(page);
558 
559 	/*
560 	 * Necessary to update all ancestors when hierarchy is used.
561 	 * because their event counter is not touched.
562 	 */
563 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 		excess = res_counter_soft_limit_excess(&memcg->res);
566 		/*
567 		 * We have to update the tree if mz is on RB-tree or
568 		 * mem is over its softlimit.
569 		 */
570 		if (excess || mz->on_tree) {
571 			spin_lock(&mctz->lock);
572 			/* if on-tree, remove it */
573 			if (mz->on_tree)
574 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 			/*
576 			 * Insert again. mz->usage_in_excess will be updated.
577 			 * If excess is 0, no tree ops.
578 			 */
579 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 			spin_unlock(&mctz->lock);
581 		}
582 	}
583 }
584 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 {
587 	int node, zone;
588 	struct mem_cgroup_per_zone *mz;
589 	struct mem_cgroup_tree_per_zone *mctz;
590 
591 	for_each_node(node) {
592 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 			mctz = soft_limit_tree_node_zone(node, zone);
595 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 		}
597 	}
598 }
599 
600 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602 {
603 	struct rb_node *rightmost = NULL;
604 	struct mem_cgroup_per_zone *mz;
605 
606 retry:
607 	mz = NULL;
608 	rightmost = rb_last(&mctz->rb_root);
609 	if (!rightmost)
610 		goto done;		/* Nothing to reclaim from */
611 
612 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 	/*
614 	 * Remove the node now but someone else can add it back,
615 	 * we will to add it back at the end of reclaim to its correct
616 	 * position in the tree.
617 	 */
618 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 		!css_tryget(&mz->memcg->css))
621 		goto retry;
622 done:
623 	return mz;
624 }
625 
626 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 	struct mem_cgroup_per_zone *mz;
630 
631 	spin_lock(&mctz->lock);
632 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 	spin_unlock(&mctz->lock);
634 	return mz;
635 }
636 
637 /*
638  * Implementation Note: reading percpu statistics for memcg.
639  *
640  * Both of vmstat[] and percpu_counter has threshold and do periodic
641  * synchronization to implement "quick" read. There are trade-off between
642  * reading cost and precision of value. Then, we may have a chance to implement
643  * a periodic synchronizion of counter in memcg's counter.
644  *
645  * But this _read() function is used for user interface now. The user accounts
646  * memory usage by memory cgroup and he _always_ requires exact value because
647  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648  * have to visit all online cpus and make sum. So, for now, unnecessary
649  * synchronization is not implemented. (just implemented for cpu hotplug)
650  *
651  * If there are kernel internal actions which can make use of some not-exact
652  * value, and reading all cpu value can be performance bottleneck in some
653  * common workload, threashold and synchonization as vmstat[] should be
654  * implemented.
655  */
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 				 enum mem_cgroup_stat_index idx)
658 {
659 	long val = 0;
660 	int cpu;
661 
662 	get_online_cpus();
663 	for_each_online_cpu(cpu)
664 		val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 	spin_lock(&memcg->pcp_counter_lock);
667 	val += memcg->nocpu_base.count[idx];
668 	spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 	put_online_cpus();
671 	return val;
672 }
673 
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 					 bool charge)
676 {
677 	int val = (charge) ? 1 : -1;
678 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 }
680 
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 					    enum mem_cgroup_events_index idx)
683 {
684 	unsigned long val = 0;
685 	int cpu;
686 
687 	for_each_online_cpu(cpu)
688 		val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 	spin_lock(&memcg->pcp_counter_lock);
691 	val += memcg->nocpu_base.events[idx];
692 	spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 	return val;
695 }
696 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,bool anon,int nr_pages)697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 					 bool anon, int nr_pages)
699 {
700 	preempt_disable();
701 
702 	/*
703 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 	 * counted as CACHE even if it's on ANON LRU.
705 	 */
706 	if (anon)
707 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 				nr_pages);
709 	else
710 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 				nr_pages);
712 
713 	/* pagein of a big page is an event. So, ignore page size */
714 	if (nr_pages > 0)
715 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 	else {
717 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 		nr_pages = -nr_pages; /* for event */
719 	}
720 
721 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722 
723 	preempt_enable();
724 }
725 
726 unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup * memcg,int nid,int zid,unsigned int lru_mask)727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 			unsigned int lru_mask)
729 {
730 	struct mem_cgroup_per_zone *mz;
731 	enum lru_list lru;
732 	unsigned long ret = 0;
733 
734 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735 
736 	for_each_lru(lru) {
737 		if (BIT(lru) & lru_mask)
738 			ret += mz->lru_size[lru];
739 	}
740 	return ret;
741 }
742 
743 static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 			int nid, unsigned int lru_mask)
746 {
747 	u64 total = 0;
748 	int zid;
749 
750 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 		total += mem_cgroup_zone_nr_lru_pages(memcg,
752 						nid, zid, lru_mask);
753 
754 	return total;
755 }
756 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 			unsigned int lru_mask)
759 {
760 	int nid;
761 	u64 total = 0;
762 
763 	for_each_node_state(nid, N_HIGH_MEMORY)
764 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 	return total;
766 }
767 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 				       enum mem_cgroup_events_target target)
770 {
771 	unsigned long val, next;
772 
773 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 	next = __this_cpu_read(memcg->stat->targets[target]);
775 	/* from time_after() in jiffies.h */
776 	if ((long)next - (long)val < 0) {
777 		switch (target) {
778 		case MEM_CGROUP_TARGET_THRESH:
779 			next = val + THRESHOLDS_EVENTS_TARGET;
780 			break;
781 		case MEM_CGROUP_TARGET_SOFTLIMIT:
782 			next = val + SOFTLIMIT_EVENTS_TARGET;
783 			break;
784 		case MEM_CGROUP_TARGET_NUMAINFO:
785 			next = val + NUMAINFO_EVENTS_TARGET;
786 			break;
787 		default:
788 			break;
789 		}
790 		__this_cpu_write(memcg->stat->targets[target], next);
791 		return true;
792 	}
793 	return false;
794 }
795 
796 /*
797  * Check events in order.
798  *
799  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801 {
802 	preempt_disable();
803 	/* threshold event is triggered in finer grain than soft limit */
804 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 						MEM_CGROUP_TARGET_THRESH))) {
806 		bool do_softlimit;
807 		bool do_numainfo __maybe_unused;
808 
809 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 						MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 						MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 		preempt_enable();
816 
817 		mem_cgroup_threshold(memcg);
818 		if (unlikely(do_softlimit))
819 			mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 		if (unlikely(do_numainfo))
822 			atomic_inc(&memcg->numainfo_events);
823 #endif
824 	} else
825 		preempt_enable();
826 }
827 
mem_cgroup_from_cont(struct cgroup * cont)828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829 {
830 	return container_of(cgroup_subsys_state(cont,
831 				mem_cgroup_subsys_id), struct mem_cgroup,
832 				css);
833 }
834 
mem_cgroup_from_task(struct task_struct * p)835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836 {
837 	/*
838 	 * mm_update_next_owner() may clear mm->owner to NULL
839 	 * if it races with swapoff, page migration, etc.
840 	 * So this can be called with p == NULL.
841 	 */
842 	if (unlikely(!p))
843 		return NULL;
844 
845 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 				struct mem_cgroup, css);
847 }
848 
try_get_mem_cgroup_from_mm(struct mm_struct * mm)849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850 {
851 	struct mem_cgroup *memcg = NULL;
852 
853 	if (!mm)
854 		return NULL;
855 	/*
856 	 * Because we have no locks, mm->owner's may be being moved to other
857 	 * cgroup. We use css_tryget() here even if this looks
858 	 * pessimistic (rather than adding locks here).
859 	 */
860 	rcu_read_lock();
861 	do {
862 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 		if (unlikely(!memcg))
864 			break;
865 	} while (!css_tryget(&memcg->css));
866 	rcu_read_unlock();
867 	return memcg;
868 }
869 
870 /**
871  * mem_cgroup_iter - iterate over memory cgroup hierarchy
872  * @root: hierarchy root
873  * @prev: previously returned memcg, NULL on first invocation
874  * @reclaim: cookie for shared reclaim walks, NULL for full walks
875  *
876  * Returns references to children of the hierarchy below @root, or
877  * @root itself, or %NULL after a full round-trip.
878  *
879  * Caller must pass the return value in @prev on subsequent
880  * invocations for reference counting, or use mem_cgroup_iter_break()
881  * to cancel a hierarchy walk before the round-trip is complete.
882  *
883  * Reclaimers can specify a zone and a priority level in @reclaim to
884  * divide up the memcgs in the hierarchy among all concurrent
885  * reclaimers operating on the same zone and priority.
886  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 				   struct mem_cgroup *prev,
889 				   struct mem_cgroup_reclaim_cookie *reclaim)
890 {
891 	struct mem_cgroup *memcg = NULL;
892 	int id = 0;
893 
894 	if (mem_cgroup_disabled())
895 		return NULL;
896 
897 	if (!root)
898 		root = root_mem_cgroup;
899 
900 	if (prev && !reclaim)
901 		id = css_id(&prev->css);
902 
903 	if (prev && prev != root)
904 		css_put(&prev->css);
905 
906 	if (!root->use_hierarchy && root != root_mem_cgroup) {
907 		if (prev)
908 			return NULL;
909 		return root;
910 	}
911 
912 	while (!memcg) {
913 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 		struct cgroup_subsys_state *css;
915 
916 		if (reclaim) {
917 			int nid = zone_to_nid(reclaim->zone);
918 			int zid = zone_idx(reclaim->zone);
919 			struct mem_cgroup_per_zone *mz;
920 
921 			mz = mem_cgroup_zoneinfo(root, nid, zid);
922 			iter = &mz->reclaim_iter[reclaim->priority];
923 			if (prev && reclaim->generation != iter->generation)
924 				return NULL;
925 			id = iter->position;
926 		}
927 
928 		rcu_read_lock();
929 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 		if (css) {
931 			if (css == &root->css || css_tryget(css))
932 				memcg = container_of(css,
933 						     struct mem_cgroup, css);
934 		} else
935 			id = 0;
936 		rcu_read_unlock();
937 
938 		if (reclaim) {
939 			iter->position = id;
940 			if (!css)
941 				iter->generation++;
942 			else if (!prev && memcg)
943 				reclaim->generation = iter->generation;
944 		}
945 
946 		if (prev && !css)
947 			return NULL;
948 	}
949 	return memcg;
950 }
951 
952 /**
953  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954  * @root: hierarchy root
955  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 			   struct mem_cgroup *prev)
959 {
960 	if (!root)
961 		root = root_mem_cgroup;
962 	if (prev && prev != root)
963 		css_put(&prev->css);
964 }
965 
966 /*
967  * Iteration constructs for visiting all cgroups (under a tree).  If
968  * loops are exited prematurely (break), mem_cgroup_iter_break() must
969  * be used for reference counting.
970  */
971 #define for_each_mem_cgroup_tree(iter, root)		\
972 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
973 	     iter != NULL;				\
974 	     iter = mem_cgroup_iter(root, iter, NULL))
975 
976 #define for_each_mem_cgroup(iter)			\
977 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
978 	     iter != NULL;				\
979 	     iter = mem_cgroup_iter(NULL, iter, NULL))
980 
mem_cgroup_is_root(struct mem_cgroup * memcg)981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982 {
983 	return (memcg == root_mem_cgroup);
984 }
985 
mem_cgroup_count_vm_event(struct mm_struct * mm,enum vm_event_item idx)986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987 {
988 	struct mem_cgroup *memcg;
989 
990 	if (!mm)
991 		return;
992 
993 	rcu_read_lock();
994 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 	if (unlikely(!memcg))
996 		goto out;
997 
998 	switch (idx) {
999 	case PGFAULT:
1000 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 		break;
1002 	case PGMAJFAULT:
1003 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 		break;
1005 	default:
1006 		BUG();
1007 	}
1008 out:
1009 	rcu_read_unlock();
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012 
1013 /**
1014  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015  * @zone: zone of the wanted lruvec
1016  * @mem: memcg of the wanted lruvec
1017  *
1018  * Returns the lru list vector holding pages for the given @zone and
1019  * @mem.  This can be the global zone lruvec, if the memory controller
1020  * is disabled.
1021  */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 				      struct mem_cgroup *memcg)
1024 {
1025 	struct mem_cgroup_per_zone *mz;
1026 
1027 	if (mem_cgroup_disabled())
1028 		return &zone->lruvec;
1029 
1030 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 	return &mz->lruvec;
1032 }
1033 
1034 /*
1035  * Following LRU functions are allowed to be used without PCG_LOCK.
1036  * Operations are called by routine of global LRU independently from memcg.
1037  * What we have to take care of here is validness of pc->mem_cgroup.
1038  *
1039  * Changes to pc->mem_cgroup happens when
1040  * 1. charge
1041  * 2. moving account
1042  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043  * It is added to LRU before charge.
1044  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045  * When moving account, the page is not on LRU. It's isolated.
1046  */
1047 
1048 /**
1049  * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050  * @zone: zone of the page
1051  * @page: the page
1052  * @lru: current lru
1053  *
1054  * This function accounts for @page being added to @lru, and returns
1055  * the lruvec for the given @zone and the memcg @page is charged to.
1056  *
1057  * The callsite is then responsible for physically linking the page to
1058  * the returned lruvec->lists[@lru].
1059  */
mem_cgroup_lru_add_list(struct zone * zone,struct page * page,enum lru_list lru)1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 				       enum lru_list lru)
1062 {
1063 	struct mem_cgroup_per_zone *mz;
1064 	struct mem_cgroup *memcg;
1065 	struct page_cgroup *pc;
1066 
1067 	if (mem_cgroup_disabled())
1068 		return &zone->lruvec;
1069 
1070 	pc = lookup_page_cgroup(page);
1071 	memcg = pc->mem_cgroup;
1072 
1073 	/*
1074 	 * Surreptitiously switch any uncharged page to root:
1075 	 * an uncharged page off lru does nothing to secure
1076 	 * its former mem_cgroup from sudden removal.
1077 	 *
1078 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 	 * under page_cgroup lock: between them, they make all uses
1080 	 * of pc->mem_cgroup safe.
1081 	 */
1082 	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 		pc->mem_cgroup = memcg = root_mem_cgroup;
1084 
1085 	mz = page_cgroup_zoneinfo(memcg, page);
1086 	/* compound_order() is stabilized through lru_lock */
1087 	mz->lru_size[lru] += 1 << compound_order(page);
1088 	return &mz->lruvec;
1089 }
1090 
1091 /**
1092  * mem_cgroup_lru_del_list - account for removing an lru page
1093  * @page: the page
1094  * @lru: target lru
1095  *
1096  * This function accounts for @page being removed from @lru.
1097  *
1098  * The callsite is then responsible for physically unlinking
1099  * @page->lru.
1100  */
mem_cgroup_lru_del_list(struct page * page,enum lru_list lru)1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 {
1103 	struct mem_cgroup_per_zone *mz;
1104 	struct mem_cgroup *memcg;
1105 	struct page_cgroup *pc;
1106 
1107 	if (mem_cgroup_disabled())
1108 		return;
1109 
1110 	pc = lookup_page_cgroup(page);
1111 	memcg = pc->mem_cgroup;
1112 	VM_BUG_ON(!memcg);
1113 	mz = page_cgroup_zoneinfo(memcg, page);
1114 	/* huge page split is done under lru_lock. so, we have no races. */
1115 	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 	mz->lru_size[lru] -= 1 << compound_order(page);
1117 }
1118 
mem_cgroup_lru_del(struct page * page)1119 void mem_cgroup_lru_del(struct page *page)
1120 {
1121 	mem_cgroup_lru_del_list(page, page_lru(page));
1122 }
1123 
1124 /**
1125  * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126  * @zone: zone of the page
1127  * @page: the page
1128  * @from: current lru
1129  * @to: target lru
1130  *
1131  * This function accounts for @page being moved between the lrus @from
1132  * and @to, and returns the lruvec for the given @zone and the memcg
1133  * @page is charged to.
1134  *
1135  * The callsite is then responsible for physically relinking
1136  * @page->lru to the returned lruvec->lists[@to].
1137  */
mem_cgroup_lru_move_lists(struct zone * zone,struct page * page,enum lru_list from,enum lru_list to)1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 					 struct page *page,
1140 					 enum lru_list from,
1141 					 enum lru_list to)
1142 {
1143 	/* XXX: Optimize this, especially for @from == @to */
1144 	mem_cgroup_lru_del_list(page, from);
1145 	return mem_cgroup_lru_add_list(zone, page, to);
1146 }
1147 
1148 /*
1149  * Checks whether given mem is same or in the root_mem_cgroup's
1150  * hierarchy subtree
1151  */
mem_cgroup_same_or_subtree(const struct mem_cgroup * root_memcg,struct mem_cgroup * memcg)1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 		struct mem_cgroup *memcg)
1154 {
1155 	if (root_memcg != memcg) {
1156 		return (root_memcg->use_hierarchy &&
1157 			css_is_ancestor(&memcg->css, &root_memcg->css));
1158 	}
1159 
1160 	return true;
1161 }
1162 
task_in_mem_cgroup(struct task_struct * task,const struct mem_cgroup * memcg)1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 {
1165 	int ret;
1166 	struct mem_cgroup *curr = NULL;
1167 	struct task_struct *p;
1168 
1169 	p = find_lock_task_mm(task);
1170 	if (p) {
1171 		curr = try_get_mem_cgroup_from_mm(p->mm);
1172 		task_unlock(p);
1173 	} else {
1174 		/*
1175 		 * All threads may have already detached their mm's, but the oom
1176 		 * killer still needs to detect if they have already been oom
1177 		 * killed to prevent needlessly killing additional tasks.
1178 		 */
1179 		task_lock(task);
1180 		curr = mem_cgroup_from_task(task);
1181 		if (curr)
1182 			css_get(&curr->css);
1183 		task_unlock(task);
1184 	}
1185 	if (!curr)
1186 		return 0;
1187 	/*
1188 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 	 */
1193 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 	css_put(&curr->css);
1195 	return ret;
1196 }
1197 
mem_cgroup_inactive_anon_is_low(struct mem_cgroup * memcg,struct zone * zone)1198 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1199 {
1200 	unsigned long inactive_ratio;
1201 	int nid = zone_to_nid(zone);
1202 	int zid = zone_idx(zone);
1203 	unsigned long inactive;
1204 	unsigned long active;
1205 	unsigned long gb;
1206 
1207 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 						BIT(LRU_INACTIVE_ANON));
1209 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 					      BIT(LRU_ACTIVE_ANON));
1211 
1212 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 	if (gb)
1214 		inactive_ratio = int_sqrt(10 * gb);
1215 	else
1216 		inactive_ratio = 1;
1217 
1218 	return inactive * inactive_ratio < active;
1219 }
1220 
mem_cgroup_inactive_file_is_low(struct mem_cgroup * memcg,struct zone * zone)1221 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1222 {
1223 	unsigned long active;
1224 	unsigned long inactive;
1225 	int zid = zone_idx(zone);
1226 	int nid = zone_to_nid(zone);
1227 
1228 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 						BIT(LRU_INACTIVE_FILE));
1230 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 					      BIT(LRU_ACTIVE_FILE));
1232 
1233 	return (active > inactive);
1234 }
1235 
mem_cgroup_get_reclaim_stat(struct mem_cgroup * memcg,struct zone * zone)1236 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 						      struct zone *zone)
1238 {
1239 	int nid = zone_to_nid(zone);
1240 	int zid = zone_idx(zone);
1241 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242 
1243 	return &mz->reclaim_stat;
1244 }
1245 
1246 struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page * page)1247 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248 {
1249 	struct page_cgroup *pc;
1250 	struct mem_cgroup_per_zone *mz;
1251 
1252 	if (mem_cgroup_disabled())
1253 		return NULL;
1254 
1255 	pc = lookup_page_cgroup(page);
1256 	if (!PageCgroupUsed(pc))
1257 		return NULL;
1258 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 	smp_rmb();
1260 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1261 	return &mz->reclaim_stat;
1262 }
1263 
1264 #define mem_cgroup_from_res_counter(counter, member)	\
1265 	container_of(counter, struct mem_cgroup, member)
1266 
1267 /**
1268  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269  * @mem: the memory cgroup
1270  *
1271  * Returns the maximum amount of memory @mem can be charged with, in
1272  * pages.
1273  */
mem_cgroup_margin(struct mem_cgroup * memcg)1274 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1275 {
1276 	unsigned long long margin;
1277 
1278 	margin = res_counter_margin(&memcg->res);
1279 	if (do_swap_account)
1280 		margin = min(margin, res_counter_margin(&memcg->memsw));
1281 	return margin >> PAGE_SHIFT;
1282 }
1283 
mem_cgroup_swappiness(struct mem_cgroup * memcg)1284 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1285 {
1286 	struct cgroup *cgrp = memcg->css.cgroup;
1287 
1288 	/* root ? */
1289 	if (cgrp->parent == NULL)
1290 		return vm_swappiness;
1291 
1292 	return memcg->swappiness;
1293 }
1294 
1295 /*
1296  * memcg->moving_account is used for checking possibility that some thread is
1297  * calling move_account(). When a thread on CPU-A starts moving pages under
1298  * a memcg, other threads should check memcg->moving_account under
1299  * rcu_read_lock(), like this:
1300  *
1301  *         CPU-A                                    CPU-B
1302  *                                              rcu_read_lock()
1303  *         memcg->moving_account+1              if (memcg->mocing_account)
1304  *                                                   take heavy locks.
1305  *         synchronize_rcu()                    update something.
1306  *                                              rcu_read_unlock()
1307  *         start move here.
1308  */
1309 
1310 /* for quick checking without looking up memcg */
1311 atomic_t memcg_moving __read_mostly;
1312 
mem_cgroup_start_move(struct mem_cgroup * memcg)1313 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1314 {
1315 	atomic_inc(&memcg_moving);
1316 	atomic_inc(&memcg->moving_account);
1317 	synchronize_rcu();
1318 }
1319 
mem_cgroup_end_move(struct mem_cgroup * memcg)1320 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1321 {
1322 	/*
1323 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 	 * We check NULL in callee rather than caller.
1325 	 */
1326 	if (memcg) {
1327 		atomic_dec(&memcg_moving);
1328 		atomic_dec(&memcg->moving_account);
1329 	}
1330 }
1331 
1332 /*
1333  * 2 routines for checking "mem" is under move_account() or not.
1334  *
1335  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1336  *			  is used for avoiding races in accounting.  If true,
1337  *			  pc->mem_cgroup may be overwritten.
1338  *
1339  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340  *			  under hierarchy of moving cgroups. This is for
1341  *			  waiting at hith-memory prressure caused by "move".
1342  */
1343 
mem_cgroup_stolen(struct mem_cgroup * memcg)1344 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1345 {
1346 	VM_BUG_ON(!rcu_read_lock_held());
1347 	return atomic_read(&memcg->moving_account) > 0;
1348 }
1349 
mem_cgroup_under_move(struct mem_cgroup * memcg)1350 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1351 {
1352 	struct mem_cgroup *from;
1353 	struct mem_cgroup *to;
1354 	bool ret = false;
1355 	/*
1356 	 * Unlike task_move routines, we access mc.to, mc.from not under
1357 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1358 	 */
1359 	spin_lock(&mc.lock);
1360 	from = mc.from;
1361 	to = mc.to;
1362 	if (!from)
1363 		goto unlock;
1364 
1365 	ret = mem_cgroup_same_or_subtree(memcg, from)
1366 		|| mem_cgroup_same_or_subtree(memcg, to);
1367 unlock:
1368 	spin_unlock(&mc.lock);
1369 	return ret;
1370 }
1371 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1372 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1373 {
1374 	if (mc.moving_task && current != mc.moving_task) {
1375 		if (mem_cgroup_under_move(memcg)) {
1376 			DEFINE_WAIT(wait);
1377 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 			/* moving charge context might have finished. */
1379 			if (mc.moving_task)
1380 				schedule();
1381 			finish_wait(&mc.waitq, &wait);
1382 			return true;
1383 		}
1384 	}
1385 	return false;
1386 }
1387 
1388 /*
1389  * Take this lock when
1390  * - a code tries to modify page's memcg while it's USED.
1391  * - a code tries to modify page state accounting in a memcg.
1392  * see mem_cgroup_stolen(), too.
1393  */
move_lock_mem_cgroup(struct mem_cgroup * memcg,unsigned long * flags)1394 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 				  unsigned long *flags)
1396 {
1397 	spin_lock_irqsave(&memcg->move_lock, *flags);
1398 }
1399 
move_unlock_mem_cgroup(struct mem_cgroup * memcg,unsigned long * flags)1400 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 				unsigned long *flags)
1402 {
1403 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1404 }
1405 
1406 /**
1407  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1408  * @memcg: The memory cgroup that went over limit
1409  * @p: Task that is going to be killed
1410  *
1411  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412  * enabled
1413  */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1414 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1415 {
1416 	struct cgroup *task_cgrp;
1417 	struct cgroup *mem_cgrp;
1418 	/*
1419 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 	 * on the assumption that OOM is serialized for memory controller.
1421 	 * If this assumption is broken, revisit this code.
1422 	 */
1423 	static char memcg_name[PATH_MAX];
1424 	int ret;
1425 
1426 	if (!memcg || !p)
1427 		return;
1428 
1429 	rcu_read_lock();
1430 
1431 	mem_cgrp = memcg->css.cgroup;
1432 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1433 
1434 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 	if (ret < 0) {
1436 		/*
1437 		 * Unfortunately, we are unable to convert to a useful name
1438 		 * But we'll still print out the usage information
1439 		 */
1440 		rcu_read_unlock();
1441 		goto done;
1442 	}
1443 	rcu_read_unlock();
1444 
1445 	printk(KERN_INFO "Task in %s killed", memcg_name);
1446 
1447 	rcu_read_lock();
1448 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 	if (ret < 0) {
1450 		rcu_read_unlock();
1451 		goto done;
1452 	}
1453 	rcu_read_unlock();
1454 
1455 	/*
1456 	 * Continues from above, so we don't need an KERN_ level
1457 	 */
1458 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459 done:
1460 
1461 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 		"failcnt %llu\n",
1467 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1470 }
1471 
1472 /*
1473  * This function returns the number of memcg under hierarchy tree. Returns
1474  * 1(self count) if no children.
1475  */
mem_cgroup_count_children(struct mem_cgroup * memcg)1476 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1477 {
1478 	int num = 0;
1479 	struct mem_cgroup *iter;
1480 
1481 	for_each_mem_cgroup_tree(iter, memcg)
1482 		num++;
1483 	return num;
1484 }
1485 
1486 /*
1487  * Return the memory (and swap, if configured) limit for a memcg.
1488  */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1489 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1490 {
1491 	u64 limit;
1492 
1493 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1494 
1495 	/*
1496 	 * Do not consider swap space if we cannot swap due to swappiness
1497 	 */
1498 	if (mem_cgroup_swappiness(memcg)) {
1499 		u64 memsw;
1500 
1501 		limit += total_swap_pages << PAGE_SHIFT;
1502 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1503 
1504 		/*
1505 		 * If memsw is finite and limits the amount of swap space
1506 		 * available to this memcg, return that limit.
1507 		 */
1508 		limit = min(limit, memsw);
1509 	}
1510 
1511 	return limit;
1512 }
1513 
mem_cgroup_reclaim(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned long flags)1514 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1515 					gfp_t gfp_mask,
1516 					unsigned long flags)
1517 {
1518 	unsigned long total = 0;
1519 	bool noswap = false;
1520 	int loop;
1521 
1522 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1523 		noswap = true;
1524 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1525 		noswap = true;
1526 
1527 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1528 		if (loop)
1529 			drain_all_stock_async(memcg);
1530 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1531 		/*
1532 		 * Allow limit shrinkers, which are triggered directly
1533 		 * by userspace, to catch signals and stop reclaim
1534 		 * after minimal progress, regardless of the margin.
1535 		 */
1536 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1537 			break;
1538 		if (mem_cgroup_margin(memcg))
1539 			break;
1540 		/*
1541 		 * If nothing was reclaimed after two attempts, there
1542 		 * may be no reclaimable pages in this hierarchy.
1543 		 */
1544 		if (loop && !total)
1545 			break;
1546 	}
1547 	return total;
1548 }
1549 
1550 /**
1551  * test_mem_cgroup_node_reclaimable
1552  * @mem: the target memcg
1553  * @nid: the node ID to be checked.
1554  * @noswap : specify true here if the user wants flle only information.
1555  *
1556  * This function returns whether the specified memcg contains any
1557  * reclaimable pages on a node. Returns true if there are any reclaimable
1558  * pages in the node.
1559  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1560 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1561 		int nid, bool noswap)
1562 {
1563 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1564 		return true;
1565 	if (noswap || !total_swap_pages)
1566 		return false;
1567 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1568 		return true;
1569 	return false;
1570 
1571 }
1572 #if MAX_NUMNODES > 1
1573 
1574 /*
1575  * Always updating the nodemask is not very good - even if we have an empty
1576  * list or the wrong list here, we can start from some node and traverse all
1577  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1578  *
1579  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1580 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1581 {
1582 	int nid;
1583 	/*
1584 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1585 	 * pagein/pageout changes since the last update.
1586 	 */
1587 	if (!atomic_read(&memcg->numainfo_events))
1588 		return;
1589 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1590 		return;
1591 
1592 	/* make a nodemask where this memcg uses memory from */
1593 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1594 
1595 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1596 
1597 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1598 			node_clear(nid, memcg->scan_nodes);
1599 	}
1600 
1601 	atomic_set(&memcg->numainfo_events, 0);
1602 	atomic_set(&memcg->numainfo_updating, 0);
1603 }
1604 
1605 /*
1606  * Selecting a node where we start reclaim from. Because what we need is just
1607  * reducing usage counter, start from anywhere is O,K. Considering
1608  * memory reclaim from current node, there are pros. and cons.
1609  *
1610  * Freeing memory from current node means freeing memory from a node which
1611  * we'll use or we've used. So, it may make LRU bad. And if several threads
1612  * hit limits, it will see a contention on a node. But freeing from remote
1613  * node means more costs for memory reclaim because of memory latency.
1614  *
1615  * Now, we use round-robin. Better algorithm is welcomed.
1616  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1617 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1618 {
1619 	int node;
1620 
1621 	mem_cgroup_may_update_nodemask(memcg);
1622 	node = memcg->last_scanned_node;
1623 
1624 	node = next_node(node, memcg->scan_nodes);
1625 	if (node == MAX_NUMNODES)
1626 		node = first_node(memcg->scan_nodes);
1627 	/*
1628 	 * We call this when we hit limit, not when pages are added to LRU.
1629 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1630 	 * memcg is too small and all pages are not on LRU. In that case,
1631 	 * we use curret node.
1632 	 */
1633 	if (unlikely(node == MAX_NUMNODES))
1634 		node = numa_node_id();
1635 
1636 	memcg->last_scanned_node = node;
1637 	return node;
1638 }
1639 
1640 /*
1641  * Check all nodes whether it contains reclaimable pages or not.
1642  * For quick scan, we make use of scan_nodes. This will allow us to skip
1643  * unused nodes. But scan_nodes is lazily updated and may not cotain
1644  * enough new information. We need to do double check.
1645  */
mem_cgroup_reclaimable(struct mem_cgroup * memcg,bool noswap)1646 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1647 {
1648 	int nid;
1649 
1650 	/*
1651 	 * quick check...making use of scan_node.
1652 	 * We can skip unused nodes.
1653 	 */
1654 	if (!nodes_empty(memcg->scan_nodes)) {
1655 		for (nid = first_node(memcg->scan_nodes);
1656 		     nid < MAX_NUMNODES;
1657 		     nid = next_node(nid, memcg->scan_nodes)) {
1658 
1659 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1660 				return true;
1661 		}
1662 	}
1663 	/*
1664 	 * Check rest of nodes.
1665 	 */
1666 	for_each_node_state(nid, N_HIGH_MEMORY) {
1667 		if (node_isset(nid, memcg->scan_nodes))
1668 			continue;
1669 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1670 			return true;
1671 	}
1672 	return false;
1673 }
1674 
1675 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1676 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1677 {
1678 	return 0;
1679 }
1680 
mem_cgroup_reclaimable(struct mem_cgroup * memcg,bool noswap)1681 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1682 {
1683 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1684 }
1685 #endif
1686 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1687 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688 				   struct zone *zone,
1689 				   gfp_t gfp_mask,
1690 				   unsigned long *total_scanned)
1691 {
1692 	struct mem_cgroup *victim = NULL;
1693 	int total = 0;
1694 	int loop = 0;
1695 	unsigned long excess;
1696 	unsigned long nr_scanned;
1697 	struct mem_cgroup_reclaim_cookie reclaim = {
1698 		.zone = zone,
1699 		.priority = 0,
1700 	};
1701 
1702 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1703 
1704 	while (1) {
1705 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1706 		if (!victim) {
1707 			loop++;
1708 			if (loop >= 2) {
1709 				/*
1710 				 * If we have not been able to reclaim
1711 				 * anything, it might because there are
1712 				 * no reclaimable pages under this hierarchy
1713 				 */
1714 				if (!total)
1715 					break;
1716 				/*
1717 				 * We want to do more targeted reclaim.
1718 				 * excess >> 2 is not to excessive so as to
1719 				 * reclaim too much, nor too less that we keep
1720 				 * coming back to reclaim from this cgroup
1721 				 */
1722 				if (total >= (excess >> 2) ||
1723 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1724 					break;
1725 			}
1726 			continue;
1727 		}
1728 		if (!mem_cgroup_reclaimable(victim, false))
1729 			continue;
1730 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1731 						     zone, &nr_scanned);
1732 		*total_scanned += nr_scanned;
1733 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1734 			break;
1735 	}
1736 	mem_cgroup_iter_break(root_memcg, victim);
1737 	return total;
1738 }
1739 
1740 /*
1741  * Check OOM-Killer is already running under our hierarchy.
1742  * If someone is running, return false.
1743  * Has to be called with memcg_oom_lock
1744  */
mem_cgroup_oom_lock(struct mem_cgroup * memcg)1745 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1746 {
1747 	struct mem_cgroup *iter, *failed = NULL;
1748 
1749 	for_each_mem_cgroup_tree(iter, memcg) {
1750 		if (iter->oom_lock) {
1751 			/*
1752 			 * this subtree of our hierarchy is already locked
1753 			 * so we cannot give a lock.
1754 			 */
1755 			failed = iter;
1756 			mem_cgroup_iter_break(memcg, iter);
1757 			break;
1758 		} else
1759 			iter->oom_lock = true;
1760 	}
1761 
1762 	if (!failed)
1763 		return true;
1764 
1765 	/*
1766 	 * OK, we failed to lock the whole subtree so we have to clean up
1767 	 * what we set up to the failing subtree
1768 	 */
1769 	for_each_mem_cgroup_tree(iter, memcg) {
1770 		if (iter == failed) {
1771 			mem_cgroup_iter_break(memcg, iter);
1772 			break;
1773 		}
1774 		iter->oom_lock = false;
1775 	}
1776 	return false;
1777 }
1778 
1779 /*
1780  * Has to be called with memcg_oom_lock
1781  */
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1782 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783 {
1784 	struct mem_cgroup *iter;
1785 
1786 	for_each_mem_cgroup_tree(iter, memcg)
1787 		iter->oom_lock = false;
1788 	return 0;
1789 }
1790 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1791 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1792 {
1793 	struct mem_cgroup *iter;
1794 
1795 	for_each_mem_cgroup_tree(iter, memcg)
1796 		atomic_inc(&iter->under_oom);
1797 }
1798 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1799 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1800 {
1801 	struct mem_cgroup *iter;
1802 
1803 	/*
1804 	 * When a new child is created while the hierarchy is under oom,
1805 	 * mem_cgroup_oom_lock() may not be called. We have to use
1806 	 * atomic_add_unless() here.
1807 	 */
1808 	for_each_mem_cgroup_tree(iter, memcg)
1809 		atomic_add_unless(&iter->under_oom, -1, 0);
1810 }
1811 
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1814 
1815 struct oom_wait_info {
1816 	struct mem_cgroup *memcg;
1817 	wait_queue_t	wait;
1818 };
1819 
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1820 static int memcg_oom_wake_function(wait_queue_t *wait,
1821 	unsigned mode, int sync, void *arg)
1822 {
1823 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1824 	struct mem_cgroup *oom_wait_memcg;
1825 	struct oom_wait_info *oom_wait_info;
1826 
1827 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1828 	oom_wait_memcg = oom_wait_info->memcg;
1829 
1830 	/*
1831 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1832 	 * Then we can use css_is_ancestor without taking care of RCU.
1833 	 */
1834 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1835 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1836 		return 0;
1837 	return autoremove_wake_function(wait, mode, sync, arg);
1838 }
1839 
memcg_wakeup_oom(struct mem_cgroup * memcg)1840 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1841 {
1842 	/* for filtering, pass "memcg" as argument. */
1843 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1844 }
1845 
memcg_oom_recover(struct mem_cgroup * memcg)1846 static void memcg_oom_recover(struct mem_cgroup *memcg)
1847 {
1848 	if (memcg && atomic_read(&memcg->under_oom))
1849 		memcg_wakeup_oom(memcg);
1850 }
1851 
1852 /*
1853  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1854  */
mem_cgroup_handle_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1855 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1856 {
1857 	struct oom_wait_info owait;
1858 	bool locked, need_to_kill;
1859 
1860 	owait.memcg = memcg;
1861 	owait.wait.flags = 0;
1862 	owait.wait.func = memcg_oom_wake_function;
1863 	owait.wait.private = current;
1864 	INIT_LIST_HEAD(&owait.wait.task_list);
1865 	need_to_kill = true;
1866 	mem_cgroup_mark_under_oom(memcg);
1867 
1868 	/* At first, try to OOM lock hierarchy under memcg.*/
1869 	spin_lock(&memcg_oom_lock);
1870 	locked = mem_cgroup_oom_lock(memcg);
1871 	/*
1872 	 * Even if signal_pending(), we can't quit charge() loop without
1873 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1874 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1875 	 */
1876 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1877 	if (!locked || memcg->oom_kill_disable)
1878 		need_to_kill = false;
1879 	if (locked)
1880 		mem_cgroup_oom_notify(memcg);
1881 	spin_unlock(&memcg_oom_lock);
1882 
1883 	if (need_to_kill) {
1884 		finish_wait(&memcg_oom_waitq, &owait.wait);
1885 		mem_cgroup_out_of_memory(memcg, mask, order);
1886 	} else {
1887 		schedule();
1888 		finish_wait(&memcg_oom_waitq, &owait.wait);
1889 	}
1890 	spin_lock(&memcg_oom_lock);
1891 	if (locked)
1892 		mem_cgroup_oom_unlock(memcg);
1893 	memcg_wakeup_oom(memcg);
1894 	spin_unlock(&memcg_oom_lock);
1895 
1896 	mem_cgroup_unmark_under_oom(memcg);
1897 
1898 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1899 		return false;
1900 	/* Give chance to dying process */
1901 	schedule_timeout_uninterruptible(1);
1902 	return true;
1903 }
1904 
1905 /*
1906  * Currently used to update mapped file statistics, but the routine can be
1907  * generalized to update other statistics as well.
1908  *
1909  * Notes: Race condition
1910  *
1911  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1912  * it tends to be costly. But considering some conditions, we doesn't need
1913  * to do so _always_.
1914  *
1915  * Considering "charge", lock_page_cgroup() is not required because all
1916  * file-stat operations happen after a page is attached to radix-tree. There
1917  * are no race with "charge".
1918  *
1919  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1920  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1921  * if there are race with "uncharge". Statistics itself is properly handled
1922  * by flags.
1923  *
1924  * Considering "move", this is an only case we see a race. To make the race
1925  * small, we check mm->moving_account and detect there are possibility of race
1926  * If there is, we take a lock.
1927  */
1928 
__mem_cgroup_begin_update_page_stat(struct page * page,bool * locked,unsigned long * flags)1929 void __mem_cgroup_begin_update_page_stat(struct page *page,
1930 				bool *locked, unsigned long *flags)
1931 {
1932 	struct mem_cgroup *memcg;
1933 	struct page_cgroup *pc;
1934 
1935 	pc = lookup_page_cgroup(page);
1936 again:
1937 	memcg = pc->mem_cgroup;
1938 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1939 		return;
1940 	/*
1941 	 * If this memory cgroup is not under account moving, we don't
1942 	 * need to take move_lock_page_cgroup(). Because we already hold
1943 	 * rcu_read_lock(), any calls to move_account will be delayed until
1944 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1945 	 */
1946 	if (!mem_cgroup_stolen(memcg))
1947 		return;
1948 
1949 	move_lock_mem_cgroup(memcg, flags);
1950 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1951 		move_unlock_mem_cgroup(memcg, flags);
1952 		goto again;
1953 	}
1954 	*locked = true;
1955 }
1956 
__mem_cgroup_end_update_page_stat(struct page * page,unsigned long * flags)1957 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1958 {
1959 	struct page_cgroup *pc = lookup_page_cgroup(page);
1960 
1961 	/*
1962 	 * It's guaranteed that pc->mem_cgroup never changes while
1963 	 * lock is held because a routine modifies pc->mem_cgroup
1964 	 * should take move_lock_page_cgroup().
1965 	 */
1966 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1967 }
1968 
mem_cgroup_update_page_stat(struct page * page,enum mem_cgroup_page_stat_item idx,int val)1969 void mem_cgroup_update_page_stat(struct page *page,
1970 				 enum mem_cgroup_page_stat_item idx, int val)
1971 {
1972 	struct mem_cgroup *memcg;
1973 	struct page_cgroup *pc = lookup_page_cgroup(page);
1974 	unsigned long uninitialized_var(flags);
1975 
1976 	if (mem_cgroup_disabled())
1977 		return;
1978 
1979 	memcg = pc->mem_cgroup;
1980 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1981 		return;
1982 
1983 	switch (idx) {
1984 	case MEMCG_NR_FILE_MAPPED:
1985 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1986 		break;
1987 	default:
1988 		BUG();
1989 	}
1990 
1991 	this_cpu_add(memcg->stat->count[idx], val);
1992 }
1993 
1994 /*
1995  * size of first charge trial. "32" comes from vmscan.c's magic value.
1996  * TODO: maybe necessary to use big numbers in big irons.
1997  */
1998 #define CHARGE_BATCH	32U
1999 struct memcg_stock_pcp {
2000 	struct mem_cgroup *cached; /* this never be root cgroup */
2001 	unsigned int nr_pages;
2002 	struct work_struct work;
2003 	unsigned long flags;
2004 #define FLUSHING_CACHED_CHARGE	(0)
2005 };
2006 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2007 static DEFINE_MUTEX(percpu_charge_mutex);
2008 
2009 /*
2010  * Try to consume stocked charge on this cpu. If success, one page is consumed
2011  * from local stock and true is returned. If the stock is 0 or charges from a
2012  * cgroup which is not current target, returns false. This stock will be
2013  * refilled.
2014  */
consume_stock(struct mem_cgroup * memcg)2015 static bool consume_stock(struct mem_cgroup *memcg)
2016 {
2017 	struct memcg_stock_pcp *stock;
2018 	bool ret = true;
2019 
2020 	stock = &get_cpu_var(memcg_stock);
2021 	if (memcg == stock->cached && stock->nr_pages)
2022 		stock->nr_pages--;
2023 	else /* need to call res_counter_charge */
2024 		ret = false;
2025 	put_cpu_var(memcg_stock);
2026 	return ret;
2027 }
2028 
2029 /*
2030  * Returns stocks cached in percpu to res_counter and reset cached information.
2031  */
drain_stock(struct memcg_stock_pcp * stock)2032 static void drain_stock(struct memcg_stock_pcp *stock)
2033 {
2034 	struct mem_cgroup *old = stock->cached;
2035 
2036 	if (stock->nr_pages) {
2037 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2038 
2039 		res_counter_uncharge(&old->res, bytes);
2040 		if (do_swap_account)
2041 			res_counter_uncharge(&old->memsw, bytes);
2042 		stock->nr_pages = 0;
2043 	}
2044 	stock->cached = NULL;
2045 }
2046 
2047 /*
2048  * This must be called under preempt disabled or must be called by
2049  * a thread which is pinned to local cpu.
2050  */
drain_local_stock(struct work_struct * dummy)2051 static void drain_local_stock(struct work_struct *dummy)
2052 {
2053 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2054 	drain_stock(stock);
2055 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2056 }
2057 
2058 /*
2059  * Cache charges(val) which is from res_counter, to local per_cpu area.
2060  * This will be consumed by consume_stock() function, later.
2061  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2062 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2063 {
2064 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2065 
2066 	if (stock->cached != memcg) { /* reset if necessary */
2067 		drain_stock(stock);
2068 		stock->cached = memcg;
2069 	}
2070 	stock->nr_pages += nr_pages;
2071 	put_cpu_var(memcg_stock);
2072 }
2073 
2074 /*
2075  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2076  * of the hierarchy under it. sync flag says whether we should block
2077  * until the work is done.
2078  */
drain_all_stock(struct mem_cgroup * root_memcg,bool sync)2079 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2080 {
2081 	int cpu, curcpu;
2082 
2083 	/* Notify other cpus that system-wide "drain" is running */
2084 	get_online_cpus();
2085 	curcpu = get_cpu();
2086 	for_each_online_cpu(cpu) {
2087 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2088 		struct mem_cgroup *memcg;
2089 
2090 		memcg = stock->cached;
2091 		if (!memcg || !stock->nr_pages)
2092 			continue;
2093 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2094 			continue;
2095 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2096 			if (cpu == curcpu)
2097 				drain_local_stock(&stock->work);
2098 			else
2099 				schedule_work_on(cpu, &stock->work);
2100 		}
2101 	}
2102 	put_cpu();
2103 
2104 	if (!sync)
2105 		goto out;
2106 
2107 	for_each_online_cpu(cpu) {
2108 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2109 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2110 			flush_work(&stock->work);
2111 	}
2112 out:
2113  	put_online_cpus();
2114 }
2115 
2116 /*
2117  * Tries to drain stocked charges in other cpus. This function is asynchronous
2118  * and just put a work per cpu for draining localy on each cpu. Caller can
2119  * expects some charges will be back to res_counter later but cannot wait for
2120  * it.
2121  */
drain_all_stock_async(struct mem_cgroup * root_memcg)2122 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2123 {
2124 	/*
2125 	 * If someone calls draining, avoid adding more kworker runs.
2126 	 */
2127 	if (!mutex_trylock(&percpu_charge_mutex))
2128 		return;
2129 	drain_all_stock(root_memcg, false);
2130 	mutex_unlock(&percpu_charge_mutex);
2131 }
2132 
2133 /* This is a synchronous drain interface. */
drain_all_stock_sync(struct mem_cgroup * root_memcg)2134 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2135 {
2136 	/* called when force_empty is called */
2137 	mutex_lock(&percpu_charge_mutex);
2138 	drain_all_stock(root_memcg, true);
2139 	mutex_unlock(&percpu_charge_mutex);
2140 }
2141 
2142 /*
2143  * This function drains percpu counter value from DEAD cpu and
2144  * move it to local cpu. Note that this function can be preempted.
2145  */
mem_cgroup_drain_pcp_counter(struct mem_cgroup * memcg,int cpu)2146 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2147 {
2148 	int i;
2149 
2150 	spin_lock(&memcg->pcp_counter_lock);
2151 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2152 		long x = per_cpu(memcg->stat->count[i], cpu);
2153 
2154 		per_cpu(memcg->stat->count[i], cpu) = 0;
2155 		memcg->nocpu_base.count[i] += x;
2156 	}
2157 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2158 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2159 
2160 		per_cpu(memcg->stat->events[i], cpu) = 0;
2161 		memcg->nocpu_base.events[i] += x;
2162 	}
2163 	spin_unlock(&memcg->pcp_counter_lock);
2164 }
2165 
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)2166 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2167 					unsigned long action,
2168 					void *hcpu)
2169 {
2170 	int cpu = (unsigned long)hcpu;
2171 	struct memcg_stock_pcp *stock;
2172 	struct mem_cgroup *iter;
2173 
2174 	if (action == CPU_ONLINE)
2175 		return NOTIFY_OK;
2176 
2177 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2178 		return NOTIFY_OK;
2179 
2180 	for_each_mem_cgroup(iter)
2181 		mem_cgroup_drain_pcp_counter(iter, cpu);
2182 
2183 	stock = &per_cpu(memcg_stock, cpu);
2184 	drain_stock(stock);
2185 	return NOTIFY_OK;
2186 }
2187 
2188 
2189 /* See __mem_cgroup_try_charge() for details */
2190 enum {
2191 	CHARGE_OK,		/* success */
2192 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2193 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2194 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2195 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2196 };
2197 
mem_cgroup_do_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages,bool oom_check)2198 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2199 				unsigned int nr_pages, bool oom_check)
2200 {
2201 	unsigned long csize = nr_pages * PAGE_SIZE;
2202 	struct mem_cgroup *mem_over_limit;
2203 	struct res_counter *fail_res;
2204 	unsigned long flags = 0;
2205 	int ret;
2206 
2207 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2208 
2209 	if (likely(!ret)) {
2210 		if (!do_swap_account)
2211 			return CHARGE_OK;
2212 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2213 		if (likely(!ret))
2214 			return CHARGE_OK;
2215 
2216 		res_counter_uncharge(&memcg->res, csize);
2217 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2218 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2219 	} else
2220 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2221 	/*
2222 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2223 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2224 	 *
2225 	 * Never reclaim on behalf of optional batching, retry with a
2226 	 * single page instead.
2227 	 */
2228 	if (nr_pages == CHARGE_BATCH)
2229 		return CHARGE_RETRY;
2230 
2231 	if (!(gfp_mask & __GFP_WAIT))
2232 		return CHARGE_WOULDBLOCK;
2233 
2234 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2235 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2236 		return CHARGE_RETRY;
2237 	/*
2238 	 * Even though the limit is exceeded at this point, reclaim
2239 	 * may have been able to free some pages.  Retry the charge
2240 	 * before killing the task.
2241 	 *
2242 	 * Only for regular pages, though: huge pages are rather
2243 	 * unlikely to succeed so close to the limit, and we fall back
2244 	 * to regular pages anyway in case of failure.
2245 	 */
2246 	if (nr_pages == 1 && ret)
2247 		return CHARGE_RETRY;
2248 
2249 	/*
2250 	 * At task move, charge accounts can be doubly counted. So, it's
2251 	 * better to wait until the end of task_move if something is going on.
2252 	 */
2253 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2254 		return CHARGE_RETRY;
2255 
2256 	/* If we don't need to call oom-killer at el, return immediately */
2257 	if (!oom_check)
2258 		return CHARGE_NOMEM;
2259 	/* check OOM */
2260 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2261 		return CHARGE_OOM_DIE;
2262 
2263 	return CHARGE_RETRY;
2264 }
2265 
2266 /*
2267  * __mem_cgroup_try_charge() does
2268  * 1. detect memcg to be charged against from passed *mm and *ptr,
2269  * 2. update res_counter
2270  * 3. call memory reclaim if necessary.
2271  *
2272  * In some special case, if the task is fatal, fatal_signal_pending() or
2273  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2274  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2275  * as possible without any hazards. 2: all pages should have a valid
2276  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2277  * pointer, that is treated as a charge to root_mem_cgroup.
2278  *
2279  * So __mem_cgroup_try_charge() will return
2280  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2281  *  -ENOMEM ...  charge failure because of resource limits.
2282  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2283  *
2284  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2285  * the oom-killer can be invoked.
2286  */
__mem_cgroup_try_charge(struct mm_struct * mm,gfp_t gfp_mask,unsigned int nr_pages,struct mem_cgroup ** ptr,bool oom)2287 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2288 				   gfp_t gfp_mask,
2289 				   unsigned int nr_pages,
2290 				   struct mem_cgroup **ptr,
2291 				   bool oom)
2292 {
2293 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2294 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2295 	struct mem_cgroup *memcg = NULL;
2296 	int ret;
2297 
2298 	/*
2299 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2300 	 * in system level. So, allow to go ahead dying process in addition to
2301 	 * MEMDIE process.
2302 	 */
2303 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2304 		     || fatal_signal_pending(current)))
2305 		goto bypass;
2306 
2307 	/*
2308 	 * We always charge the cgroup the mm_struct belongs to.
2309 	 * The mm_struct's mem_cgroup changes on task migration if the
2310 	 * thread group leader migrates. It's possible that mm is not
2311 	 * set, if so charge the init_mm (happens for pagecache usage).
2312 	 */
2313 	if (!*ptr && !mm)
2314 		*ptr = root_mem_cgroup;
2315 again:
2316 	if (*ptr) { /* css should be a valid one */
2317 		memcg = *ptr;
2318 		VM_BUG_ON(css_is_removed(&memcg->css));
2319 		if (mem_cgroup_is_root(memcg))
2320 			goto done;
2321 		if (nr_pages == 1 && consume_stock(memcg))
2322 			goto done;
2323 		css_get(&memcg->css);
2324 	} else {
2325 		struct task_struct *p;
2326 
2327 		rcu_read_lock();
2328 		p = rcu_dereference(mm->owner);
2329 		/*
2330 		 * Because we don't have task_lock(), "p" can exit.
2331 		 * In that case, "memcg" can point to root or p can be NULL with
2332 		 * race with swapoff. Then, we have small risk of mis-accouning.
2333 		 * But such kind of mis-account by race always happens because
2334 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2335 		 * small race, here.
2336 		 * (*) swapoff at el will charge against mm-struct not against
2337 		 * task-struct. So, mm->owner can be NULL.
2338 		 */
2339 		memcg = mem_cgroup_from_task(p);
2340 		if (!memcg)
2341 			memcg = root_mem_cgroup;
2342 		if (mem_cgroup_is_root(memcg)) {
2343 			rcu_read_unlock();
2344 			goto done;
2345 		}
2346 		if (nr_pages == 1 && consume_stock(memcg)) {
2347 			/*
2348 			 * It seems dagerous to access memcg without css_get().
2349 			 * But considering how consume_stok works, it's not
2350 			 * necessary. If consume_stock success, some charges
2351 			 * from this memcg are cached on this cpu. So, we
2352 			 * don't need to call css_get()/css_tryget() before
2353 			 * calling consume_stock().
2354 			 */
2355 			rcu_read_unlock();
2356 			goto done;
2357 		}
2358 		/* after here, we may be blocked. we need to get refcnt */
2359 		if (!css_tryget(&memcg->css)) {
2360 			rcu_read_unlock();
2361 			goto again;
2362 		}
2363 		rcu_read_unlock();
2364 	}
2365 
2366 	do {
2367 		bool oom_check;
2368 
2369 		/* If killed, bypass charge */
2370 		if (fatal_signal_pending(current)) {
2371 			css_put(&memcg->css);
2372 			goto bypass;
2373 		}
2374 
2375 		oom_check = false;
2376 		if (oom && !nr_oom_retries) {
2377 			oom_check = true;
2378 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2379 		}
2380 
2381 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2382 		switch (ret) {
2383 		case CHARGE_OK:
2384 			break;
2385 		case CHARGE_RETRY: /* not in OOM situation but retry */
2386 			batch = nr_pages;
2387 			css_put(&memcg->css);
2388 			memcg = NULL;
2389 			goto again;
2390 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2391 			css_put(&memcg->css);
2392 			goto nomem;
2393 		case CHARGE_NOMEM: /* OOM routine works */
2394 			if (!oom) {
2395 				css_put(&memcg->css);
2396 				goto nomem;
2397 			}
2398 			/* If oom, we never return -ENOMEM */
2399 			nr_oom_retries--;
2400 			break;
2401 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2402 			css_put(&memcg->css);
2403 			goto bypass;
2404 		}
2405 	} while (ret != CHARGE_OK);
2406 
2407 	if (batch > nr_pages)
2408 		refill_stock(memcg, batch - nr_pages);
2409 	css_put(&memcg->css);
2410 done:
2411 	*ptr = memcg;
2412 	return 0;
2413 nomem:
2414 	*ptr = NULL;
2415 	return -ENOMEM;
2416 bypass:
2417 	*ptr = root_mem_cgroup;
2418 	return -EINTR;
2419 }
2420 
2421 /*
2422  * Somemtimes we have to undo a charge we got by try_charge().
2423  * This function is for that and do uncharge, put css's refcnt.
2424  * gotten by try_charge().
2425  */
__mem_cgroup_cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2426 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2427 				       unsigned int nr_pages)
2428 {
2429 	if (!mem_cgroup_is_root(memcg)) {
2430 		unsigned long bytes = nr_pages * PAGE_SIZE;
2431 
2432 		res_counter_uncharge(&memcg->res, bytes);
2433 		if (do_swap_account)
2434 			res_counter_uncharge(&memcg->memsw, bytes);
2435 	}
2436 }
2437 
2438 /*
2439  * A helper function to get mem_cgroup from ID. must be called under
2440  * rcu_read_lock(). The caller must check css_is_removed() or some if
2441  * it's concern. (dropping refcnt from swap can be called against removed
2442  * memcg.)
2443  */
mem_cgroup_lookup(unsigned short id)2444 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2445 {
2446 	struct cgroup_subsys_state *css;
2447 
2448 	/* ID 0 is unused ID */
2449 	if (!id)
2450 		return NULL;
2451 	css = css_lookup(&mem_cgroup_subsys, id);
2452 	if (!css)
2453 		return NULL;
2454 	return container_of(css, struct mem_cgroup, css);
2455 }
2456 
try_get_mem_cgroup_from_page(struct page * page)2457 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2458 {
2459 	struct mem_cgroup *memcg = NULL;
2460 	struct page_cgroup *pc;
2461 	unsigned short id;
2462 	swp_entry_t ent;
2463 
2464 	VM_BUG_ON(!PageLocked(page));
2465 
2466 	pc = lookup_page_cgroup(page);
2467 	lock_page_cgroup(pc);
2468 	if (PageCgroupUsed(pc)) {
2469 		memcg = pc->mem_cgroup;
2470 		if (memcg && !css_tryget(&memcg->css))
2471 			memcg = NULL;
2472 	} else if (PageSwapCache(page)) {
2473 		ent.val = page_private(page);
2474 		id = lookup_swap_cgroup_id(ent);
2475 		rcu_read_lock();
2476 		memcg = mem_cgroup_lookup(id);
2477 		if (memcg && !css_tryget(&memcg->css))
2478 			memcg = NULL;
2479 		rcu_read_unlock();
2480 	}
2481 	unlock_page_cgroup(pc);
2482 	return memcg;
2483 }
2484 
__mem_cgroup_commit_charge(struct mem_cgroup * memcg,struct page * page,unsigned int nr_pages,enum charge_type ctype,bool lrucare)2485 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2486 				       struct page *page,
2487 				       unsigned int nr_pages,
2488 				       enum charge_type ctype,
2489 				       bool lrucare)
2490 {
2491 	struct page_cgroup *pc = lookup_page_cgroup(page);
2492 	struct zone *uninitialized_var(zone);
2493 	bool was_on_lru = false;
2494 	bool anon;
2495 
2496 	lock_page_cgroup(pc);
2497 	if (unlikely(PageCgroupUsed(pc))) {
2498 		unlock_page_cgroup(pc);
2499 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2500 		return;
2501 	}
2502 	/*
2503 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2504 	 * accessed by any other context at this point.
2505 	 */
2506 
2507 	/*
2508 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2509 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2510 	 */
2511 	if (lrucare) {
2512 		zone = page_zone(page);
2513 		spin_lock_irq(&zone->lru_lock);
2514 		if (PageLRU(page)) {
2515 			ClearPageLRU(page);
2516 			del_page_from_lru_list(zone, page, page_lru(page));
2517 			was_on_lru = true;
2518 		}
2519 	}
2520 
2521 	pc->mem_cgroup = memcg;
2522 	/*
2523 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2524 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2525 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2526 	 * before USED bit, we need memory barrier here.
2527 	 * See mem_cgroup_add_lru_list(), etc.
2528  	 */
2529 	smp_wmb();
2530 	SetPageCgroupUsed(pc);
2531 
2532 	if (lrucare) {
2533 		if (was_on_lru) {
2534 			VM_BUG_ON(PageLRU(page));
2535 			SetPageLRU(page);
2536 			add_page_to_lru_list(zone, page, page_lru(page));
2537 		}
2538 		spin_unlock_irq(&zone->lru_lock);
2539 	}
2540 
2541 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2542 		anon = true;
2543 	else
2544 		anon = false;
2545 
2546 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2547 	unlock_page_cgroup(pc);
2548 
2549 	/*
2550 	 * "charge_statistics" updated event counter. Then, check it.
2551 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2552 	 * if they exceeds softlimit.
2553 	 */
2554 	memcg_check_events(memcg, page);
2555 }
2556 
2557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2558 
2559 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2560 /*
2561  * Because tail pages are not marked as "used", set it. We're under
2562  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2563  * charge/uncharge will be never happen and move_account() is done under
2564  * compound_lock(), so we don't have to take care of races.
2565  */
mem_cgroup_split_huge_fixup(struct page * head)2566 void mem_cgroup_split_huge_fixup(struct page *head)
2567 {
2568 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2569 	struct page_cgroup *pc;
2570 	int i;
2571 
2572 	if (mem_cgroup_disabled())
2573 		return;
2574 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2575 		pc = head_pc + i;
2576 		pc->mem_cgroup = head_pc->mem_cgroup;
2577 		smp_wmb();/* see __commit_charge() */
2578 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2579 	}
2580 }
2581 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2582 
2583 /**
2584  * mem_cgroup_move_account - move account of the page
2585  * @page: the page
2586  * @nr_pages: number of regular pages (>1 for huge pages)
2587  * @pc:	page_cgroup of the page.
2588  * @from: mem_cgroup which the page is moved from.
2589  * @to:	mem_cgroup which the page is moved to. @from != @to.
2590  * @uncharge: whether we should call uncharge and css_put against @from.
2591  *
2592  * The caller must confirm following.
2593  * - page is not on LRU (isolate_page() is useful.)
2594  * - compound_lock is held when nr_pages > 1
2595  *
2596  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2597  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2598  * true, this function does "uncharge" from old cgroup, but it doesn't if
2599  * @uncharge is false, so a caller should do "uncharge".
2600  */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct page_cgroup * pc,struct mem_cgroup * from,struct mem_cgroup * to,bool uncharge)2601 static int mem_cgroup_move_account(struct page *page,
2602 				   unsigned int nr_pages,
2603 				   struct page_cgroup *pc,
2604 				   struct mem_cgroup *from,
2605 				   struct mem_cgroup *to,
2606 				   bool uncharge)
2607 {
2608 	unsigned long flags;
2609 	int ret;
2610 	bool anon = PageAnon(page);
2611 
2612 	VM_BUG_ON(from == to);
2613 	VM_BUG_ON(PageLRU(page));
2614 	/*
2615 	 * The page is isolated from LRU. So, collapse function
2616 	 * will not handle this page. But page splitting can happen.
2617 	 * Do this check under compound_page_lock(). The caller should
2618 	 * hold it.
2619 	 */
2620 	ret = -EBUSY;
2621 	if (nr_pages > 1 && !PageTransHuge(page))
2622 		goto out;
2623 
2624 	lock_page_cgroup(pc);
2625 
2626 	ret = -EINVAL;
2627 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2628 		goto unlock;
2629 
2630 	move_lock_mem_cgroup(from, &flags);
2631 
2632 	if (!anon && page_mapped(page)) {
2633 		/* Update mapped_file data for mem_cgroup */
2634 		preempt_disable();
2635 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2636 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 		preempt_enable();
2638 	}
2639 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2640 	if (uncharge)
2641 		/* This is not "cancel", but cancel_charge does all we need. */
2642 		__mem_cgroup_cancel_charge(from, nr_pages);
2643 
2644 	/* caller should have done css_get */
2645 	pc->mem_cgroup = to;
2646 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2647 	/*
2648 	 * We charges against "to" which may not have any tasks. Then, "to"
2649 	 * can be under rmdir(). But in current implementation, caller of
2650 	 * this function is just force_empty() and move charge, so it's
2651 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2652 	 * status here.
2653 	 */
2654 	move_unlock_mem_cgroup(from, &flags);
2655 	ret = 0;
2656 unlock:
2657 	unlock_page_cgroup(pc);
2658 	/*
2659 	 * check events
2660 	 */
2661 	memcg_check_events(to, page);
2662 	memcg_check_events(from, page);
2663 out:
2664 	return ret;
2665 }
2666 
2667 /*
2668  * move charges to its parent.
2669  */
2670 
mem_cgroup_move_parent(struct page * page,struct page_cgroup * pc,struct mem_cgroup * child,gfp_t gfp_mask)2671 static int mem_cgroup_move_parent(struct page *page,
2672 				  struct page_cgroup *pc,
2673 				  struct mem_cgroup *child,
2674 				  gfp_t gfp_mask)
2675 {
2676 	struct cgroup *cg = child->css.cgroup;
2677 	struct cgroup *pcg = cg->parent;
2678 	struct mem_cgroup *parent;
2679 	unsigned int nr_pages;
2680 	unsigned long uninitialized_var(flags);
2681 	int ret;
2682 
2683 	/* Is ROOT ? */
2684 	if (!pcg)
2685 		return -EINVAL;
2686 
2687 	ret = -EBUSY;
2688 	if (!get_page_unless_zero(page))
2689 		goto out;
2690 	if (isolate_lru_page(page))
2691 		goto put;
2692 
2693 	nr_pages = hpage_nr_pages(page);
2694 
2695 	parent = mem_cgroup_from_cont(pcg);
2696 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2697 	if (ret)
2698 		goto put_back;
2699 
2700 	if (nr_pages > 1)
2701 		flags = compound_lock_irqsave(page);
2702 
2703 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2704 	if (ret)
2705 		__mem_cgroup_cancel_charge(parent, nr_pages);
2706 
2707 	if (nr_pages > 1)
2708 		compound_unlock_irqrestore(page, flags);
2709 put_back:
2710 	putback_lru_page(page);
2711 put:
2712 	put_page(page);
2713 out:
2714 	return ret;
2715 }
2716 
2717 /*
2718  * Charge the memory controller for page usage.
2719  * Return
2720  * 0 if the charge was successful
2721  * < 0 if the cgroup is over its limit
2722  */
mem_cgroup_charge_common(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,enum charge_type ctype)2723 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2724 				gfp_t gfp_mask, enum charge_type ctype)
2725 {
2726 	struct mem_cgroup *memcg = NULL;
2727 	unsigned int nr_pages = 1;
2728 	bool oom = true;
2729 	int ret;
2730 
2731 	if (PageTransHuge(page)) {
2732 		nr_pages <<= compound_order(page);
2733 		VM_BUG_ON(!PageTransHuge(page));
2734 		/*
2735 		 * Never OOM-kill a process for a huge page.  The
2736 		 * fault handler will fall back to regular pages.
2737 		 */
2738 		oom = false;
2739 	}
2740 
2741 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2742 	if (ret == -ENOMEM)
2743 		return ret;
2744 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2745 	return 0;
2746 }
2747 
mem_cgroup_newpage_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)2748 int mem_cgroup_newpage_charge(struct page *page,
2749 			      struct mm_struct *mm, gfp_t gfp_mask)
2750 {
2751 	if (mem_cgroup_disabled())
2752 		return 0;
2753 	VM_BUG_ON(page_mapped(page));
2754 	VM_BUG_ON(page->mapping && !PageAnon(page));
2755 	VM_BUG_ON(!mm);
2756 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2757 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2758 }
2759 
2760 static void
2761 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2762 					enum charge_type ctype);
2763 
mem_cgroup_cache_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)2764 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2765 				gfp_t gfp_mask)
2766 {
2767 	struct mem_cgroup *memcg = NULL;
2768 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2769 	int ret;
2770 
2771 	if (mem_cgroup_disabled())
2772 		return 0;
2773 	if (PageCompound(page))
2774 		return 0;
2775 
2776 	if (unlikely(!mm))
2777 		mm = &init_mm;
2778 	if (!page_is_file_cache(page))
2779 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2780 
2781 	if (!PageSwapCache(page))
2782 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2783 	else { /* page is swapcache/shmem */
2784 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2785 		if (!ret)
2786 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2787 	}
2788 	return ret;
2789 }
2790 
2791 /*
2792  * While swap-in, try_charge -> commit or cancel, the page is locked.
2793  * And when try_charge() successfully returns, one refcnt to memcg without
2794  * struct page_cgroup is acquired. This refcnt will be consumed by
2795  * "commit()" or removed by "cancel()"
2796  */
mem_cgroup_try_charge_swapin(struct mm_struct * mm,struct page * page,gfp_t mask,struct mem_cgroup ** memcgp)2797 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2798 				 struct page *page,
2799 				 gfp_t mask, struct mem_cgroup **memcgp)
2800 {
2801 	struct mem_cgroup *memcg;
2802 	int ret;
2803 
2804 	*memcgp = NULL;
2805 
2806 	if (mem_cgroup_disabled())
2807 		return 0;
2808 
2809 	if (!do_swap_account)
2810 		goto charge_cur_mm;
2811 	/*
2812 	 * A racing thread's fault, or swapoff, may have already updated
2813 	 * the pte, and even removed page from swap cache: in those cases
2814 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2815 	 * KSM case which does need to charge the page.
2816 	 */
2817 	if (!PageSwapCache(page))
2818 		goto charge_cur_mm;
2819 	memcg = try_get_mem_cgroup_from_page(page);
2820 	if (!memcg)
2821 		goto charge_cur_mm;
2822 	*memcgp = memcg;
2823 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2824 	css_put(&memcg->css);
2825 	if (ret == -EINTR)
2826 		ret = 0;
2827 	return ret;
2828 charge_cur_mm:
2829 	if (unlikely(!mm))
2830 		mm = &init_mm;
2831 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2832 	if (ret == -EINTR)
2833 		ret = 0;
2834 	return ret;
2835 }
2836 
2837 static void
__mem_cgroup_commit_charge_swapin(struct page * page,struct mem_cgroup * memcg,enum charge_type ctype)2838 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2839 					enum charge_type ctype)
2840 {
2841 	if (mem_cgroup_disabled())
2842 		return;
2843 	if (!memcg)
2844 		return;
2845 	cgroup_exclude_rmdir(&memcg->css);
2846 
2847 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2848 	/*
2849 	 * Now swap is on-memory. This means this page may be
2850 	 * counted both as mem and swap....double count.
2851 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2852 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2853 	 * may call delete_from_swap_cache() before reach here.
2854 	 */
2855 	if (do_swap_account && PageSwapCache(page)) {
2856 		swp_entry_t ent = {.val = page_private(page)};
2857 		struct mem_cgroup *swap_memcg;
2858 		unsigned short id;
2859 
2860 		id = swap_cgroup_record(ent, 0);
2861 		rcu_read_lock();
2862 		swap_memcg = mem_cgroup_lookup(id);
2863 		if (swap_memcg) {
2864 			/*
2865 			 * This recorded memcg can be obsolete one. So, avoid
2866 			 * calling css_tryget
2867 			 */
2868 			if (!mem_cgroup_is_root(swap_memcg))
2869 				res_counter_uncharge(&swap_memcg->memsw,
2870 						     PAGE_SIZE);
2871 			mem_cgroup_swap_statistics(swap_memcg, false);
2872 			mem_cgroup_put(swap_memcg);
2873 		}
2874 		rcu_read_unlock();
2875 	}
2876 	/*
2877 	 * At swapin, we may charge account against cgroup which has no tasks.
2878 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2879 	 * In that case, we need to call pre_destroy() again. check it here.
2880 	 */
2881 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2882 }
2883 
mem_cgroup_commit_charge_swapin(struct page * page,struct mem_cgroup * memcg)2884 void mem_cgroup_commit_charge_swapin(struct page *page,
2885 				     struct mem_cgroup *memcg)
2886 {
2887 	__mem_cgroup_commit_charge_swapin(page, memcg,
2888 					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2889 }
2890 
mem_cgroup_cancel_charge_swapin(struct mem_cgroup * memcg)2891 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2892 {
2893 	if (mem_cgroup_disabled())
2894 		return;
2895 	if (!memcg)
2896 		return;
2897 	__mem_cgroup_cancel_charge(memcg, 1);
2898 }
2899 
mem_cgroup_do_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages,const enum charge_type ctype)2900 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2901 				   unsigned int nr_pages,
2902 				   const enum charge_type ctype)
2903 {
2904 	struct memcg_batch_info *batch = NULL;
2905 	bool uncharge_memsw = true;
2906 
2907 	/* If swapout, usage of swap doesn't decrease */
2908 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2909 		uncharge_memsw = false;
2910 
2911 	batch = &current->memcg_batch;
2912 	/*
2913 	 * In usual, we do css_get() when we remember memcg pointer.
2914 	 * But in this case, we keep res->usage until end of a series of
2915 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2916 	 */
2917 	if (!batch->memcg)
2918 		batch->memcg = memcg;
2919 	/*
2920 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2921 	 * In those cases, all pages freed continuously can be expected to be in
2922 	 * the same cgroup and we have chance to coalesce uncharges.
2923 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2924 	 * because we want to do uncharge as soon as possible.
2925 	 */
2926 
2927 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2928 		goto direct_uncharge;
2929 
2930 	if (nr_pages > 1)
2931 		goto direct_uncharge;
2932 
2933 	/*
2934 	 * In typical case, batch->memcg == mem. This means we can
2935 	 * merge a series of uncharges to an uncharge of res_counter.
2936 	 * If not, we uncharge res_counter ony by one.
2937 	 */
2938 	if (batch->memcg != memcg)
2939 		goto direct_uncharge;
2940 	/* remember freed charge and uncharge it later */
2941 	batch->nr_pages++;
2942 	if (uncharge_memsw)
2943 		batch->memsw_nr_pages++;
2944 	return;
2945 direct_uncharge:
2946 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2947 	if (uncharge_memsw)
2948 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2949 	if (unlikely(batch->memcg != memcg))
2950 		memcg_oom_recover(memcg);
2951 }
2952 
2953 /*
2954  * uncharge if !page_mapped(page)
2955  */
2956 static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page * page,enum charge_type ctype)2957 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2958 {
2959 	struct mem_cgroup *memcg = NULL;
2960 	unsigned int nr_pages = 1;
2961 	struct page_cgroup *pc;
2962 	bool anon;
2963 
2964 	if (mem_cgroup_disabled())
2965 		return NULL;
2966 
2967 	if (PageSwapCache(page))
2968 		return NULL;
2969 
2970 	if (PageTransHuge(page)) {
2971 		nr_pages <<= compound_order(page);
2972 		VM_BUG_ON(!PageTransHuge(page));
2973 	}
2974 	/*
2975 	 * Check if our page_cgroup is valid
2976 	 */
2977 	pc = lookup_page_cgroup(page);
2978 	if (unlikely(!PageCgroupUsed(pc)))
2979 		return NULL;
2980 
2981 	lock_page_cgroup(pc);
2982 
2983 	memcg = pc->mem_cgroup;
2984 
2985 	if (!PageCgroupUsed(pc))
2986 		goto unlock_out;
2987 
2988 	anon = PageAnon(page);
2989 
2990 	switch (ctype) {
2991 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 		/*
2993 		 * Generally PageAnon tells if it's the anon statistics to be
2994 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2995 		 * used before page reached the stage of being marked PageAnon.
2996 		 */
2997 		anon = true;
2998 		/* fallthrough */
2999 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3000 		/* See mem_cgroup_prepare_migration() */
3001 		if (page_mapped(page) || PageCgroupMigration(pc))
3002 			goto unlock_out;
3003 		break;
3004 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3005 		if (!PageAnon(page)) {	/* Shared memory */
3006 			if (page->mapping && !page_is_file_cache(page))
3007 				goto unlock_out;
3008 		} else if (page_mapped(page)) /* Anon */
3009 				goto unlock_out;
3010 		break;
3011 	default:
3012 		break;
3013 	}
3014 
3015 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3016 
3017 	ClearPageCgroupUsed(pc);
3018 	/*
3019 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3020 	 * freed from LRU. This is safe because uncharged page is expected not
3021 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3022 	 * special functions.
3023 	 */
3024 
3025 	unlock_page_cgroup(pc);
3026 	/*
3027 	 * even after unlock, we have memcg->res.usage here and this memcg
3028 	 * will never be freed.
3029 	 */
3030 	memcg_check_events(memcg, page);
3031 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3032 		mem_cgroup_swap_statistics(memcg, true);
3033 		mem_cgroup_get(memcg);
3034 	}
3035 	if (!mem_cgroup_is_root(memcg))
3036 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3037 
3038 	return memcg;
3039 
3040 unlock_out:
3041 	unlock_page_cgroup(pc);
3042 	return NULL;
3043 }
3044 
mem_cgroup_uncharge_page(struct page * page)3045 void mem_cgroup_uncharge_page(struct page *page)
3046 {
3047 	/* early check. */
3048 	if (page_mapped(page))
3049 		return;
3050 	VM_BUG_ON(page->mapping && !PageAnon(page));
3051 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3052 }
3053 
mem_cgroup_uncharge_cache_page(struct page * page)3054 void mem_cgroup_uncharge_cache_page(struct page *page)
3055 {
3056 	VM_BUG_ON(page_mapped(page));
3057 	VM_BUG_ON(page->mapping);
3058 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3059 }
3060 
3061 /*
3062  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3063  * In that cases, pages are freed continuously and we can expect pages
3064  * are in the same memcg. All these calls itself limits the number of
3065  * pages freed at once, then uncharge_start/end() is called properly.
3066  * This may be called prural(2) times in a context,
3067  */
3068 
mem_cgroup_uncharge_start(void)3069 void mem_cgroup_uncharge_start(void)
3070 {
3071 	current->memcg_batch.do_batch++;
3072 	/* We can do nest. */
3073 	if (current->memcg_batch.do_batch == 1) {
3074 		current->memcg_batch.memcg = NULL;
3075 		current->memcg_batch.nr_pages = 0;
3076 		current->memcg_batch.memsw_nr_pages = 0;
3077 	}
3078 }
3079 
mem_cgroup_uncharge_end(void)3080 void mem_cgroup_uncharge_end(void)
3081 {
3082 	struct memcg_batch_info *batch = &current->memcg_batch;
3083 
3084 	if (!batch->do_batch)
3085 		return;
3086 
3087 	batch->do_batch--;
3088 	if (batch->do_batch) /* If stacked, do nothing. */
3089 		return;
3090 
3091 	if (!batch->memcg)
3092 		return;
3093 	/*
3094 	 * This "batch->memcg" is valid without any css_get/put etc...
3095 	 * bacause we hide charges behind us.
3096 	 */
3097 	if (batch->nr_pages)
3098 		res_counter_uncharge(&batch->memcg->res,
3099 				     batch->nr_pages * PAGE_SIZE);
3100 	if (batch->memsw_nr_pages)
3101 		res_counter_uncharge(&batch->memcg->memsw,
3102 				     batch->memsw_nr_pages * PAGE_SIZE);
3103 	memcg_oom_recover(batch->memcg);
3104 	/* forget this pointer (for sanity check) */
3105 	batch->memcg = NULL;
3106 }
3107 
3108 #ifdef CONFIG_SWAP
3109 /*
3110  * called after __delete_from_swap_cache() and drop "page" account.
3111  * memcg information is recorded to swap_cgroup of "ent"
3112  */
3113 void
mem_cgroup_uncharge_swapcache(struct page * page,swp_entry_t ent,bool swapout)3114 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3115 {
3116 	struct mem_cgroup *memcg;
3117 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3118 
3119 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3120 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3121 
3122 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3123 
3124 	/*
3125 	 * record memcg information,  if swapout && memcg != NULL,
3126 	 * mem_cgroup_get() was called in uncharge().
3127 	 */
3128 	if (do_swap_account && swapout && memcg)
3129 		swap_cgroup_record(ent, css_id(&memcg->css));
3130 }
3131 #endif
3132 
3133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3134 /*
3135  * called from swap_entry_free(). remove record in swap_cgroup and
3136  * uncharge "memsw" account.
3137  */
mem_cgroup_uncharge_swap(swp_entry_t ent)3138 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3139 {
3140 	struct mem_cgroup *memcg;
3141 	unsigned short id;
3142 
3143 	if (!do_swap_account)
3144 		return;
3145 
3146 	id = swap_cgroup_record(ent, 0);
3147 	rcu_read_lock();
3148 	memcg = mem_cgroup_lookup(id);
3149 	if (memcg) {
3150 		/*
3151 		 * We uncharge this because swap is freed.
3152 		 * This memcg can be obsolete one. We avoid calling css_tryget
3153 		 */
3154 		if (!mem_cgroup_is_root(memcg))
3155 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3156 		mem_cgroup_swap_statistics(memcg, false);
3157 		mem_cgroup_put(memcg);
3158 	}
3159 	rcu_read_unlock();
3160 }
3161 
3162 /**
3163  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3164  * @entry: swap entry to be moved
3165  * @from:  mem_cgroup which the entry is moved from
3166  * @to:  mem_cgroup which the entry is moved to
3167  * @need_fixup: whether we should fixup res_counters and refcounts.
3168  *
3169  * It succeeds only when the swap_cgroup's record for this entry is the same
3170  * as the mem_cgroup's id of @from.
3171  *
3172  * Returns 0 on success, -EINVAL on failure.
3173  *
3174  * The caller must have charged to @to, IOW, called res_counter_charge() about
3175  * both res and memsw, and called css_get().
3176  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to,bool need_fixup)3177 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3178 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3179 {
3180 	unsigned short old_id, new_id;
3181 
3182 	old_id = css_id(&from->css);
3183 	new_id = css_id(&to->css);
3184 
3185 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3186 		mem_cgroup_swap_statistics(from, false);
3187 		mem_cgroup_swap_statistics(to, true);
3188 		/*
3189 		 * This function is only called from task migration context now.
3190 		 * It postpones res_counter and refcount handling till the end
3191 		 * of task migration(mem_cgroup_clear_mc()) for performance
3192 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3193 		 * because if the process that has been moved to @to does
3194 		 * swap-in, the refcount of @to might be decreased to 0.
3195 		 */
3196 		mem_cgroup_get(to);
3197 		if (need_fixup) {
3198 			if (!mem_cgroup_is_root(from))
3199 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3200 			mem_cgroup_put(from);
3201 			/*
3202 			 * we charged both to->res and to->memsw, so we should
3203 			 * uncharge to->res.
3204 			 */
3205 			if (!mem_cgroup_is_root(to))
3206 				res_counter_uncharge(&to->res, PAGE_SIZE);
3207 		}
3208 		return 0;
3209 	}
3210 	return -EINVAL;
3211 }
3212 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to,bool need_fixup)3213 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3214 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3215 {
3216 	return -EINVAL;
3217 }
3218 #endif
3219 
3220 /*
3221  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3222  * page belongs to.
3223  */
mem_cgroup_prepare_migration(struct page * page,struct page * newpage,struct mem_cgroup ** memcgp,gfp_t gfp_mask)3224 int mem_cgroup_prepare_migration(struct page *page,
3225 	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3226 {
3227 	struct mem_cgroup *memcg = NULL;
3228 	struct page_cgroup *pc;
3229 	enum charge_type ctype;
3230 	int ret = 0;
3231 
3232 	*memcgp = NULL;
3233 
3234 	VM_BUG_ON(PageTransHuge(page));
3235 	if (mem_cgroup_disabled())
3236 		return 0;
3237 
3238 	pc = lookup_page_cgroup(page);
3239 	lock_page_cgroup(pc);
3240 	if (PageCgroupUsed(pc)) {
3241 		memcg = pc->mem_cgroup;
3242 		css_get(&memcg->css);
3243 		/*
3244 		 * At migrating an anonymous page, its mapcount goes down
3245 		 * to 0 and uncharge() will be called. But, even if it's fully
3246 		 * unmapped, migration may fail and this page has to be
3247 		 * charged again. We set MIGRATION flag here and delay uncharge
3248 		 * until end_migration() is called
3249 		 *
3250 		 * Corner Case Thinking
3251 		 * A)
3252 		 * When the old page was mapped as Anon and it's unmap-and-freed
3253 		 * while migration was ongoing.
3254 		 * If unmap finds the old page, uncharge() of it will be delayed
3255 		 * until end_migration(). If unmap finds a new page, it's
3256 		 * uncharged when it make mapcount to be 1->0. If unmap code
3257 		 * finds swap_migration_entry, the new page will not be mapped
3258 		 * and end_migration() will find it(mapcount==0).
3259 		 *
3260 		 * B)
3261 		 * When the old page was mapped but migraion fails, the kernel
3262 		 * remaps it. A charge for it is kept by MIGRATION flag even
3263 		 * if mapcount goes down to 0. We can do remap successfully
3264 		 * without charging it again.
3265 		 *
3266 		 * C)
3267 		 * The "old" page is under lock_page() until the end of
3268 		 * migration, so, the old page itself will not be swapped-out.
3269 		 * If the new page is swapped out before end_migraton, our
3270 		 * hook to usual swap-out path will catch the event.
3271 		 */
3272 		if (PageAnon(page))
3273 			SetPageCgroupMigration(pc);
3274 	}
3275 	unlock_page_cgroup(pc);
3276 	/*
3277 	 * If the page is not charged at this point,
3278 	 * we return here.
3279 	 */
3280 	if (!memcg)
3281 		return 0;
3282 
3283 	*memcgp = memcg;
3284 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3285 	css_put(&memcg->css);/* drop extra refcnt */
3286 	if (ret) {
3287 		if (PageAnon(page)) {
3288 			lock_page_cgroup(pc);
3289 			ClearPageCgroupMigration(pc);
3290 			unlock_page_cgroup(pc);
3291 			/*
3292 			 * The old page may be fully unmapped while we kept it.
3293 			 */
3294 			mem_cgroup_uncharge_page(page);
3295 		}
3296 		/* we'll need to revisit this error code (we have -EINTR) */
3297 		return -ENOMEM;
3298 	}
3299 	/*
3300 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3301 	 * is called before end_migration, we can catch all events on this new
3302 	 * page. In the case new page is migrated but not remapped, new page's
3303 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3304 	 */
3305 	if (PageAnon(page))
3306 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3307 	else if (page_is_file_cache(page))
3308 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3309 	else
3310 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3311 	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3312 	return ret;
3313 }
3314 
3315 /* remove redundant charge if migration failed*/
mem_cgroup_end_migration(struct mem_cgroup * memcg,struct page * oldpage,struct page * newpage,bool migration_ok)3316 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3317 	struct page *oldpage, struct page *newpage, bool migration_ok)
3318 {
3319 	struct page *used, *unused;
3320 	struct page_cgroup *pc;
3321 	bool anon;
3322 
3323 	if (!memcg)
3324 		return;
3325 	/* blocks rmdir() */
3326 	cgroup_exclude_rmdir(&memcg->css);
3327 	if (!migration_ok) {
3328 		used = oldpage;
3329 		unused = newpage;
3330 	} else {
3331 		used = newpage;
3332 		unused = oldpage;
3333 	}
3334 	/*
3335 	 * We disallowed uncharge of pages under migration because mapcount
3336 	 * of the page goes down to zero, temporarly.
3337 	 * Clear the flag and check the page should be charged.
3338 	 */
3339 	pc = lookup_page_cgroup(oldpage);
3340 	lock_page_cgroup(pc);
3341 	ClearPageCgroupMigration(pc);
3342 	unlock_page_cgroup(pc);
3343 	anon = PageAnon(used);
3344 	__mem_cgroup_uncharge_common(unused,
3345 		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3346 		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3347 
3348 	/*
3349 	 * If a page is a file cache, radix-tree replacement is very atomic
3350 	 * and we can skip this check. When it was an Anon page, its mapcount
3351 	 * goes down to 0. But because we added MIGRATION flage, it's not
3352 	 * uncharged yet. There are several case but page->mapcount check
3353 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3354 	 * check. (see prepare_charge() also)
3355 	 */
3356 	if (anon)
3357 		mem_cgroup_uncharge_page(used);
3358 	/*
3359 	 * At migration, we may charge account against cgroup which has no
3360 	 * tasks.
3361 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3362 	 * In that case, we need to call pre_destroy() again. check it here.
3363 	 */
3364 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3365 }
3366 
3367 /*
3368  * At replace page cache, newpage is not under any memcg but it's on
3369  * LRU. So, this function doesn't touch res_counter but handles LRU
3370  * in correct way. Both pages are locked so we cannot race with uncharge.
3371  */
mem_cgroup_replace_page_cache(struct page * oldpage,struct page * newpage)3372 void mem_cgroup_replace_page_cache(struct page *oldpage,
3373 				  struct page *newpage)
3374 {
3375 	struct mem_cgroup *memcg;
3376 	struct page_cgroup *pc;
3377 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3378 
3379 	if (mem_cgroup_disabled())
3380 		return;
3381 
3382 	pc = lookup_page_cgroup(oldpage);
3383 	/* fix accounting on old pages */
3384 	lock_page_cgroup(pc);
3385 	memcg = pc->mem_cgroup;
3386 	mem_cgroup_charge_statistics(memcg, false, -1);
3387 	ClearPageCgroupUsed(pc);
3388 	unlock_page_cgroup(pc);
3389 
3390 	if (PageSwapBacked(oldpage))
3391 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3392 
3393 	/*
3394 	 * Even if newpage->mapping was NULL before starting replacement,
3395 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3396 	 * LRU while we overwrite pc->mem_cgroup.
3397 	 */
3398 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3399 }
3400 
3401 #ifdef CONFIG_DEBUG_VM
lookup_page_cgroup_used(struct page * page)3402 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3403 {
3404 	struct page_cgroup *pc;
3405 
3406 	pc = lookup_page_cgroup(page);
3407 	/*
3408 	 * Can be NULL while feeding pages into the page allocator for
3409 	 * the first time, i.e. during boot or memory hotplug;
3410 	 * or when mem_cgroup_disabled().
3411 	 */
3412 	if (likely(pc) && PageCgroupUsed(pc))
3413 		return pc;
3414 	return NULL;
3415 }
3416 
mem_cgroup_bad_page_check(struct page * page)3417 bool mem_cgroup_bad_page_check(struct page *page)
3418 {
3419 	if (mem_cgroup_disabled())
3420 		return false;
3421 
3422 	return lookup_page_cgroup_used(page) != NULL;
3423 }
3424 
mem_cgroup_print_bad_page(struct page * page)3425 void mem_cgroup_print_bad_page(struct page *page)
3426 {
3427 	struct page_cgroup *pc;
3428 
3429 	pc = lookup_page_cgroup_used(page);
3430 	if (pc) {
3431 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3432 		       pc, pc->flags, pc->mem_cgroup);
3433 	}
3434 }
3435 #endif
3436 
3437 static DEFINE_MUTEX(set_limit_mutex);
3438 
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long long val)3439 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3440 				unsigned long long val)
3441 {
3442 	int retry_count;
3443 	u64 memswlimit, memlimit;
3444 	int ret = 0;
3445 	int children = mem_cgroup_count_children(memcg);
3446 	u64 curusage, oldusage;
3447 	int enlarge;
3448 
3449 	/*
3450 	 * For keeping hierarchical_reclaim simple, how long we should retry
3451 	 * is depends on callers. We set our retry-count to be function
3452 	 * of # of children which we should visit in this loop.
3453 	 */
3454 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3455 
3456 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3457 
3458 	enlarge = 0;
3459 	while (retry_count) {
3460 		if (signal_pending(current)) {
3461 			ret = -EINTR;
3462 			break;
3463 		}
3464 		/*
3465 		 * Rather than hide all in some function, I do this in
3466 		 * open coded manner. You see what this really does.
3467 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3468 		 */
3469 		mutex_lock(&set_limit_mutex);
3470 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3471 		if (memswlimit < val) {
3472 			ret = -EINVAL;
3473 			mutex_unlock(&set_limit_mutex);
3474 			break;
3475 		}
3476 
3477 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3478 		if (memlimit < val)
3479 			enlarge = 1;
3480 
3481 		ret = res_counter_set_limit(&memcg->res, val);
3482 		if (!ret) {
3483 			if (memswlimit == val)
3484 				memcg->memsw_is_minimum = true;
3485 			else
3486 				memcg->memsw_is_minimum = false;
3487 		}
3488 		mutex_unlock(&set_limit_mutex);
3489 
3490 		if (!ret)
3491 			break;
3492 
3493 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3494 				   MEM_CGROUP_RECLAIM_SHRINK);
3495 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3496 		/* Usage is reduced ? */
3497   		if (curusage >= oldusage)
3498 			retry_count--;
3499 		else
3500 			oldusage = curusage;
3501 	}
3502 	if (!ret && enlarge)
3503 		memcg_oom_recover(memcg);
3504 
3505 	return ret;
3506 }
3507 
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long long val)3508 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3509 					unsigned long long val)
3510 {
3511 	int retry_count;
3512 	u64 memlimit, memswlimit, oldusage, curusage;
3513 	int children = mem_cgroup_count_children(memcg);
3514 	int ret = -EBUSY;
3515 	int enlarge = 0;
3516 
3517 	/* see mem_cgroup_resize_res_limit */
3518  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3519 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3520 	while (retry_count) {
3521 		if (signal_pending(current)) {
3522 			ret = -EINTR;
3523 			break;
3524 		}
3525 		/*
3526 		 * Rather than hide all in some function, I do this in
3527 		 * open coded manner. You see what this really does.
3528 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3529 		 */
3530 		mutex_lock(&set_limit_mutex);
3531 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3532 		if (memlimit > val) {
3533 			ret = -EINVAL;
3534 			mutex_unlock(&set_limit_mutex);
3535 			break;
3536 		}
3537 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3538 		if (memswlimit < val)
3539 			enlarge = 1;
3540 		ret = res_counter_set_limit(&memcg->memsw, val);
3541 		if (!ret) {
3542 			if (memlimit == val)
3543 				memcg->memsw_is_minimum = true;
3544 			else
3545 				memcg->memsw_is_minimum = false;
3546 		}
3547 		mutex_unlock(&set_limit_mutex);
3548 
3549 		if (!ret)
3550 			break;
3551 
3552 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3553 				   MEM_CGROUP_RECLAIM_NOSWAP |
3554 				   MEM_CGROUP_RECLAIM_SHRINK);
3555 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3556 		/* Usage is reduced ? */
3557 		if (curusage >= oldusage)
3558 			retry_count--;
3559 		else
3560 			oldusage = curusage;
3561 	}
3562 	if (!ret && enlarge)
3563 		memcg_oom_recover(memcg);
3564 	return ret;
3565 }
3566 
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)3567 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3568 					    gfp_t gfp_mask,
3569 					    unsigned long *total_scanned)
3570 {
3571 	unsigned long nr_reclaimed = 0;
3572 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3573 	unsigned long reclaimed;
3574 	int loop = 0;
3575 	struct mem_cgroup_tree_per_zone *mctz;
3576 	unsigned long long excess;
3577 	unsigned long nr_scanned;
3578 
3579 	if (order > 0)
3580 		return 0;
3581 
3582 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3583 	/*
3584 	 * This loop can run a while, specially if mem_cgroup's continuously
3585 	 * keep exceeding their soft limit and putting the system under
3586 	 * pressure
3587 	 */
3588 	do {
3589 		if (next_mz)
3590 			mz = next_mz;
3591 		else
3592 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3593 		if (!mz)
3594 			break;
3595 
3596 		nr_scanned = 0;
3597 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3598 						    gfp_mask, &nr_scanned);
3599 		nr_reclaimed += reclaimed;
3600 		*total_scanned += nr_scanned;
3601 		spin_lock(&mctz->lock);
3602 
3603 		/*
3604 		 * If we failed to reclaim anything from this memory cgroup
3605 		 * it is time to move on to the next cgroup
3606 		 */
3607 		next_mz = NULL;
3608 		if (!reclaimed) {
3609 			do {
3610 				/*
3611 				 * Loop until we find yet another one.
3612 				 *
3613 				 * By the time we get the soft_limit lock
3614 				 * again, someone might have aded the
3615 				 * group back on the RB tree. Iterate to
3616 				 * make sure we get a different mem.
3617 				 * mem_cgroup_largest_soft_limit_node returns
3618 				 * NULL if no other cgroup is present on
3619 				 * the tree
3620 				 */
3621 				next_mz =
3622 				__mem_cgroup_largest_soft_limit_node(mctz);
3623 				if (next_mz == mz)
3624 					css_put(&next_mz->memcg->css);
3625 				else /* next_mz == NULL or other memcg */
3626 					break;
3627 			} while (1);
3628 		}
3629 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3630 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3631 		/*
3632 		 * One school of thought says that we should not add
3633 		 * back the node to the tree if reclaim returns 0.
3634 		 * But our reclaim could return 0, simply because due
3635 		 * to priority we are exposing a smaller subset of
3636 		 * memory to reclaim from. Consider this as a longer
3637 		 * term TODO.
3638 		 */
3639 		/* If excess == 0, no tree ops */
3640 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3641 		spin_unlock(&mctz->lock);
3642 		css_put(&mz->memcg->css);
3643 		loop++;
3644 		/*
3645 		 * Could not reclaim anything and there are no more
3646 		 * mem cgroups to try or we seem to be looping without
3647 		 * reclaiming anything.
3648 		 */
3649 		if (!nr_reclaimed &&
3650 			(next_mz == NULL ||
3651 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3652 			break;
3653 	} while (!nr_reclaimed);
3654 	if (next_mz)
3655 		css_put(&next_mz->memcg->css);
3656 	return nr_reclaimed;
3657 }
3658 
3659 /*
3660  * This routine traverse page_cgroup in given list and drop them all.
3661  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3662  */
mem_cgroup_force_empty_list(struct mem_cgroup * memcg,int node,int zid,enum lru_list lru)3663 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3664 				int node, int zid, enum lru_list lru)
3665 {
3666 	struct mem_cgroup_per_zone *mz;
3667 	unsigned long flags, loop;
3668 	struct list_head *list;
3669 	struct page *busy;
3670 	struct zone *zone;
3671 	int ret = 0;
3672 
3673 	zone = &NODE_DATA(node)->node_zones[zid];
3674 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3675 	list = &mz->lruvec.lists[lru];
3676 
3677 	loop = mz->lru_size[lru];
3678 	/* give some margin against EBUSY etc...*/
3679 	loop += 256;
3680 	busy = NULL;
3681 	while (loop--) {
3682 		struct page_cgroup *pc;
3683 		struct page *page;
3684 
3685 		ret = 0;
3686 		spin_lock_irqsave(&zone->lru_lock, flags);
3687 		if (list_empty(list)) {
3688 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3689 			break;
3690 		}
3691 		page = list_entry(list->prev, struct page, lru);
3692 		if (busy == page) {
3693 			list_move(&page->lru, list);
3694 			busy = NULL;
3695 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3696 			continue;
3697 		}
3698 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3699 
3700 		pc = lookup_page_cgroup(page);
3701 
3702 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3703 		if (ret == -ENOMEM || ret == -EINTR)
3704 			break;
3705 
3706 		if (ret == -EBUSY || ret == -EINVAL) {
3707 			/* found lock contention or "pc" is obsolete. */
3708 			busy = page;
3709 			cond_resched();
3710 		} else
3711 			busy = NULL;
3712 	}
3713 
3714 	if (!ret && !list_empty(list))
3715 		return -EBUSY;
3716 	return ret;
3717 }
3718 
3719 /*
3720  * make mem_cgroup's charge to be 0 if there is no task.
3721  * This enables deleting this mem_cgroup.
3722  */
mem_cgroup_force_empty(struct mem_cgroup * memcg,bool free_all)3723 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3724 {
3725 	int ret;
3726 	int node, zid, shrink;
3727 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3728 	struct cgroup *cgrp = memcg->css.cgroup;
3729 
3730 	css_get(&memcg->css);
3731 
3732 	shrink = 0;
3733 	/* should free all ? */
3734 	if (free_all)
3735 		goto try_to_free;
3736 move_account:
3737 	do {
3738 		ret = -EBUSY;
3739 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3740 			goto out;
3741 		ret = -EINTR;
3742 		if (signal_pending(current))
3743 			goto out;
3744 		/* This is for making all *used* pages to be on LRU. */
3745 		lru_add_drain_all();
3746 		drain_all_stock_sync(memcg);
3747 		ret = 0;
3748 		mem_cgroup_start_move(memcg);
3749 		for_each_node_state(node, N_HIGH_MEMORY) {
3750 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3751 				enum lru_list lru;
3752 				for_each_lru(lru) {
3753 					ret = mem_cgroup_force_empty_list(memcg,
3754 							node, zid, lru);
3755 					if (ret)
3756 						break;
3757 				}
3758 			}
3759 			if (ret)
3760 				break;
3761 		}
3762 		mem_cgroup_end_move(memcg);
3763 		memcg_oom_recover(memcg);
3764 		/* it seems parent cgroup doesn't have enough mem */
3765 		if (ret == -ENOMEM)
3766 			goto try_to_free;
3767 		cond_resched();
3768 	/* "ret" should also be checked to ensure all lists are empty. */
3769 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3770 out:
3771 	css_put(&memcg->css);
3772 	return ret;
3773 
3774 try_to_free:
3775 	/* returns EBUSY if there is a task or if we come here twice. */
3776 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3777 		ret = -EBUSY;
3778 		goto out;
3779 	}
3780 	/* we call try-to-free pages for make this cgroup empty */
3781 	lru_add_drain_all();
3782 	/* try to free all pages in this cgroup */
3783 	shrink = 1;
3784 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3785 		int progress;
3786 
3787 		if (signal_pending(current)) {
3788 			ret = -EINTR;
3789 			goto out;
3790 		}
3791 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3792 						false);
3793 		if (!progress) {
3794 			nr_retries--;
3795 			/* maybe some writeback is necessary */
3796 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3797 		}
3798 
3799 	}
3800 	lru_add_drain();
3801 	/* try move_account...there may be some *locked* pages. */
3802 	goto move_account;
3803 }
3804 
mem_cgroup_force_empty_write(struct cgroup * cont,unsigned int event)3805 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3806 {
3807 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3808 }
3809 
3810 
mem_cgroup_hierarchy_read(struct cgroup * cont,struct cftype * cft)3811 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3812 {
3813 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3814 }
3815 
mem_cgroup_hierarchy_write(struct cgroup * cont,struct cftype * cft,u64 val)3816 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3817 					u64 val)
3818 {
3819 	int retval = 0;
3820 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3821 	struct cgroup *parent = cont->parent;
3822 	struct mem_cgroup *parent_memcg = NULL;
3823 
3824 	if (parent)
3825 		parent_memcg = mem_cgroup_from_cont(parent);
3826 
3827 	cgroup_lock();
3828 	/*
3829 	 * If parent's use_hierarchy is set, we can't make any modifications
3830 	 * in the child subtrees. If it is unset, then the change can
3831 	 * occur, provided the current cgroup has no children.
3832 	 *
3833 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3834 	 * set if there are no children.
3835 	 */
3836 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3837 				(val == 1 || val == 0)) {
3838 		if (list_empty(&cont->children))
3839 			memcg->use_hierarchy = val;
3840 		else
3841 			retval = -EBUSY;
3842 	} else
3843 		retval = -EINVAL;
3844 	cgroup_unlock();
3845 
3846 	return retval;
3847 }
3848 
3849 
mem_cgroup_recursive_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)3850 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3851 					       enum mem_cgroup_stat_index idx)
3852 {
3853 	struct mem_cgroup *iter;
3854 	long val = 0;
3855 
3856 	/* Per-cpu values can be negative, use a signed accumulator */
3857 	for_each_mem_cgroup_tree(iter, memcg)
3858 		val += mem_cgroup_read_stat(iter, idx);
3859 
3860 	if (val < 0) /* race ? */
3861 		val = 0;
3862 	return val;
3863 }
3864 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3865 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3866 {
3867 	u64 val;
3868 
3869 	if (!mem_cgroup_is_root(memcg)) {
3870 		if (!swap)
3871 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3872 		else
3873 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3874 	}
3875 
3876 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3877 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3878 
3879 	if (swap)
3880 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3881 
3882 	return val << PAGE_SHIFT;
3883 }
3884 
mem_cgroup_read(struct cgroup * cont,struct cftype * cft)3885 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3886 {
3887 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3888 	u64 val;
3889 	int type, name;
3890 
3891 	type = MEMFILE_TYPE(cft->private);
3892 	name = MEMFILE_ATTR(cft->private);
3893 	switch (type) {
3894 	case _MEM:
3895 		if (name == RES_USAGE)
3896 			val = mem_cgroup_usage(memcg, false);
3897 		else
3898 			val = res_counter_read_u64(&memcg->res, name);
3899 		break;
3900 	case _MEMSWAP:
3901 		if (name == RES_USAGE)
3902 			val = mem_cgroup_usage(memcg, true);
3903 		else
3904 			val = res_counter_read_u64(&memcg->memsw, name);
3905 		break;
3906 	default:
3907 		BUG();
3908 	}
3909 	return val;
3910 }
3911 /*
3912  * The user of this function is...
3913  * RES_LIMIT.
3914  */
mem_cgroup_write(struct cgroup * cont,struct cftype * cft,const char * buffer)3915 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3916 			    const char *buffer)
3917 {
3918 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3919 	int type, name;
3920 	unsigned long long val;
3921 	int ret;
3922 
3923 	type = MEMFILE_TYPE(cft->private);
3924 	name = MEMFILE_ATTR(cft->private);
3925 	switch (name) {
3926 	case RES_LIMIT:
3927 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3928 			ret = -EINVAL;
3929 			break;
3930 		}
3931 		/* This function does all necessary parse...reuse it */
3932 		ret = res_counter_memparse_write_strategy(buffer, &val);
3933 		if (ret)
3934 			break;
3935 		if (type == _MEM)
3936 			ret = mem_cgroup_resize_limit(memcg, val);
3937 		else
3938 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3939 		break;
3940 	case RES_SOFT_LIMIT:
3941 		ret = res_counter_memparse_write_strategy(buffer, &val);
3942 		if (ret)
3943 			break;
3944 		/*
3945 		 * For memsw, soft limits are hard to implement in terms
3946 		 * of semantics, for now, we support soft limits for
3947 		 * control without swap
3948 		 */
3949 		if (type == _MEM)
3950 			ret = res_counter_set_soft_limit(&memcg->res, val);
3951 		else
3952 			ret = -EINVAL;
3953 		break;
3954 	default:
3955 		ret = -EINVAL; /* should be BUG() ? */
3956 		break;
3957 	}
3958 	return ret;
3959 }
3960 
memcg_get_hierarchical_limit(struct mem_cgroup * memcg,unsigned long long * mem_limit,unsigned long long * memsw_limit)3961 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3962 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3963 {
3964 	struct cgroup *cgroup;
3965 	unsigned long long min_limit, min_memsw_limit, tmp;
3966 
3967 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3968 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3969 	cgroup = memcg->css.cgroup;
3970 	if (!memcg->use_hierarchy)
3971 		goto out;
3972 
3973 	while (cgroup->parent) {
3974 		cgroup = cgroup->parent;
3975 		memcg = mem_cgroup_from_cont(cgroup);
3976 		if (!memcg->use_hierarchy)
3977 			break;
3978 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3979 		min_limit = min(min_limit, tmp);
3980 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3981 		min_memsw_limit = min(min_memsw_limit, tmp);
3982 	}
3983 out:
3984 	*mem_limit = min_limit;
3985 	*memsw_limit = min_memsw_limit;
3986 }
3987 
mem_cgroup_reset(struct cgroup * cont,unsigned int event)3988 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3989 {
3990 	struct mem_cgroup *memcg;
3991 	int type, name;
3992 
3993 	memcg = mem_cgroup_from_cont(cont);
3994 	type = MEMFILE_TYPE(event);
3995 	name = MEMFILE_ATTR(event);
3996 	switch (name) {
3997 	case RES_MAX_USAGE:
3998 		if (type == _MEM)
3999 			res_counter_reset_max(&memcg->res);
4000 		else
4001 			res_counter_reset_max(&memcg->memsw);
4002 		break;
4003 	case RES_FAILCNT:
4004 		if (type == _MEM)
4005 			res_counter_reset_failcnt(&memcg->res);
4006 		else
4007 			res_counter_reset_failcnt(&memcg->memsw);
4008 		break;
4009 	}
4010 
4011 	return 0;
4012 }
4013 
mem_cgroup_move_charge_read(struct cgroup * cgrp,struct cftype * cft)4014 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4015 					struct cftype *cft)
4016 {
4017 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4018 }
4019 
4020 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4021 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4022 					struct cftype *cft, u64 val)
4023 {
4024 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4025 
4026 	if (val >= (1 << NR_MOVE_TYPE))
4027 		return -EINVAL;
4028 	/*
4029 	 * We check this value several times in both in can_attach() and
4030 	 * attach(), so we need cgroup lock to prevent this value from being
4031 	 * inconsistent.
4032 	 */
4033 	cgroup_lock();
4034 	memcg->move_charge_at_immigrate = val;
4035 	cgroup_unlock();
4036 
4037 	return 0;
4038 }
4039 #else
mem_cgroup_move_charge_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4040 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4041 					struct cftype *cft, u64 val)
4042 {
4043 	return -ENOSYS;
4044 }
4045 #endif
4046 
4047 
4048 /* For read statistics */
4049 enum {
4050 	MCS_CACHE,
4051 	MCS_RSS,
4052 	MCS_FILE_MAPPED,
4053 	MCS_PGPGIN,
4054 	MCS_PGPGOUT,
4055 	MCS_SWAP,
4056 	MCS_PGFAULT,
4057 	MCS_PGMAJFAULT,
4058 	MCS_INACTIVE_ANON,
4059 	MCS_ACTIVE_ANON,
4060 	MCS_INACTIVE_FILE,
4061 	MCS_ACTIVE_FILE,
4062 	MCS_UNEVICTABLE,
4063 	NR_MCS_STAT,
4064 };
4065 
4066 struct mcs_total_stat {
4067 	s64 stat[NR_MCS_STAT];
4068 };
4069 
4070 struct {
4071 	char *local_name;
4072 	char *total_name;
4073 } memcg_stat_strings[NR_MCS_STAT] = {
4074 	{"cache", "total_cache"},
4075 	{"rss", "total_rss"},
4076 	{"mapped_file", "total_mapped_file"},
4077 	{"pgpgin", "total_pgpgin"},
4078 	{"pgpgout", "total_pgpgout"},
4079 	{"swap", "total_swap"},
4080 	{"pgfault", "total_pgfault"},
4081 	{"pgmajfault", "total_pgmajfault"},
4082 	{"inactive_anon", "total_inactive_anon"},
4083 	{"active_anon", "total_active_anon"},
4084 	{"inactive_file", "total_inactive_file"},
4085 	{"active_file", "total_active_file"},
4086 	{"unevictable", "total_unevictable"}
4087 };
4088 
4089 
4090 static void
mem_cgroup_get_local_stat(struct mem_cgroup * memcg,struct mcs_total_stat * s)4091 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4092 {
4093 	s64 val;
4094 
4095 	/* per cpu stat */
4096 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4097 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4098 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4099 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4100 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4101 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4102 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4103 	s->stat[MCS_PGPGIN] += val;
4104 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4105 	s->stat[MCS_PGPGOUT] += val;
4106 	if (do_swap_account) {
4107 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4108 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4109 	}
4110 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4111 	s->stat[MCS_PGFAULT] += val;
4112 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4113 	s->stat[MCS_PGMAJFAULT] += val;
4114 
4115 	/* per zone stat */
4116 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4117 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4118 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4119 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4120 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4121 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4122 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4123 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4124 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4125 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4126 }
4127 
4128 static void
mem_cgroup_get_total_stat(struct mem_cgroup * memcg,struct mcs_total_stat * s)4129 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4130 {
4131 	struct mem_cgroup *iter;
4132 
4133 	for_each_mem_cgroup_tree(iter, memcg)
4134 		mem_cgroup_get_local_stat(iter, s);
4135 }
4136 
4137 #ifdef CONFIG_NUMA
mem_control_numa_stat_show(struct seq_file * m,void * arg)4138 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4139 {
4140 	int nid;
4141 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4142 	unsigned long node_nr;
4143 	struct cgroup *cont = m->private;
4144 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4145 
4146 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4147 	seq_printf(m, "total=%lu", total_nr);
4148 	for_each_node_state(nid, N_HIGH_MEMORY) {
4149 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4150 		seq_printf(m, " N%d=%lu", nid, node_nr);
4151 	}
4152 	seq_putc(m, '\n');
4153 
4154 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4155 	seq_printf(m, "file=%lu", file_nr);
4156 	for_each_node_state(nid, N_HIGH_MEMORY) {
4157 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4158 				LRU_ALL_FILE);
4159 		seq_printf(m, " N%d=%lu", nid, node_nr);
4160 	}
4161 	seq_putc(m, '\n');
4162 
4163 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4164 	seq_printf(m, "anon=%lu", anon_nr);
4165 	for_each_node_state(nid, N_HIGH_MEMORY) {
4166 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4167 				LRU_ALL_ANON);
4168 		seq_printf(m, " N%d=%lu", nid, node_nr);
4169 	}
4170 	seq_putc(m, '\n');
4171 
4172 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4173 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4174 	for_each_node_state(nid, N_HIGH_MEMORY) {
4175 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4176 				BIT(LRU_UNEVICTABLE));
4177 		seq_printf(m, " N%d=%lu", nid, node_nr);
4178 	}
4179 	seq_putc(m, '\n');
4180 	return 0;
4181 }
4182 #endif /* CONFIG_NUMA */
4183 
mem_control_stat_show(struct cgroup * cont,struct cftype * cft,struct cgroup_map_cb * cb)4184 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4185 				 struct cgroup_map_cb *cb)
4186 {
4187 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4188 	struct mcs_total_stat mystat;
4189 	int i;
4190 
4191 	memset(&mystat, 0, sizeof(mystat));
4192 	mem_cgroup_get_local_stat(memcg, &mystat);
4193 
4194 
4195 	for (i = 0; i < NR_MCS_STAT; i++) {
4196 		if (i == MCS_SWAP && !do_swap_account)
4197 			continue;
4198 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4199 	}
4200 
4201 	/* Hierarchical information */
4202 	{
4203 		unsigned long long limit, memsw_limit;
4204 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4205 		cb->fill(cb, "hierarchical_memory_limit", limit);
4206 		if (do_swap_account)
4207 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4208 	}
4209 
4210 	memset(&mystat, 0, sizeof(mystat));
4211 	mem_cgroup_get_total_stat(memcg, &mystat);
4212 	for (i = 0; i < NR_MCS_STAT; i++) {
4213 		if (i == MCS_SWAP && !do_swap_account)
4214 			continue;
4215 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4216 	}
4217 
4218 #ifdef CONFIG_DEBUG_VM
4219 	{
4220 		int nid, zid;
4221 		struct mem_cgroup_per_zone *mz;
4222 		unsigned long recent_rotated[2] = {0, 0};
4223 		unsigned long recent_scanned[2] = {0, 0};
4224 
4225 		for_each_online_node(nid)
4226 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4227 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4228 
4229 				recent_rotated[0] +=
4230 					mz->reclaim_stat.recent_rotated[0];
4231 				recent_rotated[1] +=
4232 					mz->reclaim_stat.recent_rotated[1];
4233 				recent_scanned[0] +=
4234 					mz->reclaim_stat.recent_scanned[0];
4235 				recent_scanned[1] +=
4236 					mz->reclaim_stat.recent_scanned[1];
4237 			}
4238 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4239 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4240 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4241 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4242 	}
4243 #endif
4244 
4245 	return 0;
4246 }
4247 
mem_cgroup_swappiness_read(struct cgroup * cgrp,struct cftype * cft)4248 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4249 {
4250 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4251 
4252 	return mem_cgroup_swappiness(memcg);
4253 }
4254 
mem_cgroup_swappiness_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4255 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4256 				       u64 val)
4257 {
4258 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4259 	struct mem_cgroup *parent;
4260 
4261 	if (val > 100)
4262 		return -EINVAL;
4263 
4264 	if (cgrp->parent == NULL)
4265 		return -EINVAL;
4266 
4267 	parent = mem_cgroup_from_cont(cgrp->parent);
4268 
4269 	cgroup_lock();
4270 
4271 	/* If under hierarchy, only empty-root can set this value */
4272 	if ((parent->use_hierarchy) ||
4273 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4274 		cgroup_unlock();
4275 		return -EINVAL;
4276 	}
4277 
4278 	memcg->swappiness = val;
4279 
4280 	cgroup_unlock();
4281 
4282 	return 0;
4283 }
4284 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4285 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4286 {
4287 	struct mem_cgroup_threshold_ary *t;
4288 	u64 usage;
4289 	int i;
4290 
4291 	rcu_read_lock();
4292 	if (!swap)
4293 		t = rcu_dereference(memcg->thresholds.primary);
4294 	else
4295 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4296 
4297 	if (!t)
4298 		goto unlock;
4299 
4300 	usage = mem_cgroup_usage(memcg, swap);
4301 
4302 	/*
4303 	 * current_threshold points to threshold just below usage.
4304 	 * If it's not true, a threshold was crossed after last
4305 	 * call of __mem_cgroup_threshold().
4306 	 */
4307 	i = t->current_threshold;
4308 
4309 	/*
4310 	 * Iterate backward over array of thresholds starting from
4311 	 * current_threshold and check if a threshold is crossed.
4312 	 * If none of thresholds below usage is crossed, we read
4313 	 * only one element of the array here.
4314 	 */
4315 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4316 		eventfd_signal(t->entries[i].eventfd, 1);
4317 
4318 	/* i = current_threshold + 1 */
4319 	i++;
4320 
4321 	/*
4322 	 * Iterate forward over array of thresholds starting from
4323 	 * current_threshold+1 and check if a threshold is crossed.
4324 	 * If none of thresholds above usage is crossed, we read
4325 	 * only one element of the array here.
4326 	 */
4327 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4328 		eventfd_signal(t->entries[i].eventfd, 1);
4329 
4330 	/* Update current_threshold */
4331 	t->current_threshold = i - 1;
4332 unlock:
4333 	rcu_read_unlock();
4334 }
4335 
mem_cgroup_threshold(struct mem_cgroup * memcg)4336 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4337 {
4338 	while (memcg) {
4339 		__mem_cgroup_threshold(memcg, false);
4340 		if (do_swap_account)
4341 			__mem_cgroup_threshold(memcg, true);
4342 
4343 		memcg = parent_mem_cgroup(memcg);
4344 	}
4345 }
4346 
compare_thresholds(const void * a,const void * b)4347 static int compare_thresholds(const void *a, const void *b)
4348 {
4349 	const struct mem_cgroup_threshold *_a = a;
4350 	const struct mem_cgroup_threshold *_b = b;
4351 
4352 	if (_a->threshold > _b->threshold)
4353 		return 1;
4354 
4355 	if (_a->threshold < _b->threshold)
4356 		return -1;
4357 
4358 	return 0;
4359 }
4360 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4361 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4362 {
4363 	struct mem_cgroup_eventfd_list *ev;
4364 
4365 	list_for_each_entry(ev, &memcg->oom_notify, list)
4366 		eventfd_signal(ev->eventfd, 1);
4367 	return 0;
4368 }
4369 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4370 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4371 {
4372 	struct mem_cgroup *iter;
4373 
4374 	for_each_mem_cgroup_tree(iter, memcg)
4375 		mem_cgroup_oom_notify_cb(iter);
4376 }
4377 
mem_cgroup_usage_register_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd,const char * args)4378 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4379 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4380 {
4381 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4382 	struct mem_cgroup_thresholds *thresholds;
4383 	struct mem_cgroup_threshold_ary *new;
4384 	int type = MEMFILE_TYPE(cft->private);
4385 	u64 threshold, usage;
4386 	int i, size, ret;
4387 
4388 	ret = res_counter_memparse_write_strategy(args, &threshold);
4389 	if (ret)
4390 		return ret;
4391 
4392 	mutex_lock(&memcg->thresholds_lock);
4393 
4394 	if (type == _MEM)
4395 		thresholds = &memcg->thresholds;
4396 	else if (type == _MEMSWAP)
4397 		thresholds = &memcg->memsw_thresholds;
4398 	else
4399 		BUG();
4400 
4401 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4402 
4403 	/* Check if a threshold crossed before adding a new one */
4404 	if (thresholds->primary)
4405 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4406 
4407 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4408 
4409 	/* Allocate memory for new array of thresholds */
4410 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4411 			GFP_KERNEL);
4412 	if (!new) {
4413 		ret = -ENOMEM;
4414 		goto unlock;
4415 	}
4416 	new->size = size;
4417 
4418 	/* Copy thresholds (if any) to new array */
4419 	if (thresholds->primary) {
4420 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4421 				sizeof(struct mem_cgroup_threshold));
4422 	}
4423 
4424 	/* Add new threshold */
4425 	new->entries[size - 1].eventfd = eventfd;
4426 	new->entries[size - 1].threshold = threshold;
4427 
4428 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4429 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4430 			compare_thresholds, NULL);
4431 
4432 	/* Find current threshold */
4433 	new->current_threshold = -1;
4434 	for (i = 0; i < size; i++) {
4435 		if (new->entries[i].threshold < usage) {
4436 			/*
4437 			 * new->current_threshold will not be used until
4438 			 * rcu_assign_pointer(), so it's safe to increment
4439 			 * it here.
4440 			 */
4441 			++new->current_threshold;
4442 		}
4443 	}
4444 
4445 	/* Free old spare buffer and save old primary buffer as spare */
4446 	kfree(thresholds->spare);
4447 	thresholds->spare = thresholds->primary;
4448 
4449 	rcu_assign_pointer(thresholds->primary, new);
4450 
4451 	/* To be sure that nobody uses thresholds */
4452 	synchronize_rcu();
4453 
4454 unlock:
4455 	mutex_unlock(&memcg->thresholds_lock);
4456 
4457 	return ret;
4458 }
4459 
mem_cgroup_usage_unregister_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd)4460 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4461 	struct cftype *cft, struct eventfd_ctx *eventfd)
4462 {
4463 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4464 	struct mem_cgroup_thresholds *thresholds;
4465 	struct mem_cgroup_threshold_ary *new;
4466 	int type = MEMFILE_TYPE(cft->private);
4467 	u64 usage;
4468 	int i, j, size;
4469 
4470 	mutex_lock(&memcg->thresholds_lock);
4471 	if (type == _MEM)
4472 		thresholds = &memcg->thresholds;
4473 	else if (type == _MEMSWAP)
4474 		thresholds = &memcg->memsw_thresholds;
4475 	else
4476 		BUG();
4477 
4478 	if (!thresholds->primary)
4479 		goto unlock;
4480 
4481 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4482 
4483 	/* Check if a threshold crossed before removing */
4484 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4485 
4486 	/* Calculate new number of threshold */
4487 	size = 0;
4488 	for (i = 0; i < thresholds->primary->size; i++) {
4489 		if (thresholds->primary->entries[i].eventfd != eventfd)
4490 			size++;
4491 	}
4492 
4493 	new = thresholds->spare;
4494 
4495 	/* Set thresholds array to NULL if we don't have thresholds */
4496 	if (!size) {
4497 		kfree(new);
4498 		new = NULL;
4499 		goto swap_buffers;
4500 	}
4501 
4502 	new->size = size;
4503 
4504 	/* Copy thresholds and find current threshold */
4505 	new->current_threshold = -1;
4506 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4507 		if (thresholds->primary->entries[i].eventfd == eventfd)
4508 			continue;
4509 
4510 		new->entries[j] = thresholds->primary->entries[i];
4511 		if (new->entries[j].threshold < usage) {
4512 			/*
4513 			 * new->current_threshold will not be used
4514 			 * until rcu_assign_pointer(), so it's safe to increment
4515 			 * it here.
4516 			 */
4517 			++new->current_threshold;
4518 		}
4519 		j++;
4520 	}
4521 
4522 swap_buffers:
4523 	/* Swap primary and spare array */
4524 	thresholds->spare = thresholds->primary;
4525 	/* If all events are unregistered, free the spare array */
4526 	if (!new) {
4527 		kfree(thresholds->spare);
4528 		thresholds->spare = NULL;
4529 	}
4530 
4531 	rcu_assign_pointer(thresholds->primary, new);
4532 
4533 	/* To be sure that nobody uses thresholds */
4534 	synchronize_rcu();
4535 unlock:
4536 	mutex_unlock(&memcg->thresholds_lock);
4537 }
4538 
mem_cgroup_oom_register_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd,const char * args)4539 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4540 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4541 {
4542 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4543 	struct mem_cgroup_eventfd_list *event;
4544 	int type = MEMFILE_TYPE(cft->private);
4545 
4546 	BUG_ON(type != _OOM_TYPE);
4547 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4548 	if (!event)
4549 		return -ENOMEM;
4550 
4551 	spin_lock(&memcg_oom_lock);
4552 
4553 	event->eventfd = eventfd;
4554 	list_add(&event->list, &memcg->oom_notify);
4555 
4556 	/* already in OOM ? */
4557 	if (atomic_read(&memcg->under_oom))
4558 		eventfd_signal(eventfd, 1);
4559 	spin_unlock(&memcg_oom_lock);
4560 
4561 	return 0;
4562 }
4563 
mem_cgroup_oom_unregister_event(struct cgroup * cgrp,struct cftype * cft,struct eventfd_ctx * eventfd)4564 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4565 	struct cftype *cft, struct eventfd_ctx *eventfd)
4566 {
4567 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4568 	struct mem_cgroup_eventfd_list *ev, *tmp;
4569 	int type = MEMFILE_TYPE(cft->private);
4570 
4571 	BUG_ON(type != _OOM_TYPE);
4572 
4573 	spin_lock(&memcg_oom_lock);
4574 
4575 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4576 		if (ev->eventfd == eventfd) {
4577 			list_del(&ev->list);
4578 			kfree(ev);
4579 		}
4580 	}
4581 
4582 	spin_unlock(&memcg_oom_lock);
4583 }
4584 
mem_cgroup_oom_control_read(struct cgroup * cgrp,struct cftype * cft,struct cgroup_map_cb * cb)4585 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4586 	struct cftype *cft,  struct cgroup_map_cb *cb)
4587 {
4588 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4589 
4590 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4591 
4592 	if (atomic_read(&memcg->under_oom))
4593 		cb->fill(cb, "under_oom", 1);
4594 	else
4595 		cb->fill(cb, "under_oom", 0);
4596 	return 0;
4597 }
4598 
mem_cgroup_oom_control_write(struct cgroup * cgrp,struct cftype * cft,u64 val)4599 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4600 	struct cftype *cft, u64 val)
4601 {
4602 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4603 	struct mem_cgroup *parent;
4604 
4605 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4606 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4607 		return -EINVAL;
4608 
4609 	parent = mem_cgroup_from_cont(cgrp->parent);
4610 
4611 	cgroup_lock();
4612 	/* oom-kill-disable is a flag for subhierarchy. */
4613 	if ((parent->use_hierarchy) ||
4614 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4615 		cgroup_unlock();
4616 		return -EINVAL;
4617 	}
4618 	memcg->oom_kill_disable = val;
4619 	if (!val)
4620 		memcg_oom_recover(memcg);
4621 	cgroup_unlock();
4622 	return 0;
4623 }
4624 
4625 #ifdef CONFIG_NUMA
4626 static const struct file_operations mem_control_numa_stat_file_operations = {
4627 	.read = seq_read,
4628 	.llseek = seq_lseek,
4629 	.release = single_release,
4630 };
4631 
mem_control_numa_stat_open(struct inode * unused,struct file * file)4632 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4633 {
4634 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4635 
4636 	file->f_op = &mem_control_numa_stat_file_operations;
4637 	return single_open(file, mem_control_numa_stat_show, cont);
4638 }
4639 #endif /* CONFIG_NUMA */
4640 
4641 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
register_kmem_files(struct cgroup * cont,struct cgroup_subsys * ss)4642 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4643 {
4644 	/*
4645 	 * Part of this would be better living in a separate allocation
4646 	 * function, leaving us with just the cgroup tree population work.
4647 	 * We, however, depend on state such as network's proto_list that
4648 	 * is only initialized after cgroup creation. I found the less
4649 	 * cumbersome way to deal with it to defer it all to populate time
4650 	 */
4651 	return mem_cgroup_sockets_init(cont, ss);
4652 };
4653 
kmem_cgroup_destroy(struct cgroup * cont)4654 static void kmem_cgroup_destroy(struct cgroup *cont)
4655 {
4656 	mem_cgroup_sockets_destroy(cont);
4657 }
4658 #else
register_kmem_files(struct cgroup * cont,struct cgroup_subsys * ss)4659 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4660 {
4661 	return 0;
4662 }
4663 
kmem_cgroup_destroy(struct cgroup * cont)4664 static void kmem_cgroup_destroy(struct cgroup *cont)
4665 {
4666 }
4667 #endif
4668 
4669 static struct cftype mem_cgroup_files[] = {
4670 	{
4671 		.name = "usage_in_bytes",
4672 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4673 		.read_u64 = mem_cgroup_read,
4674 		.register_event = mem_cgroup_usage_register_event,
4675 		.unregister_event = mem_cgroup_usage_unregister_event,
4676 	},
4677 	{
4678 		.name = "max_usage_in_bytes",
4679 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4680 		.trigger = mem_cgroup_reset,
4681 		.read_u64 = mem_cgroup_read,
4682 	},
4683 	{
4684 		.name = "limit_in_bytes",
4685 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4686 		.write_string = mem_cgroup_write,
4687 		.read_u64 = mem_cgroup_read,
4688 	},
4689 	{
4690 		.name = "soft_limit_in_bytes",
4691 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4692 		.write_string = mem_cgroup_write,
4693 		.read_u64 = mem_cgroup_read,
4694 	},
4695 	{
4696 		.name = "failcnt",
4697 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4698 		.trigger = mem_cgroup_reset,
4699 		.read_u64 = mem_cgroup_read,
4700 	},
4701 	{
4702 		.name = "stat",
4703 		.read_map = mem_control_stat_show,
4704 	},
4705 	{
4706 		.name = "force_empty",
4707 		.trigger = mem_cgroup_force_empty_write,
4708 	},
4709 	{
4710 		.name = "use_hierarchy",
4711 		.write_u64 = mem_cgroup_hierarchy_write,
4712 		.read_u64 = mem_cgroup_hierarchy_read,
4713 	},
4714 	{
4715 		.name = "swappiness",
4716 		.read_u64 = mem_cgroup_swappiness_read,
4717 		.write_u64 = mem_cgroup_swappiness_write,
4718 	},
4719 	{
4720 		.name = "move_charge_at_immigrate",
4721 		.read_u64 = mem_cgroup_move_charge_read,
4722 		.write_u64 = mem_cgroup_move_charge_write,
4723 	},
4724 	{
4725 		.name = "oom_control",
4726 		.read_map = mem_cgroup_oom_control_read,
4727 		.write_u64 = mem_cgroup_oom_control_write,
4728 		.register_event = mem_cgroup_oom_register_event,
4729 		.unregister_event = mem_cgroup_oom_unregister_event,
4730 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4731 	},
4732 #ifdef CONFIG_NUMA
4733 	{
4734 		.name = "numa_stat",
4735 		.open = mem_control_numa_stat_open,
4736 		.mode = S_IRUGO,
4737 	},
4738 #endif
4739 };
4740 
4741 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4742 static struct cftype memsw_cgroup_files[] = {
4743 	{
4744 		.name = "memsw.usage_in_bytes",
4745 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4746 		.read_u64 = mem_cgroup_read,
4747 		.register_event = mem_cgroup_usage_register_event,
4748 		.unregister_event = mem_cgroup_usage_unregister_event,
4749 	},
4750 	{
4751 		.name = "memsw.max_usage_in_bytes",
4752 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4753 		.trigger = mem_cgroup_reset,
4754 		.read_u64 = mem_cgroup_read,
4755 	},
4756 	{
4757 		.name = "memsw.limit_in_bytes",
4758 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4759 		.write_string = mem_cgroup_write,
4760 		.read_u64 = mem_cgroup_read,
4761 	},
4762 	{
4763 		.name = "memsw.failcnt",
4764 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4765 		.trigger = mem_cgroup_reset,
4766 		.read_u64 = mem_cgroup_read,
4767 	},
4768 };
4769 
register_memsw_files(struct cgroup * cont,struct cgroup_subsys * ss)4770 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4771 {
4772 	if (!do_swap_account)
4773 		return 0;
4774 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4775 				ARRAY_SIZE(memsw_cgroup_files));
4776 };
4777 #else
register_memsw_files(struct cgroup * cont,struct cgroup_subsys * ss)4778 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4779 {
4780 	return 0;
4781 }
4782 #endif
4783 
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4784 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4785 {
4786 	struct mem_cgroup_per_node *pn;
4787 	struct mem_cgroup_per_zone *mz;
4788 	enum lru_list lru;
4789 	int zone, tmp = node;
4790 	/*
4791 	 * This routine is called against possible nodes.
4792 	 * But it's BUG to call kmalloc() against offline node.
4793 	 *
4794 	 * TODO: this routine can waste much memory for nodes which will
4795 	 *       never be onlined. It's better to use memory hotplug callback
4796 	 *       function.
4797 	 */
4798 	if (!node_state(node, N_NORMAL_MEMORY))
4799 		tmp = -1;
4800 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4801 	if (!pn)
4802 		return 1;
4803 
4804 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4805 		mz = &pn->zoneinfo[zone];
4806 		for_each_lru(lru)
4807 			INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4808 		mz->usage_in_excess = 0;
4809 		mz->on_tree = false;
4810 		mz->memcg = memcg;
4811 	}
4812 	memcg->info.nodeinfo[node] = pn;
4813 	return 0;
4814 }
4815 
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4816 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4817 {
4818 	kfree(memcg->info.nodeinfo[node]);
4819 }
4820 
mem_cgroup_alloc(void)4821 static struct mem_cgroup *mem_cgroup_alloc(void)
4822 {
4823 	struct mem_cgroup *memcg;
4824 	int size = sizeof(struct mem_cgroup);
4825 
4826 	/* Can be very big if MAX_NUMNODES is very big */
4827 	if (size < PAGE_SIZE)
4828 		memcg = kzalloc(size, GFP_KERNEL);
4829 	else
4830 		memcg = vzalloc(size);
4831 
4832 	if (!memcg)
4833 		return NULL;
4834 
4835 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4836 	if (!memcg->stat)
4837 		goto out_free;
4838 	spin_lock_init(&memcg->pcp_counter_lock);
4839 	return memcg;
4840 
4841 out_free:
4842 	if (size < PAGE_SIZE)
4843 		kfree(memcg);
4844 	else
4845 		vfree(memcg);
4846 	return NULL;
4847 }
4848 
4849 /*
4850  * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4851  * but in process context.  The work_freeing structure is overlaid
4852  * on the rcu_freeing structure, which itself is overlaid on memsw.
4853  */
vfree_work(struct work_struct * work)4854 static void vfree_work(struct work_struct *work)
4855 {
4856 	struct mem_cgroup *memcg;
4857 
4858 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4859 	vfree(memcg);
4860 }
vfree_rcu(struct rcu_head * rcu_head)4861 static void vfree_rcu(struct rcu_head *rcu_head)
4862 {
4863 	struct mem_cgroup *memcg;
4864 
4865 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4866 	INIT_WORK(&memcg->work_freeing, vfree_work);
4867 	schedule_work(&memcg->work_freeing);
4868 }
4869 
4870 /*
4871  * At destroying mem_cgroup, references from swap_cgroup can remain.
4872  * (scanning all at force_empty is too costly...)
4873  *
4874  * Instead of clearing all references at force_empty, we remember
4875  * the number of reference from swap_cgroup and free mem_cgroup when
4876  * it goes down to 0.
4877  *
4878  * Removal of cgroup itself succeeds regardless of refs from swap.
4879  */
4880 
__mem_cgroup_free(struct mem_cgroup * memcg)4881 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4882 {
4883 	int node;
4884 
4885 	mem_cgroup_remove_from_trees(memcg);
4886 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4887 
4888 	for_each_node(node)
4889 		free_mem_cgroup_per_zone_info(memcg, node);
4890 
4891 	free_percpu(memcg->stat);
4892 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4893 		kfree_rcu(memcg, rcu_freeing);
4894 	else
4895 		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4896 }
4897 
mem_cgroup_get(struct mem_cgroup * memcg)4898 static void mem_cgroup_get(struct mem_cgroup *memcg)
4899 {
4900 	atomic_inc(&memcg->refcnt);
4901 }
4902 
__mem_cgroup_put(struct mem_cgroup * memcg,int count)4903 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4904 {
4905 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4906 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4907 		__mem_cgroup_free(memcg);
4908 		if (parent)
4909 			mem_cgroup_put(parent);
4910 	}
4911 }
4912 
mem_cgroup_put(struct mem_cgroup * memcg)4913 static void mem_cgroup_put(struct mem_cgroup *memcg)
4914 {
4915 	__mem_cgroup_put(memcg, 1);
4916 }
4917 
4918 /*
4919  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4920  */
parent_mem_cgroup(struct mem_cgroup * memcg)4921 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4922 {
4923 	if (!memcg->res.parent)
4924 		return NULL;
4925 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4926 }
4927 EXPORT_SYMBOL(parent_mem_cgroup);
4928 
4929 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
enable_swap_cgroup(void)4930 static void __init enable_swap_cgroup(void)
4931 {
4932 	if (!mem_cgroup_disabled() && really_do_swap_account)
4933 		do_swap_account = 1;
4934 }
4935 #else
enable_swap_cgroup(void)4936 static void __init enable_swap_cgroup(void)
4937 {
4938 }
4939 #endif
4940 
mem_cgroup_soft_limit_tree_init(void)4941 static int mem_cgroup_soft_limit_tree_init(void)
4942 {
4943 	struct mem_cgroup_tree_per_node *rtpn;
4944 	struct mem_cgroup_tree_per_zone *rtpz;
4945 	int tmp, node, zone;
4946 
4947 	for_each_node(node) {
4948 		tmp = node;
4949 		if (!node_state(node, N_NORMAL_MEMORY))
4950 			tmp = -1;
4951 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4952 		if (!rtpn)
4953 			goto err_cleanup;
4954 
4955 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4956 
4957 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4958 			rtpz = &rtpn->rb_tree_per_zone[zone];
4959 			rtpz->rb_root = RB_ROOT;
4960 			spin_lock_init(&rtpz->lock);
4961 		}
4962 	}
4963 	return 0;
4964 
4965 err_cleanup:
4966 	for_each_node(node) {
4967 		if (!soft_limit_tree.rb_tree_per_node[node])
4968 			break;
4969 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4970 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4971 	}
4972 	return 1;
4973 
4974 }
4975 
4976 static struct cgroup_subsys_state * __ref
mem_cgroup_create(struct cgroup * cont)4977 mem_cgroup_create(struct cgroup *cont)
4978 {
4979 	struct mem_cgroup *memcg, *parent;
4980 	long error = -ENOMEM;
4981 	int node;
4982 
4983 	memcg = mem_cgroup_alloc();
4984 	if (!memcg)
4985 		return ERR_PTR(error);
4986 
4987 	for_each_node(node)
4988 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4989 			goto free_out;
4990 
4991 	/* root ? */
4992 	if (cont->parent == NULL) {
4993 		int cpu;
4994 		enable_swap_cgroup();
4995 		parent = NULL;
4996 		if (mem_cgroup_soft_limit_tree_init())
4997 			goto free_out;
4998 		root_mem_cgroup = memcg;
4999 		for_each_possible_cpu(cpu) {
5000 			struct memcg_stock_pcp *stock =
5001 						&per_cpu(memcg_stock, cpu);
5002 			INIT_WORK(&stock->work, drain_local_stock);
5003 		}
5004 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5005 	} else {
5006 		parent = mem_cgroup_from_cont(cont->parent);
5007 		memcg->use_hierarchy = parent->use_hierarchy;
5008 		memcg->oom_kill_disable = parent->oom_kill_disable;
5009 	}
5010 
5011 	if (parent && parent->use_hierarchy) {
5012 		res_counter_init(&memcg->res, &parent->res);
5013 		res_counter_init(&memcg->memsw, &parent->memsw);
5014 		/*
5015 		 * We increment refcnt of the parent to ensure that we can
5016 		 * safely access it on res_counter_charge/uncharge.
5017 		 * This refcnt will be decremented when freeing this
5018 		 * mem_cgroup(see mem_cgroup_put).
5019 		 */
5020 		mem_cgroup_get(parent);
5021 	} else {
5022 		res_counter_init(&memcg->res, NULL);
5023 		res_counter_init(&memcg->memsw, NULL);
5024 	}
5025 	memcg->last_scanned_node = MAX_NUMNODES;
5026 	INIT_LIST_HEAD(&memcg->oom_notify);
5027 
5028 	if (parent)
5029 		memcg->swappiness = mem_cgroup_swappiness(parent);
5030 	atomic_set(&memcg->refcnt, 1);
5031 	memcg->move_charge_at_immigrate = 0;
5032 	mutex_init(&memcg->thresholds_lock);
5033 	spin_lock_init(&memcg->move_lock);
5034 	return &memcg->css;
5035 free_out:
5036 	__mem_cgroup_free(memcg);
5037 	return ERR_PTR(error);
5038 }
5039 
mem_cgroup_pre_destroy(struct cgroup * cont)5040 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5041 {
5042 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5043 
5044 	return mem_cgroup_force_empty(memcg, false);
5045 }
5046 
mem_cgroup_destroy(struct cgroup * cont)5047 static void mem_cgroup_destroy(struct cgroup *cont)
5048 {
5049 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5050 
5051 	kmem_cgroup_destroy(cont);
5052 
5053 	mem_cgroup_put(memcg);
5054 }
5055 
mem_cgroup_populate(struct cgroup_subsys * ss,struct cgroup * cont)5056 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5057 				struct cgroup *cont)
5058 {
5059 	int ret;
5060 
5061 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5062 				ARRAY_SIZE(mem_cgroup_files));
5063 
5064 	if (!ret)
5065 		ret = register_memsw_files(cont, ss);
5066 
5067 	if (!ret)
5068 		ret = register_kmem_files(cont, ss);
5069 
5070 	return ret;
5071 }
5072 
5073 #ifdef CONFIG_MMU
5074 /* Handlers for move charge at task migration. */
5075 #define PRECHARGE_COUNT_AT_ONCE	256
mem_cgroup_do_precharge(unsigned long count)5076 static int mem_cgroup_do_precharge(unsigned long count)
5077 {
5078 	int ret = 0;
5079 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5080 	struct mem_cgroup *memcg = mc.to;
5081 
5082 	if (mem_cgroup_is_root(memcg)) {
5083 		mc.precharge += count;
5084 		/* we don't need css_get for root */
5085 		return ret;
5086 	}
5087 	/* try to charge at once */
5088 	if (count > 1) {
5089 		struct res_counter *dummy;
5090 		/*
5091 		 * "memcg" cannot be under rmdir() because we've already checked
5092 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5093 		 * are still under the same cgroup_mutex. So we can postpone
5094 		 * css_get().
5095 		 */
5096 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5097 			goto one_by_one;
5098 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5099 						PAGE_SIZE * count, &dummy)) {
5100 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5101 			goto one_by_one;
5102 		}
5103 		mc.precharge += count;
5104 		return ret;
5105 	}
5106 one_by_one:
5107 	/* fall back to one by one charge */
5108 	while (count--) {
5109 		if (signal_pending(current)) {
5110 			ret = -EINTR;
5111 			break;
5112 		}
5113 		if (!batch_count--) {
5114 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5115 			cond_resched();
5116 		}
5117 		ret = __mem_cgroup_try_charge(NULL,
5118 					GFP_KERNEL, 1, &memcg, false);
5119 		if (ret)
5120 			/* mem_cgroup_clear_mc() will do uncharge later */
5121 			return ret;
5122 		mc.precharge++;
5123 	}
5124 	return ret;
5125 }
5126 
5127 /**
5128  * get_mctgt_type - get target type of moving charge
5129  * @vma: the vma the pte to be checked belongs
5130  * @addr: the address corresponding to the pte to be checked
5131  * @ptent: the pte to be checked
5132  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5133  *
5134  * Returns
5135  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5136  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5137  *     move charge. if @target is not NULL, the page is stored in target->page
5138  *     with extra refcnt got(Callers should handle it).
5139  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5140  *     target for charge migration. if @target is not NULL, the entry is stored
5141  *     in target->ent.
5142  *
5143  * Called with pte lock held.
5144  */
5145 union mc_target {
5146 	struct page	*page;
5147 	swp_entry_t	ent;
5148 };
5149 
5150 enum mc_target_type {
5151 	MC_TARGET_NONE = 0,
5152 	MC_TARGET_PAGE,
5153 	MC_TARGET_SWAP,
5154 };
5155 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5156 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5157 						unsigned long addr, pte_t ptent)
5158 {
5159 	struct page *page = vm_normal_page(vma, addr, ptent);
5160 
5161 	if (!page || !page_mapped(page))
5162 		return NULL;
5163 	if (PageAnon(page)) {
5164 		/* we don't move shared anon */
5165 		if (!move_anon() || page_mapcount(page) > 2)
5166 			return NULL;
5167 	} else if (!move_file())
5168 		/* we ignore mapcount for file pages */
5169 		return NULL;
5170 	if (!get_page_unless_zero(page))
5171 		return NULL;
5172 
5173 	return page;
5174 }
5175 
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5176 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5177 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5178 {
5179 	int usage_count;
5180 	struct page *page = NULL;
5181 	swp_entry_t ent = pte_to_swp_entry(ptent);
5182 
5183 	if (!move_anon() || non_swap_entry(ent))
5184 		return NULL;
5185 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5186 	if (usage_count > 1) { /* we don't move shared anon */
5187 		if (page)
5188 			put_page(page);
5189 		return NULL;
5190 	}
5191 	if (do_swap_account)
5192 		entry->val = ent.val;
5193 
5194 	return page;
5195 }
5196 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5197 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5198 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5199 {
5200 	struct page *page = NULL;
5201 	struct inode *inode;
5202 	struct address_space *mapping;
5203 	pgoff_t pgoff;
5204 
5205 	if (!vma->vm_file) /* anonymous vma */
5206 		return NULL;
5207 	if (!move_file())
5208 		return NULL;
5209 
5210 	inode = vma->vm_file->f_path.dentry->d_inode;
5211 	mapping = vma->vm_file->f_mapping;
5212 	if (pte_none(ptent))
5213 		pgoff = linear_page_index(vma, addr);
5214 	else /* pte_file(ptent) is true */
5215 		pgoff = pte_to_pgoff(ptent);
5216 
5217 	/* page is moved even if it's not RSS of this task(page-faulted). */
5218 	page = find_get_page(mapping, pgoff);
5219 
5220 #ifdef CONFIG_SWAP
5221 	/* shmem/tmpfs may report page out on swap: account for that too. */
5222 	if (radix_tree_exceptional_entry(page)) {
5223 		swp_entry_t swap = radix_to_swp_entry(page);
5224 		if (do_swap_account)
5225 			*entry = swap;
5226 		page = find_get_page(&swapper_space, swap.val);
5227 	}
5228 #endif
5229 	return page;
5230 }
5231 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5232 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5233 		unsigned long addr, pte_t ptent, union mc_target *target)
5234 {
5235 	struct page *page = NULL;
5236 	struct page_cgroup *pc;
5237 	enum mc_target_type ret = MC_TARGET_NONE;
5238 	swp_entry_t ent = { .val = 0 };
5239 
5240 	if (pte_present(ptent))
5241 		page = mc_handle_present_pte(vma, addr, ptent);
5242 	else if (is_swap_pte(ptent))
5243 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5244 	else if (pte_none(ptent) || pte_file(ptent))
5245 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5246 
5247 	if (!page && !ent.val)
5248 		return ret;
5249 	if (page) {
5250 		pc = lookup_page_cgroup(page);
5251 		/*
5252 		 * Do only loose check w/o page_cgroup lock.
5253 		 * mem_cgroup_move_account() checks the pc is valid or not under
5254 		 * the lock.
5255 		 */
5256 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5257 			ret = MC_TARGET_PAGE;
5258 			if (target)
5259 				target->page = page;
5260 		}
5261 		if (!ret || !target)
5262 			put_page(page);
5263 	}
5264 	/* There is a swap entry and a page doesn't exist or isn't charged */
5265 	if (ent.val && !ret &&
5266 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5267 		ret = MC_TARGET_SWAP;
5268 		if (target)
5269 			target->ent = ent;
5270 	}
5271 	return ret;
5272 }
5273 
5274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5275 /*
5276  * We don't consider swapping or file mapped pages because THP does not
5277  * support them for now.
5278  * Caller should make sure that pmd_trans_huge(pmd) is true.
5279  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5280 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5281 		unsigned long addr, pmd_t pmd, union mc_target *target)
5282 {
5283 	struct page *page = NULL;
5284 	struct page_cgroup *pc;
5285 	enum mc_target_type ret = MC_TARGET_NONE;
5286 
5287 	page = pmd_page(pmd);
5288 	VM_BUG_ON(!page || !PageHead(page));
5289 	if (!move_anon())
5290 		return ret;
5291 	pc = lookup_page_cgroup(page);
5292 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5293 		ret = MC_TARGET_PAGE;
5294 		if (target) {
5295 			get_page(page);
5296 			target->page = page;
5297 		}
5298 	}
5299 	return ret;
5300 }
5301 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5302 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5303 		unsigned long addr, pmd_t pmd, union mc_target *target)
5304 {
5305 	return MC_TARGET_NONE;
5306 }
5307 #endif
5308 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5309 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5310 					unsigned long addr, unsigned long end,
5311 					struct mm_walk *walk)
5312 {
5313 	struct vm_area_struct *vma = walk->private;
5314 	pte_t *pte;
5315 	spinlock_t *ptl;
5316 
5317 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5318 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5319 			mc.precharge += HPAGE_PMD_NR;
5320 		spin_unlock(&vma->vm_mm->page_table_lock);
5321 		return 0;
5322 	}
5323 
5324 	if (pmd_trans_unstable(pmd))
5325 		return 0;
5326 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5327 	for (; addr != end; pte++, addr += PAGE_SIZE)
5328 		if (get_mctgt_type(vma, addr, *pte, NULL))
5329 			mc.precharge++;	/* increment precharge temporarily */
5330 	pte_unmap_unlock(pte - 1, ptl);
5331 	cond_resched();
5332 
5333 	return 0;
5334 }
5335 
mem_cgroup_count_precharge(struct mm_struct * mm)5336 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5337 {
5338 	unsigned long precharge;
5339 	struct vm_area_struct *vma;
5340 
5341 	down_read(&mm->mmap_sem);
5342 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5343 		struct mm_walk mem_cgroup_count_precharge_walk = {
5344 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5345 			.mm = mm,
5346 			.private = vma,
5347 		};
5348 		if (is_vm_hugetlb_page(vma))
5349 			continue;
5350 		walk_page_range(vma->vm_start, vma->vm_end,
5351 					&mem_cgroup_count_precharge_walk);
5352 	}
5353 	up_read(&mm->mmap_sem);
5354 
5355 	precharge = mc.precharge;
5356 	mc.precharge = 0;
5357 
5358 	return precharge;
5359 }
5360 
mem_cgroup_precharge_mc(struct mm_struct * mm)5361 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5362 {
5363 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5364 
5365 	VM_BUG_ON(mc.moving_task);
5366 	mc.moving_task = current;
5367 	return mem_cgroup_do_precharge(precharge);
5368 }
5369 
5370 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5371 static void __mem_cgroup_clear_mc(void)
5372 {
5373 	struct mem_cgroup *from = mc.from;
5374 	struct mem_cgroup *to = mc.to;
5375 
5376 	/* we must uncharge all the leftover precharges from mc.to */
5377 	if (mc.precharge) {
5378 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5379 		mc.precharge = 0;
5380 	}
5381 	/*
5382 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5383 	 * we must uncharge here.
5384 	 */
5385 	if (mc.moved_charge) {
5386 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5387 		mc.moved_charge = 0;
5388 	}
5389 	/* we must fixup refcnts and charges */
5390 	if (mc.moved_swap) {
5391 		/* uncharge swap account from the old cgroup */
5392 		if (!mem_cgroup_is_root(mc.from))
5393 			res_counter_uncharge(&mc.from->memsw,
5394 						PAGE_SIZE * mc.moved_swap);
5395 		__mem_cgroup_put(mc.from, mc.moved_swap);
5396 
5397 		if (!mem_cgroup_is_root(mc.to)) {
5398 			/*
5399 			 * we charged both to->res and to->memsw, so we should
5400 			 * uncharge to->res.
5401 			 */
5402 			res_counter_uncharge(&mc.to->res,
5403 						PAGE_SIZE * mc.moved_swap);
5404 		}
5405 		/* we've already done mem_cgroup_get(mc.to) */
5406 		mc.moved_swap = 0;
5407 	}
5408 	memcg_oom_recover(from);
5409 	memcg_oom_recover(to);
5410 	wake_up_all(&mc.waitq);
5411 }
5412 
mem_cgroup_clear_mc(void)5413 static void mem_cgroup_clear_mc(void)
5414 {
5415 	struct mem_cgroup *from = mc.from;
5416 
5417 	/*
5418 	 * we must clear moving_task before waking up waiters at the end of
5419 	 * task migration.
5420 	 */
5421 	mc.moving_task = NULL;
5422 	__mem_cgroup_clear_mc();
5423 	spin_lock(&mc.lock);
5424 	mc.from = NULL;
5425 	mc.to = NULL;
5426 	spin_unlock(&mc.lock);
5427 	mem_cgroup_end_move(from);
5428 }
5429 
mem_cgroup_can_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5430 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5431 				 struct cgroup_taskset *tset)
5432 {
5433 	struct task_struct *p = cgroup_taskset_first(tset);
5434 	int ret = 0;
5435 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5436 
5437 	if (memcg->move_charge_at_immigrate) {
5438 		struct mm_struct *mm;
5439 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5440 
5441 		VM_BUG_ON(from == memcg);
5442 
5443 		mm = get_task_mm(p);
5444 		if (!mm)
5445 			return 0;
5446 		/* We move charges only when we move a owner of the mm */
5447 		if (mm->owner == p) {
5448 			VM_BUG_ON(mc.from);
5449 			VM_BUG_ON(mc.to);
5450 			VM_BUG_ON(mc.precharge);
5451 			VM_BUG_ON(mc.moved_charge);
5452 			VM_BUG_ON(mc.moved_swap);
5453 			mem_cgroup_start_move(from);
5454 			spin_lock(&mc.lock);
5455 			mc.from = from;
5456 			mc.to = memcg;
5457 			spin_unlock(&mc.lock);
5458 			/* We set mc.moving_task later */
5459 
5460 			ret = mem_cgroup_precharge_mc(mm);
5461 			if (ret)
5462 				mem_cgroup_clear_mc();
5463 		}
5464 		mmput(mm);
5465 	}
5466 	return ret;
5467 }
5468 
mem_cgroup_cancel_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5469 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5470 				     struct cgroup_taskset *tset)
5471 {
5472 	mem_cgroup_clear_mc();
5473 }
5474 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5475 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5476 				unsigned long addr, unsigned long end,
5477 				struct mm_walk *walk)
5478 {
5479 	int ret = 0;
5480 	struct vm_area_struct *vma = walk->private;
5481 	pte_t *pte;
5482 	spinlock_t *ptl;
5483 	enum mc_target_type target_type;
5484 	union mc_target target;
5485 	struct page *page;
5486 	struct page_cgroup *pc;
5487 
5488 	/*
5489 	 * We don't take compound_lock() here but no race with splitting thp
5490 	 * happens because:
5491 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5492 	 *    under splitting, which means there's no concurrent thp split,
5493 	 *  - if another thread runs into split_huge_page() just after we
5494 	 *    entered this if-block, the thread must wait for page table lock
5495 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5496 	 *    part of thp split is not executed yet.
5497 	 */
5498 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5499 		if (mc.precharge < HPAGE_PMD_NR) {
5500 			spin_unlock(&vma->vm_mm->page_table_lock);
5501 			return 0;
5502 		}
5503 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5504 		if (target_type == MC_TARGET_PAGE) {
5505 			page = target.page;
5506 			if (!isolate_lru_page(page)) {
5507 				pc = lookup_page_cgroup(page);
5508 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5509 							     pc, mc.from, mc.to,
5510 							     false)) {
5511 					mc.precharge -= HPAGE_PMD_NR;
5512 					mc.moved_charge += HPAGE_PMD_NR;
5513 				}
5514 				putback_lru_page(page);
5515 			}
5516 			put_page(page);
5517 		}
5518 		spin_unlock(&vma->vm_mm->page_table_lock);
5519 		return 0;
5520 	}
5521 
5522 	if (pmd_trans_unstable(pmd))
5523 		return 0;
5524 retry:
5525 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5526 	for (; addr != end; addr += PAGE_SIZE) {
5527 		pte_t ptent = *(pte++);
5528 		swp_entry_t ent;
5529 
5530 		if (!mc.precharge)
5531 			break;
5532 
5533 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5534 		case MC_TARGET_PAGE:
5535 			page = target.page;
5536 			if (isolate_lru_page(page))
5537 				goto put;
5538 			pc = lookup_page_cgroup(page);
5539 			if (!mem_cgroup_move_account(page, 1, pc,
5540 						     mc.from, mc.to, false)) {
5541 				mc.precharge--;
5542 				/* we uncharge from mc.from later. */
5543 				mc.moved_charge++;
5544 			}
5545 			putback_lru_page(page);
5546 put:			/* get_mctgt_type() gets the page */
5547 			put_page(page);
5548 			break;
5549 		case MC_TARGET_SWAP:
5550 			ent = target.ent;
5551 			if (!mem_cgroup_move_swap_account(ent,
5552 						mc.from, mc.to, false)) {
5553 				mc.precharge--;
5554 				/* we fixup refcnts and charges later. */
5555 				mc.moved_swap++;
5556 			}
5557 			break;
5558 		default:
5559 			break;
5560 		}
5561 	}
5562 	pte_unmap_unlock(pte - 1, ptl);
5563 	cond_resched();
5564 
5565 	if (addr != end) {
5566 		/*
5567 		 * We have consumed all precharges we got in can_attach().
5568 		 * We try charge one by one, but don't do any additional
5569 		 * charges to mc.to if we have failed in charge once in attach()
5570 		 * phase.
5571 		 */
5572 		ret = mem_cgroup_do_precharge(1);
5573 		if (!ret)
5574 			goto retry;
5575 	}
5576 
5577 	return ret;
5578 }
5579 
mem_cgroup_move_charge(struct mm_struct * mm)5580 static void mem_cgroup_move_charge(struct mm_struct *mm)
5581 {
5582 	struct vm_area_struct *vma;
5583 
5584 	lru_add_drain_all();
5585 retry:
5586 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5587 		/*
5588 		 * Someone who are holding the mmap_sem might be waiting in
5589 		 * waitq. So we cancel all extra charges, wake up all waiters,
5590 		 * and retry. Because we cancel precharges, we might not be able
5591 		 * to move enough charges, but moving charge is a best-effort
5592 		 * feature anyway, so it wouldn't be a big problem.
5593 		 */
5594 		__mem_cgroup_clear_mc();
5595 		cond_resched();
5596 		goto retry;
5597 	}
5598 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5599 		int ret;
5600 		struct mm_walk mem_cgroup_move_charge_walk = {
5601 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5602 			.mm = mm,
5603 			.private = vma,
5604 		};
5605 		if (is_vm_hugetlb_page(vma))
5606 			continue;
5607 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5608 						&mem_cgroup_move_charge_walk);
5609 		if (ret)
5610 			/*
5611 			 * means we have consumed all precharges and failed in
5612 			 * doing additional charge. Just abandon here.
5613 			 */
5614 			break;
5615 	}
5616 	up_read(&mm->mmap_sem);
5617 }
5618 
mem_cgroup_move_task(struct cgroup * cont,struct cgroup_taskset * tset)5619 static void mem_cgroup_move_task(struct cgroup *cont,
5620 				 struct cgroup_taskset *tset)
5621 {
5622 	struct task_struct *p = cgroup_taskset_first(tset);
5623 	struct mm_struct *mm = get_task_mm(p);
5624 
5625 	if (mm) {
5626 		if (mc.to)
5627 			mem_cgroup_move_charge(mm);
5628 		put_swap_token(mm);
5629 		mmput(mm);
5630 	}
5631 	if (mc.to)
5632 		mem_cgroup_clear_mc();
5633 }
5634 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5635 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5636 				 struct cgroup_taskset *tset)
5637 {
5638 	return 0;
5639 }
mem_cgroup_cancel_attach(struct cgroup * cgroup,struct cgroup_taskset * tset)5640 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5641 				     struct cgroup_taskset *tset)
5642 {
5643 }
mem_cgroup_move_task(struct cgroup * cont,struct cgroup_taskset * tset)5644 static void mem_cgroup_move_task(struct cgroup *cont,
5645 				 struct cgroup_taskset *tset)
5646 {
5647 }
5648 #endif
5649 
5650 struct cgroup_subsys mem_cgroup_subsys = {
5651 	.name = "memory",
5652 	.subsys_id = mem_cgroup_subsys_id,
5653 	.create = mem_cgroup_create,
5654 	.pre_destroy = mem_cgroup_pre_destroy,
5655 	.destroy = mem_cgroup_destroy,
5656 	.populate = mem_cgroup_populate,
5657 	.can_attach = mem_cgroup_can_attach,
5658 	.cancel_attach = mem_cgroup_cancel_attach,
5659 	.attach = mem_cgroup_move_task,
5660 	.early_init = 0,
5661 	.use_id = 1,
5662 };
5663 
5664 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
enable_swap_account(char * s)5665 static int __init enable_swap_account(char *s)
5666 {
5667 	/* consider enabled if no parameter or 1 is given */
5668 	if (!strcmp(s, "1"))
5669 		really_do_swap_account = 1;
5670 	else if (!strcmp(s, "0"))
5671 		really_do_swap_account = 0;
5672 	return 1;
5673 }
5674 __setup("swapaccount=", enable_swap_account);
5675 
5676 #endif
5677