1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_frto_response __read_mostly;
99 int sysctl_tcp_nometrics_save __read_mostly;
100
101 int sysctl_tcp_thin_dupack __read_mostly;
102
103 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
104 int sysctl_tcp_abc __read_mostly;
105
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120
121 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
126
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
128 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
129
130 /* Adapt the MSS value used to make delayed ack decision to the
131 * real world.
132 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)133 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
134 {
135 struct inet_connection_sock *icsk = inet_csk(sk);
136 const unsigned int lss = icsk->icsk_ack.last_seg_size;
137 unsigned int len;
138
139 icsk->icsk_ack.last_seg_size = 0;
140
141 /* skb->len may jitter because of SACKs, even if peer
142 * sends good full-sized frames.
143 */
144 len = skb_shinfo(skb)->gso_size ? : skb->len;
145 if (len >= icsk->icsk_ack.rcv_mss) {
146 icsk->icsk_ack.rcv_mss = len;
147 } else {
148 /* Otherwise, we make more careful check taking into account,
149 * that SACKs block is variable.
150 *
151 * "len" is invariant segment length, including TCP header.
152 */
153 len += skb->data - skb_transport_header(skb);
154 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
155 /* If PSH is not set, packet should be
156 * full sized, provided peer TCP is not badly broken.
157 * This observation (if it is correct 8)) allows
158 * to handle super-low mtu links fairly.
159 */
160 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
161 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
162 /* Subtract also invariant (if peer is RFC compliant),
163 * tcp header plus fixed timestamp option length.
164 * Resulting "len" is MSS free of SACK jitter.
165 */
166 len -= tcp_sk(sk)->tcp_header_len;
167 icsk->icsk_ack.last_seg_size = len;
168 if (len == lss) {
169 icsk->icsk_ack.rcv_mss = len;
170 return;
171 }
172 }
173 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
176 }
177 }
178
tcp_incr_quickack(struct sock * sk)179 static void tcp_incr_quickack(struct sock *sk)
180 {
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
183
184 if (quickacks == 0)
185 quickacks = 2;
186 if (quickacks > icsk->icsk_ack.quick)
187 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
188 }
189
tcp_enter_quickack_mode(struct sock * sk)190 static void tcp_enter_quickack_mode(struct sock *sk)
191 {
192 struct inet_connection_sock *icsk = inet_csk(sk);
193 tcp_incr_quickack(sk);
194 icsk->icsk_ack.pingpong = 0;
195 icsk->icsk_ack.ato = TCP_ATO_MIN;
196 }
197
198 /* Send ACKs quickly, if "quick" count is not exhausted
199 * and the session is not interactive.
200 */
201
tcp_in_quickack_mode(const struct sock * sk)202 static inline int tcp_in_quickack_mode(const struct sock *sk)
203 {
204 const struct inet_connection_sock *icsk = inet_csk(sk);
205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207
TCP_ECN_queue_cwr(struct tcp_sock * tp)208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210 if (tp->ecn_flags & TCP_ECN_OK)
211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 }
213
TCP_ECN_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216 if (tcp_hdr(skb)->cwr)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
TCP_ECN_withdraw_cwr(struct tcp_sock * tp)220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224
TCP_ECN_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 if (!(tp->ecn_flags & TCP_ECN_OK))
228 return;
229
230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231 case INET_ECN_NOT_ECT:
232 /* Funny extension: if ECT is not set on a segment,
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
235 */
236 if (tp->ecn_flags & TCP_ECN_SEEN)
237 tcp_enter_quickack_mode((struct sock *)tp);
238 break;
239 case INET_ECN_CE:
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 /* fallinto */
242 default:
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 }
245 }
246
TCP_ECN_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
TCP_ECN_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258
TCP_ECN_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)259 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 return 1;
263 return 0;
264 }
265
266 /* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
tcp_fixup_sndbuf(struct sock * sk)271 static void tcp_fixup_sndbuf(struct sock *sk)
272 {
273 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
274
275 sndmem *= TCP_INIT_CWND;
276 if (sk->sk_sndbuf < sndmem)
277 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
278 }
279
280 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281 *
282 * All tcp_full_space() is split to two parts: "network" buffer, allocated
283 * forward and advertised in receiver window (tp->rcv_wnd) and
284 * "application buffer", required to isolate scheduling/application
285 * latencies from network.
286 * window_clamp is maximal advertised window. It can be less than
287 * tcp_full_space(), in this case tcp_full_space() - window_clamp
288 * is reserved for "application" buffer. The less window_clamp is
289 * the smoother our behaviour from viewpoint of network, but the lower
290 * throughput and the higher sensitivity of the connection to losses. 8)
291 *
292 * rcv_ssthresh is more strict window_clamp used at "slow start"
293 * phase to predict further behaviour of this connection.
294 * It is used for two goals:
295 * - to enforce header prediction at sender, even when application
296 * requires some significant "application buffer". It is check #1.
297 * - to prevent pruning of receive queue because of misprediction
298 * of receiver window. Check #2.
299 *
300 * The scheme does not work when sender sends good segments opening
301 * window and then starts to feed us spaghetti. But it should work
302 * in common situations. Otherwise, we have to rely on queue collapsing.
303 */
304
305 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)306 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309 /* Optimize this! */
310 int truesize = tcp_win_from_space(skb->truesize) >> 1;
311 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
312
313 while (tp->rcv_ssthresh <= window) {
314 if (truesize <= skb->len)
315 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
316
317 truesize >>= 1;
318 window >>= 1;
319 }
320 return 0;
321 }
322
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)323 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
324 {
325 struct tcp_sock *tp = tcp_sk(sk);
326
327 /* Check #1 */
328 if (tp->rcv_ssthresh < tp->window_clamp &&
329 (int)tp->rcv_ssthresh < tcp_space(sk) &&
330 !sk_under_memory_pressure(sk)) {
331 int incr;
332
333 /* Check #2. Increase window, if skb with such overhead
334 * will fit to rcvbuf in future.
335 */
336 if (tcp_win_from_space(skb->truesize) <= skb->len)
337 incr = 2 * tp->advmss;
338 else
339 incr = __tcp_grow_window(sk, skb);
340
341 if (incr) {
342 incr = max_t(int, incr, 2 * skb->len);
343 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
344 tp->window_clamp);
345 inet_csk(sk)->icsk_ack.quick |= 1;
346 }
347 }
348 }
349
350 /* 3. Tuning rcvbuf, when connection enters established state. */
351
tcp_fixup_rcvbuf(struct sock * sk)352 static void tcp_fixup_rcvbuf(struct sock *sk)
353 {
354 u32 mss = tcp_sk(sk)->advmss;
355 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
356 int rcvmem;
357
358 /* Limit to 10 segments if mss <= 1460,
359 * or 14600/mss segments, with a minimum of two segments.
360 */
361 if (mss > 1460)
362 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
363
364 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
365 while (tcp_win_from_space(rcvmem) < mss)
366 rcvmem += 128;
367
368 rcvmem *= icwnd;
369
370 if (sk->sk_rcvbuf < rcvmem)
371 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
372 }
373
374 /* 4. Try to fixup all. It is made immediately after connection enters
375 * established state.
376 */
tcp_init_buffer_space(struct sock * sk)377 static void tcp_init_buffer_space(struct sock *sk)
378 {
379 struct tcp_sock *tp = tcp_sk(sk);
380 int maxwin;
381
382 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
383 tcp_fixup_rcvbuf(sk);
384 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
385 tcp_fixup_sndbuf(sk);
386
387 tp->rcvq_space.space = tp->rcv_wnd;
388
389 maxwin = tcp_full_space(sk);
390
391 if (tp->window_clamp >= maxwin) {
392 tp->window_clamp = maxwin;
393
394 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
395 tp->window_clamp = max(maxwin -
396 (maxwin >> sysctl_tcp_app_win),
397 4 * tp->advmss);
398 }
399
400 /* Force reservation of one segment. */
401 if (sysctl_tcp_app_win &&
402 tp->window_clamp > 2 * tp->advmss &&
403 tp->window_clamp + tp->advmss > maxwin)
404 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
405
406 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
407 tp->snd_cwnd_stamp = tcp_time_stamp;
408 }
409
410 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)411 static void tcp_clamp_window(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 struct inet_connection_sock *icsk = inet_csk(sk);
415
416 icsk->icsk_ack.quick = 0;
417
418 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
419 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
420 !sk_under_memory_pressure(sk) &&
421 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
422 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
423 sysctl_tcp_rmem[2]);
424 }
425 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
426 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
427 }
428
429 /* Initialize RCV_MSS value.
430 * RCV_MSS is an our guess about MSS used by the peer.
431 * We haven't any direct information about the MSS.
432 * It's better to underestimate the RCV_MSS rather than overestimate.
433 * Overestimations make us ACKing less frequently than needed.
434 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
435 */
tcp_initialize_rcv_mss(struct sock * sk)436 void tcp_initialize_rcv_mss(struct sock *sk)
437 {
438 const struct tcp_sock *tp = tcp_sk(sk);
439 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
440
441 hint = min(hint, tp->rcv_wnd / 2);
442 hint = min(hint, TCP_MSS_DEFAULT);
443 hint = max(hint, TCP_MIN_MSS);
444
445 inet_csk(sk)->icsk_ack.rcv_mss = hint;
446 }
447 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
448
449 /* Receiver "autotuning" code.
450 *
451 * The algorithm for RTT estimation w/o timestamps is based on
452 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
453 * <http://public.lanl.gov/radiant/pubs.html#DRS>
454 *
455 * More detail on this code can be found at
456 * <http://staff.psc.edu/jheffner/>,
457 * though this reference is out of date. A new paper
458 * is pending.
459 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)460 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
461 {
462 u32 new_sample = tp->rcv_rtt_est.rtt;
463 long m = sample;
464
465 if (m == 0)
466 m = 1;
467
468 if (new_sample != 0) {
469 /* If we sample in larger samples in the non-timestamp
470 * case, we could grossly overestimate the RTT especially
471 * with chatty applications or bulk transfer apps which
472 * are stalled on filesystem I/O.
473 *
474 * Also, since we are only going for a minimum in the
475 * non-timestamp case, we do not smooth things out
476 * else with timestamps disabled convergence takes too
477 * long.
478 */
479 if (!win_dep) {
480 m -= (new_sample >> 3);
481 new_sample += m;
482 } else {
483 m <<= 3;
484 if (m < new_sample)
485 new_sample = m;
486 }
487 } else {
488 /* No previous measure. */
489 new_sample = m << 3;
490 }
491
492 if (tp->rcv_rtt_est.rtt != new_sample)
493 tp->rcv_rtt_est.rtt = new_sample;
494 }
495
tcp_rcv_rtt_measure(struct tcp_sock * tp)496 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
497 {
498 if (tp->rcv_rtt_est.time == 0)
499 goto new_measure;
500 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
501 return;
502 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
503
504 new_measure:
505 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
506 tp->rcv_rtt_est.time = tcp_time_stamp;
507 }
508
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)509 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
510 const struct sk_buff *skb)
511 {
512 struct tcp_sock *tp = tcp_sk(sk);
513 if (tp->rx_opt.rcv_tsecr &&
514 (TCP_SKB_CB(skb)->end_seq -
515 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
516 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
517 }
518
519 /*
520 * This function should be called every time data is copied to user space.
521 * It calculates the appropriate TCP receive buffer space.
522 */
tcp_rcv_space_adjust(struct sock * sk)523 void tcp_rcv_space_adjust(struct sock *sk)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 int time;
527 int space;
528
529 if (tp->rcvq_space.time == 0)
530 goto new_measure;
531
532 time = tcp_time_stamp - tp->rcvq_space.time;
533 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
534 return;
535
536 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
537
538 space = max(tp->rcvq_space.space, space);
539
540 if (tp->rcvq_space.space != space) {
541 int rcvmem;
542
543 tp->rcvq_space.space = space;
544
545 if (sysctl_tcp_moderate_rcvbuf &&
546 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
547 int new_clamp = space;
548
549 /* Receive space grows, normalize in order to
550 * take into account packet headers and sk_buff
551 * structure overhead.
552 */
553 space /= tp->advmss;
554 if (!space)
555 space = 1;
556 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
557 while (tcp_win_from_space(rcvmem) < tp->advmss)
558 rcvmem += 128;
559 space *= rcvmem;
560 space = min(space, sysctl_tcp_rmem[2]);
561 if (space > sk->sk_rcvbuf) {
562 sk->sk_rcvbuf = space;
563
564 /* Make the window clamp follow along. */
565 tp->window_clamp = new_clamp;
566 }
567 }
568 }
569
570 new_measure:
571 tp->rcvq_space.seq = tp->copied_seq;
572 tp->rcvq_space.time = tcp_time_stamp;
573 }
574
575 /* There is something which you must keep in mind when you analyze the
576 * behavior of the tp->ato delayed ack timeout interval. When a
577 * connection starts up, we want to ack as quickly as possible. The
578 * problem is that "good" TCP's do slow start at the beginning of data
579 * transmission. The means that until we send the first few ACK's the
580 * sender will sit on his end and only queue most of his data, because
581 * he can only send snd_cwnd unacked packets at any given time. For
582 * each ACK we send, he increments snd_cwnd and transmits more of his
583 * queue. -DaveM
584 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)585 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
586 {
587 struct tcp_sock *tp = tcp_sk(sk);
588 struct inet_connection_sock *icsk = inet_csk(sk);
589 u32 now;
590
591 inet_csk_schedule_ack(sk);
592
593 tcp_measure_rcv_mss(sk, skb);
594
595 tcp_rcv_rtt_measure(tp);
596
597 now = tcp_time_stamp;
598
599 if (!icsk->icsk_ack.ato) {
600 /* The _first_ data packet received, initialize
601 * delayed ACK engine.
602 */
603 tcp_incr_quickack(sk);
604 icsk->icsk_ack.ato = TCP_ATO_MIN;
605 } else {
606 int m = now - icsk->icsk_ack.lrcvtime;
607
608 if (m <= TCP_ATO_MIN / 2) {
609 /* The fastest case is the first. */
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
611 } else if (m < icsk->icsk_ack.ato) {
612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
613 if (icsk->icsk_ack.ato > icsk->icsk_rto)
614 icsk->icsk_ack.ato = icsk->icsk_rto;
615 } else if (m > icsk->icsk_rto) {
616 /* Too long gap. Apparently sender failed to
617 * restart window, so that we send ACKs quickly.
618 */
619 tcp_incr_quickack(sk);
620 sk_mem_reclaim(sk);
621 }
622 }
623 icsk->icsk_ack.lrcvtime = now;
624
625 TCP_ECN_check_ce(tp, skb);
626
627 if (skb->len >= 128)
628 tcp_grow_window(sk, skb);
629 }
630
631 /* Called to compute a smoothed rtt estimate. The data fed to this
632 * routine either comes from timestamps, or from segments that were
633 * known _not_ to have been retransmitted [see Karn/Partridge
634 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
635 * piece by Van Jacobson.
636 * NOTE: the next three routines used to be one big routine.
637 * To save cycles in the RFC 1323 implementation it was better to break
638 * it up into three procedures. -- erics
639 */
tcp_rtt_estimator(struct sock * sk,const __u32 mrtt)640 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
641 {
642 struct tcp_sock *tp = tcp_sk(sk);
643 long m = mrtt; /* RTT */
644
645 /* The following amusing code comes from Jacobson's
646 * article in SIGCOMM '88. Note that rtt and mdev
647 * are scaled versions of rtt and mean deviation.
648 * This is designed to be as fast as possible
649 * m stands for "measurement".
650 *
651 * On a 1990 paper the rto value is changed to:
652 * RTO = rtt + 4 * mdev
653 *
654 * Funny. This algorithm seems to be very broken.
655 * These formulae increase RTO, when it should be decreased, increase
656 * too slowly, when it should be increased quickly, decrease too quickly
657 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
658 * does not matter how to _calculate_ it. Seems, it was trap
659 * that VJ failed to avoid. 8)
660 */
661 if (m == 0)
662 m = 1;
663 if (tp->srtt != 0) {
664 m -= (tp->srtt >> 3); /* m is now error in rtt est */
665 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
666 if (m < 0) {
667 m = -m; /* m is now abs(error) */
668 m -= (tp->mdev >> 2); /* similar update on mdev */
669 /* This is similar to one of Eifel findings.
670 * Eifel blocks mdev updates when rtt decreases.
671 * This solution is a bit different: we use finer gain
672 * for mdev in this case (alpha*beta).
673 * Like Eifel it also prevents growth of rto,
674 * but also it limits too fast rto decreases,
675 * happening in pure Eifel.
676 */
677 if (m > 0)
678 m >>= 3;
679 } else {
680 m -= (tp->mdev >> 2); /* similar update on mdev */
681 }
682 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
683 if (tp->mdev > tp->mdev_max) {
684 tp->mdev_max = tp->mdev;
685 if (tp->mdev_max > tp->rttvar)
686 tp->rttvar = tp->mdev_max;
687 }
688 if (after(tp->snd_una, tp->rtt_seq)) {
689 if (tp->mdev_max < tp->rttvar)
690 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
691 tp->rtt_seq = tp->snd_nxt;
692 tp->mdev_max = tcp_rto_min(sk);
693 }
694 } else {
695 /* no previous measure. */
696 tp->srtt = m << 3; /* take the measured time to be rtt */
697 tp->mdev = m << 1; /* make sure rto = 3*rtt */
698 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
699 tp->rtt_seq = tp->snd_nxt;
700 }
701 }
702
703 /* Calculate rto without backoff. This is the second half of Van Jacobson's
704 * routine referred to above.
705 */
tcp_set_rto(struct sock * sk)706 static inline void tcp_set_rto(struct sock *sk)
707 {
708 const struct tcp_sock *tp = tcp_sk(sk);
709 /* Old crap is replaced with new one. 8)
710 *
711 * More seriously:
712 * 1. If rtt variance happened to be less 50msec, it is hallucination.
713 * It cannot be less due to utterly erratic ACK generation made
714 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
715 * to do with delayed acks, because at cwnd>2 true delack timeout
716 * is invisible. Actually, Linux-2.4 also generates erratic
717 * ACKs in some circumstances.
718 */
719 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
720
721 /* 2. Fixups made earlier cannot be right.
722 * If we do not estimate RTO correctly without them,
723 * all the algo is pure shit and should be replaced
724 * with correct one. It is exactly, which we pretend to do.
725 */
726
727 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
728 * guarantees that rto is higher.
729 */
730 tcp_bound_rto(sk);
731 }
732
733 /* Save metrics learned by this TCP session.
734 This function is called only, when TCP finishes successfully
735 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
736 */
tcp_update_metrics(struct sock * sk)737 void tcp_update_metrics(struct sock *sk)
738 {
739 struct tcp_sock *tp = tcp_sk(sk);
740 struct dst_entry *dst = __sk_dst_get(sk);
741
742 if (sysctl_tcp_nometrics_save)
743 return;
744
745 dst_confirm(dst);
746
747 if (dst && (dst->flags & DST_HOST)) {
748 const struct inet_connection_sock *icsk = inet_csk(sk);
749 int m;
750 unsigned long rtt;
751
752 if (icsk->icsk_backoff || !tp->srtt) {
753 /* This session failed to estimate rtt. Why?
754 * Probably, no packets returned in time.
755 * Reset our results.
756 */
757 if (!(dst_metric_locked(dst, RTAX_RTT)))
758 dst_metric_set(dst, RTAX_RTT, 0);
759 return;
760 }
761
762 rtt = dst_metric_rtt(dst, RTAX_RTT);
763 m = rtt - tp->srtt;
764
765 /* If newly calculated rtt larger than stored one,
766 * store new one. Otherwise, use EWMA. Remember,
767 * rtt overestimation is always better than underestimation.
768 */
769 if (!(dst_metric_locked(dst, RTAX_RTT))) {
770 if (m <= 0)
771 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
772 else
773 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
774 }
775
776 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
777 unsigned long var;
778 if (m < 0)
779 m = -m;
780
781 /* Scale deviation to rttvar fixed point */
782 m >>= 1;
783 if (m < tp->mdev)
784 m = tp->mdev;
785
786 var = dst_metric_rtt(dst, RTAX_RTTVAR);
787 if (m >= var)
788 var = m;
789 else
790 var -= (var - m) >> 2;
791
792 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
793 }
794
795 if (tcp_in_initial_slowstart(tp)) {
796 /* Slow start still did not finish. */
797 if (dst_metric(dst, RTAX_SSTHRESH) &&
798 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
800 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
801 if (!dst_metric_locked(dst, RTAX_CWND) &&
802 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
803 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
804 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
805 icsk->icsk_ca_state == TCP_CA_Open) {
806 /* Cong. avoidance phase, cwnd is reliable. */
807 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
808 dst_metric_set(dst, RTAX_SSTHRESH,
809 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
810 if (!dst_metric_locked(dst, RTAX_CWND))
811 dst_metric_set(dst, RTAX_CWND,
812 (dst_metric(dst, RTAX_CWND) +
813 tp->snd_cwnd) >> 1);
814 } else {
815 /* Else slow start did not finish, cwnd is non-sense,
816 ssthresh may be also invalid.
817 */
818 if (!dst_metric_locked(dst, RTAX_CWND))
819 dst_metric_set(dst, RTAX_CWND,
820 (dst_metric(dst, RTAX_CWND) +
821 tp->snd_ssthresh) >> 1);
822 if (dst_metric(dst, RTAX_SSTHRESH) &&
823 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
824 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
825 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
826 }
827
828 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
829 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
830 tp->reordering != sysctl_tcp_reordering)
831 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
832 }
833 }
834 }
835
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)836 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
837 {
838 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
839
840 if (!cwnd)
841 cwnd = TCP_INIT_CWND;
842 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
843 }
844
845 /* Set slow start threshold and cwnd not falling to slow start */
tcp_enter_cwr(struct sock * sk,const int set_ssthresh)846 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
847 {
848 struct tcp_sock *tp = tcp_sk(sk);
849 const struct inet_connection_sock *icsk = inet_csk(sk);
850
851 tp->prior_ssthresh = 0;
852 tp->bytes_acked = 0;
853 if (icsk->icsk_ca_state < TCP_CA_CWR) {
854 tp->undo_marker = 0;
855 if (set_ssthresh)
856 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
857 tp->snd_cwnd = min(tp->snd_cwnd,
858 tcp_packets_in_flight(tp) + 1U);
859 tp->snd_cwnd_cnt = 0;
860 tp->high_seq = tp->snd_nxt;
861 tp->snd_cwnd_stamp = tcp_time_stamp;
862 TCP_ECN_queue_cwr(tp);
863
864 tcp_set_ca_state(sk, TCP_CA_CWR);
865 }
866 }
867
868 /*
869 * Packet counting of FACK is based on in-order assumptions, therefore TCP
870 * disables it when reordering is detected
871 */
tcp_disable_fack(struct tcp_sock * tp)872 static void tcp_disable_fack(struct tcp_sock *tp)
873 {
874 /* RFC3517 uses different metric in lost marker => reset on change */
875 if (tcp_is_fack(tp))
876 tp->lost_skb_hint = NULL;
877 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
878 }
879
880 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)881 static void tcp_dsack_seen(struct tcp_sock *tp)
882 {
883 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
884 }
885
886 /* Initialize metrics on socket. */
887
tcp_init_metrics(struct sock * sk)888 static void tcp_init_metrics(struct sock *sk)
889 {
890 struct tcp_sock *tp = tcp_sk(sk);
891 struct dst_entry *dst = __sk_dst_get(sk);
892
893 if (dst == NULL)
894 goto reset;
895
896 dst_confirm(dst);
897
898 if (dst_metric_locked(dst, RTAX_CWND))
899 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
900 if (dst_metric(dst, RTAX_SSTHRESH)) {
901 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
902 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
903 tp->snd_ssthresh = tp->snd_cwnd_clamp;
904 } else {
905 /* ssthresh may have been reduced unnecessarily during.
906 * 3WHS. Restore it back to its initial default.
907 */
908 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
909 }
910 if (dst_metric(dst, RTAX_REORDERING) &&
911 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
912 tcp_disable_fack(tp);
913 tp->reordering = dst_metric(dst, RTAX_REORDERING);
914 }
915
916 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
917 goto reset;
918
919 /* Initial rtt is determined from SYN,SYN-ACK.
920 * The segment is small and rtt may appear much
921 * less than real one. Use per-dst memory
922 * to make it more realistic.
923 *
924 * A bit of theory. RTT is time passed after "normal" sized packet
925 * is sent until it is ACKed. In normal circumstances sending small
926 * packets force peer to delay ACKs and calculation is correct too.
927 * The algorithm is adaptive and, provided we follow specs, it
928 * NEVER underestimate RTT. BUT! If peer tries to make some clever
929 * tricks sort of "quick acks" for time long enough to decrease RTT
930 * to low value, and then abruptly stops to do it and starts to delay
931 * ACKs, wait for troubles.
932 */
933 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
934 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
935 tp->rtt_seq = tp->snd_nxt;
936 }
937 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
938 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
939 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
940 }
941 tcp_set_rto(sk);
942 reset:
943 if (tp->srtt == 0) {
944 /* RFC2988bis: We've failed to get a valid RTT sample from
945 * 3WHS. This is most likely due to retransmission,
946 * including spurious one. Reset the RTO back to 3secs
947 * from the more aggressive 1sec to avoid more spurious
948 * retransmission.
949 */
950 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
951 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
952 }
953 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
954 * retransmitted. In light of RFC2988bis' more aggressive 1sec
955 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
956 * retransmission has occurred.
957 */
958 if (tp->total_retrans > 1)
959 tp->snd_cwnd = 1;
960 else
961 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
962 tp->snd_cwnd_stamp = tcp_time_stamp;
963 }
964
tcp_update_reordering(struct sock * sk,const int metric,const int ts)965 static void tcp_update_reordering(struct sock *sk, const int metric,
966 const int ts)
967 {
968 struct tcp_sock *tp = tcp_sk(sk);
969 if (metric > tp->reordering) {
970 int mib_idx;
971
972 tp->reordering = min(TCP_MAX_REORDERING, metric);
973
974 /* This exciting event is worth to be remembered. 8) */
975 if (ts)
976 mib_idx = LINUX_MIB_TCPTSREORDER;
977 else if (tcp_is_reno(tp))
978 mib_idx = LINUX_MIB_TCPRENOREORDER;
979 else if (tcp_is_fack(tp))
980 mib_idx = LINUX_MIB_TCPFACKREORDER;
981 else
982 mib_idx = LINUX_MIB_TCPSACKREORDER;
983
984 NET_INC_STATS_BH(sock_net(sk), mib_idx);
985 #if FASTRETRANS_DEBUG > 1
986 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
987 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
988 tp->reordering,
989 tp->fackets_out,
990 tp->sacked_out,
991 tp->undo_marker ? tp->undo_retrans : 0);
992 #endif
993 tcp_disable_fack(tp);
994 }
995 }
996
997 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)998 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
999 {
1000 if ((tp->retransmit_skb_hint == NULL) ||
1001 before(TCP_SKB_CB(skb)->seq,
1002 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1003 tp->retransmit_skb_hint = skb;
1004
1005 if (!tp->lost_out ||
1006 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1007 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1008 }
1009
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)1010 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1011 {
1012 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1013 tcp_verify_retransmit_hint(tp, skb);
1014
1015 tp->lost_out += tcp_skb_pcount(skb);
1016 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1017 }
1018 }
1019
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)1020 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1021 struct sk_buff *skb)
1022 {
1023 tcp_verify_retransmit_hint(tp, skb);
1024
1025 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1026 tp->lost_out += tcp_skb_pcount(skb);
1027 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1028 }
1029 }
1030
1031 /* This procedure tags the retransmission queue when SACKs arrive.
1032 *
1033 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1034 * Packets in queue with these bits set are counted in variables
1035 * sacked_out, retrans_out and lost_out, correspondingly.
1036 *
1037 * Valid combinations are:
1038 * Tag InFlight Description
1039 * 0 1 - orig segment is in flight.
1040 * S 0 - nothing flies, orig reached receiver.
1041 * L 0 - nothing flies, orig lost by net.
1042 * R 2 - both orig and retransmit are in flight.
1043 * L|R 1 - orig is lost, retransmit is in flight.
1044 * S|R 1 - orig reached receiver, retrans is still in flight.
1045 * (L|S|R is logically valid, it could occur when L|R is sacked,
1046 * but it is equivalent to plain S and code short-curcuits it to S.
1047 * L|S is logically invalid, it would mean -1 packet in flight 8))
1048 *
1049 * These 6 states form finite state machine, controlled by the following events:
1050 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1051 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1052 * 3. Loss detection event of two flavors:
1053 * A. Scoreboard estimator decided the packet is lost.
1054 * A'. Reno "three dupacks" marks head of queue lost.
1055 * A''. Its FACK modification, head until snd.fack is lost.
1056 * B. SACK arrives sacking SND.NXT at the moment, when the
1057 * segment was retransmitted.
1058 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1059 *
1060 * It is pleasant to note, that state diagram turns out to be commutative,
1061 * so that we are allowed not to be bothered by order of our actions,
1062 * when multiple events arrive simultaneously. (see the function below).
1063 *
1064 * Reordering detection.
1065 * --------------------
1066 * Reordering metric is maximal distance, which a packet can be displaced
1067 * in packet stream. With SACKs we can estimate it:
1068 *
1069 * 1. SACK fills old hole and the corresponding segment was not
1070 * ever retransmitted -> reordering. Alas, we cannot use it
1071 * when segment was retransmitted.
1072 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1073 * for retransmitted and already SACKed segment -> reordering..
1074 * Both of these heuristics are not used in Loss state, when we cannot
1075 * account for retransmits accurately.
1076 *
1077 * SACK block validation.
1078 * ----------------------
1079 *
1080 * SACK block range validation checks that the received SACK block fits to
1081 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1082 * Note that SND.UNA is not included to the range though being valid because
1083 * it means that the receiver is rather inconsistent with itself reporting
1084 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1085 * perfectly valid, however, in light of RFC2018 which explicitly states
1086 * that "SACK block MUST reflect the newest segment. Even if the newest
1087 * segment is going to be discarded ...", not that it looks very clever
1088 * in case of head skb. Due to potentional receiver driven attacks, we
1089 * choose to avoid immediate execution of a walk in write queue due to
1090 * reneging and defer head skb's loss recovery to standard loss recovery
1091 * procedure that will eventually trigger (nothing forbids us doing this).
1092 *
1093 * Implements also blockage to start_seq wrap-around. Problem lies in the
1094 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1095 * there's no guarantee that it will be before snd_nxt (n). The problem
1096 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1097 * wrap (s_w):
1098 *
1099 * <- outs wnd -> <- wrapzone ->
1100 * u e n u_w e_w s n_w
1101 * | | | | | | |
1102 * |<------------+------+----- TCP seqno space --------------+---------->|
1103 * ...-- <2^31 ->| |<--------...
1104 * ...---- >2^31 ------>| |<--------...
1105 *
1106 * Current code wouldn't be vulnerable but it's better still to discard such
1107 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1108 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1109 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1110 * equal to the ideal case (infinite seqno space without wrap caused issues).
1111 *
1112 * With D-SACK the lower bound is extended to cover sequence space below
1113 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1114 * again, D-SACK block must not to go across snd_una (for the same reason as
1115 * for the normal SACK blocks, explained above). But there all simplicity
1116 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1117 * fully below undo_marker they do not affect behavior in anyway and can
1118 * therefore be safely ignored. In rare cases (which are more or less
1119 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1120 * fragmentation and packet reordering past skb's retransmission. To consider
1121 * them correctly, the acceptable range must be extended even more though
1122 * the exact amount is rather hard to quantify. However, tp->max_window can
1123 * be used as an exaggerated estimate.
1124 */
tcp_is_sackblock_valid(struct tcp_sock * tp,int is_dsack,u32 start_seq,u32 end_seq)1125 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1126 u32 start_seq, u32 end_seq)
1127 {
1128 /* Too far in future, or reversed (interpretation is ambiguous) */
1129 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1130 return 0;
1131
1132 /* Nasty start_seq wrap-around check (see comments above) */
1133 if (!before(start_seq, tp->snd_nxt))
1134 return 0;
1135
1136 /* In outstanding window? ...This is valid exit for D-SACKs too.
1137 * start_seq == snd_una is non-sensical (see comments above)
1138 */
1139 if (after(start_seq, tp->snd_una))
1140 return 1;
1141
1142 if (!is_dsack || !tp->undo_marker)
1143 return 0;
1144
1145 /* ...Then it's D-SACK, and must reside below snd_una completely */
1146 if (after(end_seq, tp->snd_una))
1147 return 0;
1148
1149 if (!before(start_seq, tp->undo_marker))
1150 return 1;
1151
1152 /* Too old */
1153 if (!after(end_seq, tp->undo_marker))
1154 return 0;
1155
1156 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1157 * start_seq < undo_marker and end_seq >= undo_marker.
1158 */
1159 return !before(start_seq, end_seq - tp->max_window);
1160 }
1161
1162 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1163 * Event "B". Later note: FACK people cheated me again 8), we have to account
1164 * for reordering! Ugly, but should help.
1165 *
1166 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1167 * less than what is now known to be received by the other end (derived from
1168 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1169 * retransmitted skbs to avoid some costly processing per ACKs.
1170 */
tcp_mark_lost_retrans(struct sock * sk)1171 static void tcp_mark_lost_retrans(struct sock *sk)
1172 {
1173 const struct inet_connection_sock *icsk = inet_csk(sk);
1174 struct tcp_sock *tp = tcp_sk(sk);
1175 struct sk_buff *skb;
1176 int cnt = 0;
1177 u32 new_low_seq = tp->snd_nxt;
1178 u32 received_upto = tcp_highest_sack_seq(tp);
1179
1180 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1181 !after(received_upto, tp->lost_retrans_low) ||
1182 icsk->icsk_ca_state != TCP_CA_Recovery)
1183 return;
1184
1185 tcp_for_write_queue(skb, sk) {
1186 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1187
1188 if (skb == tcp_send_head(sk))
1189 break;
1190 if (cnt == tp->retrans_out)
1191 break;
1192 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1193 continue;
1194
1195 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1196 continue;
1197
1198 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1199 * constraint here (see above) but figuring out that at
1200 * least tp->reordering SACK blocks reside between ack_seq
1201 * and received_upto is not easy task to do cheaply with
1202 * the available datastructures.
1203 *
1204 * Whether FACK should check here for tp->reordering segs
1205 * in-between one could argue for either way (it would be
1206 * rather simple to implement as we could count fack_count
1207 * during the walk and do tp->fackets_out - fack_count).
1208 */
1209 if (after(received_upto, ack_seq)) {
1210 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1211 tp->retrans_out -= tcp_skb_pcount(skb);
1212
1213 tcp_skb_mark_lost_uncond_verify(tp, skb);
1214 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1215 } else {
1216 if (before(ack_seq, new_low_seq))
1217 new_low_seq = ack_seq;
1218 cnt += tcp_skb_pcount(skb);
1219 }
1220 }
1221
1222 if (tp->retrans_out)
1223 tp->lost_retrans_low = new_low_seq;
1224 }
1225
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1226 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1227 struct tcp_sack_block_wire *sp, int num_sacks,
1228 u32 prior_snd_una)
1229 {
1230 struct tcp_sock *tp = tcp_sk(sk);
1231 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1232 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1233 int dup_sack = 0;
1234
1235 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1236 dup_sack = 1;
1237 tcp_dsack_seen(tp);
1238 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1239 } else if (num_sacks > 1) {
1240 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1241 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1242
1243 if (!after(end_seq_0, end_seq_1) &&
1244 !before(start_seq_0, start_seq_1)) {
1245 dup_sack = 1;
1246 tcp_dsack_seen(tp);
1247 NET_INC_STATS_BH(sock_net(sk),
1248 LINUX_MIB_TCPDSACKOFORECV);
1249 }
1250 }
1251
1252 /* D-SACK for already forgotten data... Do dumb counting. */
1253 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1254 !after(end_seq_0, prior_snd_una) &&
1255 after(end_seq_0, tp->undo_marker))
1256 tp->undo_retrans--;
1257
1258 return dup_sack;
1259 }
1260
1261 struct tcp_sacktag_state {
1262 int reord;
1263 int fack_count;
1264 int flag;
1265 };
1266
1267 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1268 * the incoming SACK may not exactly match but we can find smaller MSS
1269 * aligned portion of it that matches. Therefore we might need to fragment
1270 * which may fail and creates some hassle (caller must handle error case
1271 * returns).
1272 *
1273 * FIXME: this could be merged to shift decision code
1274 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1275 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1276 u32 start_seq, u32 end_seq)
1277 {
1278 int in_sack, err;
1279 unsigned int pkt_len;
1280 unsigned int mss;
1281
1282 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1283 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1284
1285 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1286 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1287 mss = tcp_skb_mss(skb);
1288 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1289
1290 if (!in_sack) {
1291 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1292 if (pkt_len < mss)
1293 pkt_len = mss;
1294 } else {
1295 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1296 if (pkt_len < mss)
1297 return -EINVAL;
1298 }
1299
1300 /* Round if necessary so that SACKs cover only full MSSes
1301 * and/or the remaining small portion (if present)
1302 */
1303 if (pkt_len > mss) {
1304 unsigned int new_len = (pkt_len / mss) * mss;
1305 if (!in_sack && new_len < pkt_len) {
1306 new_len += mss;
1307 if (new_len > skb->len)
1308 return 0;
1309 }
1310 pkt_len = new_len;
1311 }
1312 err = tcp_fragment(sk, skb, pkt_len, mss);
1313 if (err < 0)
1314 return err;
1315 }
1316
1317 return in_sack;
1318 }
1319
1320 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount)1321 static u8 tcp_sacktag_one(struct sock *sk,
1322 struct tcp_sacktag_state *state, u8 sacked,
1323 u32 start_seq, u32 end_seq,
1324 int dup_sack, int pcount)
1325 {
1326 struct tcp_sock *tp = tcp_sk(sk);
1327 int fack_count = state->fack_count;
1328
1329 /* Account D-SACK for retransmitted packet. */
1330 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1331 if (tp->undo_marker && tp->undo_retrans &&
1332 after(end_seq, tp->undo_marker))
1333 tp->undo_retrans--;
1334 if (sacked & TCPCB_SACKED_ACKED)
1335 state->reord = min(fack_count, state->reord);
1336 }
1337
1338 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1339 if (!after(end_seq, tp->snd_una))
1340 return sacked;
1341
1342 if (!(sacked & TCPCB_SACKED_ACKED)) {
1343 if (sacked & TCPCB_SACKED_RETRANS) {
1344 /* If the segment is not tagged as lost,
1345 * we do not clear RETRANS, believing
1346 * that retransmission is still in flight.
1347 */
1348 if (sacked & TCPCB_LOST) {
1349 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1350 tp->lost_out -= pcount;
1351 tp->retrans_out -= pcount;
1352 }
1353 } else {
1354 if (!(sacked & TCPCB_RETRANS)) {
1355 /* New sack for not retransmitted frame,
1356 * which was in hole. It is reordering.
1357 */
1358 if (before(start_seq,
1359 tcp_highest_sack_seq(tp)))
1360 state->reord = min(fack_count,
1361 state->reord);
1362
1363 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1364 if (!after(end_seq, tp->frto_highmark))
1365 state->flag |= FLAG_ONLY_ORIG_SACKED;
1366 }
1367
1368 if (sacked & TCPCB_LOST) {
1369 sacked &= ~TCPCB_LOST;
1370 tp->lost_out -= pcount;
1371 }
1372 }
1373
1374 sacked |= TCPCB_SACKED_ACKED;
1375 state->flag |= FLAG_DATA_SACKED;
1376 tp->sacked_out += pcount;
1377
1378 fack_count += pcount;
1379
1380 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1381 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1382 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1383 tp->lost_cnt_hint += pcount;
1384
1385 if (fack_count > tp->fackets_out)
1386 tp->fackets_out = fack_count;
1387 }
1388
1389 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1390 * frames and clear it. undo_retrans is decreased above, L|R frames
1391 * are accounted above as well.
1392 */
1393 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1394 sacked &= ~TCPCB_SACKED_RETRANS;
1395 tp->retrans_out -= pcount;
1396 }
1397
1398 return sacked;
1399 }
1400
1401 /* Shift newly-SACKed bytes from this skb to the immediately previous
1402 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1403 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,int dup_sack)1404 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1405 struct tcp_sacktag_state *state,
1406 unsigned int pcount, int shifted, int mss,
1407 int dup_sack)
1408 {
1409 struct tcp_sock *tp = tcp_sk(sk);
1410 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1411 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1412 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1413
1414 BUG_ON(!pcount);
1415
1416 /* Adjust counters and hints for the newly sacked sequence
1417 * range but discard the return value since prev is already
1418 * marked. We must tag the range first because the seq
1419 * advancement below implicitly advances
1420 * tcp_highest_sack_seq() when skb is highest_sack.
1421 */
1422 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1423 start_seq, end_seq, dup_sack, pcount);
1424
1425 if (skb == tp->lost_skb_hint)
1426 tp->lost_cnt_hint += pcount;
1427
1428 TCP_SKB_CB(prev)->end_seq += shifted;
1429 TCP_SKB_CB(skb)->seq += shifted;
1430
1431 skb_shinfo(prev)->gso_segs += pcount;
1432 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1433 skb_shinfo(skb)->gso_segs -= pcount;
1434
1435 /* When we're adding to gso_segs == 1, gso_size will be zero,
1436 * in theory this shouldn't be necessary but as long as DSACK
1437 * code can come after this skb later on it's better to keep
1438 * setting gso_size to something.
1439 */
1440 if (!skb_shinfo(prev)->gso_size) {
1441 skb_shinfo(prev)->gso_size = mss;
1442 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1443 }
1444
1445 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1446 if (skb_shinfo(skb)->gso_segs <= 1) {
1447 skb_shinfo(skb)->gso_size = 0;
1448 skb_shinfo(skb)->gso_type = 0;
1449 }
1450
1451 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1452 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1453
1454 if (skb->len > 0) {
1455 BUG_ON(!tcp_skb_pcount(skb));
1456 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1457 return 0;
1458 }
1459
1460 /* Whole SKB was eaten :-) */
1461
1462 if (skb == tp->retransmit_skb_hint)
1463 tp->retransmit_skb_hint = prev;
1464 if (skb == tp->scoreboard_skb_hint)
1465 tp->scoreboard_skb_hint = prev;
1466 if (skb == tp->lost_skb_hint) {
1467 tp->lost_skb_hint = prev;
1468 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1469 }
1470
1471 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1472 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1473 TCP_SKB_CB(prev)->end_seq++;
1474
1475 if (skb == tcp_highest_sack(sk))
1476 tcp_advance_highest_sack(sk, skb);
1477
1478 tcp_unlink_write_queue(skb, sk);
1479 sk_wmem_free_skb(sk, skb);
1480
1481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
1483 return 1;
1484 }
1485
1486 /* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
tcp_skb_seglen(const struct sk_buff * skb)1489 static int tcp_skb_seglen(const struct sk_buff *skb)
1490 {
1491 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492 }
1493
1494 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1495 static int skb_can_shift(const struct sk_buff *skb)
1496 {
1497 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498 }
1499
1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack)1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 struct tcp_sacktag_state *state,
1505 u32 start_seq, u32 end_seq,
1506 int dup_sack)
1507 {
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct sk_buff *prev;
1510 int mss;
1511 int pcount = 0;
1512 int len;
1513 int in_sack;
1514
1515 if (!sk_can_gso(sk))
1516 goto fallback;
1517
1518 /* Normally R but no L won't result in plain S */
1519 if (!dup_sack &&
1520 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521 goto fallback;
1522 if (!skb_can_shift(skb))
1523 goto fallback;
1524 /* This frame is about to be dropped (was ACKed). */
1525 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 goto fallback;
1527
1528 /* Can only happen with delayed DSACK + discard craziness */
1529 if (unlikely(skb == tcp_write_queue_head(sk)))
1530 goto fallback;
1531 prev = tcp_write_queue_prev(sk, skb);
1532
1533 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 goto fallback;
1535
1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539 if (in_sack) {
1540 len = skb->len;
1541 pcount = tcp_skb_pcount(skb);
1542 mss = tcp_skb_seglen(skb);
1543
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1546 */
1547 if (mss != tcp_skb_seglen(prev))
1548 goto fallback;
1549 } else {
1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 goto noop;
1552 /* CHECKME: This is non-MSS split case only?, this will
1553 * cause skipped skbs due to advancing loop btw, original
1554 * has that feature too
1555 */
1556 if (tcp_skb_pcount(skb) <= 1)
1557 goto noop;
1558
1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 if (!in_sack) {
1561 /* TODO: head merge to next could be attempted here
1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 * though it might not be worth of the additional hassle
1564 *
1565 * ...we can probably just fallback to what was done
1566 * previously. We could try merging non-SACKed ones
1567 * as well but it probably isn't going to buy off
1568 * because later SACKs might again split them, and
1569 * it would make skb timestamp tracking considerably
1570 * harder problem.
1571 */
1572 goto fallback;
1573 }
1574
1575 len = end_seq - TCP_SKB_CB(skb)->seq;
1576 BUG_ON(len < 0);
1577 BUG_ON(len > skb->len);
1578
1579 /* MSS boundaries should be honoured or else pcount will
1580 * severely break even though it makes things bit trickier.
1581 * Optimize common case to avoid most of the divides
1582 */
1583 mss = tcp_skb_mss(skb);
1584
1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 * drop this restriction as unnecessary
1587 */
1588 if (mss != tcp_skb_seglen(prev))
1589 goto fallback;
1590
1591 if (len == mss) {
1592 pcount = 1;
1593 } else if (len < mss) {
1594 goto noop;
1595 } else {
1596 pcount = len / mss;
1597 len = pcount * mss;
1598 }
1599 }
1600
1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 goto fallback;
1604
1605 if (!skb_shift(prev, skb, len))
1606 goto fallback;
1607 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608 goto out;
1609
1610 /* Hole filled allows collapsing with the next as well, this is very
1611 * useful when hole on every nth skb pattern happens
1612 */
1613 if (prev == tcp_write_queue_tail(sk))
1614 goto out;
1615 skb = tcp_write_queue_next(sk, prev);
1616
1617 if (!skb_can_shift(skb) ||
1618 (skb == tcp_send_head(sk)) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 (mss != tcp_skb_seglen(skb)))
1621 goto out;
1622
1623 len = skb->len;
1624 if (skb_shift(prev, skb, len)) {
1625 pcount += tcp_skb_pcount(skb);
1626 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627 }
1628
1629 out:
1630 state->fack_count += pcount;
1631 return prev;
1632
1633 noop:
1634 return skb;
1635
1636 fallback:
1637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638 return NULL;
1639 }
1640
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack_in)1641 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 struct tcp_sack_block *next_dup,
1643 struct tcp_sacktag_state *state,
1644 u32 start_seq, u32 end_seq,
1645 int dup_sack_in)
1646 {
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct sk_buff *tmp;
1649
1650 tcp_for_write_queue_from(skb, sk) {
1651 int in_sack = 0;
1652 int dup_sack = dup_sack_in;
1653
1654 if (skb == tcp_send_head(sk))
1655 break;
1656
1657 /* queue is in-order => we can short-circuit the walk early */
1658 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 break;
1660
1661 if ((next_dup != NULL) &&
1662 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 in_sack = tcp_match_skb_to_sack(sk, skb,
1664 next_dup->start_seq,
1665 next_dup->end_seq);
1666 if (in_sack > 0)
1667 dup_sack = 1;
1668 }
1669
1670 /* skb reference here is a bit tricky to get right, since
1671 * shifting can eat and free both this skb and the next,
1672 * so not even _safe variant of the loop is enough.
1673 */
1674 if (in_sack <= 0) {
1675 tmp = tcp_shift_skb_data(sk, skb, state,
1676 start_seq, end_seq, dup_sack);
1677 if (tmp != NULL) {
1678 if (tmp != skb) {
1679 skb = tmp;
1680 continue;
1681 }
1682
1683 in_sack = 0;
1684 } else {
1685 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 start_seq,
1687 end_seq);
1688 }
1689 }
1690
1691 if (unlikely(in_sack < 0))
1692 break;
1693
1694 if (in_sack) {
1695 TCP_SKB_CB(skb)->sacked =
1696 tcp_sacktag_one(sk,
1697 state,
1698 TCP_SKB_CB(skb)->sacked,
1699 TCP_SKB_CB(skb)->seq,
1700 TCP_SKB_CB(skb)->end_seq,
1701 dup_sack,
1702 tcp_skb_pcount(skb));
1703
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1707 }
1708
1709 state->fack_count += tcp_skb_pcount(skb);
1710 }
1711 return skb;
1712 }
1713
1714 /* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1717 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718 struct tcp_sacktag_state *state,
1719 u32 skip_to_seq)
1720 {
1721 tcp_for_write_queue_from(skb, sk) {
1722 if (skb == tcp_send_head(sk))
1723 break;
1724
1725 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726 break;
1727
1728 state->fack_count += tcp_skb_pcount(skb);
1729 }
1730 return skb;
1731 }
1732
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1733 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 struct sock *sk,
1735 struct tcp_sack_block *next_dup,
1736 struct tcp_sacktag_state *state,
1737 u32 skip_to_seq)
1738 {
1739 if (next_dup == NULL)
1740 return skb;
1741
1742 if (before(next_dup->start_seq, skip_to_seq)) {
1743 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 next_dup->start_seq, next_dup->end_seq,
1746 1);
1747 }
1748
1749 return skb;
1750 }
1751
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1752 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753 {
1754 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755 }
1756
1757 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una)1758 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759 u32 prior_snd_una)
1760 {
1761 const struct inet_connection_sock *icsk = inet_csk(sk);
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 TCP_SKB_CB(ack_skb)->sacked);
1765 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766 struct tcp_sack_block sp[TCP_NUM_SACKS];
1767 struct tcp_sack_block *cache;
1768 struct tcp_sacktag_state state;
1769 struct sk_buff *skb;
1770 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771 int used_sacks;
1772 int found_dup_sack = 0;
1773 int i, j;
1774 int first_sack_index;
1775
1776 state.flag = 0;
1777 state.reord = tp->packets_out;
1778
1779 if (!tp->sacked_out) {
1780 if (WARN_ON(tp->fackets_out))
1781 tp->fackets_out = 0;
1782 tcp_highest_sack_reset(sk);
1783 }
1784
1785 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786 num_sacks, prior_snd_una);
1787 if (found_dup_sack)
1788 state.flag |= FLAG_DSACKING_ACK;
1789
1790 /* Eliminate too old ACKs, but take into
1791 * account more or less fresh ones, they can
1792 * contain valid SACK info.
1793 */
1794 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 return 0;
1796
1797 if (!tp->packets_out)
1798 goto out;
1799
1800 used_sacks = 0;
1801 first_sack_index = 0;
1802 for (i = 0; i < num_sacks; i++) {
1803 int dup_sack = !i && found_dup_sack;
1804
1805 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808 if (!tcp_is_sackblock_valid(tp, dup_sack,
1809 sp[used_sacks].start_seq,
1810 sp[used_sacks].end_seq)) {
1811 int mib_idx;
1812
1813 if (dup_sack) {
1814 if (!tp->undo_marker)
1815 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816 else
1817 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818 } else {
1819 /* Don't count olds caused by ACK reordering */
1820 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821 !after(sp[used_sacks].end_seq, tp->snd_una))
1822 continue;
1823 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824 }
1825
1826 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827 if (i == 0)
1828 first_sack_index = -1;
1829 continue;
1830 }
1831
1832 /* Ignore very old stuff early */
1833 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834 continue;
1835
1836 used_sacks++;
1837 }
1838
1839 /* order SACK blocks to allow in order walk of the retrans queue */
1840 for (i = used_sacks - 1; i > 0; i--) {
1841 for (j = 0; j < i; j++) {
1842 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843 swap(sp[j], sp[j + 1]);
1844
1845 /* Track where the first SACK block goes to */
1846 if (j == first_sack_index)
1847 first_sack_index = j + 1;
1848 }
1849 }
1850 }
1851
1852 skb = tcp_write_queue_head(sk);
1853 state.fack_count = 0;
1854 i = 0;
1855
1856 if (!tp->sacked_out) {
1857 /* It's already past, so skip checking against it */
1858 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859 } else {
1860 cache = tp->recv_sack_cache;
1861 /* Skip empty blocks in at head of the cache */
1862 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863 !cache->end_seq)
1864 cache++;
1865 }
1866
1867 while (i < used_sacks) {
1868 u32 start_seq = sp[i].start_seq;
1869 u32 end_seq = sp[i].end_seq;
1870 int dup_sack = (found_dup_sack && (i == first_sack_index));
1871 struct tcp_sack_block *next_dup = NULL;
1872
1873 if (found_dup_sack && ((i + 1) == first_sack_index))
1874 next_dup = &sp[i + 1];
1875
1876 /* Skip too early cached blocks */
1877 while (tcp_sack_cache_ok(tp, cache) &&
1878 !before(start_seq, cache->end_seq))
1879 cache++;
1880
1881 /* Can skip some work by looking recv_sack_cache? */
1882 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883 after(end_seq, cache->start_seq)) {
1884
1885 /* Head todo? */
1886 if (before(start_seq, cache->start_seq)) {
1887 skb = tcp_sacktag_skip(skb, sk, &state,
1888 start_seq);
1889 skb = tcp_sacktag_walk(skb, sk, next_dup,
1890 &state,
1891 start_seq,
1892 cache->start_seq,
1893 dup_sack);
1894 }
1895
1896 /* Rest of the block already fully processed? */
1897 if (!after(end_seq, cache->end_seq))
1898 goto advance_sp;
1899
1900 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901 &state,
1902 cache->end_seq);
1903
1904 /* ...tail remains todo... */
1905 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906 /* ...but better entrypoint exists! */
1907 skb = tcp_highest_sack(sk);
1908 if (skb == NULL)
1909 break;
1910 state.fack_count = tp->fackets_out;
1911 cache++;
1912 goto walk;
1913 }
1914
1915 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916 /* Check overlap against next cached too (past this one already) */
1917 cache++;
1918 continue;
1919 }
1920
1921 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922 skb = tcp_highest_sack(sk);
1923 if (skb == NULL)
1924 break;
1925 state.fack_count = tp->fackets_out;
1926 }
1927 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929 walk:
1930 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931 start_seq, end_seq, dup_sack);
1932
1933 advance_sp:
1934 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935 * due to in-order walk
1936 */
1937 if (after(end_seq, tp->frto_highmark))
1938 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940 i++;
1941 }
1942
1943 /* Clear the head of the cache sack blocks so we can skip it next time */
1944 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945 tp->recv_sack_cache[i].start_seq = 0;
1946 tp->recv_sack_cache[i].end_seq = 0;
1947 }
1948 for (j = 0; j < used_sacks; j++)
1949 tp->recv_sack_cache[i++] = sp[j];
1950
1951 tcp_mark_lost_retrans(sk);
1952
1953 tcp_verify_left_out(tp);
1954
1955 if ((state.reord < tp->fackets_out) &&
1956 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960 out:
1961
1962 #if FASTRETRANS_DEBUG > 0
1963 WARN_ON((int)tp->sacked_out < 0);
1964 WARN_ON((int)tp->lost_out < 0);
1965 WARN_ON((int)tp->retrans_out < 0);
1966 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967 #endif
1968 return state.flag;
1969 }
1970
1971 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1973 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1974 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1975 {
1976 u32 holes;
1977
1978 holes = max(tp->lost_out, 1U);
1979 holes = min(holes, tp->packets_out);
1980
1981 if ((tp->sacked_out + holes) > tp->packets_out) {
1982 tp->sacked_out = tp->packets_out - holes;
1983 return 1;
1984 }
1985 return 0;
1986 }
1987
1988 /* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1992 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993 {
1994 struct tcp_sock *tp = tcp_sk(sk);
1995 if (tcp_limit_reno_sacked(tp))
1996 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997 }
1998
1999 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
tcp_add_reno_sack(struct sock * sk)2001 static void tcp_add_reno_sack(struct sock *sk)
2002 {
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 tp->sacked_out++;
2005 tcp_check_reno_reordering(sk, 0);
2006 tcp_verify_left_out(tp);
2007 }
2008
2009 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
tcp_remove_reno_sacks(struct sock * sk,int acked)2011 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012 {
2013 struct tcp_sock *tp = tcp_sk(sk);
2014
2015 if (acked > 0) {
2016 /* One ACK acked hole. The rest eat duplicate ACKs. */
2017 if (acked - 1 >= tp->sacked_out)
2018 tp->sacked_out = 0;
2019 else
2020 tp->sacked_out -= acked - 1;
2021 }
2022 tcp_check_reno_reordering(sk, acked);
2023 tcp_verify_left_out(tp);
2024 }
2025
tcp_reset_reno_sack(struct tcp_sock * tp)2026 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027 {
2028 tp->sacked_out = 0;
2029 }
2030
tcp_is_sackfrto(const struct tcp_sock * tp)2031 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032 {
2033 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034 }
2035
2036 /* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
tcp_use_frto(struct sock * sk)2039 int tcp_use_frto(struct sock *sk)
2040 {
2041 const struct tcp_sock *tp = tcp_sk(sk);
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct sk_buff *skb;
2044
2045 if (!sysctl_tcp_frto)
2046 return 0;
2047
2048 /* MTU probe and F-RTO won't really play nicely along currently */
2049 if (icsk->icsk_mtup.probe_size)
2050 return 0;
2051
2052 if (tcp_is_sackfrto(tp))
2053 return 1;
2054
2055 /* Avoid expensive walking of rexmit queue if possible */
2056 if (tp->retrans_out > 1)
2057 return 0;
2058
2059 skb = tcp_write_queue_head(sk);
2060 if (tcp_skb_is_last(sk, skb))
2061 return 1;
2062 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2063 tcp_for_write_queue_from(skb, sk) {
2064 if (skb == tcp_send_head(sk))
2065 break;
2066 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067 return 0;
2068 /* Short-circuit when first non-SACKed skb has been checked */
2069 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070 break;
2071 }
2072 return 1;
2073 }
2074
2075 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 * "Reduce ssthresh if it has not yet been made inside this window."
2086 */
tcp_enter_frto(struct sock * sk)2087 void tcp_enter_frto(struct sock *sk)
2088 {
2089 const struct inet_connection_sock *icsk = inet_csk(sk);
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 struct sk_buff *skb;
2092
2093 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094 tp->snd_una == tp->high_seq ||
2095 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096 !icsk->icsk_retransmits)) {
2097 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 /* Our state is too optimistic in ssthresh() call because cwnd
2099 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100 * recovery has not yet completed. Pattern would be this: RTO,
2101 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102 * up here twice).
2103 * RFC4138 should be more specific on what to do, even though
2104 * RTO is quite unlikely to occur after the first Cumulative ACK
2105 * due to back-off and complexity of triggering events ...
2106 */
2107 if (tp->frto_counter) {
2108 u32 stored_cwnd;
2109 stored_cwnd = tp->snd_cwnd;
2110 tp->snd_cwnd = 2;
2111 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 tp->snd_cwnd = stored_cwnd;
2113 } else {
2114 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115 }
2116 /* ... in theory, cong.control module could do "any tricks" in
2117 * ssthresh(), which means that ca_state, lost bits and lost_out
2118 * counter would have to be faked before the call occurs. We
2119 * consider that too expensive, unlikely and hacky, so modules
2120 * using these in ssthresh() must deal these incompatibility
2121 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122 */
2123 tcp_ca_event(sk, CA_EVENT_FRTO);
2124 }
2125
2126 tp->undo_marker = tp->snd_una;
2127 tp->undo_retrans = 0;
2128
2129 skb = tcp_write_queue_head(sk);
2130 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131 tp->undo_marker = 0;
2132 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134 tp->retrans_out -= tcp_skb_pcount(skb);
2135 }
2136 tcp_verify_left_out(tp);
2137
2138 /* Too bad if TCP was application limited */
2139 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2142 * The last condition is necessary at least in tp->frto_counter case.
2143 */
2144 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146 after(tp->high_seq, tp->snd_una)) {
2147 tp->frto_highmark = tp->high_seq;
2148 } else {
2149 tp->frto_highmark = tp->snd_nxt;
2150 }
2151 tcp_set_ca_state(sk, TCP_CA_Disorder);
2152 tp->high_seq = tp->snd_nxt;
2153 tp->frto_counter = 1;
2154 }
2155
2156 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
tcp_enter_frto_loss(struct sock * sk,int allowed_segments,int flag)2160 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161 {
2162 struct tcp_sock *tp = tcp_sk(sk);
2163 struct sk_buff *skb;
2164
2165 tp->lost_out = 0;
2166 tp->retrans_out = 0;
2167 if (tcp_is_reno(tp))
2168 tcp_reset_reno_sack(tp);
2169
2170 tcp_for_write_queue(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173
2174 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175 /*
2176 * Count the retransmission made on RTO correctly (only when
2177 * waiting for the first ACK and did not get it)...
2178 */
2179 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180 /* For some reason this R-bit might get cleared? */
2181 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182 tp->retrans_out += tcp_skb_pcount(skb);
2183 /* ...enter this if branch just for the first segment */
2184 flag |= FLAG_DATA_ACKED;
2185 } else {
2186 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187 tp->undo_marker = 0;
2188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 }
2190
2191 /* Marking forward transmissions that were made after RTO lost
2192 * can cause unnecessary retransmissions in some scenarios,
2193 * SACK blocks will mitigate that in some but not in all cases.
2194 * We used to not mark them but it was causing break-ups with
2195 * receivers that do only in-order receival.
2196 *
2197 * TODO: we could detect presence of such receiver and select
2198 * different behavior per flow.
2199 */
2200 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202 tp->lost_out += tcp_skb_pcount(skb);
2203 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 }
2205 }
2206 tcp_verify_left_out(tp);
2207
2208 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209 tp->snd_cwnd_cnt = 0;
2210 tp->snd_cwnd_stamp = tcp_time_stamp;
2211 tp->frto_counter = 0;
2212 tp->bytes_acked = 0;
2213
2214 tp->reordering = min_t(unsigned int, tp->reordering,
2215 sysctl_tcp_reordering);
2216 tcp_set_ca_state(sk, TCP_CA_Loss);
2217 tp->high_seq = tp->snd_nxt;
2218 TCP_ECN_queue_cwr(tp);
2219
2220 tcp_clear_all_retrans_hints(tp);
2221 }
2222
tcp_clear_retrans_partial(struct tcp_sock * tp)2223 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224 {
2225 tp->retrans_out = 0;
2226 tp->lost_out = 0;
2227
2228 tp->undo_marker = 0;
2229 tp->undo_retrans = 0;
2230 }
2231
tcp_clear_retrans(struct tcp_sock * tp)2232 void tcp_clear_retrans(struct tcp_sock *tp)
2233 {
2234 tcp_clear_retrans_partial(tp);
2235
2236 tp->fackets_out = 0;
2237 tp->sacked_out = 0;
2238 }
2239
2240 /* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
tcp_enter_loss(struct sock * sk,int how)2244 void tcp_enter_loss(struct sock *sk, int how)
2245 {
2246 const struct inet_connection_sock *icsk = inet_csk(sk);
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 struct sk_buff *skb;
2249
2250 /* Reduce ssthresh if it has not yet been made inside this window. */
2251 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2252 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255 tcp_ca_event(sk, CA_EVENT_LOSS);
2256 }
2257 tp->snd_cwnd = 1;
2258 tp->snd_cwnd_cnt = 0;
2259 tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261 tp->bytes_acked = 0;
2262 tcp_clear_retrans_partial(tp);
2263
2264 if (tcp_is_reno(tp))
2265 tcp_reset_reno_sack(tp);
2266
2267 tp->undo_marker = tp->snd_una;
2268 if (how) {
2269 tp->sacked_out = 0;
2270 tp->fackets_out = 0;
2271 }
2272 tcp_clear_all_retrans_hints(tp);
2273
2274 tcp_for_write_queue(skb, sk) {
2275 if (skb == tcp_send_head(sk))
2276 break;
2277
2278 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2279 tp->undo_marker = 0;
2280 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2281 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2282 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2283 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2284 tp->lost_out += tcp_skb_pcount(skb);
2285 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2286 }
2287 }
2288 tcp_verify_left_out(tp);
2289
2290 tp->reordering = min_t(unsigned int, tp->reordering,
2291 sysctl_tcp_reordering);
2292 tcp_set_ca_state(sk, TCP_CA_Loss);
2293 tp->high_seq = tp->snd_nxt;
2294 TCP_ECN_queue_cwr(tp);
2295 /* Abort F-RTO algorithm if one is in progress */
2296 tp->frto_counter = 0;
2297 }
2298
2299 /* If ACK arrived pointing to a remembered SACK, it means that our
2300 * remembered SACKs do not reflect real state of receiver i.e.
2301 * receiver _host_ is heavily congested (or buggy).
2302 *
2303 * Do processing similar to RTO timeout.
2304 */
tcp_check_sack_reneging(struct sock * sk,int flag)2305 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2306 {
2307 if (flag & FLAG_SACK_RENEGING) {
2308 struct inet_connection_sock *icsk = inet_csk(sk);
2309 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2310
2311 tcp_enter_loss(sk, 1);
2312 icsk->icsk_retransmits++;
2313 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2314 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2315 icsk->icsk_rto, TCP_RTO_MAX);
2316 return 1;
2317 }
2318 return 0;
2319 }
2320
tcp_fackets_out(const struct tcp_sock * tp)2321 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2322 {
2323 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2324 }
2325
2326 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2327 * counter when SACK is enabled (without SACK, sacked_out is used for
2328 * that purpose).
2329 *
2330 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2331 * segments up to the highest received SACK block so far and holes in
2332 * between them.
2333 *
2334 * With reordering, holes may still be in flight, so RFC3517 recovery
2335 * uses pure sacked_out (total number of SACKed segments) even though
2336 * it violates the RFC that uses duplicate ACKs, often these are equal
2337 * but when e.g. out-of-window ACKs or packet duplication occurs,
2338 * they differ. Since neither occurs due to loss, TCP should really
2339 * ignore them.
2340 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2341 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2342 {
2343 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2344 }
2345
tcp_skb_timedout(const struct sock * sk,const struct sk_buff * skb)2346 static inline int tcp_skb_timedout(const struct sock *sk,
2347 const struct sk_buff *skb)
2348 {
2349 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2350 }
2351
tcp_head_timedout(const struct sock * sk)2352 static inline int tcp_head_timedout(const struct sock *sk)
2353 {
2354 const struct tcp_sock *tp = tcp_sk(sk);
2355
2356 return tp->packets_out &&
2357 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2358 }
2359
2360 /* Linux NewReno/SACK/FACK/ECN state machine.
2361 * --------------------------------------
2362 *
2363 * "Open" Normal state, no dubious events, fast path.
2364 * "Disorder" In all the respects it is "Open",
2365 * but requires a bit more attention. It is entered when
2366 * we see some SACKs or dupacks. It is split of "Open"
2367 * mainly to move some processing from fast path to slow one.
2368 * "CWR" CWND was reduced due to some Congestion Notification event.
2369 * It can be ECN, ICMP source quench, local device congestion.
2370 * "Recovery" CWND was reduced, we are fast-retransmitting.
2371 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2372 *
2373 * tcp_fastretrans_alert() is entered:
2374 * - each incoming ACK, if state is not "Open"
2375 * - when arrived ACK is unusual, namely:
2376 * * SACK
2377 * * Duplicate ACK.
2378 * * ECN ECE.
2379 *
2380 * Counting packets in flight is pretty simple.
2381 *
2382 * in_flight = packets_out - left_out + retrans_out
2383 *
2384 * packets_out is SND.NXT-SND.UNA counted in packets.
2385 *
2386 * retrans_out is number of retransmitted segments.
2387 *
2388 * left_out is number of segments left network, but not ACKed yet.
2389 *
2390 * left_out = sacked_out + lost_out
2391 *
2392 * sacked_out: Packets, which arrived to receiver out of order
2393 * and hence not ACKed. With SACKs this number is simply
2394 * amount of SACKed data. Even without SACKs
2395 * it is easy to give pretty reliable estimate of this number,
2396 * counting duplicate ACKs.
2397 *
2398 * lost_out: Packets lost by network. TCP has no explicit
2399 * "loss notification" feedback from network (for now).
2400 * It means that this number can be only _guessed_.
2401 * Actually, it is the heuristics to predict lossage that
2402 * distinguishes different algorithms.
2403 *
2404 * F.e. after RTO, when all the queue is considered as lost,
2405 * lost_out = packets_out and in_flight = retrans_out.
2406 *
2407 * Essentially, we have now two algorithms counting
2408 * lost packets.
2409 *
2410 * FACK: It is the simplest heuristics. As soon as we decided
2411 * that something is lost, we decide that _all_ not SACKed
2412 * packets until the most forward SACK are lost. I.e.
2413 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2414 * It is absolutely correct estimate, if network does not reorder
2415 * packets. And it loses any connection to reality when reordering
2416 * takes place. We use FACK by default until reordering
2417 * is suspected on the path to this destination.
2418 *
2419 * NewReno: when Recovery is entered, we assume that one segment
2420 * is lost (classic Reno). While we are in Recovery and
2421 * a partial ACK arrives, we assume that one more packet
2422 * is lost (NewReno). This heuristics are the same in NewReno
2423 * and SACK.
2424 *
2425 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2426 * deflation etc. CWND is real congestion window, never inflated, changes
2427 * only according to classic VJ rules.
2428 *
2429 * Really tricky (and requiring careful tuning) part of algorithm
2430 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2431 * The first determines the moment _when_ we should reduce CWND and,
2432 * hence, slow down forward transmission. In fact, it determines the moment
2433 * when we decide that hole is caused by loss, rather than by a reorder.
2434 *
2435 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2436 * holes, caused by lost packets.
2437 *
2438 * And the most logically complicated part of algorithm is undo
2439 * heuristics. We detect false retransmits due to both too early
2440 * fast retransmit (reordering) and underestimated RTO, analyzing
2441 * timestamps and D-SACKs. When we detect that some segments were
2442 * retransmitted by mistake and CWND reduction was wrong, we undo
2443 * window reduction and abort recovery phase. This logic is hidden
2444 * inside several functions named tcp_try_undo_<something>.
2445 */
2446
2447 /* This function decides, when we should leave Disordered state
2448 * and enter Recovery phase, reducing congestion window.
2449 *
2450 * Main question: may we further continue forward transmission
2451 * with the same cwnd?
2452 */
tcp_time_to_recover(struct sock * sk)2453 static int tcp_time_to_recover(struct sock *sk)
2454 {
2455 struct tcp_sock *tp = tcp_sk(sk);
2456 __u32 packets_out;
2457
2458 /* Do not perform any recovery during F-RTO algorithm */
2459 if (tp->frto_counter)
2460 return 0;
2461
2462 /* Trick#1: The loss is proven. */
2463 if (tp->lost_out)
2464 return 1;
2465
2466 /* Not-A-Trick#2 : Classic rule... */
2467 if (tcp_dupack_heuristics(tp) > tp->reordering)
2468 return 1;
2469
2470 /* Trick#3 : when we use RFC2988 timer restart, fast
2471 * retransmit can be triggered by timeout of queue head.
2472 */
2473 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2474 return 1;
2475
2476 /* Trick#4: It is still not OK... But will it be useful to delay
2477 * recovery more?
2478 */
2479 packets_out = tp->packets_out;
2480 if (packets_out <= tp->reordering &&
2481 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2482 !tcp_may_send_now(sk)) {
2483 /* We have nothing to send. This connection is limited
2484 * either by receiver window or by application.
2485 */
2486 return 1;
2487 }
2488
2489 /* If a thin stream is detected, retransmit after first
2490 * received dupack. Employ only if SACK is supported in order
2491 * to avoid possible corner-case series of spurious retransmissions
2492 * Use only if there are no unsent data.
2493 */
2494 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2495 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2496 tcp_is_sack(tp) && !tcp_send_head(sk))
2497 return 1;
2498
2499 return 0;
2500 }
2501
2502 /* New heuristics: it is possible only after we switched to restart timer
2503 * each time when something is ACKed. Hence, we can detect timed out packets
2504 * during fast retransmit without falling to slow start.
2505 *
2506 * Usefulness of this as is very questionable, since we should know which of
2507 * the segments is the next to timeout which is relatively expensive to find
2508 * in general case unless we add some data structure just for that. The
2509 * current approach certainly won't find the right one too often and when it
2510 * finally does find _something_ it usually marks large part of the window
2511 * right away (because a retransmission with a larger timestamp blocks the
2512 * loop from advancing). -ij
2513 */
tcp_timeout_skbs(struct sock * sk)2514 static void tcp_timeout_skbs(struct sock *sk)
2515 {
2516 struct tcp_sock *tp = tcp_sk(sk);
2517 struct sk_buff *skb;
2518
2519 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2520 return;
2521
2522 skb = tp->scoreboard_skb_hint;
2523 if (tp->scoreboard_skb_hint == NULL)
2524 skb = tcp_write_queue_head(sk);
2525
2526 tcp_for_write_queue_from(skb, sk) {
2527 if (skb == tcp_send_head(sk))
2528 break;
2529 if (!tcp_skb_timedout(sk, skb))
2530 break;
2531
2532 tcp_skb_mark_lost(tp, skb);
2533 }
2534
2535 tp->scoreboard_skb_hint = skb;
2536
2537 tcp_verify_left_out(tp);
2538 }
2539
2540 /* Detect loss in event "A" above by marking head of queue up as lost.
2541 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2542 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2543 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2544 * the maximum SACKed segments to pass before reaching this limit.
2545 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2546 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2547 {
2548 struct tcp_sock *tp = tcp_sk(sk);
2549 struct sk_buff *skb;
2550 int cnt, oldcnt;
2551 int err;
2552 unsigned int mss;
2553 /* Use SACK to deduce losses of new sequences sent during recovery */
2554 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2555
2556 WARN_ON(packets > tp->packets_out);
2557 if (tp->lost_skb_hint) {
2558 skb = tp->lost_skb_hint;
2559 cnt = tp->lost_cnt_hint;
2560 /* Head already handled? */
2561 if (mark_head && skb != tcp_write_queue_head(sk))
2562 return;
2563 } else {
2564 skb = tcp_write_queue_head(sk);
2565 cnt = 0;
2566 }
2567
2568 tcp_for_write_queue_from(skb, sk) {
2569 if (skb == tcp_send_head(sk))
2570 break;
2571 /* TODO: do this better */
2572 /* this is not the most efficient way to do this... */
2573 tp->lost_skb_hint = skb;
2574 tp->lost_cnt_hint = cnt;
2575
2576 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2577 break;
2578
2579 oldcnt = cnt;
2580 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2581 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2582 cnt += tcp_skb_pcount(skb);
2583
2584 if (cnt > packets) {
2585 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2586 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2587 (oldcnt >= packets))
2588 break;
2589
2590 mss = skb_shinfo(skb)->gso_size;
2591 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2592 if (err < 0)
2593 break;
2594 cnt = packets;
2595 }
2596
2597 tcp_skb_mark_lost(tp, skb);
2598
2599 if (mark_head)
2600 break;
2601 }
2602 tcp_verify_left_out(tp);
2603 }
2604
2605 /* Account newly detected lost packet(s) */
2606
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2607 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2608 {
2609 struct tcp_sock *tp = tcp_sk(sk);
2610
2611 if (tcp_is_reno(tp)) {
2612 tcp_mark_head_lost(sk, 1, 1);
2613 } else if (tcp_is_fack(tp)) {
2614 int lost = tp->fackets_out - tp->reordering;
2615 if (lost <= 0)
2616 lost = 1;
2617 tcp_mark_head_lost(sk, lost, 0);
2618 } else {
2619 int sacked_upto = tp->sacked_out - tp->reordering;
2620 if (sacked_upto >= 0)
2621 tcp_mark_head_lost(sk, sacked_upto, 0);
2622 else if (fast_rexmit)
2623 tcp_mark_head_lost(sk, 1, 1);
2624 }
2625
2626 tcp_timeout_skbs(sk);
2627 }
2628
2629 /* CWND moderation, preventing bursts due to too big ACKs
2630 * in dubious situations.
2631 */
tcp_moderate_cwnd(struct tcp_sock * tp)2632 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2633 {
2634 tp->snd_cwnd = min(tp->snd_cwnd,
2635 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2636 tp->snd_cwnd_stamp = tcp_time_stamp;
2637 }
2638
2639 /* Lower bound on congestion window is slow start threshold
2640 * unless congestion avoidance choice decides to overide it.
2641 */
tcp_cwnd_min(const struct sock * sk)2642 static inline u32 tcp_cwnd_min(const struct sock *sk)
2643 {
2644 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2645
2646 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2647 }
2648
2649 /* Decrease cwnd each second ack. */
tcp_cwnd_down(struct sock * sk,int flag)2650 static void tcp_cwnd_down(struct sock *sk, int flag)
2651 {
2652 struct tcp_sock *tp = tcp_sk(sk);
2653 int decr = tp->snd_cwnd_cnt + 1;
2654
2655 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2656 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2657 tp->snd_cwnd_cnt = decr & 1;
2658 decr >>= 1;
2659
2660 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2661 tp->snd_cwnd -= decr;
2662
2663 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2664 tp->snd_cwnd_stamp = tcp_time_stamp;
2665 }
2666 }
2667
2668 /* Nothing was retransmitted or returned timestamp is less
2669 * than timestamp of the first retransmission.
2670 */
tcp_packet_delayed(const struct tcp_sock * tp)2671 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2672 {
2673 return !tp->retrans_stamp ||
2674 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2675 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2676 }
2677
2678 /* Undo procedures. */
2679
2680 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2681 static void DBGUNDO(struct sock *sk, const char *msg)
2682 {
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 struct inet_sock *inet = inet_sk(sk);
2685
2686 if (sk->sk_family == AF_INET) {
2687 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2688 msg,
2689 &inet->inet_daddr, ntohs(inet->inet_dport),
2690 tp->snd_cwnd, tcp_left_out(tp),
2691 tp->snd_ssthresh, tp->prior_ssthresh,
2692 tp->packets_out);
2693 }
2694 #if IS_ENABLED(CONFIG_IPV6)
2695 else if (sk->sk_family == AF_INET6) {
2696 struct ipv6_pinfo *np = inet6_sk(sk);
2697 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2698 msg,
2699 &np->daddr, ntohs(inet->inet_dport),
2700 tp->snd_cwnd, tcp_left_out(tp),
2701 tp->snd_ssthresh, tp->prior_ssthresh,
2702 tp->packets_out);
2703 }
2704 #endif
2705 }
2706 #else
2707 #define DBGUNDO(x...) do { } while (0)
2708 #endif
2709
tcp_undo_cwr(struct sock * sk,const bool undo_ssthresh)2710 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2711 {
2712 struct tcp_sock *tp = tcp_sk(sk);
2713
2714 if (tp->prior_ssthresh) {
2715 const struct inet_connection_sock *icsk = inet_csk(sk);
2716
2717 if (icsk->icsk_ca_ops->undo_cwnd)
2718 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2719 else
2720 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2721
2722 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2723 tp->snd_ssthresh = tp->prior_ssthresh;
2724 TCP_ECN_withdraw_cwr(tp);
2725 }
2726 } else {
2727 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2728 }
2729 tp->snd_cwnd_stamp = tcp_time_stamp;
2730 }
2731
tcp_may_undo(const struct tcp_sock * tp)2732 static inline int tcp_may_undo(const struct tcp_sock *tp)
2733 {
2734 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2735 }
2736
2737 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2738 static int tcp_try_undo_recovery(struct sock *sk)
2739 {
2740 struct tcp_sock *tp = tcp_sk(sk);
2741
2742 if (tcp_may_undo(tp)) {
2743 int mib_idx;
2744
2745 /* Happy end! We did not retransmit anything
2746 * or our original transmission succeeded.
2747 */
2748 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2749 tcp_undo_cwr(sk, true);
2750 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2751 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2752 else
2753 mib_idx = LINUX_MIB_TCPFULLUNDO;
2754
2755 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2756 tp->undo_marker = 0;
2757 }
2758 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2759 /* Hold old state until something *above* high_seq
2760 * is ACKed. For Reno it is MUST to prevent false
2761 * fast retransmits (RFC2582). SACK TCP is safe. */
2762 tcp_moderate_cwnd(tp);
2763 return 1;
2764 }
2765 tcp_set_ca_state(sk, TCP_CA_Open);
2766 return 0;
2767 }
2768
2769 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2770 static void tcp_try_undo_dsack(struct sock *sk)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773
2774 if (tp->undo_marker && !tp->undo_retrans) {
2775 DBGUNDO(sk, "D-SACK");
2776 tcp_undo_cwr(sk, true);
2777 tp->undo_marker = 0;
2778 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2779 }
2780 }
2781
2782 /* We can clear retrans_stamp when there are no retransmissions in the
2783 * window. It would seem that it is trivially available for us in
2784 * tp->retrans_out, however, that kind of assumptions doesn't consider
2785 * what will happen if errors occur when sending retransmission for the
2786 * second time. ...It could the that such segment has only
2787 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2788 * the head skb is enough except for some reneging corner cases that
2789 * are not worth the effort.
2790 *
2791 * Main reason for all this complexity is the fact that connection dying
2792 * time now depends on the validity of the retrans_stamp, in particular,
2793 * that successive retransmissions of a segment must not advance
2794 * retrans_stamp under any conditions.
2795 */
tcp_any_retrans_done(const struct sock * sk)2796 static int tcp_any_retrans_done(const struct sock *sk)
2797 {
2798 const struct tcp_sock *tp = tcp_sk(sk);
2799 struct sk_buff *skb;
2800
2801 if (tp->retrans_out)
2802 return 1;
2803
2804 skb = tcp_write_queue_head(sk);
2805 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2806 return 1;
2807
2808 return 0;
2809 }
2810
2811 /* Undo during fast recovery after partial ACK. */
2812
tcp_try_undo_partial(struct sock * sk,int acked)2813 static int tcp_try_undo_partial(struct sock *sk, int acked)
2814 {
2815 struct tcp_sock *tp = tcp_sk(sk);
2816 /* Partial ACK arrived. Force Hoe's retransmit. */
2817 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2818
2819 if (tcp_may_undo(tp)) {
2820 /* Plain luck! Hole if filled with delayed
2821 * packet, rather than with a retransmit.
2822 */
2823 if (!tcp_any_retrans_done(sk))
2824 tp->retrans_stamp = 0;
2825
2826 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2827
2828 DBGUNDO(sk, "Hoe");
2829 tcp_undo_cwr(sk, false);
2830 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2831
2832 /* So... Do not make Hoe's retransmit yet.
2833 * If the first packet was delayed, the rest
2834 * ones are most probably delayed as well.
2835 */
2836 failed = 0;
2837 }
2838 return failed;
2839 }
2840
2841 /* Undo during loss recovery after partial ACK. */
tcp_try_undo_loss(struct sock * sk)2842 static int tcp_try_undo_loss(struct sock *sk)
2843 {
2844 struct tcp_sock *tp = tcp_sk(sk);
2845
2846 if (tcp_may_undo(tp)) {
2847 struct sk_buff *skb;
2848 tcp_for_write_queue(skb, sk) {
2849 if (skb == tcp_send_head(sk))
2850 break;
2851 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2852 }
2853
2854 tcp_clear_all_retrans_hints(tp);
2855
2856 DBGUNDO(sk, "partial loss");
2857 tp->lost_out = 0;
2858 tcp_undo_cwr(sk, true);
2859 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2860 inet_csk(sk)->icsk_retransmits = 0;
2861 tp->undo_marker = 0;
2862 if (tcp_is_sack(tp))
2863 tcp_set_ca_state(sk, TCP_CA_Open);
2864 return 1;
2865 }
2866 return 0;
2867 }
2868
tcp_complete_cwr(struct sock * sk)2869 static inline void tcp_complete_cwr(struct sock *sk)
2870 {
2871 struct tcp_sock *tp = tcp_sk(sk);
2872
2873 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2874 if (tp->undo_marker) {
2875 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2876 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2877 tp->snd_cwnd_stamp = tcp_time_stamp;
2878 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2879 /* PRR algorithm. */
2880 tp->snd_cwnd = tp->snd_ssthresh;
2881 tp->snd_cwnd_stamp = tcp_time_stamp;
2882 }
2883 }
2884 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2885 }
2886
tcp_try_keep_open(struct sock * sk)2887 static void tcp_try_keep_open(struct sock *sk)
2888 {
2889 struct tcp_sock *tp = tcp_sk(sk);
2890 int state = TCP_CA_Open;
2891
2892 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2893 state = TCP_CA_Disorder;
2894
2895 if (inet_csk(sk)->icsk_ca_state != state) {
2896 tcp_set_ca_state(sk, state);
2897 tp->high_seq = tp->snd_nxt;
2898 }
2899 }
2900
tcp_try_to_open(struct sock * sk,int flag)2901 static void tcp_try_to_open(struct sock *sk, int flag)
2902 {
2903 struct tcp_sock *tp = tcp_sk(sk);
2904
2905 tcp_verify_left_out(tp);
2906
2907 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2908 tp->retrans_stamp = 0;
2909
2910 if (flag & FLAG_ECE)
2911 tcp_enter_cwr(sk, 1);
2912
2913 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2914 tcp_try_keep_open(sk);
2915 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2916 tcp_moderate_cwnd(tp);
2917 } else {
2918 tcp_cwnd_down(sk, flag);
2919 }
2920 }
2921
tcp_mtup_probe_failed(struct sock * sk)2922 static void tcp_mtup_probe_failed(struct sock *sk)
2923 {
2924 struct inet_connection_sock *icsk = inet_csk(sk);
2925
2926 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2927 icsk->icsk_mtup.probe_size = 0;
2928 }
2929
tcp_mtup_probe_success(struct sock * sk)2930 static void tcp_mtup_probe_success(struct sock *sk)
2931 {
2932 struct tcp_sock *tp = tcp_sk(sk);
2933 struct inet_connection_sock *icsk = inet_csk(sk);
2934
2935 /* FIXME: breaks with very large cwnd */
2936 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2937 tp->snd_cwnd = tp->snd_cwnd *
2938 tcp_mss_to_mtu(sk, tp->mss_cache) /
2939 icsk->icsk_mtup.probe_size;
2940 tp->snd_cwnd_cnt = 0;
2941 tp->snd_cwnd_stamp = tcp_time_stamp;
2942 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2943
2944 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2945 icsk->icsk_mtup.probe_size = 0;
2946 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2947 }
2948
2949 /* Do a simple retransmit without using the backoff mechanisms in
2950 * tcp_timer. This is used for path mtu discovery.
2951 * The socket is already locked here.
2952 */
tcp_simple_retransmit(struct sock * sk)2953 void tcp_simple_retransmit(struct sock *sk)
2954 {
2955 const struct inet_connection_sock *icsk = inet_csk(sk);
2956 struct tcp_sock *tp = tcp_sk(sk);
2957 struct sk_buff *skb;
2958 unsigned int mss = tcp_current_mss(sk);
2959 u32 prior_lost = tp->lost_out;
2960
2961 tcp_for_write_queue(skb, sk) {
2962 if (skb == tcp_send_head(sk))
2963 break;
2964 if (tcp_skb_seglen(skb) > mss &&
2965 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2966 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2967 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2968 tp->retrans_out -= tcp_skb_pcount(skb);
2969 }
2970 tcp_skb_mark_lost_uncond_verify(tp, skb);
2971 }
2972 }
2973
2974 tcp_clear_retrans_hints_partial(tp);
2975
2976 if (prior_lost == tp->lost_out)
2977 return;
2978
2979 if (tcp_is_reno(tp))
2980 tcp_limit_reno_sacked(tp);
2981
2982 tcp_verify_left_out(tp);
2983
2984 /* Don't muck with the congestion window here.
2985 * Reason is that we do not increase amount of _data_
2986 * in network, but units changed and effective
2987 * cwnd/ssthresh really reduced now.
2988 */
2989 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2990 tp->high_seq = tp->snd_nxt;
2991 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2992 tp->prior_ssthresh = 0;
2993 tp->undo_marker = 0;
2994 tcp_set_ca_state(sk, TCP_CA_Loss);
2995 }
2996 tcp_xmit_retransmit_queue(sk);
2997 }
2998 EXPORT_SYMBOL(tcp_simple_retransmit);
2999
3000 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3001 * (proportional rate reduction with slow start reduction bound) as described in
3002 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3003 * It computes the number of packets to send (sndcnt) based on packets newly
3004 * delivered:
3005 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3006 * cwnd reductions across a full RTT.
3007 * 2) If packets in flight is lower than ssthresh (such as due to excess
3008 * losses and/or application stalls), do not perform any further cwnd
3009 * reductions, but instead slow start up to ssthresh.
3010 */
tcp_update_cwnd_in_recovery(struct sock * sk,int newly_acked_sacked,int fast_rexmit,int flag)3011 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3012 int fast_rexmit, int flag)
3013 {
3014 struct tcp_sock *tp = tcp_sk(sk);
3015 int sndcnt = 0;
3016 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3017
3018 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3019 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3020 tp->prior_cwnd - 1;
3021 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3022 } else {
3023 sndcnt = min_t(int, delta,
3024 max_t(int, tp->prr_delivered - tp->prr_out,
3025 newly_acked_sacked) + 1);
3026 }
3027
3028 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3029 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3030 }
3031
3032 /* Process an event, which can update packets-in-flight not trivially.
3033 * Main goal of this function is to calculate new estimate for left_out,
3034 * taking into account both packets sitting in receiver's buffer and
3035 * packets lost by network.
3036 *
3037 * Besides that it does CWND reduction, when packet loss is detected
3038 * and changes state of machine.
3039 *
3040 * It does _not_ decide what to send, it is made in function
3041 * tcp_xmit_retransmit_queue().
3042 */
tcp_fastretrans_alert(struct sock * sk,int pkts_acked,int prior_sacked,int prior_packets,bool is_dupack,int flag)3043 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3044 int prior_sacked, int prior_packets,
3045 bool is_dupack, int flag)
3046 {
3047 struct inet_connection_sock *icsk = inet_csk(sk);
3048 struct tcp_sock *tp = tcp_sk(sk);
3049 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3050 (tcp_fackets_out(tp) > tp->reordering));
3051 int newly_acked_sacked = 0;
3052 int fast_rexmit = 0, mib_idx;
3053
3054 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3055 tp->sacked_out = 0;
3056 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3057 tp->fackets_out = 0;
3058
3059 /* Now state machine starts.
3060 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3061 if (flag & FLAG_ECE)
3062 tp->prior_ssthresh = 0;
3063
3064 /* B. In all the states check for reneging SACKs. */
3065 if (tcp_check_sack_reneging(sk, flag))
3066 return;
3067
3068 /* C. Check consistency of the current state. */
3069 tcp_verify_left_out(tp);
3070
3071 /* D. Check state exit conditions. State can be terminated
3072 * when high_seq is ACKed. */
3073 if (icsk->icsk_ca_state == TCP_CA_Open) {
3074 WARN_ON(tp->retrans_out != 0);
3075 tp->retrans_stamp = 0;
3076 } else if (!before(tp->snd_una, tp->high_seq)) {
3077 switch (icsk->icsk_ca_state) {
3078 case TCP_CA_Loss:
3079 icsk->icsk_retransmits = 0;
3080 if (tcp_try_undo_recovery(sk))
3081 return;
3082 break;
3083
3084 case TCP_CA_CWR:
3085 /* CWR is to be held something *above* high_seq
3086 * is ACKed for CWR bit to reach receiver. */
3087 if (tp->snd_una != tp->high_seq) {
3088 tcp_complete_cwr(sk);
3089 tcp_set_ca_state(sk, TCP_CA_Open);
3090 }
3091 break;
3092
3093 case TCP_CA_Recovery:
3094 if (tcp_is_reno(tp))
3095 tcp_reset_reno_sack(tp);
3096 if (tcp_try_undo_recovery(sk))
3097 return;
3098 tcp_complete_cwr(sk);
3099 break;
3100 }
3101 }
3102
3103 /* E. Process state. */
3104 switch (icsk->icsk_ca_state) {
3105 case TCP_CA_Recovery:
3106 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3107 if (tcp_is_reno(tp) && is_dupack)
3108 tcp_add_reno_sack(sk);
3109 } else
3110 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3111 newly_acked_sacked = prior_packets - tp->packets_out +
3112 tp->sacked_out - prior_sacked;
3113 break;
3114 case TCP_CA_Loss:
3115 if (flag & FLAG_DATA_ACKED)
3116 icsk->icsk_retransmits = 0;
3117 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3118 tcp_reset_reno_sack(tp);
3119 if (!tcp_try_undo_loss(sk)) {
3120 tcp_moderate_cwnd(tp);
3121 tcp_xmit_retransmit_queue(sk);
3122 return;
3123 }
3124 if (icsk->icsk_ca_state != TCP_CA_Open)
3125 return;
3126 /* Loss is undone; fall through to processing in Open state. */
3127 default:
3128 if (tcp_is_reno(tp)) {
3129 if (flag & FLAG_SND_UNA_ADVANCED)
3130 tcp_reset_reno_sack(tp);
3131 if (is_dupack)
3132 tcp_add_reno_sack(sk);
3133 }
3134 newly_acked_sacked = prior_packets - tp->packets_out +
3135 tp->sacked_out - prior_sacked;
3136
3137 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3138 tcp_try_undo_dsack(sk);
3139
3140 if (!tcp_time_to_recover(sk)) {
3141 tcp_try_to_open(sk, flag);
3142 return;
3143 }
3144
3145 /* MTU probe failure: don't reduce cwnd */
3146 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3147 icsk->icsk_mtup.probe_size &&
3148 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3149 tcp_mtup_probe_failed(sk);
3150 /* Restores the reduction we did in tcp_mtup_probe() */
3151 tp->snd_cwnd++;
3152 tcp_simple_retransmit(sk);
3153 return;
3154 }
3155
3156 /* Otherwise enter Recovery state */
3157
3158 if (tcp_is_reno(tp))
3159 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3160 else
3161 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3162
3163 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3164
3165 tp->high_seq = tp->snd_nxt;
3166 tp->prior_ssthresh = 0;
3167 tp->undo_marker = tp->snd_una;
3168 tp->undo_retrans = tp->retrans_out;
3169
3170 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3171 if (!(flag & FLAG_ECE))
3172 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3173 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3174 TCP_ECN_queue_cwr(tp);
3175 }
3176
3177 tp->bytes_acked = 0;
3178 tp->snd_cwnd_cnt = 0;
3179 tp->prior_cwnd = tp->snd_cwnd;
3180 tp->prr_delivered = 0;
3181 tp->prr_out = 0;
3182 tcp_set_ca_state(sk, TCP_CA_Recovery);
3183 fast_rexmit = 1;
3184 }
3185
3186 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3187 tcp_update_scoreboard(sk, fast_rexmit);
3188 tp->prr_delivered += newly_acked_sacked;
3189 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3190 tcp_xmit_retransmit_queue(sk);
3191 }
3192
tcp_valid_rtt_meas(struct sock * sk,u32 seq_rtt)3193 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3194 {
3195 tcp_rtt_estimator(sk, seq_rtt);
3196 tcp_set_rto(sk);
3197 inet_csk(sk)->icsk_backoff = 0;
3198 }
3199 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3200
3201 /* Read draft-ietf-tcplw-high-performance before mucking
3202 * with this code. (Supersedes RFC1323)
3203 */
tcp_ack_saw_tstamp(struct sock * sk,int flag)3204 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3205 {
3206 /* RTTM Rule: A TSecr value received in a segment is used to
3207 * update the averaged RTT measurement only if the segment
3208 * acknowledges some new data, i.e., only if it advances the
3209 * left edge of the send window.
3210 *
3211 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3212 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3213 *
3214 * Changed: reset backoff as soon as we see the first valid sample.
3215 * If we do not, we get strongly overestimated rto. With timestamps
3216 * samples are accepted even from very old segments: f.e., when rtt=1
3217 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3218 * answer arrives rto becomes 120 seconds! If at least one of segments
3219 * in window is lost... Voila. --ANK (010210)
3220 */
3221 struct tcp_sock *tp = tcp_sk(sk);
3222
3223 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3224 }
3225
tcp_ack_no_tstamp(struct sock * sk,u32 seq_rtt,int flag)3226 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3227 {
3228 /* We don't have a timestamp. Can only use
3229 * packets that are not retransmitted to determine
3230 * rtt estimates. Also, we must not reset the
3231 * backoff for rto until we get a non-retransmitted
3232 * packet. This allows us to deal with a situation
3233 * where the network delay has increased suddenly.
3234 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3235 */
3236
3237 if (flag & FLAG_RETRANS_DATA_ACKED)
3238 return;
3239
3240 tcp_valid_rtt_meas(sk, seq_rtt);
3241 }
3242
tcp_ack_update_rtt(struct sock * sk,const int flag,const s32 seq_rtt)3243 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3244 const s32 seq_rtt)
3245 {
3246 const struct tcp_sock *tp = tcp_sk(sk);
3247 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3248 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3249 tcp_ack_saw_tstamp(sk, flag);
3250 else if (seq_rtt >= 0)
3251 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3252 }
3253
tcp_cong_avoid(struct sock * sk,u32 ack,u32 in_flight)3254 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3255 {
3256 const struct inet_connection_sock *icsk = inet_csk(sk);
3257 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3258 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3259 }
3260
3261 /* Restart timer after forward progress on connection.
3262 * RFC2988 recommends to restart timer to now+rto.
3263 */
tcp_rearm_rto(struct sock * sk)3264 static void tcp_rearm_rto(struct sock *sk)
3265 {
3266 const struct tcp_sock *tp = tcp_sk(sk);
3267
3268 if (!tp->packets_out) {
3269 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3270 } else {
3271 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3272 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3273 }
3274 }
3275
3276 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3277 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3278 {
3279 struct tcp_sock *tp = tcp_sk(sk);
3280 u32 packets_acked;
3281
3282 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3283
3284 packets_acked = tcp_skb_pcount(skb);
3285 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3286 return 0;
3287 packets_acked -= tcp_skb_pcount(skb);
3288
3289 if (packets_acked) {
3290 BUG_ON(tcp_skb_pcount(skb) == 0);
3291 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3292 }
3293
3294 return packets_acked;
3295 }
3296
3297 /* Remove acknowledged frames from the retransmission queue. If our packet
3298 * is before the ack sequence we can discard it as it's confirmed to have
3299 * arrived at the other end.
3300 */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una)3301 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3302 u32 prior_snd_una)
3303 {
3304 struct tcp_sock *tp = tcp_sk(sk);
3305 const struct inet_connection_sock *icsk = inet_csk(sk);
3306 struct sk_buff *skb;
3307 u32 now = tcp_time_stamp;
3308 int fully_acked = 1;
3309 int flag = 0;
3310 u32 pkts_acked = 0;
3311 u32 reord = tp->packets_out;
3312 u32 prior_sacked = tp->sacked_out;
3313 s32 seq_rtt = -1;
3314 s32 ca_seq_rtt = -1;
3315 ktime_t last_ackt = net_invalid_timestamp();
3316
3317 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3318 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3319 u32 acked_pcount;
3320 u8 sacked = scb->sacked;
3321
3322 /* Determine how many packets and what bytes were acked, tso and else */
3323 if (after(scb->end_seq, tp->snd_una)) {
3324 if (tcp_skb_pcount(skb) == 1 ||
3325 !after(tp->snd_una, scb->seq))
3326 break;
3327
3328 acked_pcount = tcp_tso_acked(sk, skb);
3329 if (!acked_pcount)
3330 break;
3331
3332 fully_acked = 0;
3333 } else {
3334 acked_pcount = tcp_skb_pcount(skb);
3335 }
3336
3337 if (sacked & TCPCB_RETRANS) {
3338 if (sacked & TCPCB_SACKED_RETRANS)
3339 tp->retrans_out -= acked_pcount;
3340 flag |= FLAG_RETRANS_DATA_ACKED;
3341 ca_seq_rtt = -1;
3342 seq_rtt = -1;
3343 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3344 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3345 } else {
3346 ca_seq_rtt = now - scb->when;
3347 last_ackt = skb->tstamp;
3348 if (seq_rtt < 0) {
3349 seq_rtt = ca_seq_rtt;
3350 }
3351 if (!(sacked & TCPCB_SACKED_ACKED))
3352 reord = min(pkts_acked, reord);
3353 }
3354
3355 if (sacked & TCPCB_SACKED_ACKED)
3356 tp->sacked_out -= acked_pcount;
3357 if (sacked & TCPCB_LOST)
3358 tp->lost_out -= acked_pcount;
3359
3360 tp->packets_out -= acked_pcount;
3361 pkts_acked += acked_pcount;
3362
3363 /* Initial outgoing SYN's get put onto the write_queue
3364 * just like anything else we transmit. It is not
3365 * true data, and if we misinform our callers that
3366 * this ACK acks real data, we will erroneously exit
3367 * connection startup slow start one packet too
3368 * quickly. This is severely frowned upon behavior.
3369 */
3370 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3371 flag |= FLAG_DATA_ACKED;
3372 } else {
3373 flag |= FLAG_SYN_ACKED;
3374 tp->retrans_stamp = 0;
3375 }
3376
3377 if (!fully_acked)
3378 break;
3379
3380 tcp_unlink_write_queue(skb, sk);
3381 sk_wmem_free_skb(sk, skb);
3382 tp->scoreboard_skb_hint = NULL;
3383 if (skb == tp->retransmit_skb_hint)
3384 tp->retransmit_skb_hint = NULL;
3385 if (skb == tp->lost_skb_hint)
3386 tp->lost_skb_hint = NULL;
3387 }
3388
3389 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3390 tp->snd_up = tp->snd_una;
3391
3392 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3393 flag |= FLAG_SACK_RENEGING;
3394
3395 if (flag & FLAG_ACKED) {
3396 const struct tcp_congestion_ops *ca_ops
3397 = inet_csk(sk)->icsk_ca_ops;
3398
3399 if (unlikely(icsk->icsk_mtup.probe_size &&
3400 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3401 tcp_mtup_probe_success(sk);
3402 }
3403
3404 tcp_ack_update_rtt(sk, flag, seq_rtt);
3405 tcp_rearm_rto(sk);
3406
3407 if (tcp_is_reno(tp)) {
3408 tcp_remove_reno_sacks(sk, pkts_acked);
3409 } else {
3410 int delta;
3411
3412 /* Non-retransmitted hole got filled? That's reordering */
3413 if (reord < prior_fackets)
3414 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3415
3416 delta = tcp_is_fack(tp) ? pkts_acked :
3417 prior_sacked - tp->sacked_out;
3418 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3419 }
3420
3421 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3422
3423 if (ca_ops->pkts_acked) {
3424 s32 rtt_us = -1;
3425
3426 /* Is the ACK triggering packet unambiguous? */
3427 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3428 /* High resolution needed and available? */
3429 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3430 !ktime_equal(last_ackt,
3431 net_invalid_timestamp()))
3432 rtt_us = ktime_us_delta(ktime_get_real(),
3433 last_ackt);
3434 else if (ca_seq_rtt >= 0)
3435 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3436 }
3437
3438 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3439 }
3440 }
3441
3442 #if FASTRETRANS_DEBUG > 0
3443 WARN_ON((int)tp->sacked_out < 0);
3444 WARN_ON((int)tp->lost_out < 0);
3445 WARN_ON((int)tp->retrans_out < 0);
3446 if (!tp->packets_out && tcp_is_sack(tp)) {
3447 icsk = inet_csk(sk);
3448 if (tp->lost_out) {
3449 printk(KERN_DEBUG "Leak l=%u %d\n",
3450 tp->lost_out, icsk->icsk_ca_state);
3451 tp->lost_out = 0;
3452 }
3453 if (tp->sacked_out) {
3454 printk(KERN_DEBUG "Leak s=%u %d\n",
3455 tp->sacked_out, icsk->icsk_ca_state);
3456 tp->sacked_out = 0;
3457 }
3458 if (tp->retrans_out) {
3459 printk(KERN_DEBUG "Leak r=%u %d\n",
3460 tp->retrans_out, icsk->icsk_ca_state);
3461 tp->retrans_out = 0;
3462 }
3463 }
3464 #endif
3465 return flag;
3466 }
3467
tcp_ack_probe(struct sock * sk)3468 static void tcp_ack_probe(struct sock *sk)
3469 {
3470 const struct tcp_sock *tp = tcp_sk(sk);
3471 struct inet_connection_sock *icsk = inet_csk(sk);
3472
3473 /* Was it a usable window open? */
3474
3475 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3476 icsk->icsk_backoff = 0;
3477 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3478 /* Socket must be waked up by subsequent tcp_data_snd_check().
3479 * This function is not for random using!
3480 */
3481 } else {
3482 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3483 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3484 TCP_RTO_MAX);
3485 }
3486 }
3487
tcp_ack_is_dubious(const struct sock * sk,const int flag)3488 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3489 {
3490 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3491 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3492 }
3493
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3494 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3495 {
3496 const struct tcp_sock *tp = tcp_sk(sk);
3497 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3498 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3499 }
3500
3501 /* Check that window update is acceptable.
3502 * The function assumes that snd_una<=ack<=snd_next.
3503 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3504 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3505 const u32 ack, const u32 ack_seq,
3506 const u32 nwin)
3507 {
3508 return after(ack, tp->snd_una) ||
3509 after(ack_seq, tp->snd_wl1) ||
3510 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3511 }
3512
3513 /* Update our send window.
3514 *
3515 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3516 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3517 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3518 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3519 u32 ack_seq)
3520 {
3521 struct tcp_sock *tp = tcp_sk(sk);
3522 int flag = 0;
3523 u32 nwin = ntohs(tcp_hdr(skb)->window);
3524
3525 if (likely(!tcp_hdr(skb)->syn))
3526 nwin <<= tp->rx_opt.snd_wscale;
3527
3528 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3529 flag |= FLAG_WIN_UPDATE;
3530 tcp_update_wl(tp, ack_seq);
3531
3532 if (tp->snd_wnd != nwin) {
3533 tp->snd_wnd = nwin;
3534
3535 /* Note, it is the only place, where
3536 * fast path is recovered for sending TCP.
3537 */
3538 tp->pred_flags = 0;
3539 tcp_fast_path_check(sk);
3540
3541 if (nwin > tp->max_window) {
3542 tp->max_window = nwin;
3543 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3544 }
3545 }
3546 }
3547
3548 tp->snd_una = ack;
3549
3550 return flag;
3551 }
3552
3553 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3554 * continue in congestion avoidance.
3555 */
tcp_conservative_spur_to_response(struct tcp_sock * tp)3556 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3557 {
3558 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3559 tp->snd_cwnd_cnt = 0;
3560 tp->bytes_acked = 0;
3561 TCP_ECN_queue_cwr(tp);
3562 tcp_moderate_cwnd(tp);
3563 }
3564
3565 /* A conservative spurious RTO response algorithm: reduce cwnd using
3566 * rate halving and continue in congestion avoidance.
3567 */
tcp_ratehalving_spur_to_response(struct sock * sk)3568 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3569 {
3570 tcp_enter_cwr(sk, 0);
3571 }
3572
tcp_undo_spur_to_response(struct sock * sk,int flag)3573 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3574 {
3575 if (flag & FLAG_ECE)
3576 tcp_ratehalving_spur_to_response(sk);
3577 else
3578 tcp_undo_cwr(sk, true);
3579 }
3580
3581 /* F-RTO spurious RTO detection algorithm (RFC4138)
3582 *
3583 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3584 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3585 * window (but not to or beyond highest sequence sent before RTO):
3586 * On First ACK, send two new segments out.
3587 * On Second ACK, RTO was likely spurious. Do spurious response (response
3588 * algorithm is not part of the F-RTO detection algorithm
3589 * given in RFC4138 but can be selected separately).
3590 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3591 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3592 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3593 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3594 *
3595 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3596 * original window even after we transmit two new data segments.
3597 *
3598 * SACK version:
3599 * on first step, wait until first cumulative ACK arrives, then move to
3600 * the second step. In second step, the next ACK decides.
3601 *
3602 * F-RTO is implemented (mainly) in four functions:
3603 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3604 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3605 * called when tcp_use_frto() showed green light
3606 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3607 * - tcp_enter_frto_loss() is called if there is not enough evidence
3608 * to prove that the RTO is indeed spurious. It transfers the control
3609 * from F-RTO to the conventional RTO recovery
3610 */
tcp_process_frto(struct sock * sk,int flag)3611 static int tcp_process_frto(struct sock *sk, int flag)
3612 {
3613 struct tcp_sock *tp = tcp_sk(sk);
3614
3615 tcp_verify_left_out(tp);
3616
3617 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3618 if (flag & FLAG_DATA_ACKED)
3619 inet_csk(sk)->icsk_retransmits = 0;
3620
3621 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3622 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3623 tp->undo_marker = 0;
3624
3625 if (!before(tp->snd_una, tp->frto_highmark)) {
3626 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3627 return 1;
3628 }
3629
3630 if (!tcp_is_sackfrto(tp)) {
3631 /* RFC4138 shortcoming in step 2; should also have case c):
3632 * ACK isn't duplicate nor advances window, e.g., opposite dir
3633 * data, winupdate
3634 */
3635 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3636 return 1;
3637
3638 if (!(flag & FLAG_DATA_ACKED)) {
3639 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3640 flag);
3641 return 1;
3642 }
3643 } else {
3644 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3645 if (!tcp_packets_in_flight(tp)) {
3646 tcp_enter_frto_loss(sk, 2, flag);
3647 return true;
3648 }
3649
3650 /* Prevent sending of new data. */
3651 tp->snd_cwnd = min(tp->snd_cwnd,
3652 tcp_packets_in_flight(tp));
3653 return 1;
3654 }
3655
3656 if ((tp->frto_counter >= 2) &&
3657 (!(flag & FLAG_FORWARD_PROGRESS) ||
3658 ((flag & FLAG_DATA_SACKED) &&
3659 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3660 /* RFC4138 shortcoming (see comment above) */
3661 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3662 (flag & FLAG_NOT_DUP))
3663 return 1;
3664
3665 tcp_enter_frto_loss(sk, 3, flag);
3666 return 1;
3667 }
3668 }
3669
3670 if (tp->frto_counter == 1) {
3671 /* tcp_may_send_now needs to see updated state */
3672 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3673 tp->frto_counter = 2;
3674
3675 if (!tcp_may_send_now(sk))
3676 tcp_enter_frto_loss(sk, 2, flag);
3677
3678 return 1;
3679 } else {
3680 switch (sysctl_tcp_frto_response) {
3681 case 2:
3682 tcp_undo_spur_to_response(sk, flag);
3683 break;
3684 case 1:
3685 tcp_conservative_spur_to_response(tp);
3686 break;
3687 default:
3688 tcp_ratehalving_spur_to_response(sk);
3689 break;
3690 }
3691 tp->frto_counter = 0;
3692 tp->undo_marker = 0;
3693 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3694 }
3695 return 0;
3696 }
3697
3698 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3699 static void tcp_send_challenge_ack(struct sock *sk)
3700 {
3701 /* unprotected vars, we dont care of overwrites */
3702 static u32 challenge_timestamp;
3703 static unsigned int challenge_count;
3704 u32 now = jiffies / HZ;
3705
3706 if (now != challenge_timestamp) {
3707 challenge_timestamp = now;
3708 challenge_count = 0;
3709 }
3710 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3711 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3712 tcp_send_ack(sk);
3713 }
3714 }
3715
tcp_store_ts_recent(struct tcp_sock * tp)3716 static void tcp_store_ts_recent(struct tcp_sock *tp)
3717 {
3718 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3719 tp->rx_opt.ts_recent_stamp = get_seconds();
3720 }
3721
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3722 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3723 {
3724 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3725 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3726 * extra check below makes sure this can only happen
3727 * for pure ACK frames. -DaveM
3728 *
3729 * Not only, also it occurs for expired timestamps.
3730 */
3731
3732 if (tcp_paws_check(&tp->rx_opt, 0))
3733 tcp_store_ts_recent(tp);
3734 }
3735 }
3736
3737 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3738 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3739 {
3740 struct inet_connection_sock *icsk = inet_csk(sk);
3741 struct tcp_sock *tp = tcp_sk(sk);
3742 u32 prior_snd_una = tp->snd_una;
3743 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3744 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3745 bool is_dupack = false;
3746 u32 prior_in_flight;
3747 u32 prior_fackets;
3748 int prior_packets = tp->packets_out;
3749 int prior_sacked = tp->sacked_out;
3750 int pkts_acked = 0;
3751 int previous_packets_out = 0;
3752 int frto_cwnd = 0;
3753
3754 /* If the ack is older than previous acks
3755 * then we can probably ignore it.
3756 */
3757 if (before(ack, prior_snd_una)) {
3758 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3759 if (before(ack, prior_snd_una - tp->max_window)) {
3760 tcp_send_challenge_ack(sk);
3761 return -1;
3762 }
3763 goto old_ack;
3764 }
3765
3766 /* If the ack includes data we haven't sent yet, discard
3767 * this segment (RFC793 Section 3.9).
3768 */
3769 if (after(ack, tp->snd_nxt))
3770 goto invalid_ack;
3771
3772 if (after(ack, prior_snd_una))
3773 flag |= FLAG_SND_UNA_ADVANCED;
3774
3775 if (sysctl_tcp_abc) {
3776 if (icsk->icsk_ca_state < TCP_CA_CWR)
3777 tp->bytes_acked += ack - prior_snd_una;
3778 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3779 /* we assume just one segment left network */
3780 tp->bytes_acked += min(ack - prior_snd_una,
3781 tp->mss_cache);
3782 }
3783
3784 prior_fackets = tp->fackets_out;
3785 prior_in_flight = tcp_packets_in_flight(tp);
3786
3787 /* ts_recent update must be made after we are sure that the packet
3788 * is in window.
3789 */
3790 if (flag & FLAG_UPDATE_TS_RECENT)
3791 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3792
3793 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3794 /* Window is constant, pure forward advance.
3795 * No more checks are required.
3796 * Note, we use the fact that SND.UNA>=SND.WL2.
3797 */
3798 tcp_update_wl(tp, ack_seq);
3799 tp->snd_una = ack;
3800 flag |= FLAG_WIN_UPDATE;
3801
3802 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3803
3804 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3805 } else {
3806 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3807 flag |= FLAG_DATA;
3808 else
3809 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3810
3811 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3812
3813 if (TCP_SKB_CB(skb)->sacked)
3814 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3815
3816 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3817 flag |= FLAG_ECE;
3818
3819 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3820 }
3821
3822 /* We passed data and got it acked, remove any soft error
3823 * log. Something worked...
3824 */
3825 sk->sk_err_soft = 0;
3826 icsk->icsk_probes_out = 0;
3827 tp->rcv_tstamp = tcp_time_stamp;
3828 if (!prior_packets)
3829 goto no_queue;
3830
3831 /* See if we can take anything off of the retransmit queue. */
3832 previous_packets_out = tp->packets_out;
3833 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3834
3835 pkts_acked = previous_packets_out - tp->packets_out;
3836
3837 if (tp->frto_counter)
3838 frto_cwnd = tcp_process_frto(sk, flag);
3839 /* Guarantee sacktag reordering detection against wrap-arounds */
3840 if (before(tp->frto_highmark, tp->snd_una))
3841 tp->frto_highmark = 0;
3842
3843 if (tcp_ack_is_dubious(sk, flag)) {
3844 /* Advance CWND, if state allows this. */
3845 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3846 tcp_may_raise_cwnd(sk, flag))
3847 tcp_cong_avoid(sk, ack, prior_in_flight);
3848 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3849 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3850 prior_packets, is_dupack, flag);
3851 } else {
3852 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3853 tcp_cong_avoid(sk, ack, prior_in_flight);
3854 }
3855
3856 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3857 dst_confirm(__sk_dst_get(sk));
3858
3859 return 1;
3860
3861 no_queue:
3862 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3863 if (flag & FLAG_DSACKING_ACK)
3864 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3865 prior_packets, is_dupack, flag);
3866 /* If this ack opens up a zero window, clear backoff. It was
3867 * being used to time the probes, and is probably far higher than
3868 * it needs to be for normal retransmission.
3869 */
3870 if (tcp_send_head(sk))
3871 tcp_ack_probe(sk);
3872 return 1;
3873
3874 invalid_ack:
3875 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3876 return -1;
3877
3878 old_ack:
3879 /* If data was SACKed, tag it and see if we should send more data.
3880 * If data was DSACKed, see if we can undo a cwnd reduction.
3881 */
3882 if (TCP_SKB_CB(skb)->sacked) {
3883 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3884 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3885 prior_packets, is_dupack, flag);
3886 }
3887
3888 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3889 return 0;
3890 }
3891
3892 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3893 * But, this can also be called on packets in the established flow when
3894 * the fast version below fails.
3895 */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,const u8 ** hvpp,int estab)3896 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3897 const u8 **hvpp, int estab)
3898 {
3899 const unsigned char *ptr;
3900 const struct tcphdr *th = tcp_hdr(skb);
3901 int length = (th->doff * 4) - sizeof(struct tcphdr);
3902
3903 ptr = (const unsigned char *)(th + 1);
3904 opt_rx->saw_tstamp = 0;
3905
3906 while (length > 0) {
3907 int opcode = *ptr++;
3908 int opsize;
3909
3910 switch (opcode) {
3911 case TCPOPT_EOL:
3912 return;
3913 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3914 length--;
3915 continue;
3916 default:
3917 opsize = *ptr++;
3918 if (opsize < 2) /* "silly options" */
3919 return;
3920 if (opsize > length)
3921 return; /* don't parse partial options */
3922 switch (opcode) {
3923 case TCPOPT_MSS:
3924 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3925 u16 in_mss = get_unaligned_be16(ptr);
3926 if (in_mss) {
3927 if (opt_rx->user_mss &&
3928 opt_rx->user_mss < in_mss)
3929 in_mss = opt_rx->user_mss;
3930 opt_rx->mss_clamp = in_mss;
3931 }
3932 }
3933 break;
3934 case TCPOPT_WINDOW:
3935 if (opsize == TCPOLEN_WINDOW && th->syn &&
3936 !estab && sysctl_tcp_window_scaling) {
3937 __u8 snd_wscale = *(__u8 *)ptr;
3938 opt_rx->wscale_ok = 1;
3939 if (snd_wscale > 14) {
3940 if (net_ratelimit())
3941 pr_info("%s: Illegal window scaling value %d >14 received\n",
3942 __func__,
3943 snd_wscale);
3944 snd_wscale = 14;
3945 }
3946 opt_rx->snd_wscale = snd_wscale;
3947 }
3948 break;
3949 case TCPOPT_TIMESTAMP:
3950 if ((opsize == TCPOLEN_TIMESTAMP) &&
3951 ((estab && opt_rx->tstamp_ok) ||
3952 (!estab && sysctl_tcp_timestamps))) {
3953 opt_rx->saw_tstamp = 1;
3954 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3955 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3956 }
3957 break;
3958 case TCPOPT_SACK_PERM:
3959 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3960 !estab && sysctl_tcp_sack) {
3961 opt_rx->sack_ok = TCP_SACK_SEEN;
3962 tcp_sack_reset(opt_rx);
3963 }
3964 break;
3965
3966 case TCPOPT_SACK:
3967 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3968 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3969 opt_rx->sack_ok) {
3970 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3971 }
3972 break;
3973 #ifdef CONFIG_TCP_MD5SIG
3974 case TCPOPT_MD5SIG:
3975 /*
3976 * The MD5 Hash has already been
3977 * checked (see tcp_v{4,6}_do_rcv()).
3978 */
3979 break;
3980 #endif
3981 case TCPOPT_COOKIE:
3982 /* This option is variable length.
3983 */
3984 switch (opsize) {
3985 case TCPOLEN_COOKIE_BASE:
3986 /* not yet implemented */
3987 break;
3988 case TCPOLEN_COOKIE_PAIR:
3989 /* not yet implemented */
3990 break;
3991 case TCPOLEN_COOKIE_MIN+0:
3992 case TCPOLEN_COOKIE_MIN+2:
3993 case TCPOLEN_COOKIE_MIN+4:
3994 case TCPOLEN_COOKIE_MIN+6:
3995 case TCPOLEN_COOKIE_MAX:
3996 /* 16-bit multiple */
3997 opt_rx->cookie_plus = opsize;
3998 *hvpp = ptr;
3999 break;
4000 default:
4001 /* ignore option */
4002 break;
4003 }
4004 break;
4005 }
4006
4007 ptr += opsize-2;
4008 length -= opsize;
4009 }
4010 }
4011 }
4012 EXPORT_SYMBOL(tcp_parse_options);
4013
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4014 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4015 {
4016 const __be32 *ptr = (const __be32 *)(th + 1);
4017
4018 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4019 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4020 tp->rx_opt.saw_tstamp = 1;
4021 ++ptr;
4022 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4023 ++ptr;
4024 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4025 return 1;
4026 }
4027 return 0;
4028 }
4029
4030 /* Fast parse options. This hopes to only see timestamps.
4031 * If it is wrong it falls back on tcp_parse_options().
4032 */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp,const u8 ** hvpp)4033 static int tcp_fast_parse_options(const struct sk_buff *skb,
4034 const struct tcphdr *th,
4035 struct tcp_sock *tp, const u8 **hvpp)
4036 {
4037 /* In the spirit of fast parsing, compare doff directly to constant
4038 * values. Because equality is used, short doff can be ignored here.
4039 */
4040 if (th->doff == (sizeof(*th) / 4)) {
4041 tp->rx_opt.saw_tstamp = 0;
4042 return 0;
4043 } else if (tp->rx_opt.tstamp_ok &&
4044 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4045 if (tcp_parse_aligned_timestamp(tp, th))
4046 return 1;
4047 }
4048 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4049 return 1;
4050 }
4051
4052 #ifdef CONFIG_TCP_MD5SIG
4053 /*
4054 * Parse MD5 Signature option
4055 */
tcp_parse_md5sig_option(const struct tcphdr * th)4056 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4057 {
4058 int length = (th->doff << 2) - sizeof(*th);
4059 const u8 *ptr = (const u8 *)(th + 1);
4060
4061 /* If the TCP option is too short, we can short cut */
4062 if (length < TCPOLEN_MD5SIG)
4063 return NULL;
4064
4065 while (length > 0) {
4066 int opcode = *ptr++;
4067 int opsize;
4068
4069 switch(opcode) {
4070 case TCPOPT_EOL:
4071 return NULL;
4072 case TCPOPT_NOP:
4073 length--;
4074 continue;
4075 default:
4076 opsize = *ptr++;
4077 if (opsize < 2 || opsize > length)
4078 return NULL;
4079 if (opcode == TCPOPT_MD5SIG)
4080 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4081 }
4082 ptr += opsize - 2;
4083 length -= opsize;
4084 }
4085 return NULL;
4086 }
4087 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4088 #endif
4089
4090 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4091 *
4092 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4093 * it can pass through stack. So, the following predicate verifies that
4094 * this segment is not used for anything but congestion avoidance or
4095 * fast retransmit. Moreover, we even are able to eliminate most of such
4096 * second order effects, if we apply some small "replay" window (~RTO)
4097 * to timestamp space.
4098 *
4099 * All these measures still do not guarantee that we reject wrapped ACKs
4100 * on networks with high bandwidth, when sequence space is recycled fastly,
4101 * but it guarantees that such events will be very rare and do not affect
4102 * connection seriously. This doesn't look nice, but alas, PAWS is really
4103 * buggy extension.
4104 *
4105 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4106 * states that events when retransmit arrives after original data are rare.
4107 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4108 * the biggest problem on large power networks even with minor reordering.
4109 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4110 * up to bandwidth of 18Gigabit/sec. 8) ]
4111 */
4112
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4113 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4114 {
4115 const struct tcp_sock *tp = tcp_sk(sk);
4116 const struct tcphdr *th = tcp_hdr(skb);
4117 u32 seq = TCP_SKB_CB(skb)->seq;
4118 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4119
4120 return (/* 1. Pure ACK with correct sequence number. */
4121 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4122
4123 /* 2. ... and duplicate ACK. */
4124 ack == tp->snd_una &&
4125
4126 /* 3. ... and does not update window. */
4127 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4128
4129 /* 4. ... and sits in replay window. */
4130 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4131 }
4132
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4133 static inline int tcp_paws_discard(const struct sock *sk,
4134 const struct sk_buff *skb)
4135 {
4136 const struct tcp_sock *tp = tcp_sk(sk);
4137
4138 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4139 !tcp_disordered_ack(sk, skb);
4140 }
4141
4142 /* Check segment sequence number for validity.
4143 *
4144 * Segment controls are considered valid, if the segment
4145 * fits to the window after truncation to the window. Acceptability
4146 * of data (and SYN, FIN, of course) is checked separately.
4147 * See tcp_data_queue(), for example.
4148 *
4149 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4150 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4151 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4152 * (borrowed from freebsd)
4153 */
4154
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4155 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4156 {
4157 return !before(end_seq, tp->rcv_wup) &&
4158 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4159 }
4160
4161 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4162 static void tcp_reset(struct sock *sk)
4163 {
4164 /* We want the right error as BSD sees it (and indeed as we do). */
4165 switch (sk->sk_state) {
4166 case TCP_SYN_SENT:
4167 sk->sk_err = ECONNREFUSED;
4168 break;
4169 case TCP_CLOSE_WAIT:
4170 sk->sk_err = EPIPE;
4171 break;
4172 case TCP_CLOSE:
4173 return;
4174 default:
4175 sk->sk_err = ECONNRESET;
4176 }
4177 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4178 smp_wmb();
4179
4180 if (!sock_flag(sk, SOCK_DEAD))
4181 sk->sk_error_report(sk);
4182
4183 tcp_done(sk);
4184 }
4185
4186 /*
4187 * Process the FIN bit. This now behaves as it is supposed to work
4188 * and the FIN takes effect when it is validly part of sequence
4189 * space. Not before when we get holes.
4190 *
4191 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4192 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4193 * TIME-WAIT)
4194 *
4195 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4196 * close and we go into CLOSING (and later onto TIME-WAIT)
4197 *
4198 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4199 */
tcp_fin(struct sock * sk)4200 static void tcp_fin(struct sock *sk)
4201 {
4202 struct tcp_sock *tp = tcp_sk(sk);
4203
4204 inet_csk_schedule_ack(sk);
4205
4206 sk->sk_shutdown |= RCV_SHUTDOWN;
4207 sock_set_flag(sk, SOCK_DONE);
4208
4209 switch (sk->sk_state) {
4210 case TCP_SYN_RECV:
4211 case TCP_ESTABLISHED:
4212 /* Move to CLOSE_WAIT */
4213 tcp_set_state(sk, TCP_CLOSE_WAIT);
4214 inet_csk(sk)->icsk_ack.pingpong = 1;
4215 break;
4216
4217 case TCP_CLOSE_WAIT:
4218 case TCP_CLOSING:
4219 /* Received a retransmission of the FIN, do
4220 * nothing.
4221 */
4222 break;
4223 case TCP_LAST_ACK:
4224 /* RFC793: Remain in the LAST-ACK state. */
4225 break;
4226
4227 case TCP_FIN_WAIT1:
4228 /* This case occurs when a simultaneous close
4229 * happens, we must ack the received FIN and
4230 * enter the CLOSING state.
4231 */
4232 tcp_send_ack(sk);
4233 tcp_set_state(sk, TCP_CLOSING);
4234 break;
4235 case TCP_FIN_WAIT2:
4236 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4237 tcp_send_ack(sk);
4238 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4239 break;
4240 default:
4241 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4242 * cases we should never reach this piece of code.
4243 */
4244 pr_err("%s: Impossible, sk->sk_state=%d\n",
4245 __func__, sk->sk_state);
4246 break;
4247 }
4248
4249 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4250 * Probably, we should reset in this case. For now drop them.
4251 */
4252 __skb_queue_purge(&tp->out_of_order_queue);
4253 if (tcp_is_sack(tp))
4254 tcp_sack_reset(&tp->rx_opt);
4255 sk_mem_reclaim(sk);
4256
4257 if (!sock_flag(sk, SOCK_DEAD)) {
4258 sk->sk_state_change(sk);
4259
4260 /* Do not send POLL_HUP for half duplex close. */
4261 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4262 sk->sk_state == TCP_CLOSE)
4263 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4264 else
4265 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4266 }
4267 }
4268
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4269 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4270 u32 end_seq)
4271 {
4272 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4273 if (before(seq, sp->start_seq))
4274 sp->start_seq = seq;
4275 if (after(end_seq, sp->end_seq))
4276 sp->end_seq = end_seq;
4277 return 1;
4278 }
4279 return 0;
4280 }
4281
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4282 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4283 {
4284 struct tcp_sock *tp = tcp_sk(sk);
4285
4286 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4287 int mib_idx;
4288
4289 if (before(seq, tp->rcv_nxt))
4290 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4291 else
4292 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4293
4294 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4295
4296 tp->rx_opt.dsack = 1;
4297 tp->duplicate_sack[0].start_seq = seq;
4298 tp->duplicate_sack[0].end_seq = end_seq;
4299 }
4300 }
4301
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4302 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4303 {
4304 struct tcp_sock *tp = tcp_sk(sk);
4305
4306 if (!tp->rx_opt.dsack)
4307 tcp_dsack_set(sk, seq, end_seq);
4308 else
4309 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4310 }
4311
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4312 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4313 {
4314 struct tcp_sock *tp = tcp_sk(sk);
4315
4316 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4317 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4318 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4319 tcp_enter_quickack_mode(sk);
4320
4321 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4322 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4323
4324 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4325 end_seq = tp->rcv_nxt;
4326 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4327 }
4328 }
4329
4330 tcp_send_ack(sk);
4331 }
4332
4333 /* These routines update the SACK block as out-of-order packets arrive or
4334 * in-order packets close up the sequence space.
4335 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4336 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4337 {
4338 int this_sack;
4339 struct tcp_sack_block *sp = &tp->selective_acks[0];
4340 struct tcp_sack_block *swalk = sp + 1;
4341
4342 /* See if the recent change to the first SACK eats into
4343 * or hits the sequence space of other SACK blocks, if so coalesce.
4344 */
4345 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4346 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4347 int i;
4348
4349 /* Zap SWALK, by moving every further SACK up by one slot.
4350 * Decrease num_sacks.
4351 */
4352 tp->rx_opt.num_sacks--;
4353 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4354 sp[i] = sp[i + 1];
4355 continue;
4356 }
4357 this_sack++, swalk++;
4358 }
4359 }
4360
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4361 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4362 {
4363 struct tcp_sock *tp = tcp_sk(sk);
4364 struct tcp_sack_block *sp = &tp->selective_acks[0];
4365 int cur_sacks = tp->rx_opt.num_sacks;
4366 int this_sack;
4367
4368 if (!cur_sacks)
4369 goto new_sack;
4370
4371 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4372 if (tcp_sack_extend(sp, seq, end_seq)) {
4373 /* Rotate this_sack to the first one. */
4374 for (; this_sack > 0; this_sack--, sp--)
4375 swap(*sp, *(sp - 1));
4376 if (cur_sacks > 1)
4377 tcp_sack_maybe_coalesce(tp);
4378 return;
4379 }
4380 }
4381
4382 /* Could not find an adjacent existing SACK, build a new one,
4383 * put it at the front, and shift everyone else down. We
4384 * always know there is at least one SACK present already here.
4385 *
4386 * If the sack array is full, forget about the last one.
4387 */
4388 if (this_sack >= TCP_NUM_SACKS) {
4389 this_sack--;
4390 tp->rx_opt.num_sacks--;
4391 sp--;
4392 }
4393 for (; this_sack > 0; this_sack--, sp--)
4394 *sp = *(sp - 1);
4395
4396 new_sack:
4397 /* Build the new head SACK, and we're done. */
4398 sp->start_seq = seq;
4399 sp->end_seq = end_seq;
4400 tp->rx_opt.num_sacks++;
4401 }
4402
4403 /* RCV.NXT advances, some SACKs should be eaten. */
4404
tcp_sack_remove(struct tcp_sock * tp)4405 static void tcp_sack_remove(struct tcp_sock *tp)
4406 {
4407 struct tcp_sack_block *sp = &tp->selective_acks[0];
4408 int num_sacks = tp->rx_opt.num_sacks;
4409 int this_sack;
4410
4411 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4412 if (skb_queue_empty(&tp->out_of_order_queue)) {
4413 tp->rx_opt.num_sacks = 0;
4414 return;
4415 }
4416
4417 for (this_sack = 0; this_sack < num_sacks;) {
4418 /* Check if the start of the sack is covered by RCV.NXT. */
4419 if (!before(tp->rcv_nxt, sp->start_seq)) {
4420 int i;
4421
4422 /* RCV.NXT must cover all the block! */
4423 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4424
4425 /* Zap this SACK, by moving forward any other SACKS. */
4426 for (i=this_sack+1; i < num_sacks; i++)
4427 tp->selective_acks[i-1] = tp->selective_acks[i];
4428 num_sacks--;
4429 continue;
4430 }
4431 this_sack++;
4432 sp++;
4433 }
4434 tp->rx_opt.num_sacks = num_sacks;
4435 }
4436
4437 /* This one checks to see if we can put data from the
4438 * out_of_order queue into the receive_queue.
4439 */
tcp_ofo_queue(struct sock * sk)4440 static void tcp_ofo_queue(struct sock *sk)
4441 {
4442 struct tcp_sock *tp = tcp_sk(sk);
4443 __u32 dsack_high = tp->rcv_nxt;
4444 struct sk_buff *skb;
4445
4446 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4447 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4448 break;
4449
4450 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4451 __u32 dsack = dsack_high;
4452 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4453 dsack_high = TCP_SKB_CB(skb)->end_seq;
4454 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4455 }
4456
4457 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4458 SOCK_DEBUG(sk, "ofo packet was already received\n");
4459 __skb_unlink(skb, &tp->out_of_order_queue);
4460 __kfree_skb(skb);
4461 continue;
4462 }
4463 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4464 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4465 TCP_SKB_CB(skb)->end_seq);
4466
4467 __skb_unlink(skb, &tp->out_of_order_queue);
4468 __skb_queue_tail(&sk->sk_receive_queue, skb);
4469 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4470 if (tcp_hdr(skb)->fin)
4471 tcp_fin(sk);
4472 }
4473 }
4474
4475 static int tcp_prune_ofo_queue(struct sock *sk);
4476 static int tcp_prune_queue(struct sock *sk);
4477
tcp_try_rmem_schedule(struct sock * sk,unsigned int size)4478 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4479 {
4480 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4481 !sk_rmem_schedule(sk, size)) {
4482
4483 if (tcp_prune_queue(sk) < 0)
4484 return -1;
4485
4486 if (!sk_rmem_schedule(sk, size)) {
4487 if (!tcp_prune_ofo_queue(sk))
4488 return -1;
4489
4490 if (!sk_rmem_schedule(sk, size))
4491 return -1;
4492 }
4493 }
4494 return 0;
4495 }
4496
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4497 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4498 {
4499 struct tcp_sock *tp = tcp_sk(sk);
4500 struct sk_buff *skb1;
4501 u32 seq, end_seq;
4502
4503 TCP_ECN_check_ce(tp, skb);
4504
4505 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4506 /* TODO: should increment a counter */
4507 __kfree_skb(skb);
4508 return;
4509 }
4510
4511 /* Disable header prediction. */
4512 tp->pred_flags = 0;
4513 inet_csk_schedule_ack(sk);
4514
4515 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4516 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4517
4518 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4519 if (!skb1) {
4520 /* Initial out of order segment, build 1 SACK. */
4521 if (tcp_is_sack(tp)) {
4522 tp->rx_opt.num_sacks = 1;
4523 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4524 tp->selective_acks[0].end_seq =
4525 TCP_SKB_CB(skb)->end_seq;
4526 }
4527 __skb_queue_head(&tp->out_of_order_queue, skb);
4528 goto end;
4529 }
4530
4531 seq = TCP_SKB_CB(skb)->seq;
4532 end_seq = TCP_SKB_CB(skb)->end_seq;
4533
4534 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4535 /* Packets in ofo can stay in queue a long time.
4536 * Better try to coalesce them right now
4537 * to avoid future tcp_collapse_ofo_queue(),
4538 * probably the most expensive function in tcp stack.
4539 */
4540 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4541 NET_INC_STATS_BH(sock_net(sk),
4542 LINUX_MIB_TCPRCVCOALESCE);
4543 BUG_ON(skb_copy_bits(skb, 0,
4544 skb_put(skb1, skb->len),
4545 skb->len));
4546 TCP_SKB_CB(skb1)->end_seq = end_seq;
4547 TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4548 __kfree_skb(skb);
4549 skb = NULL;
4550 } else {
4551 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4552 }
4553
4554 if (!tp->rx_opt.num_sacks ||
4555 tp->selective_acks[0].end_seq != seq)
4556 goto add_sack;
4557
4558 /* Common case: data arrive in order after hole. */
4559 tp->selective_acks[0].end_seq = end_seq;
4560 goto end;
4561 }
4562
4563 /* Find place to insert this segment. */
4564 while (1) {
4565 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4566 break;
4567 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4568 skb1 = NULL;
4569 break;
4570 }
4571 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4572 }
4573
4574 /* Do skb overlap to previous one? */
4575 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4576 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4577 /* All the bits are present. Drop. */
4578 __kfree_skb(skb);
4579 skb = NULL;
4580 tcp_dsack_set(sk, seq, end_seq);
4581 goto add_sack;
4582 }
4583 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4584 /* Partial overlap. */
4585 tcp_dsack_set(sk, seq,
4586 TCP_SKB_CB(skb1)->end_seq);
4587 } else {
4588 if (skb_queue_is_first(&tp->out_of_order_queue,
4589 skb1))
4590 skb1 = NULL;
4591 else
4592 skb1 = skb_queue_prev(
4593 &tp->out_of_order_queue,
4594 skb1);
4595 }
4596 }
4597 if (!skb1)
4598 __skb_queue_head(&tp->out_of_order_queue, skb);
4599 else
4600 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4601
4602 /* And clean segments covered by new one as whole. */
4603 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4604 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4605
4606 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4607 break;
4608 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4609 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4610 end_seq);
4611 break;
4612 }
4613 __skb_unlink(skb1, &tp->out_of_order_queue);
4614 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4615 TCP_SKB_CB(skb1)->end_seq);
4616 __kfree_skb(skb1);
4617 }
4618
4619 add_sack:
4620 if (tcp_is_sack(tp))
4621 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4622 end:
4623 if (skb)
4624 skb_set_owner_r(skb, sk);
4625 }
4626
4627
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4628 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4629 {
4630 const struct tcphdr *th = tcp_hdr(skb);
4631 struct tcp_sock *tp = tcp_sk(sk);
4632 int eaten = -1;
4633
4634 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4635 goto drop;
4636
4637 skb_dst_drop(skb);
4638 __skb_pull(skb, th->doff * 4);
4639
4640 TCP_ECN_accept_cwr(tp, skb);
4641
4642 tp->rx_opt.dsack = 0;
4643
4644 /* Queue data for delivery to the user.
4645 * Packets in sequence go to the receive queue.
4646 * Out of sequence packets to the out_of_order_queue.
4647 */
4648 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4649 if (tcp_receive_window(tp) == 0)
4650 goto out_of_window;
4651
4652 /* Ok. In sequence. In window. */
4653 if (tp->ucopy.task == current &&
4654 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4655 sock_owned_by_user(sk) && !tp->urg_data) {
4656 int chunk = min_t(unsigned int, skb->len,
4657 tp->ucopy.len);
4658
4659 __set_current_state(TASK_RUNNING);
4660
4661 local_bh_enable();
4662 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4663 tp->ucopy.len -= chunk;
4664 tp->copied_seq += chunk;
4665 eaten = (chunk == skb->len);
4666 tcp_rcv_space_adjust(sk);
4667 }
4668 local_bh_disable();
4669 }
4670
4671 if (eaten <= 0) {
4672 queue_and_out:
4673 if (eaten < 0 &&
4674 tcp_try_rmem_schedule(sk, skb->truesize))
4675 goto drop;
4676
4677 skb_set_owner_r(skb, sk);
4678 __skb_queue_tail(&sk->sk_receive_queue, skb);
4679 }
4680 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4681 if (skb->len)
4682 tcp_event_data_recv(sk, skb);
4683 if (th->fin)
4684 tcp_fin(sk);
4685
4686 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4687 tcp_ofo_queue(sk);
4688
4689 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4690 * gap in queue is filled.
4691 */
4692 if (skb_queue_empty(&tp->out_of_order_queue))
4693 inet_csk(sk)->icsk_ack.pingpong = 0;
4694 }
4695
4696 if (tp->rx_opt.num_sacks)
4697 tcp_sack_remove(tp);
4698
4699 tcp_fast_path_check(sk);
4700
4701 if (eaten > 0)
4702 __kfree_skb(skb);
4703 else if (!sock_flag(sk, SOCK_DEAD))
4704 sk->sk_data_ready(sk, 0);
4705 return;
4706 }
4707
4708 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4709 /* A retransmit, 2nd most common case. Force an immediate ack. */
4710 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4711 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4712
4713 out_of_window:
4714 tcp_enter_quickack_mode(sk);
4715 inet_csk_schedule_ack(sk);
4716 drop:
4717 __kfree_skb(skb);
4718 return;
4719 }
4720
4721 /* Out of window. F.e. zero window probe. */
4722 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4723 goto out_of_window;
4724
4725 tcp_enter_quickack_mode(sk);
4726
4727 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4728 /* Partial packet, seq < rcv_next < end_seq */
4729 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4730 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4731 TCP_SKB_CB(skb)->end_seq);
4732
4733 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4734
4735 /* If window is closed, drop tail of packet. But after
4736 * remembering D-SACK for its head made in previous line.
4737 */
4738 if (!tcp_receive_window(tp))
4739 goto out_of_window;
4740 goto queue_and_out;
4741 }
4742
4743 tcp_data_queue_ofo(sk, skb);
4744 }
4745
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list)4746 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4747 struct sk_buff_head *list)
4748 {
4749 struct sk_buff *next = NULL;
4750
4751 if (!skb_queue_is_last(list, skb))
4752 next = skb_queue_next(list, skb);
4753
4754 __skb_unlink(skb, list);
4755 __kfree_skb(skb);
4756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4757
4758 return next;
4759 }
4760
4761 /* Collapse contiguous sequence of skbs head..tail with
4762 * sequence numbers start..end.
4763 *
4764 * If tail is NULL, this means until the end of the list.
4765 *
4766 * Segments with FIN/SYN are not collapsed (only because this
4767 * simplifies code)
4768 */
4769 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4770 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4771 struct sk_buff *head, struct sk_buff *tail,
4772 u32 start, u32 end)
4773 {
4774 struct sk_buff *skb, *n;
4775 bool end_of_skbs;
4776
4777 /* First, check that queue is collapsible and find
4778 * the point where collapsing can be useful. */
4779 skb = head;
4780 restart:
4781 end_of_skbs = true;
4782 skb_queue_walk_from_safe(list, skb, n) {
4783 if (skb == tail)
4784 break;
4785 /* No new bits? It is possible on ofo queue. */
4786 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4787 skb = tcp_collapse_one(sk, skb, list);
4788 if (!skb)
4789 break;
4790 goto restart;
4791 }
4792
4793 /* The first skb to collapse is:
4794 * - not SYN/FIN and
4795 * - bloated or contains data before "start" or
4796 * overlaps to the next one.
4797 */
4798 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4799 (tcp_win_from_space(skb->truesize) > skb->len ||
4800 before(TCP_SKB_CB(skb)->seq, start))) {
4801 end_of_skbs = false;
4802 break;
4803 }
4804
4805 if (!skb_queue_is_last(list, skb)) {
4806 struct sk_buff *next = skb_queue_next(list, skb);
4807 if (next != tail &&
4808 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4809 end_of_skbs = false;
4810 break;
4811 }
4812 }
4813
4814 /* Decided to skip this, advance start seq. */
4815 start = TCP_SKB_CB(skb)->end_seq;
4816 }
4817 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4818 return;
4819
4820 while (before(start, end)) {
4821 struct sk_buff *nskb;
4822 unsigned int header = skb_headroom(skb);
4823 int copy = SKB_MAX_ORDER(header, 0);
4824
4825 /* Too big header? This can happen with IPv6. */
4826 if (copy < 0)
4827 return;
4828 if (end - start < copy)
4829 copy = end - start;
4830 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4831 if (!nskb)
4832 return;
4833
4834 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4835 skb_set_network_header(nskb, (skb_network_header(skb) -
4836 skb->head));
4837 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4838 skb->head));
4839 skb_reserve(nskb, header);
4840 memcpy(nskb->head, skb->head, header);
4841 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4842 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4843 __skb_queue_before(list, skb, nskb);
4844 skb_set_owner_r(nskb, sk);
4845
4846 /* Copy data, releasing collapsed skbs. */
4847 while (copy > 0) {
4848 int offset = start - TCP_SKB_CB(skb)->seq;
4849 int size = TCP_SKB_CB(skb)->end_seq - start;
4850
4851 BUG_ON(offset < 0);
4852 if (size > 0) {
4853 size = min(copy, size);
4854 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4855 BUG();
4856 TCP_SKB_CB(nskb)->end_seq += size;
4857 copy -= size;
4858 start += size;
4859 }
4860 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4861 skb = tcp_collapse_one(sk, skb, list);
4862 if (!skb ||
4863 skb == tail ||
4864 tcp_hdr(skb)->syn ||
4865 tcp_hdr(skb)->fin)
4866 return;
4867 }
4868 }
4869 }
4870 }
4871
4872 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4873 * and tcp_collapse() them until all the queue is collapsed.
4874 */
tcp_collapse_ofo_queue(struct sock * sk)4875 static void tcp_collapse_ofo_queue(struct sock *sk)
4876 {
4877 struct tcp_sock *tp = tcp_sk(sk);
4878 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4879 struct sk_buff *head;
4880 u32 start, end;
4881
4882 if (skb == NULL)
4883 return;
4884
4885 start = TCP_SKB_CB(skb)->seq;
4886 end = TCP_SKB_CB(skb)->end_seq;
4887 head = skb;
4888
4889 for (;;) {
4890 struct sk_buff *next = NULL;
4891
4892 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4893 next = skb_queue_next(&tp->out_of_order_queue, skb);
4894 skb = next;
4895
4896 /* Segment is terminated when we see gap or when
4897 * we are at the end of all the queue. */
4898 if (!skb ||
4899 after(TCP_SKB_CB(skb)->seq, end) ||
4900 before(TCP_SKB_CB(skb)->end_seq, start)) {
4901 tcp_collapse(sk, &tp->out_of_order_queue,
4902 head, skb, start, end);
4903 head = skb;
4904 if (!skb)
4905 break;
4906 /* Start new segment */
4907 start = TCP_SKB_CB(skb)->seq;
4908 end = TCP_SKB_CB(skb)->end_seq;
4909 } else {
4910 if (before(TCP_SKB_CB(skb)->seq, start))
4911 start = TCP_SKB_CB(skb)->seq;
4912 if (after(TCP_SKB_CB(skb)->end_seq, end))
4913 end = TCP_SKB_CB(skb)->end_seq;
4914 }
4915 }
4916 }
4917
4918 /*
4919 * Purge the out-of-order queue.
4920 * Return true if queue was pruned.
4921 */
tcp_prune_ofo_queue(struct sock * sk)4922 static int tcp_prune_ofo_queue(struct sock *sk)
4923 {
4924 struct tcp_sock *tp = tcp_sk(sk);
4925 int res = 0;
4926
4927 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4928 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4929 __skb_queue_purge(&tp->out_of_order_queue);
4930
4931 /* Reset SACK state. A conforming SACK implementation will
4932 * do the same at a timeout based retransmit. When a connection
4933 * is in a sad state like this, we care only about integrity
4934 * of the connection not performance.
4935 */
4936 if (tp->rx_opt.sack_ok)
4937 tcp_sack_reset(&tp->rx_opt);
4938 sk_mem_reclaim(sk);
4939 res = 1;
4940 }
4941 return res;
4942 }
4943
4944 /* Reduce allocated memory if we can, trying to get
4945 * the socket within its memory limits again.
4946 *
4947 * Return less than zero if we should start dropping frames
4948 * until the socket owning process reads some of the data
4949 * to stabilize the situation.
4950 */
tcp_prune_queue(struct sock * sk)4951 static int tcp_prune_queue(struct sock *sk)
4952 {
4953 struct tcp_sock *tp = tcp_sk(sk);
4954
4955 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4956
4957 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4958
4959 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4960 tcp_clamp_window(sk);
4961 else if (sk_under_memory_pressure(sk))
4962 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4963
4964 tcp_collapse_ofo_queue(sk);
4965 if (!skb_queue_empty(&sk->sk_receive_queue))
4966 tcp_collapse(sk, &sk->sk_receive_queue,
4967 skb_peek(&sk->sk_receive_queue),
4968 NULL,
4969 tp->copied_seq, tp->rcv_nxt);
4970 sk_mem_reclaim(sk);
4971
4972 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4973 return 0;
4974
4975 /* Collapsing did not help, destructive actions follow.
4976 * This must not ever occur. */
4977
4978 tcp_prune_ofo_queue(sk);
4979
4980 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4981 return 0;
4982
4983 /* If we are really being abused, tell the caller to silently
4984 * drop receive data on the floor. It will get retransmitted
4985 * and hopefully then we'll have sufficient space.
4986 */
4987 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4988
4989 /* Massive buffer overcommit. */
4990 tp->pred_flags = 0;
4991 return -1;
4992 }
4993
4994 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4995 * As additional protections, we do not touch cwnd in retransmission phases,
4996 * and if application hit its sndbuf limit recently.
4997 */
tcp_cwnd_application_limited(struct sock * sk)4998 void tcp_cwnd_application_limited(struct sock *sk)
4999 {
5000 struct tcp_sock *tp = tcp_sk(sk);
5001
5002 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5003 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5004 /* Limited by application or receiver window. */
5005 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5006 u32 win_used = max(tp->snd_cwnd_used, init_win);
5007 if (win_used < tp->snd_cwnd) {
5008 tp->snd_ssthresh = tcp_current_ssthresh(sk);
5009 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5010 }
5011 tp->snd_cwnd_used = 0;
5012 }
5013 tp->snd_cwnd_stamp = tcp_time_stamp;
5014 }
5015
tcp_should_expand_sndbuf(const struct sock * sk)5016 static int tcp_should_expand_sndbuf(const struct sock *sk)
5017 {
5018 const struct tcp_sock *tp = tcp_sk(sk);
5019
5020 /* If the user specified a specific send buffer setting, do
5021 * not modify it.
5022 */
5023 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5024 return 0;
5025
5026 /* If we are under global TCP memory pressure, do not expand. */
5027 if (sk_under_memory_pressure(sk))
5028 return 0;
5029
5030 /* If we are under soft global TCP memory pressure, do not expand. */
5031 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5032 return 0;
5033
5034 /* If we filled the congestion window, do not expand. */
5035 if (tp->packets_out >= tp->snd_cwnd)
5036 return 0;
5037
5038 return 1;
5039 }
5040
5041 /* When incoming ACK allowed to free some skb from write_queue,
5042 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5043 * on the exit from tcp input handler.
5044 *
5045 * PROBLEM: sndbuf expansion does not work well with largesend.
5046 */
tcp_new_space(struct sock * sk)5047 static void tcp_new_space(struct sock *sk)
5048 {
5049 struct tcp_sock *tp = tcp_sk(sk);
5050
5051 if (tcp_should_expand_sndbuf(sk)) {
5052 int sndmem = SKB_TRUESIZE(max_t(u32,
5053 tp->rx_opt.mss_clamp,
5054 tp->mss_cache) +
5055 MAX_TCP_HEADER);
5056 int demanded = max_t(unsigned int, tp->snd_cwnd,
5057 tp->reordering + 1);
5058 sndmem *= 2 * demanded;
5059 if (sndmem > sk->sk_sndbuf)
5060 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5061 tp->snd_cwnd_stamp = tcp_time_stamp;
5062 }
5063
5064 sk->sk_write_space(sk);
5065 }
5066
tcp_check_space(struct sock * sk)5067 static void tcp_check_space(struct sock *sk)
5068 {
5069 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5070 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5071 if (sk->sk_socket &&
5072 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5073 tcp_new_space(sk);
5074 }
5075 }
5076
tcp_data_snd_check(struct sock * sk)5077 static inline void tcp_data_snd_check(struct sock *sk)
5078 {
5079 tcp_push_pending_frames(sk);
5080 tcp_check_space(sk);
5081 }
5082
5083 /*
5084 * Check if sending an ack is needed.
5085 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5086 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5087 {
5088 struct tcp_sock *tp = tcp_sk(sk);
5089
5090 /* More than one full frame received... */
5091 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5092 /* ... and right edge of window advances far enough.
5093 * (tcp_recvmsg() will send ACK otherwise). Or...
5094 */
5095 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5096 /* We ACK each frame or... */
5097 tcp_in_quickack_mode(sk) ||
5098 /* We have out of order data. */
5099 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5100 /* Then ack it now */
5101 tcp_send_ack(sk);
5102 } else {
5103 /* Else, send delayed ack. */
5104 tcp_send_delayed_ack(sk);
5105 }
5106 }
5107
tcp_ack_snd_check(struct sock * sk)5108 static inline void tcp_ack_snd_check(struct sock *sk)
5109 {
5110 if (!inet_csk_ack_scheduled(sk)) {
5111 /* We sent a data segment already. */
5112 return;
5113 }
5114 __tcp_ack_snd_check(sk, 1);
5115 }
5116
5117 /*
5118 * This routine is only called when we have urgent data
5119 * signaled. Its the 'slow' part of tcp_urg. It could be
5120 * moved inline now as tcp_urg is only called from one
5121 * place. We handle URGent data wrong. We have to - as
5122 * BSD still doesn't use the correction from RFC961.
5123 * For 1003.1g we should support a new option TCP_STDURG to permit
5124 * either form (or just set the sysctl tcp_stdurg).
5125 */
5126
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5127 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5128 {
5129 struct tcp_sock *tp = tcp_sk(sk);
5130 u32 ptr = ntohs(th->urg_ptr);
5131
5132 if (ptr && !sysctl_tcp_stdurg)
5133 ptr--;
5134 ptr += ntohl(th->seq);
5135
5136 /* Ignore urgent data that we've already seen and read. */
5137 if (after(tp->copied_seq, ptr))
5138 return;
5139
5140 /* Do not replay urg ptr.
5141 *
5142 * NOTE: interesting situation not covered by specs.
5143 * Misbehaving sender may send urg ptr, pointing to segment,
5144 * which we already have in ofo queue. We are not able to fetch
5145 * such data and will stay in TCP_URG_NOTYET until will be eaten
5146 * by recvmsg(). Seems, we are not obliged to handle such wicked
5147 * situations. But it is worth to think about possibility of some
5148 * DoSes using some hypothetical application level deadlock.
5149 */
5150 if (before(ptr, tp->rcv_nxt))
5151 return;
5152
5153 /* Do we already have a newer (or duplicate) urgent pointer? */
5154 if (tp->urg_data && !after(ptr, tp->urg_seq))
5155 return;
5156
5157 /* Tell the world about our new urgent pointer. */
5158 sk_send_sigurg(sk);
5159
5160 /* We may be adding urgent data when the last byte read was
5161 * urgent. To do this requires some care. We cannot just ignore
5162 * tp->copied_seq since we would read the last urgent byte again
5163 * as data, nor can we alter copied_seq until this data arrives
5164 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5165 *
5166 * NOTE. Double Dutch. Rendering to plain English: author of comment
5167 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5168 * and expect that both A and B disappear from stream. This is _wrong_.
5169 * Though this happens in BSD with high probability, this is occasional.
5170 * Any application relying on this is buggy. Note also, that fix "works"
5171 * only in this artificial test. Insert some normal data between A and B and we will
5172 * decline of BSD again. Verdict: it is better to remove to trap
5173 * buggy users.
5174 */
5175 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5176 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5177 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5178 tp->copied_seq++;
5179 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5180 __skb_unlink(skb, &sk->sk_receive_queue);
5181 __kfree_skb(skb);
5182 }
5183 }
5184
5185 tp->urg_data = TCP_URG_NOTYET;
5186 tp->urg_seq = ptr;
5187
5188 /* Disable header prediction. */
5189 tp->pred_flags = 0;
5190 }
5191
5192 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5193 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5194 {
5195 struct tcp_sock *tp = tcp_sk(sk);
5196
5197 /* Check if we get a new urgent pointer - normally not. */
5198 if (th->urg)
5199 tcp_check_urg(sk, th);
5200
5201 /* Do we wait for any urgent data? - normally not... */
5202 if (tp->urg_data == TCP_URG_NOTYET) {
5203 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5204 th->syn;
5205
5206 /* Is the urgent pointer pointing into this packet? */
5207 if (ptr < skb->len) {
5208 u8 tmp;
5209 if (skb_copy_bits(skb, ptr, &tmp, 1))
5210 BUG();
5211 tp->urg_data = TCP_URG_VALID | tmp;
5212 if (!sock_flag(sk, SOCK_DEAD))
5213 sk->sk_data_ready(sk, 0);
5214 }
5215 }
5216 }
5217
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)5218 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5219 {
5220 struct tcp_sock *tp = tcp_sk(sk);
5221 int chunk = skb->len - hlen;
5222 int err;
5223
5224 local_bh_enable();
5225 if (skb_csum_unnecessary(skb))
5226 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5227 else
5228 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5229 tp->ucopy.iov);
5230
5231 if (!err) {
5232 tp->ucopy.len -= chunk;
5233 tp->copied_seq += chunk;
5234 tcp_rcv_space_adjust(sk);
5235 }
5236
5237 local_bh_disable();
5238 return err;
5239 }
5240
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5241 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5242 struct sk_buff *skb)
5243 {
5244 __sum16 result;
5245
5246 if (sock_owned_by_user(sk)) {
5247 local_bh_enable();
5248 result = __tcp_checksum_complete(skb);
5249 local_bh_disable();
5250 } else {
5251 result = __tcp_checksum_complete(skb);
5252 }
5253 return result;
5254 }
5255
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5256 static inline int tcp_checksum_complete_user(struct sock *sk,
5257 struct sk_buff *skb)
5258 {
5259 return !skb_csum_unnecessary(skb) &&
5260 __tcp_checksum_complete_user(sk, skb);
5261 }
5262
5263 #ifdef CONFIG_NET_DMA
tcp_dma_try_early_copy(struct sock * sk,struct sk_buff * skb,int hlen)5264 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5265 int hlen)
5266 {
5267 struct tcp_sock *tp = tcp_sk(sk);
5268 int chunk = skb->len - hlen;
5269 int dma_cookie;
5270 int copied_early = 0;
5271
5272 if (tp->ucopy.wakeup)
5273 return 0;
5274
5275 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5276 tp->ucopy.dma_chan = net_dma_find_channel();
5277
5278 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5279
5280 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5281 skb, hlen,
5282 tp->ucopy.iov, chunk,
5283 tp->ucopy.pinned_list);
5284
5285 if (dma_cookie < 0)
5286 goto out;
5287
5288 tp->ucopy.dma_cookie = dma_cookie;
5289 copied_early = 1;
5290
5291 tp->ucopy.len -= chunk;
5292 tp->copied_seq += chunk;
5293 tcp_rcv_space_adjust(sk);
5294
5295 if ((tp->ucopy.len == 0) ||
5296 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5297 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5298 tp->ucopy.wakeup = 1;
5299 sk->sk_data_ready(sk, 0);
5300 }
5301 } else if (chunk > 0) {
5302 tp->ucopy.wakeup = 1;
5303 sk->sk_data_ready(sk, 0);
5304 }
5305 out:
5306 return copied_early;
5307 }
5308 #endif /* CONFIG_NET_DMA */
5309
5310 /* Does PAWS and seqno based validation of an incoming segment, flags will
5311 * play significant role here.
5312 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5313 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5314 const struct tcphdr *th, int syn_inerr)
5315 {
5316 const u8 *hash_location;
5317 struct tcp_sock *tp = tcp_sk(sk);
5318
5319 /* RFC1323: H1. Apply PAWS check first. */
5320 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5321 tp->rx_opt.saw_tstamp &&
5322 tcp_paws_discard(sk, skb)) {
5323 if (!th->rst) {
5324 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5325 tcp_send_dupack(sk, skb);
5326 goto discard;
5327 }
5328 /* Reset is accepted even if it did not pass PAWS. */
5329 }
5330
5331 /* Step 1: check sequence number */
5332 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5333 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5334 * (RST) segments are validated by checking their SEQ-fields."
5335 * And page 69: "If an incoming segment is not acceptable,
5336 * an acknowledgment should be sent in reply (unless the RST
5337 * bit is set, if so drop the segment and return)".
5338 */
5339 if (!th->rst) {
5340 if (th->syn)
5341 goto syn_challenge;
5342 tcp_send_dupack(sk, skb);
5343 }
5344 goto discard;
5345 }
5346
5347 /* Step 2: check RST bit */
5348 if (th->rst) {
5349 /* RFC 5961 3.2 :
5350 * If sequence number exactly matches RCV.NXT, then
5351 * RESET the connection
5352 * else
5353 * Send a challenge ACK
5354 */
5355 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5356 tcp_reset(sk);
5357 else
5358 tcp_send_challenge_ack(sk);
5359 goto discard;
5360 }
5361
5362 /* step 3: check security and precedence [ignored] */
5363
5364 /* step 4: Check for a SYN
5365 * RFC 5691 4.2 : Send a challenge ack
5366 */
5367 if (th->syn) {
5368 syn_challenge:
5369 if (syn_inerr)
5370 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5371 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5372 tcp_send_challenge_ack(sk);
5373 goto discard;
5374 }
5375
5376 return true;
5377
5378 discard:
5379 __kfree_skb(skb);
5380 return false;
5381 }
5382
5383 /*
5384 * TCP receive function for the ESTABLISHED state.
5385 *
5386 * It is split into a fast path and a slow path. The fast path is
5387 * disabled when:
5388 * - A zero window was announced from us - zero window probing
5389 * is only handled properly in the slow path.
5390 * - Out of order segments arrived.
5391 * - Urgent data is expected.
5392 * - There is no buffer space left
5393 * - Unexpected TCP flags/window values/header lengths are received
5394 * (detected by checking the TCP header against pred_flags)
5395 * - Data is sent in both directions. Fast path only supports pure senders
5396 * or pure receivers (this means either the sequence number or the ack
5397 * value must stay constant)
5398 * - Unexpected TCP option.
5399 *
5400 * When these conditions are not satisfied it drops into a standard
5401 * receive procedure patterned after RFC793 to handle all cases.
5402 * The first three cases are guaranteed by proper pred_flags setting,
5403 * the rest is checked inline. Fast processing is turned on in
5404 * tcp_data_queue when everything is OK.
5405 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5406 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5407 const struct tcphdr *th, unsigned int len)
5408 {
5409 struct tcp_sock *tp = tcp_sk(sk);
5410
5411 /*
5412 * Header prediction.
5413 * The code loosely follows the one in the famous
5414 * "30 instruction TCP receive" Van Jacobson mail.
5415 *
5416 * Van's trick is to deposit buffers into socket queue
5417 * on a device interrupt, to call tcp_recv function
5418 * on the receive process context and checksum and copy
5419 * the buffer to user space. smart...
5420 *
5421 * Our current scheme is not silly either but we take the
5422 * extra cost of the net_bh soft interrupt processing...
5423 * We do checksum and copy also but from device to kernel.
5424 */
5425
5426 tp->rx_opt.saw_tstamp = 0;
5427
5428 /* pred_flags is 0xS?10 << 16 + snd_wnd
5429 * if header_prediction is to be made
5430 * 'S' will always be tp->tcp_header_len >> 2
5431 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5432 * turn it off (when there are holes in the receive
5433 * space for instance)
5434 * PSH flag is ignored.
5435 */
5436
5437 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5438 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5439 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5440 int tcp_header_len = tp->tcp_header_len;
5441
5442 /* Timestamp header prediction: tcp_header_len
5443 * is automatically equal to th->doff*4 due to pred_flags
5444 * match.
5445 */
5446
5447 /* Check timestamp */
5448 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5449 /* No? Slow path! */
5450 if (!tcp_parse_aligned_timestamp(tp, th))
5451 goto slow_path;
5452
5453 /* If PAWS failed, check it more carefully in slow path */
5454 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5455 goto slow_path;
5456
5457 /* DO NOT update ts_recent here, if checksum fails
5458 * and timestamp was corrupted part, it will result
5459 * in a hung connection since we will drop all
5460 * future packets due to the PAWS test.
5461 */
5462 }
5463
5464 if (len <= tcp_header_len) {
5465 /* Bulk data transfer: sender */
5466 if (len == tcp_header_len) {
5467 /* Predicted packet is in window by definition.
5468 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5469 * Hence, check seq<=rcv_wup reduces to:
5470 */
5471 if (tcp_header_len ==
5472 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5473 tp->rcv_nxt == tp->rcv_wup)
5474 tcp_store_ts_recent(tp);
5475
5476 /* We know that such packets are checksummed
5477 * on entry.
5478 */
5479 tcp_ack(sk, skb, 0);
5480 __kfree_skb(skb);
5481 tcp_data_snd_check(sk);
5482 return 0;
5483 } else { /* Header too small */
5484 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5485 goto discard;
5486 }
5487 } else {
5488 int eaten = 0;
5489 int copied_early = 0;
5490
5491 if (tp->copied_seq == tp->rcv_nxt &&
5492 len - tcp_header_len <= tp->ucopy.len) {
5493 #ifdef CONFIG_NET_DMA
5494 if (tp->ucopy.task == current &&
5495 sock_owned_by_user(sk) &&
5496 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5497 copied_early = 1;
5498 eaten = 1;
5499 }
5500 #endif
5501 if (tp->ucopy.task == current &&
5502 sock_owned_by_user(sk) && !copied_early) {
5503 __set_current_state(TASK_RUNNING);
5504
5505 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5506 eaten = 1;
5507 }
5508 if (eaten) {
5509 /* Predicted packet is in window by definition.
5510 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5511 * Hence, check seq<=rcv_wup reduces to:
5512 */
5513 if (tcp_header_len ==
5514 (sizeof(struct tcphdr) +
5515 TCPOLEN_TSTAMP_ALIGNED) &&
5516 tp->rcv_nxt == tp->rcv_wup)
5517 tcp_store_ts_recent(tp);
5518
5519 tcp_rcv_rtt_measure_ts(sk, skb);
5520
5521 __skb_pull(skb, tcp_header_len);
5522 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5523 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5524 }
5525 if (copied_early)
5526 tcp_cleanup_rbuf(sk, skb->len);
5527 }
5528 if (!eaten) {
5529 if (tcp_checksum_complete_user(sk, skb))
5530 goto csum_error;
5531
5532 if ((int)skb->truesize > sk->sk_forward_alloc)
5533 goto step5;
5534
5535 /* Predicted packet is in window by definition.
5536 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5537 * Hence, check seq<=rcv_wup reduces to:
5538 */
5539 if (tcp_header_len ==
5540 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5541 tp->rcv_nxt == tp->rcv_wup)
5542 tcp_store_ts_recent(tp);
5543
5544 tcp_rcv_rtt_measure_ts(sk, skb);
5545
5546 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5547
5548 /* Bulk data transfer: receiver */
5549 __skb_pull(skb, tcp_header_len);
5550 __skb_queue_tail(&sk->sk_receive_queue, skb);
5551 skb_set_owner_r(skb, sk);
5552 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5553 }
5554
5555 tcp_event_data_recv(sk, skb);
5556
5557 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5558 /* Well, only one small jumplet in fast path... */
5559 tcp_ack(sk, skb, FLAG_DATA);
5560 tcp_data_snd_check(sk);
5561 if (!inet_csk_ack_scheduled(sk))
5562 goto no_ack;
5563 }
5564
5565 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5566 __tcp_ack_snd_check(sk, 0);
5567 no_ack:
5568 #ifdef CONFIG_NET_DMA
5569 if (copied_early)
5570 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5571 else
5572 #endif
5573 if (eaten)
5574 __kfree_skb(skb);
5575 else
5576 sk->sk_data_ready(sk, 0);
5577 return 0;
5578 }
5579 }
5580
5581 slow_path:
5582 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5583 goto csum_error;
5584
5585 /*
5586 * Standard slow path.
5587 */
5588
5589 if (!tcp_validate_incoming(sk, skb, th, 1))
5590 return 0;
5591
5592 step5:
5593 if (th->ack &&
5594 tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5595 goto discard;
5596
5597 tcp_rcv_rtt_measure_ts(sk, skb);
5598
5599 /* Process urgent data. */
5600 tcp_urg(sk, skb, th);
5601
5602 /* step 7: process the segment text */
5603 tcp_data_queue(sk, skb);
5604
5605 tcp_data_snd_check(sk);
5606 tcp_ack_snd_check(sk);
5607 return 0;
5608
5609 csum_error:
5610 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5611
5612 discard:
5613 __kfree_skb(skb);
5614 return 0;
5615 }
5616 EXPORT_SYMBOL(tcp_rcv_established);
5617
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5618 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5619 const struct tcphdr *th, unsigned int len)
5620 {
5621 const u8 *hash_location;
5622 struct inet_connection_sock *icsk = inet_csk(sk);
5623 struct tcp_sock *tp = tcp_sk(sk);
5624 struct tcp_cookie_values *cvp = tp->cookie_values;
5625 int saved_clamp = tp->rx_opt.mss_clamp;
5626
5627 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5628
5629 if (th->ack) {
5630 /* rfc793:
5631 * "If the state is SYN-SENT then
5632 * first check the ACK bit
5633 * If the ACK bit is set
5634 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5635 * a reset (unless the RST bit is set, if so drop
5636 * the segment and return)"
5637 *
5638 * We do not send data with SYN, so that RFC-correct
5639 * test reduces to:
5640 */
5641 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5642 goto reset_and_undo;
5643
5644 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5645 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5646 tcp_time_stamp)) {
5647 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5648 goto reset_and_undo;
5649 }
5650
5651 /* Now ACK is acceptable.
5652 *
5653 * "If the RST bit is set
5654 * If the ACK was acceptable then signal the user "error:
5655 * connection reset", drop the segment, enter CLOSED state,
5656 * delete TCB, and return."
5657 */
5658
5659 if (th->rst) {
5660 tcp_reset(sk);
5661 goto discard;
5662 }
5663
5664 /* rfc793:
5665 * "fifth, if neither of the SYN or RST bits is set then
5666 * drop the segment and return."
5667 *
5668 * See note below!
5669 * --ANK(990513)
5670 */
5671 if (!th->syn)
5672 goto discard_and_undo;
5673
5674 /* rfc793:
5675 * "If the SYN bit is on ...
5676 * are acceptable then ...
5677 * (our SYN has been ACKed), change the connection
5678 * state to ESTABLISHED..."
5679 */
5680
5681 TCP_ECN_rcv_synack(tp, th);
5682
5683 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5684 tcp_ack(sk, skb, FLAG_SLOWPATH);
5685
5686 /* Ok.. it's good. Set up sequence numbers and
5687 * move to established.
5688 */
5689 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5690 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5691
5692 /* RFC1323: The window in SYN & SYN/ACK segments is
5693 * never scaled.
5694 */
5695 tp->snd_wnd = ntohs(th->window);
5696 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5697
5698 if (!tp->rx_opt.wscale_ok) {
5699 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5700 tp->window_clamp = min(tp->window_clamp, 65535U);
5701 }
5702
5703 if (tp->rx_opt.saw_tstamp) {
5704 tp->rx_opt.tstamp_ok = 1;
5705 tp->tcp_header_len =
5706 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5707 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5708 tcp_store_ts_recent(tp);
5709 } else {
5710 tp->tcp_header_len = sizeof(struct tcphdr);
5711 }
5712
5713 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5714 tcp_enable_fack(tp);
5715
5716 tcp_mtup_init(sk);
5717 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5718 tcp_initialize_rcv_mss(sk);
5719
5720 /* Remember, tcp_poll() does not lock socket!
5721 * Change state from SYN-SENT only after copied_seq
5722 * is initialized. */
5723 tp->copied_seq = tp->rcv_nxt;
5724
5725 if (cvp != NULL &&
5726 cvp->cookie_pair_size > 0 &&
5727 tp->rx_opt.cookie_plus > 0) {
5728 int cookie_size = tp->rx_opt.cookie_plus
5729 - TCPOLEN_COOKIE_BASE;
5730 int cookie_pair_size = cookie_size
5731 + cvp->cookie_desired;
5732
5733 /* A cookie extension option was sent and returned.
5734 * Note that each incoming SYNACK replaces the
5735 * Responder cookie. The initial exchange is most
5736 * fragile, as protection against spoofing relies
5737 * entirely upon the sequence and timestamp (above).
5738 * This replacement strategy allows the correct pair to
5739 * pass through, while any others will be filtered via
5740 * Responder verification later.
5741 */
5742 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5743 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5744 hash_location, cookie_size);
5745 cvp->cookie_pair_size = cookie_pair_size;
5746 }
5747 }
5748
5749 smp_mb();
5750 tcp_set_state(sk, TCP_ESTABLISHED);
5751
5752 security_inet_conn_established(sk, skb);
5753
5754 /* Make sure socket is routed, for correct metrics. */
5755 icsk->icsk_af_ops->rebuild_header(sk);
5756
5757 tcp_init_metrics(sk);
5758
5759 tcp_init_congestion_control(sk);
5760
5761 /* Prevent spurious tcp_cwnd_restart() on first data
5762 * packet.
5763 */
5764 tp->lsndtime = tcp_time_stamp;
5765
5766 tcp_init_buffer_space(sk);
5767
5768 if (sock_flag(sk, SOCK_KEEPOPEN))
5769 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5770
5771 if (!tp->rx_opt.snd_wscale)
5772 __tcp_fast_path_on(tp, tp->snd_wnd);
5773 else
5774 tp->pred_flags = 0;
5775
5776 if (!sock_flag(sk, SOCK_DEAD)) {
5777 sk->sk_state_change(sk);
5778 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5779 }
5780
5781 if (sk->sk_write_pending ||
5782 icsk->icsk_accept_queue.rskq_defer_accept ||
5783 icsk->icsk_ack.pingpong) {
5784 /* Save one ACK. Data will be ready after
5785 * several ticks, if write_pending is set.
5786 *
5787 * It may be deleted, but with this feature tcpdumps
5788 * look so _wonderfully_ clever, that I was not able
5789 * to stand against the temptation 8) --ANK
5790 */
5791 inet_csk_schedule_ack(sk);
5792 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5793 icsk->icsk_ack.ato = TCP_ATO_MIN;
5794 tcp_incr_quickack(sk);
5795 tcp_enter_quickack_mode(sk);
5796 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5797 TCP_DELACK_MAX, TCP_RTO_MAX);
5798
5799 discard:
5800 __kfree_skb(skb);
5801 return 0;
5802 } else {
5803 tcp_send_ack(sk);
5804 }
5805 return -1;
5806 }
5807
5808 /* No ACK in the segment */
5809
5810 if (th->rst) {
5811 /* rfc793:
5812 * "If the RST bit is set
5813 *
5814 * Otherwise (no ACK) drop the segment and return."
5815 */
5816
5817 goto discard_and_undo;
5818 }
5819
5820 /* PAWS check. */
5821 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5822 tcp_paws_reject(&tp->rx_opt, 0))
5823 goto discard_and_undo;
5824
5825 if (th->syn) {
5826 /* We see SYN without ACK. It is attempt of
5827 * simultaneous connect with crossed SYNs.
5828 * Particularly, it can be connect to self.
5829 */
5830 tcp_set_state(sk, TCP_SYN_RECV);
5831
5832 if (tp->rx_opt.saw_tstamp) {
5833 tp->rx_opt.tstamp_ok = 1;
5834 tcp_store_ts_recent(tp);
5835 tp->tcp_header_len =
5836 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5837 } else {
5838 tp->tcp_header_len = sizeof(struct tcphdr);
5839 }
5840
5841 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5842 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5843
5844 /* RFC1323: The window in SYN & SYN/ACK segments is
5845 * never scaled.
5846 */
5847 tp->snd_wnd = ntohs(th->window);
5848 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5849 tp->max_window = tp->snd_wnd;
5850
5851 TCP_ECN_rcv_syn(tp, th);
5852
5853 tcp_mtup_init(sk);
5854 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5855 tcp_initialize_rcv_mss(sk);
5856
5857 tcp_send_synack(sk);
5858 #if 0
5859 /* Note, we could accept data and URG from this segment.
5860 * There are no obstacles to make this.
5861 *
5862 * However, if we ignore data in ACKless segments sometimes,
5863 * we have no reasons to accept it sometimes.
5864 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5865 * is not flawless. So, discard packet for sanity.
5866 * Uncomment this return to process the data.
5867 */
5868 return -1;
5869 #else
5870 goto discard;
5871 #endif
5872 }
5873 /* "fifth, if neither of the SYN or RST bits is set then
5874 * drop the segment and return."
5875 */
5876
5877 discard_and_undo:
5878 tcp_clear_options(&tp->rx_opt);
5879 tp->rx_opt.mss_clamp = saved_clamp;
5880 goto discard;
5881
5882 reset_and_undo:
5883 tcp_clear_options(&tp->rx_opt);
5884 tp->rx_opt.mss_clamp = saved_clamp;
5885 return 1;
5886 }
5887
5888 /*
5889 * This function implements the receiving procedure of RFC 793 for
5890 * all states except ESTABLISHED and TIME_WAIT.
5891 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5892 * address independent.
5893 */
5894
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5895 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5896 const struct tcphdr *th, unsigned int len)
5897 {
5898 struct tcp_sock *tp = tcp_sk(sk);
5899 struct inet_connection_sock *icsk = inet_csk(sk);
5900 int queued = 0;
5901
5902 tp->rx_opt.saw_tstamp = 0;
5903
5904 switch (sk->sk_state) {
5905 case TCP_CLOSE:
5906 goto discard;
5907
5908 case TCP_LISTEN:
5909 if (th->ack)
5910 return 1;
5911
5912 if (th->rst)
5913 goto discard;
5914
5915 if (th->syn) {
5916 if (th->fin)
5917 goto discard;
5918 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5919 return 1;
5920
5921 /* Now we have several options: In theory there is
5922 * nothing else in the frame. KA9Q has an option to
5923 * send data with the syn, BSD accepts data with the
5924 * syn up to the [to be] advertised window and
5925 * Solaris 2.1 gives you a protocol error. For now
5926 * we just ignore it, that fits the spec precisely
5927 * and avoids incompatibilities. It would be nice in
5928 * future to drop through and process the data.
5929 *
5930 * Now that TTCP is starting to be used we ought to
5931 * queue this data.
5932 * But, this leaves one open to an easy denial of
5933 * service attack, and SYN cookies can't defend
5934 * against this problem. So, we drop the data
5935 * in the interest of security over speed unless
5936 * it's still in use.
5937 */
5938 kfree_skb(skb);
5939 return 0;
5940 }
5941 goto discard;
5942
5943 case TCP_SYN_SENT:
5944 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5945 if (queued >= 0)
5946 return queued;
5947
5948 /* Do step6 onward by hand. */
5949 tcp_urg(sk, skb, th);
5950 __kfree_skb(skb);
5951 tcp_data_snd_check(sk);
5952 return 0;
5953 }
5954
5955 if (!tcp_validate_incoming(sk, skb, th, 0))
5956 return 0;
5957
5958 /* step 5: check the ACK field */
5959 if (th->ack) {
5960 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5961 FLAG_UPDATE_TS_RECENT) > 0;
5962
5963 switch (sk->sk_state) {
5964 case TCP_SYN_RECV:
5965 if (acceptable) {
5966 tp->copied_seq = tp->rcv_nxt;
5967 smp_mb();
5968 tcp_set_state(sk, TCP_ESTABLISHED);
5969 sk->sk_state_change(sk);
5970
5971 /* Note, that this wakeup is only for marginal
5972 * crossed SYN case. Passively open sockets
5973 * are not waked up, because sk->sk_sleep ==
5974 * NULL and sk->sk_socket == NULL.
5975 */
5976 if (sk->sk_socket)
5977 sk_wake_async(sk,
5978 SOCK_WAKE_IO, POLL_OUT);
5979
5980 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5981 tp->snd_wnd = ntohs(th->window) <<
5982 tp->rx_opt.snd_wscale;
5983 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5984
5985 if (tp->rx_opt.tstamp_ok)
5986 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5987
5988 /* Make sure socket is routed, for
5989 * correct metrics.
5990 */
5991 icsk->icsk_af_ops->rebuild_header(sk);
5992
5993 tcp_init_metrics(sk);
5994
5995 tcp_init_congestion_control(sk);
5996
5997 /* Prevent spurious tcp_cwnd_restart() on
5998 * first data packet.
5999 */
6000 tp->lsndtime = tcp_time_stamp;
6001
6002 tcp_mtup_init(sk);
6003 tcp_initialize_rcv_mss(sk);
6004 tcp_init_buffer_space(sk);
6005 tcp_fast_path_on(tp);
6006 } else {
6007 return 1;
6008 }
6009 break;
6010
6011 case TCP_FIN_WAIT1:
6012 if (tp->snd_una == tp->write_seq) {
6013 tcp_set_state(sk, TCP_FIN_WAIT2);
6014 sk->sk_shutdown |= SEND_SHUTDOWN;
6015 dst_confirm(__sk_dst_get(sk));
6016
6017 if (!sock_flag(sk, SOCK_DEAD))
6018 /* Wake up lingering close() */
6019 sk->sk_state_change(sk);
6020 else {
6021 int tmo;
6022
6023 if (tp->linger2 < 0 ||
6024 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6025 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6026 tcp_done(sk);
6027 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6028 return 1;
6029 }
6030
6031 tmo = tcp_fin_time(sk);
6032 if (tmo > TCP_TIMEWAIT_LEN) {
6033 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6034 } else if (th->fin || sock_owned_by_user(sk)) {
6035 /* Bad case. We could lose such FIN otherwise.
6036 * It is not a big problem, but it looks confusing
6037 * and not so rare event. We still can lose it now,
6038 * if it spins in bh_lock_sock(), but it is really
6039 * marginal case.
6040 */
6041 inet_csk_reset_keepalive_timer(sk, tmo);
6042 } else {
6043 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6044 goto discard;
6045 }
6046 }
6047 }
6048 break;
6049
6050 case TCP_CLOSING:
6051 if (tp->snd_una == tp->write_seq) {
6052 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6053 goto discard;
6054 }
6055 break;
6056
6057 case TCP_LAST_ACK:
6058 if (tp->snd_una == tp->write_seq) {
6059 tcp_update_metrics(sk);
6060 tcp_done(sk);
6061 goto discard;
6062 }
6063 break;
6064 }
6065 } else
6066 goto discard;
6067
6068 /* step 6: check the URG bit */
6069 tcp_urg(sk, skb, th);
6070
6071 /* step 7: process the segment text */
6072 switch (sk->sk_state) {
6073 case TCP_CLOSE_WAIT:
6074 case TCP_CLOSING:
6075 case TCP_LAST_ACK:
6076 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6077 break;
6078 case TCP_FIN_WAIT1:
6079 case TCP_FIN_WAIT2:
6080 /* RFC 793 says to queue data in these states,
6081 * RFC 1122 says we MUST send a reset.
6082 * BSD 4.4 also does reset.
6083 */
6084 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6085 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6086 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6087 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6088 tcp_reset(sk);
6089 return 1;
6090 }
6091 }
6092 /* Fall through */
6093 case TCP_ESTABLISHED:
6094 tcp_data_queue(sk, skb);
6095 queued = 1;
6096 break;
6097 }
6098
6099 /* tcp_data could move socket to TIME-WAIT */
6100 if (sk->sk_state != TCP_CLOSE) {
6101 tcp_data_snd_check(sk);
6102 tcp_ack_snd_check(sk);
6103 }
6104
6105 if (!queued) {
6106 discard:
6107 __kfree_skb(skb);
6108 }
6109 return 0;
6110 }
6111 EXPORT_SYMBOL(tcp_rcv_state_process);
6112