1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295
296 /*
297 * Current number of TCP sockets.
298 */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319
tcp_enter_memory_pressure(struct sock * sk)320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 if (!tcp_memory_pressure) {
323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 tcp_memory_pressure = 1;
325 }
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 u8 res = 0;
333
334 if (seconds > 0) {
335 int period = timeout;
336
337 res = 1;
338 while (seconds > period && res < 255) {
339 res++;
340 timeout <<= 1;
341 if (timeout > rto_max)
342 timeout = rto_max;
343 period += timeout;
344 }
345 }
346 return res;
347 }
348
349 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 int period = 0;
353
354 if (retrans > 0) {
355 period = timeout;
356 while (--retrans) {
357 timeout <<= 1;
358 if (timeout > rto_max)
359 timeout = rto_max;
360 period += timeout;
361 }
362 }
363 return period;
364 }
365
366 /*
367 * Wait for a TCP event.
368 *
369 * Note that we don't need to lock the socket, as the upper poll layers
370 * take care of normal races (between the test and the event) and we don't
371 * go look at any of the socket buffers directly.
372 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 unsigned int mask;
376 struct sock *sk = sock->sk;
377 const struct tcp_sock *tp = tcp_sk(sk);
378
379 sock_poll_wait(file, sk_sleep(sk), wait);
380 if (sk->sk_state == TCP_LISTEN)
381 return inet_csk_listen_poll(sk);
382
383 /* Socket is not locked. We are protected from async events
384 * by poll logic and correct handling of state changes
385 * made by other threads is impossible in any case.
386 */
387
388 mask = 0;
389
390 /*
391 * POLLHUP is certainly not done right. But poll() doesn't
392 * have a notion of HUP in just one direction, and for a
393 * socket the read side is more interesting.
394 *
395 * Some poll() documentation says that POLLHUP is incompatible
396 * with the POLLOUT/POLLWR flags, so somebody should check this
397 * all. But careful, it tends to be safer to return too many
398 * bits than too few, and you can easily break real applications
399 * if you don't tell them that something has hung up!
400 *
401 * Check-me.
402 *
403 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404 * our fs/select.c). It means that after we received EOF,
405 * poll always returns immediately, making impossible poll() on write()
406 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407 * if and only if shutdown has been made in both directions.
408 * Actually, it is interesting to look how Solaris and DUX
409 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410 * then we could set it on SND_SHUTDOWN. BTW examples given
411 * in Stevens' books assume exactly this behaviour, it explains
412 * why POLLHUP is incompatible with POLLOUT. --ANK
413 *
414 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415 * blocking on fresh not-connected or disconnected socket. --ANK
416 */
417 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418 mask |= POLLHUP;
419 if (sk->sk_shutdown & RCV_SHUTDOWN)
420 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421
422 /* Connected? */
423 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424 int target = sock_rcvlowat(sk, 0, INT_MAX);
425
426 if (tp->urg_seq == tp->copied_seq &&
427 !sock_flag(sk, SOCK_URGINLINE) &&
428 tp->urg_data)
429 target++;
430
431 /* Potential race condition. If read of tp below will
432 * escape above sk->sk_state, we can be illegally awaken
433 * in SYN_* states. */
434 if (tp->rcv_nxt - tp->copied_seq >= target)
435 mask |= POLLIN | POLLRDNORM;
436
437 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439 mask |= POLLOUT | POLLWRNORM;
440 } else { /* send SIGIO later */
441 set_bit(SOCK_ASYNC_NOSPACE,
442 &sk->sk_socket->flags);
443 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444
445 /* Race breaker. If space is freed after
446 * wspace test but before the flags are set,
447 * IO signal will be lost.
448 */
449 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450 mask |= POLLOUT | POLLWRNORM;
451 }
452 } else
453 mask |= POLLOUT | POLLWRNORM;
454
455 if (tp->urg_data & TCP_URG_VALID)
456 mask |= POLLPRI;
457 }
458 /* This barrier is coupled with smp_wmb() in tcp_reset() */
459 smp_rmb();
460 if (sk->sk_err)
461 mask |= POLLERR;
462
463 return mask;
464 }
465 EXPORT_SYMBOL(tcp_poll);
466
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468 {
469 struct tcp_sock *tp = tcp_sk(sk);
470 int answ;
471
472 switch (cmd) {
473 case SIOCINQ:
474 if (sk->sk_state == TCP_LISTEN)
475 return -EINVAL;
476
477 lock_sock(sk);
478 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479 answ = 0;
480 else if (sock_flag(sk, SOCK_URGINLINE) ||
481 !tp->urg_data ||
482 before(tp->urg_seq, tp->copied_seq) ||
483 !before(tp->urg_seq, tp->rcv_nxt)) {
484
485 answ = tp->rcv_nxt - tp->copied_seq;
486
487 /* Subtract 1, if FIN was received */
488 if (answ && sock_flag(sk, SOCK_DONE))
489 answ--;
490 } else
491 answ = tp->urg_seq - tp->copied_seq;
492 release_sock(sk);
493 break;
494 case SIOCATMARK:
495 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
496 break;
497 case SIOCOUTQ:
498 if (sk->sk_state == TCP_LISTEN)
499 return -EINVAL;
500
501 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
502 answ = 0;
503 else
504 answ = tp->write_seq - tp->snd_una;
505 break;
506 case SIOCOUTQNSD:
507 if (sk->sk_state == TCP_LISTEN)
508 return -EINVAL;
509
510 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
511 answ = 0;
512 else
513 answ = tp->write_seq - tp->snd_nxt;
514 break;
515 default:
516 return -ENOIOCTLCMD;
517 }
518
519 return put_user(answ, (int __user *)arg);
520 }
521 EXPORT_SYMBOL(tcp_ioctl);
522
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)523 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
524 {
525 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
526 tp->pushed_seq = tp->write_seq;
527 }
528
forced_push(const struct tcp_sock * tp)529 static inline int forced_push(const struct tcp_sock *tp)
530 {
531 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
532 }
533
skb_entail(struct sock * sk,struct sk_buff * skb)534 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
535 {
536 struct tcp_sock *tp = tcp_sk(sk);
537 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
538
539 skb->csum = 0;
540 tcb->seq = tcb->end_seq = tp->write_seq;
541 tcb->tcp_flags = TCPHDR_ACK;
542 tcb->sacked = 0;
543 skb_header_release(skb);
544 tcp_add_write_queue_tail(sk, skb);
545 sk->sk_wmem_queued += skb->truesize;
546 sk_mem_charge(sk, skb->truesize);
547 if (tp->nonagle & TCP_NAGLE_PUSH)
548 tp->nonagle &= ~TCP_NAGLE_PUSH;
549 }
550
tcp_mark_urg(struct tcp_sock * tp,int flags)551 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
552 {
553 if (flags & MSG_OOB)
554 tp->snd_up = tp->write_seq;
555 }
556
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle)557 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
558 int nonagle)
559 {
560 if (tcp_send_head(sk)) {
561 struct tcp_sock *tp = tcp_sk(sk);
562
563 if (!(flags & MSG_MORE) || forced_push(tp))
564 tcp_mark_push(tp, tcp_write_queue_tail(sk));
565
566 tcp_mark_urg(tp, flags);
567 __tcp_push_pending_frames(sk, mss_now,
568 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
569 }
570 }
571
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)572 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
573 unsigned int offset, size_t len)
574 {
575 struct tcp_splice_state *tss = rd_desc->arg.data;
576 int ret;
577
578 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
579 tss->flags);
580 if (ret > 0)
581 rd_desc->count -= ret;
582 return ret;
583 }
584
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)585 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
586 {
587 /* Store TCP splice context information in read_descriptor_t. */
588 read_descriptor_t rd_desc = {
589 .arg.data = tss,
590 .count = tss->len,
591 };
592
593 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
594 }
595
596 /**
597 * tcp_splice_read - splice data from TCP socket to a pipe
598 * @sock: socket to splice from
599 * @ppos: position (not valid)
600 * @pipe: pipe to splice to
601 * @len: number of bytes to splice
602 * @flags: splice modifier flags
603 *
604 * Description:
605 * Will read pages from given socket and fill them into a pipe.
606 *
607 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)608 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
609 struct pipe_inode_info *pipe, size_t len,
610 unsigned int flags)
611 {
612 struct sock *sk = sock->sk;
613 struct tcp_splice_state tss = {
614 .pipe = pipe,
615 .len = len,
616 .flags = flags,
617 };
618 long timeo;
619 ssize_t spliced;
620 int ret;
621
622 sock_rps_record_flow(sk);
623 /*
624 * We can't seek on a socket input
625 */
626 if (unlikely(*ppos))
627 return -ESPIPE;
628
629 ret = spliced = 0;
630
631 lock_sock(sk);
632
633 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
634 while (tss.len) {
635 ret = __tcp_splice_read(sk, &tss);
636 if (ret < 0)
637 break;
638 else if (!ret) {
639 if (spliced)
640 break;
641 if (sock_flag(sk, SOCK_DONE))
642 break;
643 if (sk->sk_err) {
644 ret = sock_error(sk);
645 break;
646 }
647 if (sk->sk_shutdown & RCV_SHUTDOWN)
648 break;
649 if (sk->sk_state == TCP_CLOSE) {
650 /*
651 * This occurs when user tries to read
652 * from never connected socket.
653 */
654 if (!sock_flag(sk, SOCK_DONE))
655 ret = -ENOTCONN;
656 break;
657 }
658 if (!timeo) {
659 ret = -EAGAIN;
660 break;
661 }
662 sk_wait_data(sk, &timeo);
663 if (signal_pending(current)) {
664 ret = sock_intr_errno(timeo);
665 break;
666 }
667 continue;
668 }
669 tss.len -= ret;
670 spliced += ret;
671
672 if (!timeo)
673 break;
674 release_sock(sk);
675 lock_sock(sk);
676
677 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
678 (sk->sk_shutdown & RCV_SHUTDOWN) ||
679 signal_pending(current))
680 break;
681 }
682
683 release_sock(sk);
684
685 if (spliced)
686 return spliced;
687
688 return ret;
689 }
690 EXPORT_SYMBOL(tcp_splice_read);
691
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)692 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
693 {
694 struct sk_buff *skb;
695
696 /* The TCP header must be at least 32-bit aligned. */
697 size = ALIGN(size, 4);
698
699 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
700 if (skb) {
701 if (sk_wmem_schedule(sk, skb->truesize)) {
702 skb_reserve(skb, sk->sk_prot->max_header);
703 /*
704 * Make sure that we have exactly size bytes
705 * available to the caller, no more, no less.
706 */
707 skb->reserved_tailroom = skb->end - skb->tail - size;
708 return skb;
709 }
710 __kfree_skb(skb);
711 } else {
712 sk->sk_prot->enter_memory_pressure(sk);
713 sk_stream_moderate_sndbuf(sk);
714 }
715 return NULL;
716 }
717
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)718 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
719 int large_allowed)
720 {
721 struct tcp_sock *tp = tcp_sk(sk);
722 u32 xmit_size_goal, old_size_goal;
723
724 xmit_size_goal = mss_now;
725
726 if (large_allowed && sk_can_gso(sk)) {
727 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
728 inet_csk(sk)->icsk_af_ops->net_header_len -
729 inet_csk(sk)->icsk_ext_hdr_len -
730 tp->tcp_header_len);
731
732 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
733
734 /* We try hard to avoid divides here */
735 old_size_goal = tp->xmit_size_goal_segs * mss_now;
736
737 if (likely(old_size_goal <= xmit_size_goal &&
738 old_size_goal + mss_now > xmit_size_goal)) {
739 xmit_size_goal = old_size_goal;
740 } else {
741 tp->xmit_size_goal_segs =
742 min_t(u16, xmit_size_goal / mss_now,
743 sk->sk_gso_max_segs);
744 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
745 }
746 }
747
748 return max(xmit_size_goal, mss_now);
749 }
750
tcp_send_mss(struct sock * sk,int * size_goal,int flags)751 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
752 {
753 int mss_now;
754
755 mss_now = tcp_current_mss(sk);
756 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
757
758 return mss_now;
759 }
760
do_tcp_sendpages(struct sock * sk,struct page ** pages,int poffset,size_t psize,int flags)761 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
762 size_t psize, int flags)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765 int mss_now, size_goal;
766 int err;
767 ssize_t copied;
768 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
769
770 /* Wait for a connection to finish. */
771 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
772 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
773 goto out_err;
774
775 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
776
777 mss_now = tcp_send_mss(sk, &size_goal, flags);
778 copied = 0;
779
780 err = -EPIPE;
781 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
782 goto out_err;
783
784 while (psize > 0) {
785 struct sk_buff *skb = tcp_write_queue_tail(sk);
786 struct page *page = pages[poffset / PAGE_SIZE];
787 int copy, i, can_coalesce;
788 int offset = poffset % PAGE_SIZE;
789 int size = min_t(size_t, psize, PAGE_SIZE - offset);
790
791 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
792 new_segment:
793 if (!sk_stream_memory_free(sk))
794 goto wait_for_sndbuf;
795
796 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
797 if (!skb)
798 goto wait_for_memory;
799
800 skb_entail(sk, skb);
801 copy = size_goal;
802 }
803
804 if (copy > size)
805 copy = size;
806
807 i = skb_shinfo(skb)->nr_frags;
808 can_coalesce = skb_can_coalesce(skb, i, page, offset);
809 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
810 tcp_mark_push(tp, skb);
811 goto new_segment;
812 }
813 if (!sk_wmem_schedule(sk, copy))
814 goto wait_for_memory;
815
816 if (can_coalesce) {
817 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
818 } else {
819 get_page(page);
820 skb_fill_page_desc(skb, i, page, offset, copy);
821 }
822
823 skb->len += copy;
824 skb->data_len += copy;
825 skb->truesize += copy;
826 sk->sk_wmem_queued += copy;
827 sk_mem_charge(sk, copy);
828 skb->ip_summed = CHECKSUM_PARTIAL;
829 tp->write_seq += copy;
830 TCP_SKB_CB(skb)->end_seq += copy;
831 skb_shinfo(skb)->gso_segs = 0;
832
833 if (!copied)
834 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
835
836 copied += copy;
837 poffset += copy;
838 if (!(psize -= copy))
839 goto out;
840
841 if (skb->len < size_goal || (flags & MSG_OOB))
842 continue;
843
844 if (forced_push(tp)) {
845 tcp_mark_push(tp, skb);
846 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
847 } else if (skb == tcp_send_head(sk))
848 tcp_push_one(sk, mss_now);
849 continue;
850
851 wait_for_sndbuf:
852 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
853 wait_for_memory:
854 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
855
856 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
857 goto do_error;
858
859 mss_now = tcp_send_mss(sk, &size_goal, flags);
860 }
861
862 out:
863 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
864 tcp_push(sk, flags, mss_now, tp->nonagle);
865 return copied;
866
867 do_error:
868 if (copied)
869 goto out;
870 out_err:
871 return sk_stream_error(sk, flags, err);
872 }
873
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)874 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
875 size_t size, int flags)
876 {
877 ssize_t res;
878
879 if (!(sk->sk_route_caps & NETIF_F_SG) ||
880 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
881 return sock_no_sendpage(sk->sk_socket, page, offset, size,
882 flags);
883
884 lock_sock(sk);
885 res = do_tcp_sendpages(sk, &page, offset, size, flags);
886 release_sock(sk);
887 return res;
888 }
889 EXPORT_SYMBOL(tcp_sendpage);
890
select_size(const struct sock * sk,bool sg)891 static inline int select_size(const struct sock *sk, bool sg)
892 {
893 const struct tcp_sock *tp = tcp_sk(sk);
894 int tmp = tp->mss_cache;
895
896 if (sg) {
897 if (sk_can_gso(sk)) {
898 /* Small frames wont use a full page:
899 * Payload will immediately follow tcp header.
900 */
901 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
902 } else {
903 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
904
905 if (tmp >= pgbreak &&
906 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
907 tmp = pgbreak;
908 }
909 }
910
911 return tmp;
912 }
913
tcp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t size)914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
915 size_t size)
916 {
917 struct iovec *iov;
918 struct tcp_sock *tp = tcp_sk(sk);
919 struct sk_buff *skb;
920 int iovlen, flags, err, copied;
921 int mss_now, size_goal;
922 bool sg;
923 long timeo;
924
925 lock_sock(sk);
926
927 flags = msg->msg_flags;
928 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
929
930 /* Wait for a connection to finish. */
931 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
932 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
933 goto out_err;
934
935 /* This should be in poll */
936 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
937
938 mss_now = tcp_send_mss(sk, &size_goal, flags);
939
940 /* Ok commence sending. */
941 iovlen = msg->msg_iovlen;
942 iov = msg->msg_iov;
943 copied = 0;
944
945 err = -EPIPE;
946 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
947 goto out_err;
948
949 sg = !!(sk->sk_route_caps & NETIF_F_SG);
950
951 while (--iovlen >= 0) {
952 size_t seglen = iov->iov_len;
953 unsigned char __user *from = iov->iov_base;
954
955 iov++;
956
957 while (seglen > 0) {
958 int copy = 0;
959 int max = size_goal;
960
961 skb = tcp_write_queue_tail(sk);
962 if (tcp_send_head(sk)) {
963 if (skb->ip_summed == CHECKSUM_NONE)
964 max = mss_now;
965 copy = max - skb->len;
966 }
967
968 if (copy <= 0) {
969 new_segment:
970 /* Allocate new segment. If the interface is SG,
971 * allocate skb fitting to single page.
972 */
973 if (!sk_stream_memory_free(sk))
974 goto wait_for_sndbuf;
975
976 skb = sk_stream_alloc_skb(sk,
977 select_size(sk, sg),
978 sk->sk_allocation);
979 if (!skb)
980 goto wait_for_memory;
981
982 /*
983 * Check whether we can use HW checksum.
984 */
985 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
986 skb->ip_summed = CHECKSUM_PARTIAL;
987
988 skb_entail(sk, skb);
989 copy = size_goal;
990 max = size_goal;
991 }
992
993 /* Try to append data to the end of skb. */
994 if (copy > seglen)
995 copy = seglen;
996
997 /* Where to copy to? */
998 if (skb_availroom(skb) > 0) {
999 /* We have some space in skb head. Superb! */
1000 copy = min_t(int, copy, skb_availroom(skb));
1001 err = skb_add_data_nocache(sk, skb, from, copy);
1002 if (err)
1003 goto do_fault;
1004 } else {
1005 int merge = 0;
1006 int i = skb_shinfo(skb)->nr_frags;
1007 struct page *page = sk->sk_sndmsg_page;
1008 int off;
1009
1010 if (page && page_count(page) == 1)
1011 sk->sk_sndmsg_off = 0;
1012
1013 off = sk->sk_sndmsg_off;
1014
1015 if (skb_can_coalesce(skb, i, page, off) &&
1016 off != PAGE_SIZE) {
1017 /* We can extend the last page
1018 * fragment. */
1019 merge = 1;
1020 } else if (i == MAX_SKB_FRAGS || !sg) {
1021 /* Need to add new fragment and cannot
1022 * do this because interface is non-SG,
1023 * or because all the page slots are
1024 * busy. */
1025 tcp_mark_push(tp, skb);
1026 goto new_segment;
1027 } else if (page) {
1028 if (off == PAGE_SIZE) {
1029 put_page(page);
1030 sk->sk_sndmsg_page = page = NULL;
1031 off = 0;
1032 }
1033 } else
1034 off = 0;
1035
1036 if (copy > PAGE_SIZE - off)
1037 copy = PAGE_SIZE - off;
1038
1039 if (!sk_wmem_schedule(sk, copy))
1040 goto wait_for_memory;
1041
1042 if (!page) {
1043 /* Allocate new cache page. */
1044 if (!(page = sk_stream_alloc_page(sk)))
1045 goto wait_for_memory;
1046 }
1047
1048 /* Time to copy data. We are close to
1049 * the end! */
1050 err = skb_copy_to_page_nocache(sk, from, skb,
1051 page, off, copy);
1052 if (err) {
1053 /* If this page was new, give it to the
1054 * socket so it does not get leaked.
1055 */
1056 if (!sk->sk_sndmsg_page) {
1057 sk->sk_sndmsg_page = page;
1058 sk->sk_sndmsg_off = 0;
1059 }
1060 goto do_error;
1061 }
1062
1063 /* Update the skb. */
1064 if (merge) {
1065 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1066 } else {
1067 skb_fill_page_desc(skb, i, page, off, copy);
1068 if (sk->sk_sndmsg_page) {
1069 get_page(page);
1070 } else if (off + copy < PAGE_SIZE) {
1071 get_page(page);
1072 sk->sk_sndmsg_page = page;
1073 }
1074 }
1075
1076 sk->sk_sndmsg_off = off + copy;
1077 }
1078
1079 if (!copied)
1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081
1082 tp->write_seq += copy;
1083 TCP_SKB_CB(skb)->end_seq += copy;
1084 skb_shinfo(skb)->gso_segs = 0;
1085
1086 from += copy;
1087 copied += copy;
1088 if ((seglen -= copy) == 0 && iovlen == 0)
1089 goto out;
1090
1091 if (skb->len < max || (flags & MSG_OOB))
1092 continue;
1093
1094 if (forced_push(tp)) {
1095 tcp_mark_push(tp, skb);
1096 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1097 } else if (skb == tcp_send_head(sk))
1098 tcp_push_one(sk, mss_now);
1099 continue;
1100
1101 wait_for_sndbuf:
1102 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1103 wait_for_memory:
1104 if (copied)
1105 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1106
1107 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1108 goto do_error;
1109
1110 mss_now = tcp_send_mss(sk, &size_goal, flags);
1111 }
1112 }
1113
1114 out:
1115 if (copied)
1116 tcp_push(sk, flags, mss_now, tp->nonagle);
1117 release_sock(sk);
1118 return copied;
1119
1120 do_fault:
1121 if (!skb->len) {
1122 tcp_unlink_write_queue(skb, sk);
1123 /* It is the one place in all of TCP, except connection
1124 * reset, where we can be unlinking the send_head.
1125 */
1126 tcp_check_send_head(sk, skb);
1127 sk_wmem_free_skb(sk, skb);
1128 }
1129
1130 do_error:
1131 if (copied)
1132 goto out;
1133 out_err:
1134 err = sk_stream_error(sk, flags, err);
1135 release_sock(sk);
1136 return err;
1137 }
1138 EXPORT_SYMBOL(tcp_sendmsg);
1139
1140 /*
1141 * Handle reading urgent data. BSD has very simple semantics for
1142 * this, no blocking and very strange errors 8)
1143 */
1144
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1145 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1146 {
1147 struct tcp_sock *tp = tcp_sk(sk);
1148
1149 /* No URG data to read. */
1150 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1151 tp->urg_data == TCP_URG_READ)
1152 return -EINVAL; /* Yes this is right ! */
1153
1154 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1155 return -ENOTCONN;
1156
1157 if (tp->urg_data & TCP_URG_VALID) {
1158 int err = 0;
1159 char c = tp->urg_data;
1160
1161 if (!(flags & MSG_PEEK))
1162 tp->urg_data = TCP_URG_READ;
1163
1164 /* Read urgent data. */
1165 msg->msg_flags |= MSG_OOB;
1166
1167 if (len > 0) {
1168 if (!(flags & MSG_TRUNC))
1169 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1170 len = 1;
1171 } else
1172 msg->msg_flags |= MSG_TRUNC;
1173
1174 return err ? -EFAULT : len;
1175 }
1176
1177 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1178 return 0;
1179
1180 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1181 * the available implementations agree in this case:
1182 * this call should never block, independent of the
1183 * blocking state of the socket.
1184 * Mike <pall@rz.uni-karlsruhe.de>
1185 */
1186 return -EAGAIN;
1187 }
1188
1189 /* Clean up the receive buffer for full frames taken by the user,
1190 * then send an ACK if necessary. COPIED is the number of bytes
1191 * tcp_recvmsg has given to the user so far, it speeds up the
1192 * calculation of whether or not we must ACK for the sake of
1193 * a window update.
1194 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1195 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1196 {
1197 struct tcp_sock *tp = tcp_sk(sk);
1198 int time_to_ack = 0;
1199
1200 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1201
1202 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1203 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1204 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1205
1206 if (inet_csk_ack_scheduled(sk)) {
1207 const struct inet_connection_sock *icsk = inet_csk(sk);
1208 /* Delayed ACKs frequently hit locked sockets during bulk
1209 * receive. */
1210 if (icsk->icsk_ack.blocked ||
1211 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1212 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1213 /*
1214 * If this read emptied read buffer, we send ACK, if
1215 * connection is not bidirectional, user drained
1216 * receive buffer and there was a small segment
1217 * in queue.
1218 */
1219 (copied > 0 &&
1220 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1221 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1222 !icsk->icsk_ack.pingpong)) &&
1223 !atomic_read(&sk->sk_rmem_alloc)))
1224 time_to_ack = 1;
1225 }
1226
1227 /* We send an ACK if we can now advertise a non-zero window
1228 * which has been raised "significantly".
1229 *
1230 * Even if window raised up to infinity, do not send window open ACK
1231 * in states, where we will not receive more. It is useless.
1232 */
1233 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1234 __u32 rcv_window_now = tcp_receive_window(tp);
1235
1236 /* Optimize, __tcp_select_window() is not cheap. */
1237 if (2*rcv_window_now <= tp->window_clamp) {
1238 __u32 new_window = __tcp_select_window(sk);
1239
1240 /* Send ACK now, if this read freed lots of space
1241 * in our buffer. Certainly, new_window is new window.
1242 * We can advertise it now, if it is not less than current one.
1243 * "Lots" means "at least twice" here.
1244 */
1245 if (new_window && new_window >= 2 * rcv_window_now)
1246 time_to_ack = 1;
1247 }
1248 }
1249 if (time_to_ack)
1250 tcp_send_ack(sk);
1251 }
1252
tcp_prequeue_process(struct sock * sk)1253 static void tcp_prequeue_process(struct sock *sk)
1254 {
1255 struct sk_buff *skb;
1256 struct tcp_sock *tp = tcp_sk(sk);
1257
1258 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1259
1260 /* RX process wants to run with disabled BHs, though it is not
1261 * necessary */
1262 local_bh_disable();
1263 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1264 sk_backlog_rcv(sk, skb);
1265 local_bh_enable();
1266
1267 /* Clear memory counter. */
1268 tp->ucopy.memory = 0;
1269 }
1270
1271 #ifdef CONFIG_NET_DMA
tcp_service_net_dma(struct sock * sk,bool wait)1272 static void tcp_service_net_dma(struct sock *sk, bool wait)
1273 {
1274 dma_cookie_t done, used;
1275 dma_cookie_t last_issued;
1276 struct tcp_sock *tp = tcp_sk(sk);
1277
1278 if (!tp->ucopy.dma_chan)
1279 return;
1280
1281 last_issued = tp->ucopy.dma_cookie;
1282 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1283
1284 do {
1285 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1286 last_issued, &done,
1287 &used) == DMA_SUCCESS) {
1288 /* Safe to free early-copied skbs now */
1289 __skb_queue_purge(&sk->sk_async_wait_queue);
1290 break;
1291 } else {
1292 struct sk_buff *skb;
1293 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1294 (dma_async_is_complete(skb->dma_cookie, done,
1295 used) == DMA_SUCCESS)) {
1296 __skb_dequeue(&sk->sk_async_wait_queue);
1297 kfree_skb(skb);
1298 }
1299 }
1300 } while (wait);
1301 }
1302 #endif
1303
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1304 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1305 {
1306 struct sk_buff *skb;
1307 u32 offset;
1308
1309 skb_queue_walk(&sk->sk_receive_queue, skb) {
1310 offset = seq - TCP_SKB_CB(skb)->seq;
1311 if (tcp_hdr(skb)->syn)
1312 offset--;
1313 if (offset < skb->len || tcp_hdr(skb)->fin) {
1314 *off = offset;
1315 return skb;
1316 }
1317 }
1318 return NULL;
1319 }
1320
1321 /*
1322 * This routine provides an alternative to tcp_recvmsg() for routines
1323 * that would like to handle copying from skbuffs directly in 'sendfile'
1324 * fashion.
1325 * Note:
1326 * - It is assumed that the socket was locked by the caller.
1327 * - The routine does not block.
1328 * - At present, there is no support for reading OOB data
1329 * or for 'peeking' the socket using this routine
1330 * (although both would be easy to implement).
1331 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1332 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1333 sk_read_actor_t recv_actor)
1334 {
1335 struct sk_buff *skb;
1336 struct tcp_sock *tp = tcp_sk(sk);
1337 u32 seq = tp->copied_seq;
1338 u32 offset;
1339 int copied = 0;
1340
1341 if (sk->sk_state == TCP_LISTEN)
1342 return -ENOTCONN;
1343 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1344 if (offset < skb->len) {
1345 int used;
1346 size_t len;
1347
1348 len = skb->len - offset;
1349 /* Stop reading if we hit a patch of urgent data */
1350 if (tp->urg_data) {
1351 u32 urg_offset = tp->urg_seq - seq;
1352 if (urg_offset < len)
1353 len = urg_offset;
1354 if (!len)
1355 break;
1356 }
1357 used = recv_actor(desc, skb, offset, len);
1358 if (used < 0) {
1359 if (!copied)
1360 copied = used;
1361 break;
1362 } else if (used <= len) {
1363 seq += used;
1364 copied += used;
1365 offset += used;
1366 }
1367 /*
1368 * If recv_actor drops the lock (e.g. TCP splice
1369 * receive) the skb pointer might be invalid when
1370 * getting here: tcp_collapse might have deleted it
1371 * while aggregating skbs from the socket queue.
1372 */
1373 skb = tcp_recv_skb(sk, seq-1, &offset);
1374 if (!skb || (offset+1 != skb->len))
1375 break;
1376 }
1377 if (tcp_hdr(skb)->fin) {
1378 sk_eat_skb(sk, skb, 0);
1379 ++seq;
1380 break;
1381 }
1382 sk_eat_skb(sk, skb, 0);
1383 if (!desc->count)
1384 break;
1385 tp->copied_seq = seq;
1386 }
1387 tp->copied_seq = seq;
1388
1389 tcp_rcv_space_adjust(sk);
1390
1391 /* Clean up data we have read: This will do ACK frames. */
1392 if (copied > 0)
1393 tcp_cleanup_rbuf(sk, copied);
1394 return copied;
1395 }
1396 EXPORT_SYMBOL(tcp_read_sock);
1397
1398 /*
1399 * This routine copies from a sock struct into the user buffer.
1400 *
1401 * Technical note: in 2.3 we work on _locked_ socket, so that
1402 * tricks with *seq access order and skb->users are not required.
1403 * Probably, code can be easily improved even more.
1404 */
1405
tcp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1406 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1407 size_t len, int nonblock, int flags, int *addr_len)
1408 {
1409 struct tcp_sock *tp = tcp_sk(sk);
1410 int copied = 0;
1411 u32 peek_seq;
1412 u32 *seq;
1413 unsigned long used;
1414 int err;
1415 int target; /* Read at least this many bytes */
1416 long timeo;
1417 struct task_struct *user_recv = NULL;
1418 int copied_early = 0;
1419 struct sk_buff *skb;
1420 u32 urg_hole = 0;
1421
1422 lock_sock(sk);
1423
1424 err = -ENOTCONN;
1425 if (sk->sk_state == TCP_LISTEN)
1426 goto out;
1427
1428 timeo = sock_rcvtimeo(sk, nonblock);
1429
1430 /* Urgent data needs to be handled specially. */
1431 if (flags & MSG_OOB)
1432 goto recv_urg;
1433
1434 seq = &tp->copied_seq;
1435 if (flags & MSG_PEEK) {
1436 peek_seq = tp->copied_seq;
1437 seq = &peek_seq;
1438 }
1439
1440 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1441
1442 #ifdef CONFIG_NET_DMA
1443 tp->ucopy.dma_chan = NULL;
1444 preempt_disable();
1445 skb = skb_peek_tail(&sk->sk_receive_queue);
1446 {
1447 int available = 0;
1448
1449 if (skb)
1450 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1451 if ((available < target) &&
1452 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1453 !sysctl_tcp_low_latency &&
1454 net_dma_find_channel()) {
1455 preempt_enable_no_resched();
1456 tp->ucopy.pinned_list =
1457 dma_pin_iovec_pages(msg->msg_iov, len);
1458 } else {
1459 preempt_enable_no_resched();
1460 }
1461 }
1462 #endif
1463
1464 do {
1465 u32 offset;
1466
1467 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1468 if (tp->urg_data && tp->urg_seq == *seq) {
1469 if (copied)
1470 break;
1471 if (signal_pending(current)) {
1472 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1473 break;
1474 }
1475 }
1476
1477 /* Next get a buffer. */
1478
1479 skb_queue_walk(&sk->sk_receive_queue, skb) {
1480 /* Now that we have two receive queues this
1481 * shouldn't happen.
1482 */
1483 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1484 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1485 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1486 flags))
1487 break;
1488
1489 offset = *seq - TCP_SKB_CB(skb)->seq;
1490 if (tcp_hdr(skb)->syn)
1491 offset--;
1492 if (offset < skb->len)
1493 goto found_ok_skb;
1494 if (tcp_hdr(skb)->fin)
1495 goto found_fin_ok;
1496 WARN(!(flags & MSG_PEEK),
1497 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1498 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1499 }
1500
1501 /* Well, if we have backlog, try to process it now yet. */
1502
1503 if (copied >= target && !sk->sk_backlog.tail)
1504 break;
1505
1506 if (copied) {
1507 if (sk->sk_err ||
1508 sk->sk_state == TCP_CLOSE ||
1509 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1510 !timeo ||
1511 signal_pending(current))
1512 break;
1513 } else {
1514 if (sock_flag(sk, SOCK_DONE))
1515 break;
1516
1517 if (sk->sk_err) {
1518 copied = sock_error(sk);
1519 break;
1520 }
1521
1522 if (sk->sk_shutdown & RCV_SHUTDOWN)
1523 break;
1524
1525 if (sk->sk_state == TCP_CLOSE) {
1526 if (!sock_flag(sk, SOCK_DONE)) {
1527 /* This occurs when user tries to read
1528 * from never connected socket.
1529 */
1530 copied = -ENOTCONN;
1531 break;
1532 }
1533 break;
1534 }
1535
1536 if (!timeo) {
1537 copied = -EAGAIN;
1538 break;
1539 }
1540
1541 if (signal_pending(current)) {
1542 copied = sock_intr_errno(timeo);
1543 break;
1544 }
1545 }
1546
1547 tcp_cleanup_rbuf(sk, copied);
1548
1549 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1550 /* Install new reader */
1551 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1552 user_recv = current;
1553 tp->ucopy.task = user_recv;
1554 tp->ucopy.iov = msg->msg_iov;
1555 }
1556
1557 tp->ucopy.len = len;
1558
1559 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1560 !(flags & (MSG_PEEK | MSG_TRUNC)));
1561
1562 /* Ugly... If prequeue is not empty, we have to
1563 * process it before releasing socket, otherwise
1564 * order will be broken at second iteration.
1565 * More elegant solution is required!!!
1566 *
1567 * Look: we have the following (pseudo)queues:
1568 *
1569 * 1. packets in flight
1570 * 2. backlog
1571 * 3. prequeue
1572 * 4. receive_queue
1573 *
1574 * Each queue can be processed only if the next ones
1575 * are empty. At this point we have empty receive_queue.
1576 * But prequeue _can_ be not empty after 2nd iteration,
1577 * when we jumped to start of loop because backlog
1578 * processing added something to receive_queue.
1579 * We cannot release_sock(), because backlog contains
1580 * packets arrived _after_ prequeued ones.
1581 *
1582 * Shortly, algorithm is clear --- to process all
1583 * the queues in order. We could make it more directly,
1584 * requeueing packets from backlog to prequeue, if
1585 * is not empty. It is more elegant, but eats cycles,
1586 * unfortunately.
1587 */
1588 if (!skb_queue_empty(&tp->ucopy.prequeue))
1589 goto do_prequeue;
1590
1591 /* __ Set realtime policy in scheduler __ */
1592 }
1593
1594 #ifdef CONFIG_NET_DMA
1595 if (tp->ucopy.dma_chan) {
1596 if (tp->rcv_wnd == 0 &&
1597 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1598 tcp_service_net_dma(sk, true);
1599 tcp_cleanup_rbuf(sk, copied);
1600 } else
1601 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1602 }
1603 #endif
1604 if (copied >= target) {
1605 /* Do not sleep, just process backlog. */
1606 release_sock(sk);
1607 lock_sock(sk);
1608 } else
1609 sk_wait_data(sk, &timeo);
1610
1611 #ifdef CONFIG_NET_DMA
1612 tcp_service_net_dma(sk, false); /* Don't block */
1613 tp->ucopy.wakeup = 0;
1614 #endif
1615
1616 if (user_recv) {
1617 int chunk;
1618
1619 /* __ Restore normal policy in scheduler __ */
1620
1621 if ((chunk = len - tp->ucopy.len) != 0) {
1622 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1623 len -= chunk;
1624 copied += chunk;
1625 }
1626
1627 if (tp->rcv_nxt == tp->copied_seq &&
1628 !skb_queue_empty(&tp->ucopy.prequeue)) {
1629 do_prequeue:
1630 tcp_prequeue_process(sk);
1631
1632 if ((chunk = len - tp->ucopy.len) != 0) {
1633 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1634 len -= chunk;
1635 copied += chunk;
1636 }
1637 }
1638 }
1639 if ((flags & MSG_PEEK) &&
1640 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1641 if (net_ratelimit())
1642 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1643 current->comm, task_pid_nr(current));
1644 peek_seq = tp->copied_seq;
1645 }
1646 continue;
1647
1648 found_ok_skb:
1649 /* Ok so how much can we use? */
1650 used = skb->len - offset;
1651 if (len < used)
1652 used = len;
1653
1654 /* Do we have urgent data here? */
1655 if (tp->urg_data) {
1656 u32 urg_offset = tp->urg_seq - *seq;
1657 if (urg_offset < used) {
1658 if (!urg_offset) {
1659 if (!sock_flag(sk, SOCK_URGINLINE)) {
1660 ++*seq;
1661 urg_hole++;
1662 offset++;
1663 used--;
1664 if (!used)
1665 goto skip_copy;
1666 }
1667 } else
1668 used = urg_offset;
1669 }
1670 }
1671
1672 if (!(flags & MSG_TRUNC)) {
1673 #ifdef CONFIG_NET_DMA
1674 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1675 tp->ucopy.dma_chan = net_dma_find_channel();
1676
1677 if (tp->ucopy.dma_chan) {
1678 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1679 tp->ucopy.dma_chan, skb, offset,
1680 msg->msg_iov, used,
1681 tp->ucopy.pinned_list);
1682
1683 if (tp->ucopy.dma_cookie < 0) {
1684
1685 pr_alert("%s: dma_cookie < 0\n",
1686 __func__);
1687
1688 /* Exception. Bailout! */
1689 if (!copied)
1690 copied = -EFAULT;
1691 break;
1692 }
1693
1694 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1695
1696 if ((offset + used) == skb->len)
1697 copied_early = 1;
1698
1699 } else
1700 #endif
1701 {
1702 err = skb_copy_datagram_iovec(skb, offset,
1703 msg->msg_iov, used);
1704 if (err) {
1705 /* Exception. Bailout! */
1706 if (!copied)
1707 copied = -EFAULT;
1708 break;
1709 }
1710 }
1711 }
1712
1713 *seq += used;
1714 copied += used;
1715 len -= used;
1716
1717 tcp_rcv_space_adjust(sk);
1718
1719 skip_copy:
1720 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1721 tp->urg_data = 0;
1722 tcp_fast_path_check(sk);
1723 }
1724 if (used + offset < skb->len)
1725 continue;
1726
1727 if (tcp_hdr(skb)->fin)
1728 goto found_fin_ok;
1729 if (!(flags & MSG_PEEK)) {
1730 sk_eat_skb(sk, skb, copied_early);
1731 copied_early = 0;
1732 }
1733 continue;
1734
1735 found_fin_ok:
1736 /* Process the FIN. */
1737 ++*seq;
1738 if (!(flags & MSG_PEEK)) {
1739 sk_eat_skb(sk, skb, copied_early);
1740 copied_early = 0;
1741 }
1742 break;
1743 } while (len > 0);
1744
1745 if (user_recv) {
1746 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1747 int chunk;
1748
1749 tp->ucopy.len = copied > 0 ? len : 0;
1750
1751 tcp_prequeue_process(sk);
1752
1753 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1754 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1755 len -= chunk;
1756 copied += chunk;
1757 }
1758 }
1759
1760 tp->ucopy.task = NULL;
1761 tp->ucopy.len = 0;
1762 }
1763
1764 #ifdef CONFIG_NET_DMA
1765 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1766 tp->ucopy.dma_chan = NULL;
1767
1768 if (tp->ucopy.pinned_list) {
1769 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1770 tp->ucopy.pinned_list = NULL;
1771 }
1772 #endif
1773
1774 /* According to UNIX98, msg_name/msg_namelen are ignored
1775 * on connected socket. I was just happy when found this 8) --ANK
1776 */
1777
1778 /* Clean up data we have read: This will do ACK frames. */
1779 tcp_cleanup_rbuf(sk, copied);
1780
1781 release_sock(sk);
1782 return copied;
1783
1784 out:
1785 release_sock(sk);
1786 return err;
1787
1788 recv_urg:
1789 err = tcp_recv_urg(sk, msg, len, flags);
1790 goto out;
1791 }
1792 EXPORT_SYMBOL(tcp_recvmsg);
1793
tcp_set_state(struct sock * sk,int state)1794 void tcp_set_state(struct sock *sk, int state)
1795 {
1796 int oldstate = sk->sk_state;
1797
1798 switch (state) {
1799 case TCP_ESTABLISHED:
1800 if (oldstate != TCP_ESTABLISHED)
1801 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1802 break;
1803
1804 case TCP_CLOSE:
1805 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1806 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1807
1808 sk->sk_prot->unhash(sk);
1809 if (inet_csk(sk)->icsk_bind_hash &&
1810 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1811 inet_put_port(sk);
1812 /* fall through */
1813 default:
1814 if (oldstate == TCP_ESTABLISHED)
1815 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1816 }
1817
1818 /* Change state AFTER socket is unhashed to avoid closed
1819 * socket sitting in hash tables.
1820 */
1821 sk->sk_state = state;
1822
1823 #ifdef STATE_TRACE
1824 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1825 #endif
1826 }
1827 EXPORT_SYMBOL_GPL(tcp_set_state);
1828
1829 /*
1830 * State processing on a close. This implements the state shift for
1831 * sending our FIN frame. Note that we only send a FIN for some
1832 * states. A shutdown() may have already sent the FIN, or we may be
1833 * closed.
1834 */
1835
1836 static const unsigned char new_state[16] = {
1837 /* current state: new state: action: */
1838 /* (Invalid) */ TCP_CLOSE,
1839 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1840 /* TCP_SYN_SENT */ TCP_CLOSE,
1841 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1842 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1843 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1844 /* TCP_TIME_WAIT */ TCP_CLOSE,
1845 /* TCP_CLOSE */ TCP_CLOSE,
1846 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1847 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1848 /* TCP_LISTEN */ TCP_CLOSE,
1849 /* TCP_CLOSING */ TCP_CLOSING,
1850 };
1851
tcp_close_state(struct sock * sk)1852 static int tcp_close_state(struct sock *sk)
1853 {
1854 int next = (int)new_state[sk->sk_state];
1855 int ns = next & TCP_STATE_MASK;
1856
1857 tcp_set_state(sk, ns);
1858
1859 return next & TCP_ACTION_FIN;
1860 }
1861
1862 /*
1863 * Shutdown the sending side of a connection. Much like close except
1864 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1865 */
1866
tcp_shutdown(struct sock * sk,int how)1867 void tcp_shutdown(struct sock *sk, int how)
1868 {
1869 /* We need to grab some memory, and put together a FIN,
1870 * and then put it into the queue to be sent.
1871 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1872 */
1873 if (!(how & SEND_SHUTDOWN))
1874 return;
1875
1876 /* If we've already sent a FIN, or it's a closed state, skip this. */
1877 if ((1 << sk->sk_state) &
1878 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1879 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1880 /* Clear out any half completed packets. FIN if needed. */
1881 if (tcp_close_state(sk))
1882 tcp_send_fin(sk);
1883 }
1884 }
1885 EXPORT_SYMBOL(tcp_shutdown);
1886
tcp_check_oom(struct sock * sk,int shift)1887 bool tcp_check_oom(struct sock *sk, int shift)
1888 {
1889 bool too_many_orphans, out_of_socket_memory;
1890
1891 too_many_orphans = tcp_too_many_orphans(sk, shift);
1892 out_of_socket_memory = tcp_out_of_memory(sk);
1893
1894 if (too_many_orphans && net_ratelimit())
1895 pr_info("too many orphaned sockets\n");
1896 if (out_of_socket_memory && net_ratelimit())
1897 pr_info("out of memory -- consider tuning tcp_mem\n");
1898 return too_many_orphans || out_of_socket_memory;
1899 }
1900
tcp_close(struct sock * sk,long timeout)1901 void tcp_close(struct sock *sk, long timeout)
1902 {
1903 struct sk_buff *skb;
1904 int data_was_unread = 0;
1905 int state;
1906
1907 lock_sock(sk);
1908 sk->sk_shutdown = SHUTDOWN_MASK;
1909
1910 if (sk->sk_state == TCP_LISTEN) {
1911 tcp_set_state(sk, TCP_CLOSE);
1912
1913 /* Special case. */
1914 inet_csk_listen_stop(sk);
1915
1916 goto adjudge_to_death;
1917 }
1918
1919 /* We need to flush the recv. buffs. We do this only on the
1920 * descriptor close, not protocol-sourced closes, because the
1921 * reader process may not have drained the data yet!
1922 */
1923 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1924 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1925 tcp_hdr(skb)->fin;
1926 data_was_unread += len;
1927 __kfree_skb(skb);
1928 }
1929
1930 sk_mem_reclaim(sk);
1931
1932 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1933 if (sk->sk_state == TCP_CLOSE)
1934 goto adjudge_to_death;
1935
1936 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1937 * data was lost. To witness the awful effects of the old behavior of
1938 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1939 * GET in an FTP client, suspend the process, wait for the client to
1940 * advertise a zero window, then kill -9 the FTP client, wheee...
1941 * Note: timeout is always zero in such a case.
1942 */
1943 if (data_was_unread) {
1944 /* Unread data was tossed, zap the connection. */
1945 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1946 tcp_set_state(sk, TCP_CLOSE);
1947 tcp_send_active_reset(sk, sk->sk_allocation);
1948 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1949 /* Check zero linger _after_ checking for unread data. */
1950 sk->sk_prot->disconnect(sk, 0);
1951 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1952 } else if (tcp_close_state(sk)) {
1953 /* We FIN if the application ate all the data before
1954 * zapping the connection.
1955 */
1956
1957 /* RED-PEN. Formally speaking, we have broken TCP state
1958 * machine. State transitions:
1959 *
1960 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1961 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1962 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1963 *
1964 * are legal only when FIN has been sent (i.e. in window),
1965 * rather than queued out of window. Purists blame.
1966 *
1967 * F.e. "RFC state" is ESTABLISHED,
1968 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1969 *
1970 * The visible declinations are that sometimes
1971 * we enter time-wait state, when it is not required really
1972 * (harmless), do not send active resets, when they are
1973 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1974 * they look as CLOSING or LAST_ACK for Linux)
1975 * Probably, I missed some more holelets.
1976 * --ANK
1977 */
1978 tcp_send_fin(sk);
1979 }
1980
1981 sk_stream_wait_close(sk, timeout);
1982
1983 adjudge_to_death:
1984 state = sk->sk_state;
1985 sock_hold(sk);
1986 sock_orphan(sk);
1987
1988 /* It is the last release_sock in its life. It will remove backlog. */
1989 release_sock(sk);
1990
1991
1992 /* Now socket is owned by kernel and we acquire BH lock
1993 to finish close. No need to check for user refs.
1994 */
1995 local_bh_disable();
1996 bh_lock_sock(sk);
1997 WARN_ON(sock_owned_by_user(sk));
1998
1999 percpu_counter_inc(sk->sk_prot->orphan_count);
2000
2001 /* Have we already been destroyed by a softirq or backlog? */
2002 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2003 goto out;
2004
2005 /* This is a (useful) BSD violating of the RFC. There is a
2006 * problem with TCP as specified in that the other end could
2007 * keep a socket open forever with no application left this end.
2008 * We use a 3 minute timeout (about the same as BSD) then kill
2009 * our end. If they send after that then tough - BUT: long enough
2010 * that we won't make the old 4*rto = almost no time - whoops
2011 * reset mistake.
2012 *
2013 * Nope, it was not mistake. It is really desired behaviour
2014 * f.e. on http servers, when such sockets are useless, but
2015 * consume significant resources. Let's do it with special
2016 * linger2 option. --ANK
2017 */
2018
2019 if (sk->sk_state == TCP_FIN_WAIT2) {
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 if (tp->linger2 < 0) {
2022 tcp_set_state(sk, TCP_CLOSE);
2023 tcp_send_active_reset(sk, GFP_ATOMIC);
2024 NET_INC_STATS_BH(sock_net(sk),
2025 LINUX_MIB_TCPABORTONLINGER);
2026 } else {
2027 const int tmo = tcp_fin_time(sk);
2028
2029 if (tmo > TCP_TIMEWAIT_LEN) {
2030 inet_csk_reset_keepalive_timer(sk,
2031 tmo - TCP_TIMEWAIT_LEN);
2032 } else {
2033 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2034 goto out;
2035 }
2036 }
2037 }
2038 if (sk->sk_state != TCP_CLOSE) {
2039 sk_mem_reclaim(sk);
2040 if (tcp_check_oom(sk, 0)) {
2041 tcp_set_state(sk, TCP_CLOSE);
2042 tcp_send_active_reset(sk, GFP_ATOMIC);
2043 NET_INC_STATS_BH(sock_net(sk),
2044 LINUX_MIB_TCPABORTONMEMORY);
2045 }
2046 }
2047
2048 if (sk->sk_state == TCP_CLOSE)
2049 inet_csk_destroy_sock(sk);
2050 /* Otherwise, socket is reprieved until protocol close. */
2051
2052 out:
2053 bh_unlock_sock(sk);
2054 local_bh_enable();
2055 sock_put(sk);
2056 }
2057 EXPORT_SYMBOL(tcp_close);
2058
2059 /* These states need RST on ABORT according to RFC793 */
2060
tcp_need_reset(int state)2061 static inline int tcp_need_reset(int state)
2062 {
2063 return (1 << state) &
2064 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2065 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2066 }
2067
tcp_disconnect(struct sock * sk,int flags)2068 int tcp_disconnect(struct sock *sk, int flags)
2069 {
2070 struct inet_sock *inet = inet_sk(sk);
2071 struct inet_connection_sock *icsk = inet_csk(sk);
2072 struct tcp_sock *tp = tcp_sk(sk);
2073 int err = 0;
2074 int old_state = sk->sk_state;
2075
2076 if (old_state != TCP_CLOSE)
2077 tcp_set_state(sk, TCP_CLOSE);
2078
2079 /* ABORT function of RFC793 */
2080 if (old_state == TCP_LISTEN) {
2081 inet_csk_listen_stop(sk);
2082 } else if (tcp_need_reset(old_state) ||
2083 (tp->snd_nxt != tp->write_seq &&
2084 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2085 /* The last check adjusts for discrepancy of Linux wrt. RFC
2086 * states
2087 */
2088 tcp_send_active_reset(sk, gfp_any());
2089 sk->sk_err = ECONNRESET;
2090 } else if (old_state == TCP_SYN_SENT)
2091 sk->sk_err = ECONNRESET;
2092
2093 tcp_clear_xmit_timers(sk);
2094 __skb_queue_purge(&sk->sk_receive_queue);
2095 tcp_write_queue_purge(sk);
2096 __skb_queue_purge(&tp->out_of_order_queue);
2097 #ifdef CONFIG_NET_DMA
2098 __skb_queue_purge(&sk->sk_async_wait_queue);
2099 #endif
2100
2101 inet->inet_dport = 0;
2102
2103 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2104 inet_reset_saddr(sk);
2105
2106 sk->sk_shutdown = 0;
2107 sock_reset_flag(sk, SOCK_DONE);
2108 tp->srtt = 0;
2109 if ((tp->write_seq += tp->max_window + 2) == 0)
2110 tp->write_seq = 1;
2111 icsk->icsk_backoff = 0;
2112 tp->snd_cwnd = 2;
2113 icsk->icsk_probes_out = 0;
2114 tp->packets_out = 0;
2115 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2116 tp->snd_cwnd_cnt = 0;
2117 tp->bytes_acked = 0;
2118 tp->window_clamp = 0;
2119 tcp_set_ca_state(sk, TCP_CA_Open);
2120 tcp_clear_retrans(tp);
2121 inet_csk_delack_init(sk);
2122 tcp_init_send_head(sk);
2123 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2124 __sk_dst_reset(sk);
2125
2126 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2127
2128 sk->sk_error_report(sk);
2129 return err;
2130 }
2131 EXPORT_SYMBOL(tcp_disconnect);
2132
2133 /*
2134 * Socket option code for TCP.
2135 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2136 static int do_tcp_setsockopt(struct sock *sk, int level,
2137 int optname, char __user *optval, unsigned int optlen)
2138 {
2139 struct tcp_sock *tp = tcp_sk(sk);
2140 struct inet_connection_sock *icsk = inet_csk(sk);
2141 int val;
2142 int err = 0;
2143
2144 /* These are data/string values, all the others are ints */
2145 switch (optname) {
2146 case TCP_CONGESTION: {
2147 char name[TCP_CA_NAME_MAX];
2148
2149 if (optlen < 1)
2150 return -EINVAL;
2151
2152 val = strncpy_from_user(name, optval,
2153 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2154 if (val < 0)
2155 return -EFAULT;
2156 name[val] = 0;
2157
2158 lock_sock(sk);
2159 err = tcp_set_congestion_control(sk, name);
2160 release_sock(sk);
2161 return err;
2162 }
2163 case TCP_COOKIE_TRANSACTIONS: {
2164 struct tcp_cookie_transactions ctd;
2165 struct tcp_cookie_values *cvp = NULL;
2166
2167 if (sizeof(ctd) > optlen)
2168 return -EINVAL;
2169 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2170 return -EFAULT;
2171
2172 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2173 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2174 return -EINVAL;
2175
2176 if (ctd.tcpct_cookie_desired == 0) {
2177 /* default to global value */
2178 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2179 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2180 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2181 return -EINVAL;
2182 }
2183
2184 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2185 /* Supercedes all other values */
2186 lock_sock(sk);
2187 if (tp->cookie_values != NULL) {
2188 kref_put(&tp->cookie_values->kref,
2189 tcp_cookie_values_release);
2190 tp->cookie_values = NULL;
2191 }
2192 tp->rx_opt.cookie_in_always = 0; /* false */
2193 tp->rx_opt.cookie_out_never = 1; /* true */
2194 release_sock(sk);
2195 return err;
2196 }
2197
2198 /* Allocate ancillary memory before locking.
2199 */
2200 if (ctd.tcpct_used > 0 ||
2201 (tp->cookie_values == NULL &&
2202 (sysctl_tcp_cookie_size > 0 ||
2203 ctd.tcpct_cookie_desired > 0 ||
2204 ctd.tcpct_s_data_desired > 0))) {
2205 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2206 GFP_KERNEL);
2207 if (cvp == NULL)
2208 return -ENOMEM;
2209
2210 kref_init(&cvp->kref);
2211 }
2212 lock_sock(sk);
2213 tp->rx_opt.cookie_in_always =
2214 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2215 tp->rx_opt.cookie_out_never = 0; /* false */
2216
2217 if (tp->cookie_values != NULL) {
2218 if (cvp != NULL) {
2219 /* Changed values are recorded by a changed
2220 * pointer, ensuring the cookie will differ,
2221 * without separately hashing each value later.
2222 */
2223 kref_put(&tp->cookie_values->kref,
2224 tcp_cookie_values_release);
2225 } else {
2226 cvp = tp->cookie_values;
2227 }
2228 }
2229
2230 if (cvp != NULL) {
2231 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2232
2233 if (ctd.tcpct_used > 0) {
2234 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2235 ctd.tcpct_used);
2236 cvp->s_data_desired = ctd.tcpct_used;
2237 cvp->s_data_constant = 1; /* true */
2238 } else {
2239 /* No constant payload data. */
2240 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2241 cvp->s_data_constant = 0; /* false */
2242 }
2243
2244 tp->cookie_values = cvp;
2245 }
2246 release_sock(sk);
2247 return err;
2248 }
2249 default:
2250 /* fallthru */
2251 break;
2252 }
2253
2254 if (optlen < sizeof(int))
2255 return -EINVAL;
2256
2257 if (get_user(val, (int __user *)optval))
2258 return -EFAULT;
2259
2260 lock_sock(sk);
2261
2262 switch (optname) {
2263 case TCP_MAXSEG:
2264 /* Values greater than interface MTU won't take effect. However
2265 * at the point when this call is done we typically don't yet
2266 * know which interface is going to be used */
2267 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2268 err = -EINVAL;
2269 break;
2270 }
2271 tp->rx_opt.user_mss = val;
2272 break;
2273
2274 case TCP_NODELAY:
2275 if (val) {
2276 /* TCP_NODELAY is weaker than TCP_CORK, so that
2277 * this option on corked socket is remembered, but
2278 * it is not activated until cork is cleared.
2279 *
2280 * However, when TCP_NODELAY is set we make
2281 * an explicit push, which overrides even TCP_CORK
2282 * for currently queued segments.
2283 */
2284 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2285 tcp_push_pending_frames(sk);
2286 } else {
2287 tp->nonagle &= ~TCP_NAGLE_OFF;
2288 }
2289 break;
2290
2291 case TCP_THIN_LINEAR_TIMEOUTS:
2292 if (val < 0 || val > 1)
2293 err = -EINVAL;
2294 else
2295 tp->thin_lto = val;
2296 break;
2297
2298 case TCP_THIN_DUPACK:
2299 if (val < 0 || val > 1)
2300 err = -EINVAL;
2301 else
2302 tp->thin_dupack = val;
2303 break;
2304
2305 case TCP_CORK:
2306 /* When set indicates to always queue non-full frames.
2307 * Later the user clears this option and we transmit
2308 * any pending partial frames in the queue. This is
2309 * meant to be used alongside sendfile() to get properly
2310 * filled frames when the user (for example) must write
2311 * out headers with a write() call first and then use
2312 * sendfile to send out the data parts.
2313 *
2314 * TCP_CORK can be set together with TCP_NODELAY and it is
2315 * stronger than TCP_NODELAY.
2316 */
2317 if (val) {
2318 tp->nonagle |= TCP_NAGLE_CORK;
2319 } else {
2320 tp->nonagle &= ~TCP_NAGLE_CORK;
2321 if (tp->nonagle&TCP_NAGLE_OFF)
2322 tp->nonagle |= TCP_NAGLE_PUSH;
2323 tcp_push_pending_frames(sk);
2324 }
2325 break;
2326
2327 case TCP_KEEPIDLE:
2328 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2329 err = -EINVAL;
2330 else {
2331 tp->keepalive_time = val * HZ;
2332 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2333 !((1 << sk->sk_state) &
2334 (TCPF_CLOSE | TCPF_LISTEN))) {
2335 u32 elapsed = keepalive_time_elapsed(tp);
2336 if (tp->keepalive_time > elapsed)
2337 elapsed = tp->keepalive_time - elapsed;
2338 else
2339 elapsed = 0;
2340 inet_csk_reset_keepalive_timer(sk, elapsed);
2341 }
2342 }
2343 break;
2344 case TCP_KEEPINTVL:
2345 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2346 err = -EINVAL;
2347 else
2348 tp->keepalive_intvl = val * HZ;
2349 break;
2350 case TCP_KEEPCNT:
2351 if (val < 1 || val > MAX_TCP_KEEPCNT)
2352 err = -EINVAL;
2353 else
2354 tp->keepalive_probes = val;
2355 break;
2356 case TCP_SYNCNT:
2357 if (val < 1 || val > MAX_TCP_SYNCNT)
2358 err = -EINVAL;
2359 else
2360 icsk->icsk_syn_retries = val;
2361 break;
2362
2363 case TCP_LINGER2:
2364 if (val < 0)
2365 tp->linger2 = -1;
2366 else if (val > sysctl_tcp_fin_timeout / HZ)
2367 tp->linger2 = 0;
2368 else
2369 tp->linger2 = val * HZ;
2370 break;
2371
2372 case TCP_DEFER_ACCEPT:
2373 /* Translate value in seconds to number of retransmits */
2374 icsk->icsk_accept_queue.rskq_defer_accept =
2375 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2376 TCP_RTO_MAX / HZ);
2377 break;
2378
2379 case TCP_WINDOW_CLAMP:
2380 if (!val) {
2381 if (sk->sk_state != TCP_CLOSE) {
2382 err = -EINVAL;
2383 break;
2384 }
2385 tp->window_clamp = 0;
2386 } else
2387 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2388 SOCK_MIN_RCVBUF / 2 : val;
2389 break;
2390
2391 case TCP_QUICKACK:
2392 if (!val) {
2393 icsk->icsk_ack.pingpong = 1;
2394 } else {
2395 icsk->icsk_ack.pingpong = 0;
2396 if ((1 << sk->sk_state) &
2397 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2398 inet_csk_ack_scheduled(sk)) {
2399 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2400 tcp_cleanup_rbuf(sk, 1);
2401 if (!(val & 1))
2402 icsk->icsk_ack.pingpong = 1;
2403 }
2404 }
2405 break;
2406
2407 #ifdef CONFIG_TCP_MD5SIG
2408 case TCP_MD5SIG:
2409 /* Read the IP->Key mappings from userspace */
2410 err = tp->af_specific->md5_parse(sk, optval, optlen);
2411 break;
2412 #endif
2413 case TCP_USER_TIMEOUT:
2414 /* Cap the max timeout in ms TCP will retry/retrans
2415 * before giving up and aborting (ETIMEDOUT) a connection.
2416 */
2417 if (val < 0)
2418 err = -EINVAL;
2419 else
2420 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2421 break;
2422 default:
2423 err = -ENOPROTOOPT;
2424 break;
2425 }
2426
2427 release_sock(sk);
2428 return err;
2429 }
2430
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2431 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2432 unsigned int optlen)
2433 {
2434 const struct inet_connection_sock *icsk = inet_csk(sk);
2435
2436 if (level != SOL_TCP)
2437 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2438 optval, optlen);
2439 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2440 }
2441 EXPORT_SYMBOL(tcp_setsockopt);
2442
2443 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2444 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2445 char __user *optval, unsigned int optlen)
2446 {
2447 if (level != SOL_TCP)
2448 return inet_csk_compat_setsockopt(sk, level, optname,
2449 optval, optlen);
2450 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2451 }
2452 EXPORT_SYMBOL(compat_tcp_setsockopt);
2453 #endif
2454
2455 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(const struct sock * sk,struct tcp_info * info)2456 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2457 {
2458 const struct tcp_sock *tp = tcp_sk(sk);
2459 const struct inet_connection_sock *icsk = inet_csk(sk);
2460 u32 now = tcp_time_stamp;
2461
2462 memset(info, 0, sizeof(*info));
2463
2464 info->tcpi_state = sk->sk_state;
2465 info->tcpi_ca_state = icsk->icsk_ca_state;
2466 info->tcpi_retransmits = icsk->icsk_retransmits;
2467 info->tcpi_probes = icsk->icsk_probes_out;
2468 info->tcpi_backoff = icsk->icsk_backoff;
2469
2470 if (tp->rx_opt.tstamp_ok)
2471 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2472 if (tcp_is_sack(tp))
2473 info->tcpi_options |= TCPI_OPT_SACK;
2474 if (tp->rx_opt.wscale_ok) {
2475 info->tcpi_options |= TCPI_OPT_WSCALE;
2476 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2477 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2478 }
2479
2480 if (tp->ecn_flags & TCP_ECN_OK)
2481 info->tcpi_options |= TCPI_OPT_ECN;
2482 if (tp->ecn_flags & TCP_ECN_SEEN)
2483 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2484
2485 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2486 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2487 info->tcpi_snd_mss = tp->mss_cache;
2488 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2489
2490 if (sk->sk_state == TCP_LISTEN) {
2491 info->tcpi_unacked = sk->sk_ack_backlog;
2492 info->tcpi_sacked = sk->sk_max_ack_backlog;
2493 } else {
2494 info->tcpi_unacked = tp->packets_out;
2495 info->tcpi_sacked = tp->sacked_out;
2496 }
2497 info->tcpi_lost = tp->lost_out;
2498 info->tcpi_retrans = tp->retrans_out;
2499 info->tcpi_fackets = tp->fackets_out;
2500
2501 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2502 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2503 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2504
2505 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2506 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2507 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2508 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2509 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2510 info->tcpi_snd_cwnd = tp->snd_cwnd;
2511 info->tcpi_advmss = tp->advmss;
2512 info->tcpi_reordering = tp->reordering;
2513
2514 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2515 info->tcpi_rcv_space = tp->rcvq_space.space;
2516
2517 info->tcpi_total_retrans = tp->total_retrans;
2518 }
2519 EXPORT_SYMBOL_GPL(tcp_get_info);
2520
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2521 static int do_tcp_getsockopt(struct sock *sk, int level,
2522 int optname, char __user *optval, int __user *optlen)
2523 {
2524 struct inet_connection_sock *icsk = inet_csk(sk);
2525 struct tcp_sock *tp = tcp_sk(sk);
2526 int val, len;
2527
2528 if (get_user(len, optlen))
2529 return -EFAULT;
2530
2531 len = min_t(unsigned int, len, sizeof(int));
2532
2533 if (len < 0)
2534 return -EINVAL;
2535
2536 switch (optname) {
2537 case TCP_MAXSEG:
2538 val = tp->mss_cache;
2539 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2540 val = tp->rx_opt.user_mss;
2541 break;
2542 case TCP_NODELAY:
2543 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2544 break;
2545 case TCP_CORK:
2546 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2547 break;
2548 case TCP_KEEPIDLE:
2549 val = keepalive_time_when(tp) / HZ;
2550 break;
2551 case TCP_KEEPINTVL:
2552 val = keepalive_intvl_when(tp) / HZ;
2553 break;
2554 case TCP_KEEPCNT:
2555 val = keepalive_probes(tp);
2556 break;
2557 case TCP_SYNCNT:
2558 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2559 break;
2560 case TCP_LINGER2:
2561 val = tp->linger2;
2562 if (val >= 0)
2563 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2564 break;
2565 case TCP_DEFER_ACCEPT:
2566 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2567 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2568 break;
2569 case TCP_WINDOW_CLAMP:
2570 val = tp->window_clamp;
2571 break;
2572 case TCP_INFO: {
2573 struct tcp_info info;
2574
2575 if (get_user(len, optlen))
2576 return -EFAULT;
2577
2578 tcp_get_info(sk, &info);
2579
2580 len = min_t(unsigned int, len, sizeof(info));
2581 if (put_user(len, optlen))
2582 return -EFAULT;
2583 if (copy_to_user(optval, &info, len))
2584 return -EFAULT;
2585 return 0;
2586 }
2587 case TCP_QUICKACK:
2588 val = !icsk->icsk_ack.pingpong;
2589 break;
2590
2591 case TCP_CONGESTION:
2592 if (get_user(len, optlen))
2593 return -EFAULT;
2594 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2595 if (put_user(len, optlen))
2596 return -EFAULT;
2597 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2598 return -EFAULT;
2599 return 0;
2600
2601 case TCP_COOKIE_TRANSACTIONS: {
2602 struct tcp_cookie_transactions ctd;
2603 struct tcp_cookie_values *cvp = tp->cookie_values;
2604
2605 if (get_user(len, optlen))
2606 return -EFAULT;
2607 if (len < sizeof(ctd))
2608 return -EINVAL;
2609
2610 memset(&ctd, 0, sizeof(ctd));
2611 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2612 TCP_COOKIE_IN_ALWAYS : 0)
2613 | (tp->rx_opt.cookie_out_never ?
2614 TCP_COOKIE_OUT_NEVER : 0);
2615
2616 if (cvp != NULL) {
2617 ctd.tcpct_flags |= (cvp->s_data_in ?
2618 TCP_S_DATA_IN : 0)
2619 | (cvp->s_data_out ?
2620 TCP_S_DATA_OUT : 0);
2621
2622 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2623 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2624
2625 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2626 cvp->cookie_pair_size);
2627 ctd.tcpct_used = cvp->cookie_pair_size;
2628 }
2629
2630 if (put_user(sizeof(ctd), optlen))
2631 return -EFAULT;
2632 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2633 return -EFAULT;
2634 return 0;
2635 }
2636 case TCP_THIN_LINEAR_TIMEOUTS:
2637 val = tp->thin_lto;
2638 break;
2639 case TCP_THIN_DUPACK:
2640 val = tp->thin_dupack;
2641 break;
2642
2643 case TCP_USER_TIMEOUT:
2644 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2645 break;
2646 default:
2647 return -ENOPROTOOPT;
2648 }
2649
2650 if (put_user(len, optlen))
2651 return -EFAULT;
2652 if (copy_to_user(optval, &val, len))
2653 return -EFAULT;
2654 return 0;
2655 }
2656
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2657 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2658 int __user *optlen)
2659 {
2660 struct inet_connection_sock *icsk = inet_csk(sk);
2661
2662 if (level != SOL_TCP)
2663 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2664 optval, optlen);
2665 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2666 }
2667 EXPORT_SYMBOL(tcp_getsockopt);
2668
2669 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2670 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2671 char __user *optval, int __user *optlen)
2672 {
2673 if (level != SOL_TCP)
2674 return inet_csk_compat_getsockopt(sk, level, optname,
2675 optval, optlen);
2676 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2677 }
2678 EXPORT_SYMBOL(compat_tcp_getsockopt);
2679 #endif
2680
tcp_tso_segment(struct sk_buff * skb,netdev_features_t features)2681 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2682 netdev_features_t features)
2683 {
2684 struct sk_buff *segs = ERR_PTR(-EINVAL);
2685 struct tcphdr *th;
2686 unsigned thlen;
2687 unsigned int seq;
2688 __be32 delta;
2689 unsigned int oldlen;
2690 unsigned int mss;
2691
2692 if (!pskb_may_pull(skb, sizeof(*th)))
2693 goto out;
2694
2695 th = tcp_hdr(skb);
2696 thlen = th->doff * 4;
2697 if (thlen < sizeof(*th))
2698 goto out;
2699
2700 if (!pskb_may_pull(skb, thlen))
2701 goto out;
2702
2703 oldlen = (u16)~skb->len;
2704 __skb_pull(skb, thlen);
2705
2706 mss = skb_shinfo(skb)->gso_size;
2707 if (unlikely(skb->len <= mss))
2708 goto out;
2709
2710 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2711 /* Packet is from an untrusted source, reset gso_segs. */
2712 int type = skb_shinfo(skb)->gso_type;
2713
2714 if (unlikely(type &
2715 ~(SKB_GSO_TCPV4 |
2716 SKB_GSO_DODGY |
2717 SKB_GSO_TCP_ECN |
2718 SKB_GSO_TCPV6 |
2719 0) ||
2720 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2721 goto out;
2722
2723 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2724
2725 segs = NULL;
2726 goto out;
2727 }
2728
2729 segs = skb_segment(skb, features);
2730 if (IS_ERR(segs))
2731 goto out;
2732
2733 delta = htonl(oldlen + (thlen + mss));
2734
2735 skb = segs;
2736 th = tcp_hdr(skb);
2737 seq = ntohl(th->seq);
2738
2739 do {
2740 th->fin = th->psh = 0;
2741
2742 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2743 (__force u32)delta));
2744 if (skb->ip_summed != CHECKSUM_PARTIAL)
2745 th->check =
2746 csum_fold(csum_partial(skb_transport_header(skb),
2747 thlen, skb->csum));
2748
2749 seq += mss;
2750 skb = skb->next;
2751 th = tcp_hdr(skb);
2752
2753 th->seq = htonl(seq);
2754 th->cwr = 0;
2755 } while (skb->next);
2756
2757 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2758 skb->data_len);
2759 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2760 (__force u32)delta));
2761 if (skb->ip_summed != CHECKSUM_PARTIAL)
2762 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2763 thlen, skb->csum));
2764
2765 out:
2766 return segs;
2767 }
2768 EXPORT_SYMBOL(tcp_tso_segment);
2769
tcp_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2770 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2771 {
2772 struct sk_buff **pp = NULL;
2773 struct sk_buff *p;
2774 struct tcphdr *th;
2775 struct tcphdr *th2;
2776 unsigned int len;
2777 unsigned int thlen;
2778 __be32 flags;
2779 unsigned int mss = 1;
2780 unsigned int hlen;
2781 unsigned int off;
2782 int flush = 1;
2783 int i;
2784
2785 off = skb_gro_offset(skb);
2786 hlen = off + sizeof(*th);
2787 th = skb_gro_header_fast(skb, off);
2788 if (skb_gro_header_hard(skb, hlen)) {
2789 th = skb_gro_header_slow(skb, hlen, off);
2790 if (unlikely(!th))
2791 goto out;
2792 }
2793
2794 thlen = th->doff * 4;
2795 if (thlen < sizeof(*th))
2796 goto out;
2797
2798 hlen = off + thlen;
2799 if (skb_gro_header_hard(skb, hlen)) {
2800 th = skb_gro_header_slow(skb, hlen, off);
2801 if (unlikely(!th))
2802 goto out;
2803 }
2804
2805 skb_gro_pull(skb, thlen);
2806
2807 len = skb_gro_len(skb);
2808 flags = tcp_flag_word(th);
2809
2810 for (; (p = *head); head = &p->next) {
2811 if (!NAPI_GRO_CB(p)->same_flow)
2812 continue;
2813
2814 th2 = tcp_hdr(p);
2815
2816 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2817 NAPI_GRO_CB(p)->same_flow = 0;
2818 continue;
2819 }
2820
2821 goto found;
2822 }
2823
2824 goto out_check_final;
2825
2826 found:
2827 flush = NAPI_GRO_CB(p)->flush;
2828 flush |= (__force int)(flags & TCP_FLAG_CWR);
2829 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2830 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2831 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2832 for (i = sizeof(*th); i < thlen; i += 4)
2833 flush |= *(u32 *)((u8 *)th + i) ^
2834 *(u32 *)((u8 *)th2 + i);
2835
2836 mss = skb_shinfo(p)->gso_size;
2837
2838 flush |= (len - 1) >= mss;
2839 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2840
2841 if (flush || skb_gro_receive(head, skb)) {
2842 mss = 1;
2843 goto out_check_final;
2844 }
2845
2846 p = *head;
2847 th2 = tcp_hdr(p);
2848 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2849
2850 out_check_final:
2851 flush = len < mss;
2852 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2853 TCP_FLAG_RST | TCP_FLAG_SYN |
2854 TCP_FLAG_FIN));
2855
2856 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2857 pp = head;
2858
2859 out:
2860 NAPI_GRO_CB(skb)->flush |= flush;
2861
2862 return pp;
2863 }
2864 EXPORT_SYMBOL(tcp_gro_receive);
2865
tcp_gro_complete(struct sk_buff * skb)2866 int tcp_gro_complete(struct sk_buff *skb)
2867 {
2868 struct tcphdr *th = tcp_hdr(skb);
2869
2870 skb->csum_start = skb_transport_header(skb) - skb->head;
2871 skb->csum_offset = offsetof(struct tcphdr, check);
2872 skb->ip_summed = CHECKSUM_PARTIAL;
2873
2874 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2875
2876 if (th->cwr)
2877 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2878
2879 return 0;
2880 }
2881 EXPORT_SYMBOL(tcp_gro_complete);
2882
2883 #ifdef CONFIG_TCP_MD5SIG
2884 static unsigned long tcp_md5sig_users;
2885 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
2886 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2887
__tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu * pool)2888 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2889 {
2890 int cpu;
2891
2892 for_each_possible_cpu(cpu) {
2893 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2894
2895 if (p->md5_desc.tfm)
2896 crypto_free_hash(p->md5_desc.tfm);
2897 }
2898 free_percpu(pool);
2899 }
2900
tcp_free_md5sig_pool(void)2901 void tcp_free_md5sig_pool(void)
2902 {
2903 struct tcp_md5sig_pool __percpu *pool = NULL;
2904
2905 spin_lock_bh(&tcp_md5sig_pool_lock);
2906 if (--tcp_md5sig_users == 0) {
2907 pool = tcp_md5sig_pool;
2908 tcp_md5sig_pool = NULL;
2909 }
2910 spin_unlock_bh(&tcp_md5sig_pool_lock);
2911 if (pool)
2912 __tcp_free_md5sig_pool(pool);
2913 }
2914 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2915
2916 static struct tcp_md5sig_pool __percpu *
__tcp_alloc_md5sig_pool(struct sock * sk)2917 __tcp_alloc_md5sig_pool(struct sock *sk)
2918 {
2919 int cpu;
2920 struct tcp_md5sig_pool __percpu *pool;
2921
2922 pool = alloc_percpu(struct tcp_md5sig_pool);
2923 if (!pool)
2924 return NULL;
2925
2926 for_each_possible_cpu(cpu) {
2927 struct crypto_hash *hash;
2928
2929 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2930 if (!hash || IS_ERR(hash))
2931 goto out_free;
2932
2933 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2934 }
2935 return pool;
2936 out_free:
2937 __tcp_free_md5sig_pool(pool);
2938 return NULL;
2939 }
2940
tcp_alloc_md5sig_pool(struct sock * sk)2941 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2942 {
2943 struct tcp_md5sig_pool __percpu *pool;
2944 int alloc = 0;
2945
2946 retry:
2947 spin_lock_bh(&tcp_md5sig_pool_lock);
2948 pool = tcp_md5sig_pool;
2949 if (tcp_md5sig_users++ == 0) {
2950 alloc = 1;
2951 spin_unlock_bh(&tcp_md5sig_pool_lock);
2952 } else if (!pool) {
2953 tcp_md5sig_users--;
2954 spin_unlock_bh(&tcp_md5sig_pool_lock);
2955 cpu_relax();
2956 goto retry;
2957 } else
2958 spin_unlock_bh(&tcp_md5sig_pool_lock);
2959
2960 if (alloc) {
2961 /* we cannot hold spinlock here because this may sleep. */
2962 struct tcp_md5sig_pool __percpu *p;
2963
2964 p = __tcp_alloc_md5sig_pool(sk);
2965 spin_lock_bh(&tcp_md5sig_pool_lock);
2966 if (!p) {
2967 tcp_md5sig_users--;
2968 spin_unlock_bh(&tcp_md5sig_pool_lock);
2969 return NULL;
2970 }
2971 pool = tcp_md5sig_pool;
2972 if (pool) {
2973 /* oops, it has already been assigned. */
2974 spin_unlock_bh(&tcp_md5sig_pool_lock);
2975 __tcp_free_md5sig_pool(p);
2976 } else {
2977 tcp_md5sig_pool = pool = p;
2978 spin_unlock_bh(&tcp_md5sig_pool_lock);
2979 }
2980 }
2981 return pool;
2982 }
2983 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2984
2985
2986 /**
2987 * tcp_get_md5sig_pool - get md5sig_pool for this user
2988 *
2989 * We use percpu structure, so if we succeed, we exit with preemption
2990 * and BH disabled, to make sure another thread or softirq handling
2991 * wont try to get same context.
2992 */
tcp_get_md5sig_pool(void)2993 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2994 {
2995 struct tcp_md5sig_pool __percpu *p;
2996
2997 local_bh_disable();
2998
2999 spin_lock(&tcp_md5sig_pool_lock);
3000 p = tcp_md5sig_pool;
3001 if (p)
3002 tcp_md5sig_users++;
3003 spin_unlock(&tcp_md5sig_pool_lock);
3004
3005 if (p)
3006 return this_cpu_ptr(p);
3007
3008 local_bh_enable();
3009 return NULL;
3010 }
3011 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3012
tcp_put_md5sig_pool(void)3013 void tcp_put_md5sig_pool(void)
3014 {
3015 local_bh_enable();
3016 tcp_free_md5sig_pool();
3017 }
3018 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3019
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,const struct tcphdr * th)3020 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3021 const struct tcphdr *th)
3022 {
3023 struct scatterlist sg;
3024 struct tcphdr hdr;
3025 int err;
3026
3027 /* We are not allowed to change tcphdr, make a local copy */
3028 memcpy(&hdr, th, sizeof(hdr));
3029 hdr.check = 0;
3030
3031 /* options aren't included in the hash */
3032 sg_init_one(&sg, &hdr, sizeof(hdr));
3033 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3034 return err;
3035 }
3036 EXPORT_SYMBOL(tcp_md5_hash_header);
3037
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3038 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3039 const struct sk_buff *skb, unsigned int header_len)
3040 {
3041 struct scatterlist sg;
3042 const struct tcphdr *tp = tcp_hdr(skb);
3043 struct hash_desc *desc = &hp->md5_desc;
3044 unsigned i;
3045 const unsigned head_data_len = skb_headlen(skb) > header_len ?
3046 skb_headlen(skb) - header_len : 0;
3047 const struct skb_shared_info *shi = skb_shinfo(skb);
3048 struct sk_buff *frag_iter;
3049
3050 sg_init_table(&sg, 1);
3051
3052 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3053 if (crypto_hash_update(desc, &sg, head_data_len))
3054 return 1;
3055
3056 for (i = 0; i < shi->nr_frags; ++i) {
3057 const struct skb_frag_struct *f = &shi->frags[i];
3058 unsigned int offset = f->page_offset;
3059 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3060
3061 sg_set_page(&sg, page, skb_frag_size(f),
3062 offset_in_page(offset));
3063 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3064 return 1;
3065 }
3066
3067 skb_walk_frags(skb, frag_iter)
3068 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3069 return 1;
3070
3071 return 0;
3072 }
3073 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3074
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3075 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3076 {
3077 struct scatterlist sg;
3078
3079 sg_init_one(&sg, key->key, key->keylen);
3080 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3081 }
3082 EXPORT_SYMBOL(tcp_md5_hash_key);
3083
3084 #endif
3085
3086 /**
3087 * Each Responder maintains up to two secret values concurrently for
3088 * efficient secret rollover. Each secret value has 4 states:
3089 *
3090 * Generating. (tcp_secret_generating != tcp_secret_primary)
3091 * Generates new Responder-Cookies, but not yet used for primary
3092 * verification. This is a short-term state, typically lasting only
3093 * one round trip time (RTT).
3094 *
3095 * Primary. (tcp_secret_generating == tcp_secret_primary)
3096 * Used both for generation and primary verification.
3097 *
3098 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3099 * Used for verification, until the first failure that can be
3100 * verified by the newer Generating secret. At that time, this
3101 * cookie's state is changed to Secondary, and the Generating
3102 * cookie's state is changed to Primary. This is a short-term state,
3103 * typically lasting only one round trip time (RTT).
3104 *
3105 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3106 * Used for secondary verification, after primary verification
3107 * failures. This state lasts no more than twice the Maximum Segment
3108 * Lifetime (2MSL). Then, the secret is discarded.
3109 */
3110 struct tcp_cookie_secret {
3111 /* The secret is divided into two parts. The digest part is the
3112 * equivalent of previously hashing a secret and saving the state,
3113 * and serves as an initialization vector (IV). The message part
3114 * serves as the trailing secret.
3115 */
3116 u32 secrets[COOKIE_WORKSPACE_WORDS];
3117 unsigned long expires;
3118 };
3119
3120 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3121 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3122 #define TCP_SECRET_LIFE (HZ * 600)
3123
3124 static struct tcp_cookie_secret tcp_secret_one;
3125 static struct tcp_cookie_secret tcp_secret_two;
3126
3127 /* Essentially a circular list, without dynamic allocation. */
3128 static struct tcp_cookie_secret *tcp_secret_generating;
3129 static struct tcp_cookie_secret *tcp_secret_primary;
3130 static struct tcp_cookie_secret *tcp_secret_retiring;
3131 static struct tcp_cookie_secret *tcp_secret_secondary;
3132
3133 static DEFINE_SPINLOCK(tcp_secret_locker);
3134
3135 /* Select a pseudo-random word in the cookie workspace.
3136 */
tcp_cookie_work(const u32 * ws,const int n)3137 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3138 {
3139 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3140 }
3141
3142 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3143 * Called in softirq context.
3144 * Returns: 0 for success.
3145 */
tcp_cookie_generator(u32 * bakery)3146 int tcp_cookie_generator(u32 *bakery)
3147 {
3148 unsigned long jiffy = jiffies;
3149
3150 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3151 spin_lock_bh(&tcp_secret_locker);
3152 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3153 /* refreshed by another */
3154 memcpy(bakery,
3155 &tcp_secret_generating->secrets[0],
3156 COOKIE_WORKSPACE_WORDS);
3157 } else {
3158 /* still needs refreshing */
3159 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3160
3161 /* The first time, paranoia assumes that the
3162 * randomization function isn't as strong. But,
3163 * this secret initialization is delayed until
3164 * the last possible moment (packet arrival).
3165 * Although that time is observable, it is
3166 * unpredictably variable. Mash in the most
3167 * volatile clock bits available, and expire the
3168 * secret extra quickly.
3169 */
3170 if (unlikely(tcp_secret_primary->expires ==
3171 tcp_secret_secondary->expires)) {
3172 struct timespec tv;
3173
3174 getnstimeofday(&tv);
3175 bakery[COOKIE_DIGEST_WORDS+0] ^=
3176 (u32)tv.tv_nsec;
3177
3178 tcp_secret_secondary->expires = jiffy
3179 + TCP_SECRET_1MSL
3180 + (0x0f & tcp_cookie_work(bakery, 0));
3181 } else {
3182 tcp_secret_secondary->expires = jiffy
3183 + TCP_SECRET_LIFE
3184 + (0xff & tcp_cookie_work(bakery, 1));
3185 tcp_secret_primary->expires = jiffy
3186 + TCP_SECRET_2MSL
3187 + (0x1f & tcp_cookie_work(bakery, 2));
3188 }
3189 memcpy(&tcp_secret_secondary->secrets[0],
3190 bakery, COOKIE_WORKSPACE_WORDS);
3191
3192 rcu_assign_pointer(tcp_secret_generating,
3193 tcp_secret_secondary);
3194 rcu_assign_pointer(tcp_secret_retiring,
3195 tcp_secret_primary);
3196 /*
3197 * Neither call_rcu() nor synchronize_rcu() needed.
3198 * Retiring data is not freed. It is replaced after
3199 * further (locked) pointer updates, and a quiet time
3200 * (minimum 1MSL, maximum LIFE - 2MSL).
3201 */
3202 }
3203 spin_unlock_bh(&tcp_secret_locker);
3204 } else {
3205 rcu_read_lock_bh();
3206 memcpy(bakery,
3207 &rcu_dereference(tcp_secret_generating)->secrets[0],
3208 COOKIE_WORKSPACE_WORDS);
3209 rcu_read_unlock_bh();
3210 }
3211 return 0;
3212 }
3213 EXPORT_SYMBOL(tcp_cookie_generator);
3214
tcp_done(struct sock * sk)3215 void tcp_done(struct sock *sk)
3216 {
3217 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3218 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3219
3220 tcp_set_state(sk, TCP_CLOSE);
3221 tcp_clear_xmit_timers(sk);
3222
3223 sk->sk_shutdown = SHUTDOWN_MASK;
3224
3225 if (!sock_flag(sk, SOCK_DEAD))
3226 sk->sk_state_change(sk);
3227 else
3228 inet_csk_destroy_sock(sk);
3229 }
3230 EXPORT_SYMBOL_GPL(tcp_done);
3231
3232 extern struct tcp_congestion_ops tcp_reno;
3233
3234 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3235 static int __init set_thash_entries(char *str)
3236 {
3237 if (!str)
3238 return 0;
3239 thash_entries = simple_strtoul(str, &str, 0);
3240 return 1;
3241 }
3242 __setup("thash_entries=", set_thash_entries);
3243
tcp_init_mem(struct net * net)3244 void tcp_init_mem(struct net *net)
3245 {
3246 unsigned long limit = nr_free_buffer_pages() / 8;
3247 limit = max(limit, 128UL);
3248 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3249 net->ipv4.sysctl_tcp_mem[1] = limit;
3250 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3251 }
3252
tcp_init(void)3253 void __init tcp_init(void)
3254 {
3255 struct sk_buff *skb = NULL;
3256 unsigned long limit;
3257 int max_rshare, max_wshare, cnt;
3258 unsigned int i;
3259 unsigned long jiffy = jiffies;
3260
3261 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3262
3263 percpu_counter_init(&tcp_sockets_allocated, 0);
3264 percpu_counter_init(&tcp_orphan_count, 0);
3265 tcp_hashinfo.bind_bucket_cachep =
3266 kmem_cache_create("tcp_bind_bucket",
3267 sizeof(struct inet_bind_bucket), 0,
3268 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3269
3270 /* Size and allocate the main established and bind bucket
3271 * hash tables.
3272 *
3273 * The methodology is similar to that of the buffer cache.
3274 */
3275 tcp_hashinfo.ehash =
3276 alloc_large_system_hash("TCP established",
3277 sizeof(struct inet_ehash_bucket),
3278 thash_entries,
3279 (totalram_pages >= 128 * 1024) ?
3280 13 : 15,
3281 0,
3282 NULL,
3283 &tcp_hashinfo.ehash_mask,
3284 thash_entries ? 0 : 512 * 1024);
3285 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3286 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3287 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3288 }
3289 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3290 panic("TCP: failed to alloc ehash_locks");
3291 tcp_hashinfo.bhash =
3292 alloc_large_system_hash("TCP bind",
3293 sizeof(struct inet_bind_hashbucket),
3294 tcp_hashinfo.ehash_mask + 1,
3295 (totalram_pages >= 128 * 1024) ?
3296 13 : 15,
3297 0,
3298 &tcp_hashinfo.bhash_size,
3299 NULL,
3300 64 * 1024);
3301 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3302 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3303 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3304 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3305 }
3306
3307
3308 cnt = tcp_hashinfo.ehash_mask + 1;
3309
3310 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3311 sysctl_tcp_max_orphans = cnt / 2;
3312 sysctl_max_syn_backlog = max(128, cnt / 256);
3313
3314 tcp_init_mem(&init_net);
3315 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3316 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3317 max_wshare = min(4UL*1024*1024, limit);
3318 max_rshare = min(6UL*1024*1024, limit);
3319
3320 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3321 sysctl_tcp_wmem[1] = 16*1024;
3322 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3323
3324 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3325 sysctl_tcp_rmem[1] = 87380;
3326 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3327
3328 pr_info("Hash tables configured (established %u bind %u)\n",
3329 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3330
3331 tcp_register_congestion_control(&tcp_reno);
3332
3333 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3334 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3335 tcp_secret_one.expires = jiffy; /* past due */
3336 tcp_secret_two.expires = jiffy; /* past due */
3337 tcp_secret_generating = &tcp_secret_one;
3338 tcp_secret_primary = &tcp_secret_one;
3339 tcp_secret_retiring = &tcp_secret_two;
3340 tcp_secret_secondary = &tcp_secret_two;
3341 }
3342