1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23 
24 #include <linux/list.h>
25 #include <linux/tcp.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Offer an initial receive window of 10 mss. */
64 #define TCP_DEFAULT_INIT_RCVWND	10
65 
66 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
67 #define TCP_MIN_MSS		88U
68 
69 /* The least MTU to use for probing */
70 #define TCP_BASE_MSS		512
71 
72 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
73 #define TCP_FASTRETRANS_THRESH 3
74 
75 /* Maximal reordering. */
76 #define TCP_MAX_REORDERING	127
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
104 				 * connection: ~180sec is RFC minimum	*/
105 
106 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
107 				  * state, about 60 seconds	*/
108 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
109                                  /* BSD style FIN_WAIT2 deadlock breaker.
110 				  * It used to be 3min, new value is 60sec,
111 				  * to combine FIN-WAIT-2 timeout with
112 				  * TIME-WAIT timer.
113 				  */
114 
115 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
116 #if HZ >= 100
117 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
118 #define TCP_ATO_MIN	((unsigned)(HZ/25))
119 #else
120 #define TCP_DELACK_MIN	4U
121 #define TCP_ATO_MIN	4U
122 #endif
123 #define TCP_RTO_MAX	((unsigned)(120*HZ))
124 #define TCP_RTO_MIN	((unsigned)(HZ/5))
125 #define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
126 
127 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
128 					                 * for local resources.
129 					                 */
130 
131 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
132 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
133 #define TCP_KEEPALIVE_INTVL	(75*HZ)
134 
135 #define MAX_TCP_KEEPIDLE	32767
136 #define MAX_TCP_KEEPINTVL	32767
137 #define MAX_TCP_KEEPCNT		127
138 #define MAX_TCP_SYNCNT		127
139 
140 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
141 
142 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
143 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
144 					 * after this time. It should be equal
145 					 * (or greater than) TCP_TIMEWAIT_LEN
146 					 * to provide reliability equal to one
147 					 * provided by timewait state.
148 					 */
149 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
150 					 * timestamps. It must be less than
151 					 * minimal timewait lifetime.
152 					 */
153 /*
154  *	TCP option
155  */
156 
157 #define TCPOPT_NOP		1	/* Padding */
158 #define TCPOPT_EOL		0	/* End of options */
159 #define TCPOPT_MSS		2	/* Segment size negotiating */
160 #define TCPOPT_WINDOW		3	/* Window scaling */
161 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
162 #define TCPOPT_SACK             5       /* SACK Block */
163 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
164 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
165 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
166 
167 /*
168  *     TCP option lengths
169  */
170 
171 #define TCPOLEN_MSS            4
172 #define TCPOLEN_WINDOW         3
173 #define TCPOLEN_SACK_PERM      2
174 #define TCPOLEN_TIMESTAMP      10
175 #define TCPOLEN_MD5SIG         18
176 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
177 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
178 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
179 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
180 
181 /* But this is what stacks really send out. */
182 #define TCPOLEN_TSTAMP_ALIGNED		12
183 #define TCPOLEN_WSCALE_ALIGNED		4
184 #define TCPOLEN_SACKPERM_ALIGNED	4
185 #define TCPOLEN_SACK_BASE		2
186 #define TCPOLEN_SACK_BASE_ALIGNED	4
187 #define TCPOLEN_SACK_PERBLOCK		8
188 #define TCPOLEN_MD5SIG_ALIGNED		20
189 #define TCPOLEN_MSS_ALIGNED		4
190 
191 /* Flags in tp->nonagle */
192 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
193 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
194 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
195 
196 /* TCP thin-stream limits */
197 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
198 
199 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
200 #define TCP_INIT_CWND		10
201 
202 extern struct inet_timewait_death_row tcp_death_row;
203 
204 /* sysctl variables for tcp */
205 extern int sysctl_tcp_timestamps;
206 extern int sysctl_tcp_window_scaling;
207 extern int sysctl_tcp_sack;
208 extern int sysctl_tcp_fin_timeout;
209 extern int sysctl_tcp_keepalive_time;
210 extern int sysctl_tcp_keepalive_probes;
211 extern int sysctl_tcp_keepalive_intvl;
212 extern int sysctl_tcp_syn_retries;
213 extern int sysctl_tcp_synack_retries;
214 extern int sysctl_tcp_retries1;
215 extern int sysctl_tcp_retries2;
216 extern int sysctl_tcp_orphan_retries;
217 extern int sysctl_tcp_syncookies;
218 extern int sysctl_tcp_retrans_collapse;
219 extern int sysctl_tcp_stdurg;
220 extern int sysctl_tcp_rfc1337;
221 extern int sysctl_tcp_abort_on_overflow;
222 extern int sysctl_tcp_max_orphans;
223 extern int sysctl_tcp_fack;
224 extern int sysctl_tcp_reordering;
225 extern int sysctl_tcp_ecn;
226 extern int sysctl_tcp_dsack;
227 extern long sysctl_tcp_mem[3];
228 extern int sysctl_tcp_wmem[3];
229 extern int sysctl_tcp_rmem[3];
230 extern int sysctl_tcp_app_win;
231 extern int sysctl_tcp_adv_win_scale;
232 extern int sysctl_tcp_tw_reuse;
233 extern int sysctl_tcp_frto;
234 extern int sysctl_tcp_frto_response;
235 extern int sysctl_tcp_low_latency;
236 extern int sysctl_tcp_dma_copybreak;
237 extern int sysctl_tcp_nometrics_save;
238 extern int sysctl_tcp_moderate_rcvbuf;
239 extern int sysctl_tcp_tso_win_divisor;
240 extern int sysctl_tcp_abc;
241 extern int sysctl_tcp_mtu_probing;
242 extern int sysctl_tcp_base_mss;
243 extern int sysctl_tcp_workaround_signed_windows;
244 extern int sysctl_tcp_slow_start_after_idle;
245 extern int sysctl_tcp_max_ssthresh;
246 extern int sysctl_tcp_cookie_size;
247 extern int sysctl_tcp_thin_linear_timeouts;
248 extern int sysctl_tcp_thin_dupack;
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern int tcp_memory_pressure;
253 
254 /*
255  * The next routines deal with comparing 32 bit unsigned ints
256  * and worry about wraparound (automatic with unsigned arithmetic).
257  */
258 
before(__u32 seq1,__u32 seq2)259 static inline int before(__u32 seq1, __u32 seq2)
260 {
261         return (__s32)(seq1-seq2) < 0;
262 }
263 #define after(seq2, seq1) 	before(seq1, seq2)
264 
265 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)266 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
267 {
268 	return seq3 - seq2 >= seq1 - seq2;
269 }
270 
tcp_too_many_orphans(struct sock * sk,int shift)271 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
272 {
273 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
274 	int orphans = percpu_counter_read_positive(ocp);
275 
276 	if (orphans << shift > sysctl_tcp_max_orphans) {
277 		orphans = percpu_counter_sum_positive(ocp);
278 		if (orphans << shift > sysctl_tcp_max_orphans)
279 			return true;
280 	}
281 
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    atomic_long_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])
284 		return true;
285 	return false;
286 }
287 
288 /* syncookies: remember time of last synqueue overflow */
tcp_synq_overflow(struct sock * sk)289 static inline void tcp_synq_overflow(struct sock *sk)
290 {
291 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
292 }
293 
294 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)295 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
296 {
297 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
298 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_INIT);
299 }
300 
301 extern struct proto tcp_prot;
302 
303 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
305 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
306 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
307 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
308 
309 extern void tcp_v4_err(struct sk_buff *skb, u32);
310 
311 extern void tcp_shutdown (struct sock *sk, int how);
312 
313 extern int tcp_v4_rcv(struct sk_buff *skb);
314 
315 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
316 extern void *tcp_v4_tw_get_peer(struct sock *sk);
317 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
318 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
319 		       size_t size);
320 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
321 			size_t size, int flags);
322 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
323 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
324 				 struct tcphdr *th, unsigned len);
325 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
326 			       struct tcphdr *th, unsigned len);
327 extern void tcp_rcv_space_adjust(struct sock *sk);
328 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
329 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
330 extern void tcp_twsk_destructor(struct sock *sk);
331 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
332 			       struct pipe_inode_info *pipe, size_t len,
333 			       unsigned int flags);
334 
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)335 static inline void tcp_dec_quickack_mode(struct sock *sk,
336 					 const unsigned int pkts)
337 {
338 	struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	if (icsk->icsk_ack.quick) {
341 		if (pkts >= icsk->icsk_ack.quick) {
342 			icsk->icsk_ack.quick = 0;
343 			/* Leaving quickack mode we deflate ATO. */
344 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
345 		} else
346 			icsk->icsk_ack.quick -= pkts;
347 	}
348 }
349 
350 #define	TCP_ECN_OK		1
351 #define	TCP_ECN_QUEUE_CWR	2
352 #define	TCP_ECN_DEMAND_CWR	4
353 
354 static __inline__ void
TCP_ECN_create_request(struct request_sock * req,struct tcphdr * th)355 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
356 {
357 	if (sysctl_tcp_ecn && th->ece && th->cwr)
358 		inet_rsk(req)->ecn_ok = 1;
359 }
360 
361 enum tcp_tw_status {
362 	TCP_TW_SUCCESS = 0,
363 	TCP_TW_RST = 1,
364 	TCP_TW_ACK = 2,
365 	TCP_TW_SYN = 3
366 };
367 
368 
369 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
370 						     struct sk_buff *skb,
371 						     const struct tcphdr *th);
372 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
373 				   struct request_sock *req,
374 				   struct request_sock **prev);
375 extern int tcp_child_process(struct sock *parent, struct sock *child,
376 			     struct sk_buff *skb);
377 extern int tcp_use_frto(struct sock *sk);
378 extern void tcp_enter_frto(struct sock *sk);
379 extern void tcp_enter_loss(struct sock *sk, int how);
380 extern void tcp_clear_retrans(struct tcp_sock *tp);
381 extern void tcp_update_metrics(struct sock *sk);
382 extern void tcp_close(struct sock *sk, long timeout);
383 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
384 			     struct poll_table_struct *wait);
385 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
386 			  char __user *optval, int __user *optlen);
387 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
388 			  char __user *optval, unsigned int optlen);
389 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
390 				 char __user *optval, int __user *optlen);
391 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
392 				 char __user *optval, unsigned int optlen);
393 extern void tcp_set_keepalive(struct sock *sk, int val);
394 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
395 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
396 		       size_t len, int nonblock, int flags, int *addr_len);
397 extern void tcp_parse_options(struct sk_buff *skb,
398 			      struct tcp_options_received *opt_rx, u8 **hvpp,
399 			      int estab);
400 extern u8 *tcp_parse_md5sig_option(struct tcphdr *th);
401 
402 /*
403  *	TCP v4 functions exported for the inet6 API
404  */
405 
406 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
407 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
408 extern struct sock * tcp_create_openreq_child(struct sock *sk,
409 					      struct request_sock *req,
410 					      struct sk_buff *skb);
411 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
412 					  struct request_sock *req,
413 					  struct dst_entry *dst);
414 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
415 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
416 			  int addr_len);
417 extern int tcp_connect(struct sock *sk);
418 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
419 					struct request_sock *req,
420 					struct request_values *rvp);
421 extern int tcp_disconnect(struct sock *sk, int flags);
422 
423 
424 /* From syncookies.c */
425 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
426 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
427 				    struct ip_options *opt);
428 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
429 				     __u16 *mss);
430 
431 extern __u32 cookie_init_timestamp(struct request_sock *req);
432 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
433 
434 /* From net/ipv6/syncookies.c */
435 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
436 extern __u32 cookie_v6_init_sequence(struct sock *sk, struct sk_buff *skb,
437 				     __u16 *mss);
438 
439 /* tcp_output.c */
440 
441 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
442 				      int nonagle);
443 extern int tcp_may_send_now(struct sock *sk);
444 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
445 extern void tcp_retransmit_timer(struct sock *sk);
446 extern void tcp_xmit_retransmit_queue(struct sock *);
447 extern void tcp_simple_retransmit(struct sock *);
448 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
449 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
450 
451 extern void tcp_send_probe0(struct sock *);
452 extern void tcp_send_partial(struct sock *);
453 extern int tcp_write_wakeup(struct sock *);
454 extern void tcp_send_fin(struct sock *sk);
455 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
456 extern int tcp_send_synack(struct sock *);
457 extern void tcp_push_one(struct sock *, unsigned int mss_now);
458 extern void tcp_send_ack(struct sock *sk);
459 extern void tcp_send_delayed_ack(struct sock *sk);
460 
461 /* tcp_input.c */
462 extern void tcp_cwnd_application_limited(struct sock *sk);
463 
464 /* tcp_timer.c */
465 extern void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)466 static inline void tcp_clear_xmit_timers(struct sock *sk)
467 {
468 	inet_csk_clear_xmit_timers(sk);
469 }
470 
471 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
472 extern unsigned int tcp_current_mss(struct sock *sk);
473 
474 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)475 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
476 {
477 	int cutoff;
478 
479 	/* When peer uses tiny windows, there is no use in packetizing
480 	 * to sub-MSS pieces for the sake of SWS or making sure there
481 	 * are enough packets in the pipe for fast recovery.
482 	 *
483 	 * On the other hand, for extremely large MSS devices, handling
484 	 * smaller than MSS windows in this way does make sense.
485 	 */
486 	if (tp->max_window >= 512)
487 		cutoff = (tp->max_window >> 1);
488 	else
489 		cutoff = tp->max_window;
490 
491 	if (cutoff && pktsize > cutoff)
492 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
493 	else
494 		return pktsize;
495 }
496 
497 /* tcp.c */
498 extern void tcp_get_info(struct sock *, struct tcp_info *);
499 
500 /* Read 'sendfile()'-style from a TCP socket */
501 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
502 				unsigned int, size_t);
503 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
504 			 sk_read_actor_t recv_actor);
505 
506 extern void tcp_initialize_rcv_mss(struct sock *sk);
507 
508 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
509 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
510 extern void tcp_mtup_init(struct sock *sk);
511 
tcp_bound_rto(const struct sock * sk)512 static inline void tcp_bound_rto(const struct sock *sk)
513 {
514 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
515 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
516 }
517 
__tcp_set_rto(const struct tcp_sock * tp)518 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
519 {
520 	return (tp->srtt >> 3) + tp->rttvar;
521 }
522 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)523 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
524 {
525 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
526 			       ntohl(TCP_FLAG_ACK) |
527 			       snd_wnd);
528 }
529 
tcp_fast_path_on(struct tcp_sock * tp)530 static inline void tcp_fast_path_on(struct tcp_sock *tp)
531 {
532 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
533 }
534 
tcp_fast_path_check(struct sock * sk)535 static inline void tcp_fast_path_check(struct sock *sk)
536 {
537 	struct tcp_sock *tp = tcp_sk(sk);
538 
539 	if (skb_queue_empty(&tp->out_of_order_queue) &&
540 	    tp->rcv_wnd &&
541 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
542 	    !tp->urg_data)
543 		tcp_fast_path_on(tp);
544 }
545 
546 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)547 static inline u32 tcp_rto_min(struct sock *sk)
548 {
549 	struct dst_entry *dst = __sk_dst_get(sk);
550 	u32 rto_min = TCP_RTO_MIN;
551 
552 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
553 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
554 	return rto_min;
555 }
556 
557 /* Compute the actual receive window we are currently advertising.
558  * Rcv_nxt can be after the window if our peer push more data
559  * than the offered window.
560  */
tcp_receive_window(const struct tcp_sock * tp)561 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
562 {
563 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
564 
565 	if (win < 0)
566 		win = 0;
567 	return (u32) win;
568 }
569 
570 /* Choose a new window, without checks for shrinking, and without
571  * scaling applied to the result.  The caller does these things
572  * if necessary.  This is a "raw" window selection.
573  */
574 extern u32 __tcp_select_window(struct sock *sk);
575 
576 /* TCP timestamps are only 32-bits, this causes a slight
577  * complication on 64-bit systems since we store a snapshot
578  * of jiffies in the buffer control blocks below.  We decided
579  * to use only the low 32-bits of jiffies and hide the ugly
580  * casts with the following macro.
581  */
582 #define tcp_time_stamp		((__u32)(jiffies))
583 
584 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
585 
586 #define TCPHDR_FIN 0x01
587 #define TCPHDR_SYN 0x02
588 #define TCPHDR_RST 0x04
589 #define TCPHDR_PSH 0x08
590 #define TCPHDR_ACK 0x10
591 #define TCPHDR_URG 0x20
592 #define TCPHDR_ECE 0x40
593 #define TCPHDR_CWR 0x80
594 
595 /* This is what the send packet queuing engine uses to pass
596  * TCP per-packet control information to the transmission code.
597  * We also store the host-order sequence numbers in here too.
598  * This is 44 bytes if IPV6 is enabled.
599  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
600  */
601 struct tcp_skb_cb {
602 	union {
603 		struct inet_skb_parm	h4;
604 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
605 		struct inet6_skb_parm	h6;
606 #endif
607 	} header;	/* For incoming frames		*/
608 	__u32		seq;		/* Starting sequence number	*/
609 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
610 	__u32		when;		/* used to compute rtt's	*/
611 	__u8		flags;		/* TCP header flags.		*/
612 	__u8		sacked;		/* State flags for SACK/FACK.	*/
613 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
614 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
615 #define TCPCB_LOST		0x04	/* SKB is lost			*/
616 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
617 
618 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
619 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
620 
621 	__u32		ack_seq;	/* Sequence number ACK'd	*/
622 };
623 
624 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
625 
626 /* Due to TSO, an SKB can be composed of multiple actual
627  * packets.  To keep these tracked properly, we use this.
628  */
tcp_skb_pcount(const struct sk_buff * skb)629 static inline int tcp_skb_pcount(const struct sk_buff *skb)
630 {
631 	return skb_shinfo(skb)->gso_segs;
632 }
633 
634 /* This is valid iff tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)635 static inline int tcp_skb_mss(const struct sk_buff *skb)
636 {
637 	return skb_shinfo(skb)->gso_size;
638 }
639 
640 /* Events passed to congestion control interface */
641 enum tcp_ca_event {
642 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
643 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
644 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
645 	CA_EVENT_FRTO,		/* fast recovery timeout */
646 	CA_EVENT_LOSS,		/* loss timeout */
647 	CA_EVENT_FAST_ACK,	/* in sequence ack */
648 	CA_EVENT_SLOW_ACK,	/* other ack */
649 };
650 
651 /*
652  * Interface for adding new TCP congestion control handlers
653  */
654 #define TCP_CA_NAME_MAX	16
655 #define TCP_CA_MAX	128
656 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
657 
658 #define TCP_CONG_NON_RESTRICTED 0x1
659 #define TCP_CONG_RTT_STAMP	0x2
660 
661 struct tcp_congestion_ops {
662 	struct list_head	list;
663 	unsigned long flags;
664 
665 	/* initialize private data (optional) */
666 	void (*init)(struct sock *sk);
667 	/* cleanup private data  (optional) */
668 	void (*release)(struct sock *sk);
669 
670 	/* return slow start threshold (required) */
671 	u32 (*ssthresh)(struct sock *sk);
672 	/* lower bound for congestion window (optional) */
673 	u32 (*min_cwnd)(const struct sock *sk);
674 	/* do new cwnd calculation (required) */
675 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
676 	/* call before changing ca_state (optional) */
677 	void (*set_state)(struct sock *sk, u8 new_state);
678 	/* call when cwnd event occurs (optional) */
679 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
680 	/* new value of cwnd after loss (optional) */
681 	u32  (*undo_cwnd)(struct sock *sk);
682 	/* hook for packet ack accounting (optional) */
683 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
684 	/* get info for inet_diag (optional) */
685 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
686 
687 	char 		name[TCP_CA_NAME_MAX];
688 	struct module 	*owner;
689 };
690 
691 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
692 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
693 
694 extern void tcp_init_congestion_control(struct sock *sk);
695 extern void tcp_cleanup_congestion_control(struct sock *sk);
696 extern int tcp_set_default_congestion_control(const char *name);
697 extern void tcp_get_default_congestion_control(char *name);
698 extern void tcp_get_available_congestion_control(char *buf, size_t len);
699 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
700 extern int tcp_set_allowed_congestion_control(char *allowed);
701 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
702 extern void tcp_slow_start(struct tcp_sock *tp);
703 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
704 
705 extern struct tcp_congestion_ops tcp_init_congestion_ops;
706 extern u32 tcp_reno_ssthresh(struct sock *sk);
707 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
708 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
709 extern struct tcp_congestion_ops tcp_reno;
710 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)711 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
712 {
713 	struct inet_connection_sock *icsk = inet_csk(sk);
714 
715 	if (icsk->icsk_ca_ops->set_state)
716 		icsk->icsk_ca_ops->set_state(sk, ca_state);
717 	icsk->icsk_ca_state = ca_state;
718 }
719 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)720 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
721 {
722 	const struct inet_connection_sock *icsk = inet_csk(sk);
723 
724 	if (icsk->icsk_ca_ops->cwnd_event)
725 		icsk->icsk_ca_ops->cwnd_event(sk, event);
726 }
727 
728 /* These functions determine how the current flow behaves in respect of SACK
729  * handling. SACK is negotiated with the peer, and therefore it can vary
730  * between different flows.
731  *
732  * tcp_is_sack - SACK enabled
733  * tcp_is_reno - No SACK
734  * tcp_is_fack - FACK enabled, implies SACK enabled
735  */
tcp_is_sack(const struct tcp_sock * tp)736 static inline int tcp_is_sack(const struct tcp_sock *tp)
737 {
738 	return tp->rx_opt.sack_ok;
739 }
740 
tcp_is_reno(const struct tcp_sock * tp)741 static inline int tcp_is_reno(const struct tcp_sock *tp)
742 {
743 	return !tcp_is_sack(tp);
744 }
745 
tcp_is_fack(const struct tcp_sock * tp)746 static inline int tcp_is_fack(const struct tcp_sock *tp)
747 {
748 	return tp->rx_opt.sack_ok & 2;
749 }
750 
tcp_enable_fack(struct tcp_sock * tp)751 static inline void tcp_enable_fack(struct tcp_sock *tp)
752 {
753 	tp->rx_opt.sack_ok |= 2;
754 }
755 
tcp_left_out(const struct tcp_sock * tp)756 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
757 {
758 	return tp->sacked_out + tp->lost_out;
759 }
760 
761 /* This determines how many packets are "in the network" to the best
762  * of our knowledge.  In many cases it is conservative, but where
763  * detailed information is available from the receiver (via SACK
764  * blocks etc.) we can make more aggressive calculations.
765  *
766  * Use this for decisions involving congestion control, use just
767  * tp->packets_out to determine if the send queue is empty or not.
768  *
769  * Read this equation as:
770  *
771  *	"Packets sent once on transmission queue" MINUS
772  *	"Packets left network, but not honestly ACKed yet" PLUS
773  *	"Packets fast retransmitted"
774  */
tcp_packets_in_flight(const struct tcp_sock * tp)775 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
776 {
777 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
778 }
779 
780 #define TCP_INFINITE_SSTHRESH	0x7fffffff
781 
tcp_in_initial_slowstart(const struct tcp_sock * tp)782 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
783 {
784 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
785 }
786 
787 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
788  * The exception is rate halving phase, when cwnd is decreasing towards
789  * ssthresh.
790  */
tcp_current_ssthresh(const struct sock * sk)791 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
792 {
793 	const struct tcp_sock *tp = tcp_sk(sk);
794 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
795 		return tp->snd_ssthresh;
796 	else
797 		return max(tp->snd_ssthresh,
798 			   ((tp->snd_cwnd >> 1) +
799 			    (tp->snd_cwnd >> 2)));
800 }
801 
802 /* Use define here intentionally to get WARN_ON location shown at the caller */
803 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
804 
805 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
806 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
807 
808 /* Slow start with delack produces 3 packets of burst, so that
809  * it is safe "de facto".  This will be the default - same as
810  * the default reordering threshold - but if reordering increases,
811  * we must be able to allow cwnd to burst at least this much in order
812  * to not pull it back when holes are filled.
813  */
tcp_max_burst(const struct tcp_sock * tp)814 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
815 {
816 	return tp->reordering;
817 }
818 
819 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)820 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
821 {
822 	return tp->snd_una + tp->snd_wnd;
823 }
824 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
825 
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss,const struct sk_buff * skb)826 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
827 				       const struct sk_buff *skb)
828 {
829 	if (skb->len < mss)
830 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
831 }
832 
tcp_check_probe_timer(struct sock * sk)833 static inline void tcp_check_probe_timer(struct sock *sk)
834 {
835 	struct tcp_sock *tp = tcp_sk(sk);
836 	const struct inet_connection_sock *icsk = inet_csk(sk);
837 
838 	if (!tp->packets_out && !icsk->icsk_pending)
839 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
840 					  icsk->icsk_rto, TCP_RTO_MAX);
841 }
842 
tcp_init_wl(struct tcp_sock * tp,u32 seq)843 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
844 {
845 	tp->snd_wl1 = seq;
846 }
847 
tcp_update_wl(struct tcp_sock * tp,u32 seq)848 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
849 {
850 	tp->snd_wl1 = seq;
851 }
852 
853 /*
854  * Calculate(/check) TCP checksum
855  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)856 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
857 				   __be32 daddr, __wsum base)
858 {
859 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
860 }
861 
__tcp_checksum_complete(struct sk_buff * skb)862 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
863 {
864 	return __skb_checksum_complete(skb);
865 }
866 
tcp_checksum_complete(struct sk_buff * skb)867 static inline int tcp_checksum_complete(struct sk_buff *skb)
868 {
869 	return !skb_csum_unnecessary(skb) &&
870 		__tcp_checksum_complete(skb);
871 }
872 
873 /* Prequeue for VJ style copy to user, combined with checksumming. */
874 
tcp_prequeue_init(struct tcp_sock * tp)875 static inline void tcp_prequeue_init(struct tcp_sock *tp)
876 {
877 	tp->ucopy.task = NULL;
878 	tp->ucopy.len = 0;
879 	tp->ucopy.memory = 0;
880 	skb_queue_head_init(&tp->ucopy.prequeue);
881 #ifdef CONFIG_NET_DMA
882 	tp->ucopy.dma_chan = NULL;
883 	tp->ucopy.wakeup = 0;
884 	tp->ucopy.pinned_list = NULL;
885 	tp->ucopy.dma_cookie = 0;
886 #endif
887 }
888 
889 /* Packet is added to VJ-style prequeue for processing in process
890  * context, if a reader task is waiting. Apparently, this exciting
891  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
892  * failed somewhere. Latency? Burstiness? Well, at least now we will
893  * see, why it failed. 8)8)				  --ANK
894  *
895  * NOTE: is this not too big to inline?
896  */
tcp_prequeue(struct sock * sk,struct sk_buff * skb)897 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
898 {
899 	struct tcp_sock *tp = tcp_sk(sk);
900 
901 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
902 		return 0;
903 
904 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
905 	tp->ucopy.memory += skb->truesize;
906 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
907 		struct sk_buff *skb1;
908 
909 		BUG_ON(sock_owned_by_user(sk));
910 
911 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
912 			sk_backlog_rcv(sk, skb1);
913 			NET_INC_STATS_BH(sock_net(sk),
914 					 LINUX_MIB_TCPPREQUEUEDROPPED);
915 		}
916 
917 		tp->ucopy.memory = 0;
918 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
919 		wake_up_interruptible_sync_poll(sk_sleep(sk),
920 					   POLLIN | POLLRDNORM | POLLRDBAND);
921 		if (!inet_csk_ack_scheduled(sk))
922 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
923 						  (3 * tcp_rto_min(sk)) / 4,
924 						  TCP_RTO_MAX);
925 	}
926 	return 1;
927 }
928 
929 
930 #undef STATE_TRACE
931 
932 #ifdef STATE_TRACE
933 static const char *statename[]={
934 	"Unused","Established","Syn Sent","Syn Recv",
935 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
936 	"Close Wait","Last ACK","Listen","Closing"
937 };
938 #endif
939 extern void tcp_set_state(struct sock *sk, int state);
940 
941 extern void tcp_done(struct sock *sk);
942 
tcp_sack_reset(struct tcp_options_received * rx_opt)943 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
944 {
945 	rx_opt->dsack = 0;
946 	rx_opt->num_sacks = 0;
947 }
948 
949 /* Determine a window scaling and initial window to offer. */
950 extern void tcp_select_initial_window(int __space, __u32 mss,
951 				      __u32 *rcv_wnd, __u32 *window_clamp,
952 				      int wscale_ok, __u8 *rcv_wscale,
953 				      __u32 init_rcv_wnd);
954 
tcp_win_from_space(int space)955 static inline int tcp_win_from_space(int space)
956 {
957 	return sysctl_tcp_adv_win_scale<=0 ?
958 		(space>>(-sysctl_tcp_adv_win_scale)) :
959 		space - (space>>sysctl_tcp_adv_win_scale);
960 }
961 
962 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)963 static inline int tcp_space(const struct sock *sk)
964 {
965 	return tcp_win_from_space(sk->sk_rcvbuf -
966 				  atomic_read(&sk->sk_rmem_alloc));
967 }
968 
tcp_full_space(const struct sock * sk)969 static inline int tcp_full_space(const struct sock *sk)
970 {
971 	return tcp_win_from_space(sk->sk_rcvbuf);
972 }
973 
tcp_openreq_init(struct request_sock * req,struct tcp_options_received * rx_opt,struct sk_buff * skb)974 static inline void tcp_openreq_init(struct request_sock *req,
975 				    struct tcp_options_received *rx_opt,
976 				    struct sk_buff *skb)
977 {
978 	struct inet_request_sock *ireq = inet_rsk(req);
979 
980 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
981 	req->cookie_ts = 0;
982 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
983 	req->mss = rx_opt->mss_clamp;
984 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
985 	ireq->tstamp_ok = rx_opt->tstamp_ok;
986 	ireq->sack_ok = rx_opt->sack_ok;
987 	ireq->snd_wscale = rx_opt->snd_wscale;
988 	ireq->wscale_ok = rx_opt->wscale_ok;
989 	ireq->acked = 0;
990 	ireq->ecn_ok = 0;
991 	ireq->rmt_port = tcp_hdr(skb)->source;
992 	ireq->loc_port = tcp_hdr(skb)->dest;
993 }
994 
995 extern void tcp_enter_memory_pressure(struct sock *sk);
996 
keepalive_intvl_when(const struct tcp_sock * tp)997 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
998 {
999 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1000 }
1001 
keepalive_time_when(const struct tcp_sock * tp)1002 static inline int keepalive_time_when(const struct tcp_sock *tp)
1003 {
1004 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1005 }
1006 
keepalive_probes(const struct tcp_sock * tp)1007 static inline int keepalive_probes(const struct tcp_sock *tp)
1008 {
1009 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1010 }
1011 
keepalive_time_elapsed(const struct tcp_sock * tp)1012 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1013 {
1014 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1015 
1016 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1017 			  tcp_time_stamp - tp->rcv_tstamp);
1018 }
1019 
tcp_fin_time(const struct sock * sk)1020 static inline int tcp_fin_time(const struct sock *sk)
1021 {
1022 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1023 	const int rto = inet_csk(sk)->icsk_rto;
1024 
1025 	if (fin_timeout < (rto << 2) - (rto >> 1))
1026 		fin_timeout = (rto << 2) - (rto >> 1);
1027 
1028 	return fin_timeout;
1029 }
1030 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1031 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1032 				 int paws_win)
1033 {
1034 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1035 		return 1;
1036 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1037 		return 1;
1038 	/*
1039 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1040 	 * then following tcp messages have valid values. Ignore 0 value,
1041 	 * or else 'negative' tsval might forbid us to accept their packets.
1042 	 */
1043 	if (!rx_opt->ts_recent)
1044 		return 1;
1045 	return 0;
1046 }
1047 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1048 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1049 				  int rst)
1050 {
1051 	if (tcp_paws_check(rx_opt, 0))
1052 		return 0;
1053 
1054 	/* RST segments are not recommended to carry timestamp,
1055 	   and, if they do, it is recommended to ignore PAWS because
1056 	   "their cleanup function should take precedence over timestamps."
1057 	   Certainly, it is mistake. It is necessary to understand the reasons
1058 	   of this constraint to relax it: if peer reboots, clock may go
1059 	   out-of-sync and half-open connections will not be reset.
1060 	   Actually, the problem would be not existing if all
1061 	   the implementations followed draft about maintaining clock
1062 	   via reboots. Linux-2.2 DOES NOT!
1063 
1064 	   However, we can relax time bounds for RST segments to MSL.
1065 	 */
1066 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1067 		return 0;
1068 	return 1;
1069 }
1070 
tcp_mib_init(struct net * net)1071 static inline void tcp_mib_init(struct net *net)
1072 {
1073 	/* See RFC 2012 */
1074 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1075 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1076 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1077 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1078 }
1079 
1080 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1081 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1082 {
1083 	tp->lost_skb_hint = NULL;
1084 	tp->scoreboard_skb_hint = NULL;
1085 }
1086 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1087 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1088 {
1089 	tcp_clear_retrans_hints_partial(tp);
1090 	tp->retransmit_skb_hint = NULL;
1091 }
1092 
1093 /* MD5 Signature */
1094 struct crypto_hash;
1095 
1096 /* - key database */
1097 struct tcp_md5sig_key {
1098 	u8			*key;
1099 	u8			keylen;
1100 };
1101 
1102 struct tcp4_md5sig_key {
1103 	struct tcp_md5sig_key	base;
1104 	__be32			addr;
1105 };
1106 
1107 struct tcp6_md5sig_key {
1108 	struct tcp_md5sig_key	base;
1109 #if 0
1110 	u32			scope_id;	/* XXX */
1111 #endif
1112 	struct in6_addr		addr;
1113 };
1114 
1115 /* - sock block */
1116 struct tcp_md5sig_info {
1117 	struct tcp4_md5sig_key	*keys4;
1118 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1119 	struct tcp6_md5sig_key	*keys6;
1120 	u32			entries6;
1121 	u32			alloced6;
1122 #endif
1123 	u32			entries4;
1124 	u32			alloced4;
1125 };
1126 
1127 /* - pseudo header */
1128 struct tcp4_pseudohdr {
1129 	__be32		saddr;
1130 	__be32		daddr;
1131 	__u8		pad;
1132 	__u8		protocol;
1133 	__be16		len;
1134 };
1135 
1136 struct tcp6_pseudohdr {
1137 	struct in6_addr	saddr;
1138 	struct in6_addr daddr;
1139 	__be32		len;
1140 	__be32		protocol;	/* including padding */
1141 };
1142 
1143 union tcp_md5sum_block {
1144 	struct tcp4_pseudohdr ip4;
1145 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1146 	struct tcp6_pseudohdr ip6;
1147 #endif
1148 };
1149 
1150 /* - pool: digest algorithm, hash description and scratch buffer */
1151 struct tcp_md5sig_pool {
1152 	struct hash_desc	md5_desc;
1153 	union tcp_md5sum_block	md5_blk;
1154 };
1155 
1156 /* - functions */
1157 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1158 			       struct sock *sk, struct request_sock *req,
1159 			       struct sk_buff *skb);
1160 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1161 						 struct sock *addr_sk);
1162 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1163 			     u8 newkeylen);
1164 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1165 
1166 #ifdef CONFIG_TCP_MD5SIG
1167 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1168 				 &(struct tcp_md5sig_key) {		 \
1169 					.key = (twsk)->tw_md5_key,	 \
1170 					.keylen = (twsk)->tw_md5_keylen, \
1171 				} : NULL)
1172 #else
1173 #define tcp_twsk_md5_key(twsk)	NULL
1174 #endif
1175 
1176 extern struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *);
1177 extern void tcp_free_md5sig_pool(void);
1178 
1179 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1180 extern void tcp_put_md5sig_pool(void);
1181 
1182 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, struct tcphdr *);
1183 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, struct sk_buff *,
1184 				 unsigned header_len);
1185 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1186 			    struct tcp_md5sig_key *key);
1187 
1188 /* write queue abstraction */
tcp_write_queue_purge(struct sock * sk)1189 static inline void tcp_write_queue_purge(struct sock *sk)
1190 {
1191 	struct sk_buff *skb;
1192 
1193 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1194 		sk_wmem_free_skb(sk, skb);
1195 	sk_mem_reclaim(sk);
1196 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1197 }
1198 
tcp_write_queue_head(struct sock * sk)1199 static inline struct sk_buff *tcp_write_queue_head(struct sock *sk)
1200 {
1201 	return skb_peek(&sk->sk_write_queue);
1202 }
1203 
tcp_write_queue_tail(struct sock * sk)1204 static inline struct sk_buff *tcp_write_queue_tail(struct sock *sk)
1205 {
1206 	return skb_peek_tail(&sk->sk_write_queue);
1207 }
1208 
tcp_write_queue_next(struct sock * sk,struct sk_buff * skb)1209 static inline struct sk_buff *tcp_write_queue_next(struct sock *sk, struct sk_buff *skb)
1210 {
1211 	return skb_queue_next(&sk->sk_write_queue, skb);
1212 }
1213 
tcp_write_queue_prev(struct sock * sk,struct sk_buff * skb)1214 static inline struct sk_buff *tcp_write_queue_prev(struct sock *sk, struct sk_buff *skb)
1215 {
1216 	return skb_queue_prev(&sk->sk_write_queue, skb);
1217 }
1218 
1219 #define tcp_for_write_queue(skb, sk)					\
1220 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1221 
1222 #define tcp_for_write_queue_from(skb, sk)				\
1223 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1224 
1225 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1226 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1227 
tcp_send_head(struct sock * sk)1228 static inline struct sk_buff *tcp_send_head(struct sock *sk)
1229 {
1230 	return sk->sk_send_head;
1231 }
1232 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1233 static inline bool tcp_skb_is_last(const struct sock *sk,
1234 				   const struct sk_buff *skb)
1235 {
1236 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1237 }
1238 
tcp_advance_send_head(struct sock * sk,struct sk_buff * skb)1239 static inline void tcp_advance_send_head(struct sock *sk, struct sk_buff *skb)
1240 {
1241 	if (tcp_skb_is_last(sk, skb))
1242 		sk->sk_send_head = NULL;
1243 	else
1244 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1245 }
1246 
tcp_check_send_head(struct sock * sk,struct sk_buff * skb_unlinked)1247 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1248 {
1249 	if (sk->sk_send_head == skb_unlinked)
1250 		sk->sk_send_head = NULL;
1251 }
1252 
tcp_init_send_head(struct sock * sk)1253 static inline void tcp_init_send_head(struct sock *sk)
1254 {
1255 	sk->sk_send_head = NULL;
1256 }
1257 
__tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1258 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1259 {
1260 	__skb_queue_tail(&sk->sk_write_queue, skb);
1261 }
1262 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1263 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1264 {
1265 	__tcp_add_write_queue_tail(sk, skb);
1266 
1267 	/* Queue it, remembering where we must start sending. */
1268 	if (sk->sk_send_head == NULL) {
1269 		sk->sk_send_head = skb;
1270 
1271 		if (tcp_sk(sk)->highest_sack == NULL)
1272 			tcp_sk(sk)->highest_sack = skb;
1273 	}
1274 }
1275 
__tcp_add_write_queue_head(struct sock * sk,struct sk_buff * skb)1276 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1277 {
1278 	__skb_queue_head(&sk->sk_write_queue, skb);
1279 }
1280 
1281 /* Insert buff after skb on the write queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk)1282 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1283 						struct sk_buff *buff,
1284 						struct sock *sk)
1285 {
1286 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1287 }
1288 
1289 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1290 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1291 						  struct sk_buff *skb,
1292 						  struct sock *sk)
1293 {
1294 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1295 
1296 	if (sk->sk_send_head == skb)
1297 		sk->sk_send_head = new;
1298 }
1299 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1300 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1301 {
1302 	__skb_unlink(skb, &sk->sk_write_queue);
1303 }
1304 
tcp_write_queue_empty(struct sock * sk)1305 static inline int tcp_write_queue_empty(struct sock *sk)
1306 {
1307 	return skb_queue_empty(&sk->sk_write_queue);
1308 }
1309 
tcp_push_pending_frames(struct sock * sk)1310 static inline void tcp_push_pending_frames(struct sock *sk)
1311 {
1312 	if (tcp_send_head(sk)) {
1313 		struct tcp_sock *tp = tcp_sk(sk);
1314 
1315 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1316 	}
1317 }
1318 
1319 /* Start sequence of the highest skb with SACKed bit, valid only if
1320  * sacked > 0 or when the caller has ensured validity by itself.
1321  */
tcp_highest_sack_seq(struct tcp_sock * tp)1322 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1323 {
1324 	if (!tp->sacked_out)
1325 		return tp->snd_una;
1326 
1327 	if (tp->highest_sack == NULL)
1328 		return tp->snd_nxt;
1329 
1330 	return TCP_SKB_CB(tp->highest_sack)->seq;
1331 }
1332 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1333 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1334 {
1335 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1336 						tcp_write_queue_next(sk, skb);
1337 }
1338 
tcp_highest_sack(struct sock * sk)1339 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1340 {
1341 	return tcp_sk(sk)->highest_sack;
1342 }
1343 
tcp_highest_sack_reset(struct sock * sk)1344 static inline void tcp_highest_sack_reset(struct sock *sk)
1345 {
1346 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1347 }
1348 
1349 /* Called when old skb is about to be deleted (to be combined with new skb) */
tcp_highest_sack_combine(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1350 static inline void tcp_highest_sack_combine(struct sock *sk,
1351 					    struct sk_buff *old,
1352 					    struct sk_buff *new)
1353 {
1354 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1355 		tcp_sk(sk)->highest_sack = new;
1356 }
1357 
1358 /* Determines whether this is a thin stream (which may suffer from
1359  * increased latency). Used to trigger latency-reducing mechanisms.
1360  */
tcp_stream_is_thin(struct tcp_sock * tp)1361 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1362 {
1363 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1364 }
1365 
1366 /* /proc */
1367 enum tcp_seq_states {
1368 	TCP_SEQ_STATE_LISTENING,
1369 	TCP_SEQ_STATE_OPENREQ,
1370 	TCP_SEQ_STATE_ESTABLISHED,
1371 	TCP_SEQ_STATE_TIME_WAIT,
1372 };
1373 
1374 struct tcp_seq_afinfo {
1375 	char			*name;
1376 	sa_family_t		family;
1377 	struct file_operations	seq_fops;
1378 	struct seq_operations	seq_ops;
1379 };
1380 
1381 struct tcp_iter_state {
1382 	struct seq_net_private	p;
1383 	sa_family_t		family;
1384 	enum tcp_seq_states	state;
1385 	struct sock		*syn_wait_sk;
1386 	int			bucket, offset, sbucket, num, uid;
1387 	loff_t			last_pos;
1388 };
1389 
1390 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1391 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1392 
1393 extern struct request_sock_ops tcp_request_sock_ops;
1394 extern struct request_sock_ops tcp6_request_sock_ops;
1395 
1396 extern void tcp_v4_destroy_sock(struct sock *sk);
1397 
1398 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1399 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features);
1400 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1401 					struct sk_buff *skb);
1402 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1403 					 struct sk_buff *skb);
1404 extern int tcp_gro_complete(struct sk_buff *skb);
1405 extern int tcp4_gro_complete(struct sk_buff *skb);
1406 
1407 #ifdef CONFIG_PROC_FS
1408 extern int tcp4_proc_init(void);
1409 extern void tcp4_proc_exit(void);
1410 #endif
1411 
1412 /* TCP af-specific functions */
1413 struct tcp_sock_af_ops {
1414 #ifdef CONFIG_TCP_MD5SIG
1415 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1416 						struct sock *addr_sk);
1417 	int			(*calc_md5_hash) (char *location,
1418 						  struct tcp_md5sig_key *md5,
1419 						  struct sock *sk,
1420 						  struct request_sock *req,
1421 						  struct sk_buff *skb);
1422 	int			(*md5_add) (struct sock *sk,
1423 					    struct sock *addr_sk,
1424 					    u8 *newkey,
1425 					    u8 len);
1426 	int			(*md5_parse) (struct sock *sk,
1427 					      char __user *optval,
1428 					      int optlen);
1429 #endif
1430 };
1431 
1432 struct tcp_request_sock_ops {
1433 #ifdef CONFIG_TCP_MD5SIG
1434 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1435 						struct request_sock *req);
1436 	int			(*calc_md5_hash) (char *location,
1437 						  struct tcp_md5sig_key *md5,
1438 						  struct sock *sk,
1439 						  struct request_sock *req,
1440 						  struct sk_buff *skb);
1441 #endif
1442 };
1443 
1444 /* Using SHA1 for now, define some constants.
1445  */
1446 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1447 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1448 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1449 
1450 extern int tcp_cookie_generator(u32 *bakery);
1451 
1452 /**
1453  *	struct tcp_cookie_values - each socket needs extra space for the
1454  *	cookies, together with (optional) space for any SYN data.
1455  *
1456  *	A tcp_sock contains a pointer to the current value, and this is
1457  *	cloned to the tcp_timewait_sock.
1458  *
1459  * @cookie_pair:	variable data from the option exchange.
1460  *
1461  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1462  *			indicates default (sysctl_tcp_cookie_size).
1463  *			After cookie sent, remembers size of cookie.
1464  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1465  *
1466  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1467  *			constant payload is specified (@s_data_constant),
1468  *			holds its length instead.
1469  *			Range 0 to TCP_MSS_DESIRED.
1470  *
1471  * @s_data_payload:	constant data that is to be included in the
1472  *			payload of SYN or SYNACK segments when the
1473  *			cookie option is present.
1474  */
1475 struct tcp_cookie_values {
1476 	struct kref	kref;
1477 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1478 	u8		cookie_pair_size;
1479 	u8		cookie_desired;
1480 	u16		s_data_desired:11,
1481 			s_data_constant:1,
1482 			s_data_in:1,
1483 			s_data_out:1,
1484 			s_data_unused:2;
1485 	u8		s_data_payload[0];
1486 };
1487 
tcp_cookie_values_release(struct kref * kref)1488 static inline void tcp_cookie_values_release(struct kref *kref)
1489 {
1490 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1491 }
1492 
1493 /* The length of constant payload data.  Note that s_data_desired is
1494  * overloaded, depending on s_data_constant: either the length of constant
1495  * data (returned here) or the limit on variable data.
1496  */
tcp_s_data_size(const struct tcp_sock * tp)1497 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1498 {
1499 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1500 		? tp->cookie_values->s_data_desired
1501 		: 0;
1502 }
1503 
1504 /**
1505  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1506  *
1507  *	As tcp_request_sock has already been extended in other places, the
1508  *	only remaining method is to pass stack values along as function
1509  *	parameters.  These parameters are not needed after sending SYNACK.
1510  *
1511  * @cookie_bakery:	cryptographic secret and message workspace.
1512  *
1513  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1514  *			struct tcp_options_received (above).
1515  */
1516 struct tcp_extend_values {
1517 	struct request_values		rv;
1518 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1519 	u8				cookie_plus:6,
1520 					cookie_out_never:1,
1521 					cookie_in_always:1;
1522 };
1523 
tcp_xv(struct request_values * rvp)1524 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1525 {
1526 	return (struct tcp_extend_values *)rvp;
1527 }
1528 
1529 extern void tcp_v4_init(void);
1530 extern void tcp_init(void);
1531 
1532 #endif	/* _TCP_H */
1533