1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Common time routines among all ppc machines.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6 * Paul Mackerras' version and mine for PReP and Pmac.
7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 *
10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11 * to make clock more stable (2.4.0-test5). The only thing
12 * that this code assumes is that the timebases have been synchronized
13 * by firmware on SMP and are never stopped (never do sleep
14 * on SMP then, nap and doze are OK).
15 *
16 * Speeded up do_gettimeofday by getting rid of references to
17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 *
19 * TODO (not necessarily in this file):
20 * - improve precision and reproducibility of timebase frequency
21 * measurement at boot time.
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 */
29
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/sched/cputime.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/timex.h>
41 #include <linux/kernel_stat.h>
42 #include <linux/time.h>
43 #include <linux/init.h>
44 #include <linux/profile.h>
45 #include <linux/cpu.h>
46 #include <linux/security.h>
47 #include <linux/percpu.h>
48 #include <linux/rtc.h>
49 #include <linux/jiffies.h>
50 #include <linux/posix-timers.h>
51 #include <linux/irq.h>
52 #include <linux/delay.h>
53 #include <linux/irq_work.h>
54 #include <linux/of_clk.h>
55 #include <linux/suspend.h>
56 #include <linux/processor.h>
57 #include <linux/mc146818rtc.h>
58 #include <linux/platform_device.h>
59
60 #include <asm/trace.h>
61 #include <asm/interrupt.h>
62 #include <asm/io.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <linux/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/mce.h>
74
75 /* powerpc clocksource/clockevent code */
76
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79
80 static u64 timebase_read(struct clocksource *);
81 static struct clocksource clocksource_timebase = {
82 .name = "timebase",
83 .rating = 400,
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
85 .mask = CLOCKSOURCE_MASK(64),
86 .read = timebase_read,
87 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER,
88 };
89
90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
93
94 static int decrementer_set_next_event(unsigned long evt,
95 struct clock_event_device *dev);
96 static int decrementer_shutdown(struct clock_event_device *evt);
97
98 struct clock_event_device decrementer_clockevent = {
99 .name = "decrementer",
100 .rating = 200,
101 .irq = 0,
102 .set_next_event = decrementer_set_next_event,
103 .set_state_oneshot_stopped = decrementer_shutdown,
104 .set_state_shutdown = decrementer_shutdown,
105 .tick_resume = decrementer_shutdown,
106 .features = CLOCK_EVT_FEAT_ONESHOT |
107 CLOCK_EVT_FEAT_C3STOP,
108 };
109 EXPORT_SYMBOL(decrementer_clockevent);
110
111 /*
112 * This always puts next_tb beyond now, so the clock event will never fire
113 * with the usual comparison, no need for a separate test for stopped.
114 */
115 #define DEC_CLOCKEVENT_STOPPED ~0ULL
116 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
117 EXPORT_SYMBOL_GPL(decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119
120 #define XSEC_PER_SEC (1024*1024)
121
122 #ifdef CONFIG_PPC64
123 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
124 #else
125 /* compute ((xsec << 12) * max) >> 32 */
126 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
127 #endif
128
129 unsigned long tb_ticks_per_jiffy;
130 unsigned long tb_ticks_per_usec = 100; /* sane default */
131 EXPORT_SYMBOL(tb_ticks_per_usec);
132 unsigned long tb_ticks_per_sec;
133 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
134
135 DEFINE_SPINLOCK(rtc_lock);
136 EXPORT_SYMBOL_GPL(rtc_lock);
137
138 static u64 tb_to_ns_scale __read_mostly;
139 static unsigned tb_to_ns_shift __read_mostly;
140 static u64 boot_tb __read_mostly;
141
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL_GPL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 EXPORT_SYMBOL_GPL(ppc_tb_freq);
149
150 bool tb_invalid;
151
152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153 /*
154 * Factor for converting from cputime_t (timebase ticks) to
155 * microseconds. This is stored as 0.64 fixed-point binary fraction.
156 */
157 u64 __cputime_usec_factor;
158 EXPORT_SYMBOL(__cputime_usec_factor);
159
calc_cputime_factors(void)160 static void calc_cputime_factors(void)
161 {
162 struct div_result res;
163
164 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
165 __cputime_usec_factor = res.result_low;
166 }
167
168 /*
169 * Read the SPURR on systems that have it, otherwise the PURR,
170 * or if that doesn't exist return the timebase value passed in.
171 */
read_spurr(unsigned long tb)172 static inline unsigned long read_spurr(unsigned long tb)
173 {
174 if (cpu_has_feature(CPU_FTR_SPURR))
175 return mfspr(SPRN_SPURR);
176 if (cpu_has_feature(CPU_FTR_PURR))
177 return mfspr(SPRN_PURR);
178 return tb;
179 }
180
181 /*
182 * Account time for a transition between system, hard irq
183 * or soft irq state.
184 */
vtime_delta_scaled(struct cpu_accounting_data * acct,unsigned long now,unsigned long stime)185 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
186 unsigned long now, unsigned long stime)
187 {
188 unsigned long stime_scaled = 0;
189 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
190 unsigned long nowscaled, deltascaled;
191 unsigned long utime, utime_scaled;
192
193 nowscaled = read_spurr(now);
194 deltascaled = nowscaled - acct->startspurr;
195 acct->startspurr = nowscaled;
196 utime = acct->utime - acct->utime_sspurr;
197 acct->utime_sspurr = acct->utime;
198
199 /*
200 * Because we don't read the SPURR on every kernel entry/exit,
201 * deltascaled includes both user and system SPURR ticks.
202 * Apportion these ticks to system SPURR ticks and user
203 * SPURR ticks in the same ratio as the system time (delta)
204 * and user time (udelta) values obtained from the timebase
205 * over the same interval. The system ticks get accounted here;
206 * the user ticks get saved up in paca->user_time_scaled to be
207 * used by account_process_tick.
208 */
209 stime_scaled = stime;
210 utime_scaled = utime;
211 if (deltascaled != stime + utime) {
212 if (utime) {
213 stime_scaled = deltascaled * stime / (stime + utime);
214 utime_scaled = deltascaled - stime_scaled;
215 } else {
216 stime_scaled = deltascaled;
217 }
218 }
219 acct->utime_scaled += utime_scaled;
220 #endif
221
222 return stime_scaled;
223 }
224
vtime_delta(struct cpu_accounting_data * acct,unsigned long * stime_scaled,unsigned long * steal_time)225 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
226 unsigned long *stime_scaled,
227 unsigned long *steal_time)
228 {
229 unsigned long now, stime;
230
231 WARN_ON_ONCE(!irqs_disabled());
232
233 now = mftb();
234 stime = now - acct->starttime;
235 acct->starttime = now;
236
237 *stime_scaled = vtime_delta_scaled(acct, now, stime);
238
239 if (IS_ENABLED(CONFIG_PPC_SPLPAR) &&
240 firmware_has_feature(FW_FEATURE_SPLPAR))
241 *steal_time = pseries_calculate_stolen_time(now);
242 else
243 *steal_time = 0;
244
245 return stime;
246 }
247
vtime_delta_kernel(struct cpu_accounting_data * acct,unsigned long * stime,unsigned long * stime_scaled)248 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
249 unsigned long *stime, unsigned long *stime_scaled)
250 {
251 unsigned long steal_time;
252
253 *stime = vtime_delta(acct, stime_scaled, &steal_time);
254 *stime -= min(*stime, steal_time);
255 acct->steal_time += steal_time;
256 }
257
vtime_account_kernel(struct task_struct * tsk)258 void vtime_account_kernel(struct task_struct *tsk)
259 {
260 struct cpu_accounting_data *acct = get_accounting(tsk);
261 unsigned long stime, stime_scaled;
262
263 vtime_delta_kernel(acct, &stime, &stime_scaled);
264
265 if (tsk->flags & PF_VCPU) {
266 acct->gtime += stime;
267 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
268 acct->utime_scaled += stime_scaled;
269 #endif
270 } else {
271 acct->stime += stime;
272 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
273 acct->stime_scaled += stime_scaled;
274 #endif
275 }
276 }
277 EXPORT_SYMBOL_GPL(vtime_account_kernel);
278
vtime_account_idle(struct task_struct * tsk)279 void vtime_account_idle(struct task_struct *tsk)
280 {
281 unsigned long stime, stime_scaled, steal_time;
282 struct cpu_accounting_data *acct = get_accounting(tsk);
283
284 stime = vtime_delta(acct, &stime_scaled, &steal_time);
285 acct->idle_time += stime + steal_time;
286 }
287
vtime_account_irq_field(struct cpu_accounting_data * acct,unsigned long * field)288 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
289 unsigned long *field)
290 {
291 unsigned long stime, stime_scaled;
292
293 vtime_delta_kernel(acct, &stime, &stime_scaled);
294 *field += stime;
295 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
296 acct->stime_scaled += stime_scaled;
297 #endif
298 }
299
vtime_account_softirq(struct task_struct * tsk)300 void vtime_account_softirq(struct task_struct *tsk)
301 {
302 struct cpu_accounting_data *acct = get_accounting(tsk);
303 vtime_account_irq_field(acct, &acct->softirq_time);
304 }
305
vtime_account_hardirq(struct task_struct * tsk)306 void vtime_account_hardirq(struct task_struct *tsk)
307 {
308 struct cpu_accounting_data *acct = get_accounting(tsk);
309 vtime_account_irq_field(acct, &acct->hardirq_time);
310 }
311
vtime_flush_scaled(struct task_struct * tsk,struct cpu_accounting_data * acct)312 static void vtime_flush_scaled(struct task_struct *tsk,
313 struct cpu_accounting_data *acct)
314 {
315 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
316 if (acct->utime_scaled)
317 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
318 if (acct->stime_scaled)
319 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
320
321 acct->utime_scaled = 0;
322 acct->utime_sspurr = 0;
323 acct->stime_scaled = 0;
324 #endif
325 }
326
327 /*
328 * Account the whole cputime accumulated in the paca
329 * Must be called with interrupts disabled.
330 * Assumes that vtime_account_kernel/idle() has been called
331 * recently (i.e. since the last entry from usermode) so that
332 * get_paca()->user_time_scaled is up to date.
333 */
vtime_flush(struct task_struct * tsk)334 void vtime_flush(struct task_struct *tsk)
335 {
336 struct cpu_accounting_data *acct = get_accounting(tsk);
337
338 if (acct->utime)
339 account_user_time(tsk, cputime_to_nsecs(acct->utime));
340
341 if (acct->gtime)
342 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
343
344 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
345 account_steal_time(cputime_to_nsecs(acct->steal_time));
346 acct->steal_time = 0;
347 }
348
349 if (acct->idle_time)
350 account_idle_time(cputime_to_nsecs(acct->idle_time));
351
352 if (acct->stime)
353 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
354 CPUTIME_SYSTEM);
355
356 if (acct->hardirq_time)
357 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
358 CPUTIME_IRQ);
359 if (acct->softirq_time)
360 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
361 CPUTIME_SOFTIRQ);
362
363 vtime_flush_scaled(tsk, acct);
364
365 acct->utime = 0;
366 acct->gtime = 0;
367 acct->idle_time = 0;
368 acct->stime = 0;
369 acct->hardirq_time = 0;
370 acct->softirq_time = 0;
371 }
372
373 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
374 #define calc_cputime_factors()
375 #endif
376
__delay(unsigned long loops)377 void __delay(unsigned long loops)
378 {
379 unsigned long start;
380
381 spin_begin();
382 if (tb_invalid) {
383 /*
384 * TB is in error state and isn't ticking anymore.
385 * HMI handler was unable to recover from TB error.
386 * Return immediately, so that kernel won't get stuck here.
387 */
388 spin_cpu_relax();
389 } else {
390 start = mftb();
391 while (mftb() - start < loops)
392 spin_cpu_relax();
393 }
394 spin_end();
395 }
396 EXPORT_SYMBOL(__delay);
397
udelay(unsigned long usecs)398 void udelay(unsigned long usecs)
399 {
400 __delay(tb_ticks_per_usec * usecs);
401 }
402 EXPORT_SYMBOL(udelay);
403
404 #ifdef CONFIG_SMP
profile_pc(struct pt_regs * regs)405 unsigned long profile_pc(struct pt_regs *regs)
406 {
407 unsigned long pc = instruction_pointer(regs);
408
409 if (in_lock_functions(pc))
410 return regs->link;
411
412 return pc;
413 }
414 EXPORT_SYMBOL(profile_pc);
415 #endif
416
417 #ifdef CONFIG_IRQ_WORK
418
419 /*
420 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
421 */
422 #ifdef CONFIG_PPC64
test_irq_work_pending(void)423 static inline unsigned long test_irq_work_pending(void)
424 {
425 unsigned long x;
426
427 asm volatile("lbz %0,%1(13)"
428 : "=r" (x)
429 : "i" (offsetof(struct paca_struct, irq_work_pending)));
430 return x;
431 }
432
set_irq_work_pending_flag(void)433 static inline void set_irq_work_pending_flag(void)
434 {
435 asm volatile("stb %0,%1(13)" : :
436 "r" (1),
437 "i" (offsetof(struct paca_struct, irq_work_pending)));
438 }
439
clear_irq_work_pending(void)440 static inline void clear_irq_work_pending(void)
441 {
442 asm volatile("stb %0,%1(13)" : :
443 "r" (0),
444 "i" (offsetof(struct paca_struct, irq_work_pending)));
445 }
446
447 #else /* 32-bit */
448
449 DEFINE_PER_CPU(u8, irq_work_pending);
450
451 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
452 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
453 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
454
455 #endif /* 32 vs 64 bit */
456
arch_irq_work_raise(void)457 void arch_irq_work_raise(void)
458 {
459 /*
460 * 64-bit code that uses irq soft-mask can just cause an immediate
461 * interrupt here that gets soft masked, if this is called under
462 * local_irq_disable(). It might be possible to prevent that happening
463 * by noticing interrupts are disabled and setting decrementer pending
464 * to be replayed when irqs are enabled. The problem there is that
465 * tracing can call irq_work_raise, including in code that does low
466 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
467 * which could get tangled up if we're messing with the same state
468 * here.
469 */
470 preempt_disable();
471 set_irq_work_pending_flag();
472 set_dec(1);
473 preempt_enable();
474 }
475
set_dec_or_work(u64 val)476 static void set_dec_or_work(u64 val)
477 {
478 set_dec(val);
479 /* We may have raced with new irq work */
480 if (unlikely(test_irq_work_pending()))
481 set_dec(1);
482 }
483
484 #else /* CONFIG_IRQ_WORK */
485
486 #define test_irq_work_pending() 0
487 #define clear_irq_work_pending()
488
set_dec_or_work(u64 val)489 static void set_dec_or_work(u64 val)
490 {
491 set_dec(val);
492 }
493 #endif /* CONFIG_IRQ_WORK */
494
495 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
timer_rearm_host_dec(u64 now)496 void timer_rearm_host_dec(u64 now)
497 {
498 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
499
500 WARN_ON_ONCE(!arch_irqs_disabled());
501 WARN_ON_ONCE(mfmsr() & MSR_EE);
502
503 if (now >= *next_tb) {
504 local_paca->irq_happened |= PACA_IRQ_DEC;
505 } else {
506 now = *next_tb - now;
507 if (now > decrementer_max)
508 now = decrementer_max;
509 set_dec_or_work(now);
510 }
511 }
512 EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
513 #endif
514
515 /*
516 * timer_interrupt - gets called when the decrementer overflows,
517 * with interrupts disabled.
518 */
DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)519 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
520 {
521 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
522 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
523 struct pt_regs *old_regs;
524 u64 now;
525
526 /*
527 * Some implementations of hotplug will get timer interrupts while
528 * offline, just ignore these.
529 */
530 if (unlikely(!cpu_online(smp_processor_id()))) {
531 set_dec(decrementer_max);
532 return;
533 }
534
535 /* Conditionally hard-enable interrupts. */
536 if (should_hard_irq_enable()) {
537 /*
538 * Ensure a positive value is written to the decrementer, or
539 * else some CPUs will continue to take decrementer exceptions.
540 * When the PPC_WATCHDOG (decrementer based) is configured,
541 * keep this at most 31 bits, which is about 4 seconds on most
542 * systems, which gives the watchdog a chance of catching timer
543 * interrupt hard lockups.
544 */
545 if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
546 set_dec(0x7fffffff);
547 else
548 set_dec(decrementer_max);
549
550 do_hard_irq_enable();
551 }
552
553 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
554 if (atomic_read(&ppc_n_lost_interrupts) != 0)
555 __do_IRQ(regs);
556 #endif
557
558 old_regs = set_irq_regs(regs);
559
560 trace_timer_interrupt_entry(regs);
561
562 if (test_irq_work_pending()) {
563 clear_irq_work_pending();
564 mce_run_irq_context_handlers();
565 irq_work_run();
566 }
567
568 now = get_tb();
569 if (now >= *next_tb) {
570 evt->event_handler(evt);
571 __this_cpu_inc(irq_stat.timer_irqs_event);
572 } else {
573 now = *next_tb - now;
574 if (now > decrementer_max)
575 now = decrementer_max;
576 set_dec_or_work(now);
577 __this_cpu_inc(irq_stat.timer_irqs_others);
578 }
579
580 trace_timer_interrupt_exit(regs);
581
582 set_irq_regs(old_regs);
583 }
584 EXPORT_SYMBOL(timer_interrupt);
585
586 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
timer_broadcast_interrupt(void)587 void timer_broadcast_interrupt(void)
588 {
589 tick_receive_broadcast();
590 __this_cpu_inc(irq_stat.broadcast_irqs_event);
591 }
592 #endif
593
594 #ifdef CONFIG_SUSPEND
595 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_disable_irqs(void)596 void arch_suspend_disable_irqs(void)
597 {
598 if (ppc_md.suspend_disable_irqs)
599 ppc_md.suspend_disable_irqs();
600
601 /* Disable the decrementer, so that it doesn't interfere
602 * with suspending.
603 */
604
605 set_dec(decrementer_max);
606 local_irq_disable();
607 set_dec(decrementer_max);
608 }
609
610 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_enable_irqs(void)611 void arch_suspend_enable_irqs(void)
612 {
613 local_irq_enable();
614
615 if (ppc_md.suspend_enable_irqs)
616 ppc_md.suspend_enable_irqs();
617 }
618 #endif
619
tb_to_ns(unsigned long long ticks)620 unsigned long long tb_to_ns(unsigned long long ticks)
621 {
622 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
623 }
624 EXPORT_SYMBOL_GPL(tb_to_ns);
625
626 /*
627 * Scheduler clock - returns current time in nanosec units.
628 *
629 * Note: mulhdu(a, b) (multiply high double unsigned) returns
630 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
631 * are 64-bit unsigned numbers.
632 */
sched_clock(void)633 notrace unsigned long long sched_clock(void)
634 {
635 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
636 }
637
638
639 #ifdef CONFIG_PPC_PSERIES
640
641 /*
642 * Running clock - attempts to give a view of time passing for a virtualised
643 * kernels.
644 * Uses the VTB register if available otherwise a next best guess.
645 */
running_clock(void)646 unsigned long long running_clock(void)
647 {
648 /*
649 * Don't read the VTB as a host since KVM does not switch in host
650 * timebase into the VTB when it takes a guest off the CPU, reading the
651 * VTB would result in reading 'last switched out' guest VTB.
652 *
653 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
654 * would be unsafe to rely only on the #ifdef above.
655 */
656 if (firmware_has_feature(FW_FEATURE_LPAR) &&
657 cpu_has_feature(CPU_FTR_ARCH_207S))
658 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
659
660 /*
661 * This is a next best approximation without a VTB.
662 * On a host which is running bare metal there should never be any stolen
663 * time and on a host which doesn't do any virtualisation TB *should* equal
664 * VTB so it makes no difference anyway.
665 */
666 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
667 }
668 #endif
669
get_freq(char * name,int cells,unsigned long * val)670 static int __init get_freq(char *name, int cells, unsigned long *val)
671 {
672 struct device_node *cpu;
673 const __be32 *fp;
674 int found = 0;
675
676 /* The cpu node should have timebase and clock frequency properties */
677 cpu = of_find_node_by_type(NULL, "cpu");
678
679 if (cpu) {
680 fp = of_get_property(cpu, name, NULL);
681 if (fp) {
682 found = 1;
683 *val = of_read_ulong(fp, cells);
684 }
685
686 of_node_put(cpu);
687 }
688
689 return found;
690 }
691
start_cpu_decrementer(void)692 static void start_cpu_decrementer(void)
693 {
694 #ifdef CONFIG_BOOKE_OR_40x
695 unsigned int tcr;
696
697 /* Clear any pending timer interrupts */
698 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
699
700 tcr = mfspr(SPRN_TCR);
701 /*
702 * The watchdog may have already been enabled by u-boot. So leave
703 * TRC[WP] (Watchdog Period) alone.
704 */
705 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
706 tcr |= TCR_DIE; /* Enable decrementer */
707 mtspr(SPRN_TCR, tcr);
708 #endif
709 }
710
generic_calibrate_decr(void)711 void __init generic_calibrate_decr(void)
712 {
713 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
714
715 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
716 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
717
718 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
719 "(not found)\n");
720 }
721
722 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
723
724 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
725 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
726
727 printk(KERN_ERR "WARNING: Estimating processor frequency "
728 "(not found)\n");
729 }
730 }
731
update_persistent_clock64(struct timespec64 now)732 int update_persistent_clock64(struct timespec64 now)
733 {
734 struct rtc_time tm;
735
736 if (!ppc_md.set_rtc_time)
737 return -ENODEV;
738
739 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
740
741 return ppc_md.set_rtc_time(&tm);
742 }
743
__read_persistent_clock(struct timespec64 * ts)744 static void __read_persistent_clock(struct timespec64 *ts)
745 {
746 struct rtc_time tm;
747 static int first = 1;
748
749 ts->tv_nsec = 0;
750 /* XXX this is a little fragile but will work okay in the short term */
751 if (first) {
752 first = 0;
753 if (ppc_md.time_init)
754 timezone_offset = ppc_md.time_init();
755
756 /* get_boot_time() isn't guaranteed to be safe to call late */
757 if (ppc_md.get_boot_time) {
758 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
759 return;
760 }
761 }
762 if (!ppc_md.get_rtc_time) {
763 ts->tv_sec = 0;
764 return;
765 }
766 ppc_md.get_rtc_time(&tm);
767
768 ts->tv_sec = rtc_tm_to_time64(&tm);
769 }
770
read_persistent_clock64(struct timespec64 * ts)771 void read_persistent_clock64(struct timespec64 *ts)
772 {
773 __read_persistent_clock(ts);
774
775 /* Sanitize it in case real time clock is set below EPOCH */
776 if (ts->tv_sec < 0) {
777 ts->tv_sec = 0;
778 ts->tv_nsec = 0;
779 }
780
781 }
782
783 /* clocksource code */
timebase_read(struct clocksource * cs)784 static notrace u64 timebase_read(struct clocksource *cs)
785 {
786 return (u64)get_tb();
787 }
788
clocksource_init(void)789 static void __init clocksource_init(void)
790 {
791 struct clocksource *clock = &clocksource_timebase;
792
793 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
794 printk(KERN_ERR "clocksource: %s is already registered\n",
795 clock->name);
796 return;
797 }
798
799 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
800 clock->name, clock->mult, clock->shift);
801 }
802
decrementer_set_next_event(unsigned long evt,struct clock_event_device * dev)803 static int decrementer_set_next_event(unsigned long evt,
804 struct clock_event_device *dev)
805 {
806 __this_cpu_write(decrementers_next_tb, get_tb() + evt);
807 set_dec_or_work(evt);
808
809 return 0;
810 }
811
decrementer_shutdown(struct clock_event_device * dev)812 static int decrementer_shutdown(struct clock_event_device *dev)
813 {
814 __this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
815 set_dec_or_work(decrementer_max);
816
817 return 0;
818 }
819
register_decrementer_clockevent(int cpu)820 static void register_decrementer_clockevent(int cpu)
821 {
822 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
823
824 *dec = decrementer_clockevent;
825 dec->cpumask = cpumask_of(cpu);
826
827 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
828
829 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
830 dec->name, dec->mult, dec->shift, cpu);
831
832 /* Set values for KVM, see kvm_emulate_dec() */
833 decrementer_clockevent.mult = dec->mult;
834 decrementer_clockevent.shift = dec->shift;
835 }
836
enable_large_decrementer(void)837 static void enable_large_decrementer(void)
838 {
839 if (!cpu_has_feature(CPU_FTR_ARCH_300))
840 return;
841
842 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
843 return;
844
845 /*
846 * If we're running as the hypervisor we need to enable the LD manually
847 * otherwise firmware should have done it for us.
848 */
849 if (cpu_has_feature(CPU_FTR_HVMODE))
850 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
851 }
852
set_decrementer_max(void)853 static void __init set_decrementer_max(void)
854 {
855 struct device_node *cpu;
856 u32 bits = 32;
857
858 /* Prior to ISAv3 the decrementer is always 32 bit */
859 if (!cpu_has_feature(CPU_FTR_ARCH_300))
860 return;
861
862 cpu = of_find_node_by_type(NULL, "cpu");
863
864 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
865 if (bits > 64 || bits < 32) {
866 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
867 bits = 32;
868 }
869
870 /* calculate the signed maximum given this many bits */
871 decrementer_max = (1ul << (bits - 1)) - 1;
872 }
873
874 of_node_put(cpu);
875
876 pr_info("time_init: %u bit decrementer (max: %llx)\n",
877 bits, decrementer_max);
878 }
879
init_decrementer_clockevent(void)880 static void __init init_decrementer_clockevent(void)
881 {
882 register_decrementer_clockevent(smp_processor_id());
883 }
884
secondary_cpu_time_init(void)885 void secondary_cpu_time_init(void)
886 {
887 /* Enable and test the large decrementer for this cpu */
888 enable_large_decrementer();
889
890 /* Start the decrementer on CPUs that have manual control
891 * such as BookE
892 */
893 start_cpu_decrementer();
894
895 /* FIME: Should make unrelated change to move snapshot_timebase
896 * call here ! */
897 register_decrementer_clockevent(smp_processor_id());
898 }
899
900 /* This function is only called on the boot processor */
time_init(void)901 void __init time_init(void)
902 {
903 struct div_result res;
904 u64 scale;
905 unsigned shift;
906
907 /* Normal PowerPC with timebase register */
908 ppc_md.calibrate_decr();
909 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
910 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
911 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
912 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
913
914 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
915 tb_ticks_per_sec = ppc_tb_freq;
916 tb_ticks_per_usec = ppc_tb_freq / 1000000;
917 calc_cputime_factors();
918
919 /*
920 * Compute scale factor for sched_clock.
921 * The calibrate_decr() function has set tb_ticks_per_sec,
922 * which is the timebase frequency.
923 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
924 * the 128-bit result as a 64.64 fixed-point number.
925 * We then shift that number right until it is less than 1.0,
926 * giving us the scale factor and shift count to use in
927 * sched_clock().
928 */
929 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
930 scale = res.result_low;
931 for (shift = 0; res.result_high != 0; ++shift) {
932 scale = (scale >> 1) | (res.result_high << 63);
933 res.result_high >>= 1;
934 }
935 tb_to_ns_scale = scale;
936 tb_to_ns_shift = shift;
937 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
938 boot_tb = get_tb();
939
940 /* If platform provided a timezone (pmac), we correct the time */
941 if (timezone_offset) {
942 sys_tz.tz_minuteswest = -timezone_offset / 60;
943 sys_tz.tz_dsttime = 0;
944 }
945
946 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
947
948 /* initialise and enable the large decrementer (if we have one) */
949 set_decrementer_max();
950 enable_large_decrementer();
951
952 /* Start the decrementer on CPUs that have manual control
953 * such as BookE
954 */
955 start_cpu_decrementer();
956
957 /* Register the clocksource */
958 clocksource_init();
959
960 init_decrementer_clockevent();
961 tick_setup_hrtimer_broadcast();
962
963 of_clk_init(NULL);
964 enable_sched_clock_irqtime();
965 }
966
967 /*
968 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
969 * result.
970 */
div128_by_32(u64 dividend_high,u64 dividend_low,unsigned divisor,struct div_result * dr)971 void div128_by_32(u64 dividend_high, u64 dividend_low,
972 unsigned divisor, struct div_result *dr)
973 {
974 unsigned long a, b, c, d;
975 unsigned long w, x, y, z;
976 u64 ra, rb, rc;
977
978 a = dividend_high >> 32;
979 b = dividend_high & 0xffffffff;
980 c = dividend_low >> 32;
981 d = dividend_low & 0xffffffff;
982
983 w = a / divisor;
984 ra = ((u64)(a - (w * divisor)) << 32) + b;
985
986 rb = ((u64) do_div(ra, divisor) << 32) + c;
987 x = ra;
988
989 rc = ((u64) do_div(rb, divisor) << 32) + d;
990 y = rb;
991
992 do_div(rc, divisor);
993 z = rc;
994
995 dr->result_high = ((u64)w << 32) + x;
996 dr->result_low = ((u64)y << 32) + z;
997
998 }
999
1000 /* We don't need to calibrate delay, we use the CPU timebase for that */
calibrate_delay(void)1001 void calibrate_delay(void)
1002 {
1003 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1004 * as the number of __delay(1) in a jiffy, so make it so
1005 */
1006 loops_per_jiffy = tb_ticks_per_jiffy;
1007 }
1008
1009 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
rtc_generic_get_time(struct device * dev,struct rtc_time * tm)1010 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1011 {
1012 ppc_md.get_rtc_time(tm);
1013 return 0;
1014 }
1015
rtc_generic_set_time(struct device * dev,struct rtc_time * tm)1016 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1017 {
1018 if (!ppc_md.set_rtc_time)
1019 return -EOPNOTSUPP;
1020
1021 if (ppc_md.set_rtc_time(tm) < 0)
1022 return -EOPNOTSUPP;
1023
1024 return 0;
1025 }
1026
1027 static const struct rtc_class_ops rtc_generic_ops = {
1028 .read_time = rtc_generic_get_time,
1029 .set_time = rtc_generic_set_time,
1030 };
1031
rtc_init(void)1032 static int __init rtc_init(void)
1033 {
1034 struct platform_device *pdev;
1035
1036 if (!ppc_md.get_rtc_time)
1037 return -ENODEV;
1038
1039 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1040 &rtc_generic_ops,
1041 sizeof(rtc_generic_ops));
1042
1043 return PTR_ERR_OR_ZERO(pdev);
1044 }
1045
1046 device_initcall(rtc_init);
1047 #endif
1048