1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Common time routines among all ppc machines.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6 * Paul Mackerras' version and mine for PReP and Pmac.
7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 *
10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11 * to make clock more stable (2.4.0-test5). The only thing
12 * that this code assumes is that the timebases have been synchronized
13 * by firmware on SMP and are never stopped (never do sleep
14 * on SMP then, nap and doze are OK).
15 *
16 * Speeded up do_gettimeofday by getting rid of references to
17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 *
19 * TODO (not necessarily in this file):
20 * - improve precision and reproducibility of timebase frequency
21 * measurement at boot time.
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 */
29
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/sched/cputime.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/timex.h>
41 #include <linux/kernel_stat.h>
42 #include <linux/time.h>
43 #include <linux/init.h>
44 #include <linux/profile.h>
45 #include <linux/cpu.h>
46 #include <linux/security.h>
47 #include <linux/percpu.h>
48 #include <linux/rtc.h>
49 #include <linux/jiffies.h>
50 #include <linux/posix-timers.h>
51 #include <linux/irq.h>
52 #include <linux/delay.h>
53 #include <linux/irq_work.h>
54 #include <linux/of_clk.h>
55 #include <linux/suspend.h>
56 #include <linux/processor.h>
57 #include <linux/mc146818rtc.h>
58 #include <linux/platform_device.h>
59
60 #include <asm/trace.h>
61 #include <asm/interrupt.h>
62 #include <asm/io.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <linux/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/mce.h>
74
75 /* powerpc clocksource/clockevent code */
76
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79
80 static u64 timebase_read(struct clocksource *);
81 static struct clocksource clocksource_timebase = {
82 .name = "timebase",
83 .rating = 400,
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
85 .mask = CLOCKSOURCE_MASK(64),
86 .read = timebase_read,
87 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER,
88 };
89
90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
93
94 static int decrementer_set_next_event(unsigned long evt,
95 struct clock_event_device *dev);
96 static int decrementer_shutdown(struct clock_event_device *evt);
97
98 struct clock_event_device decrementer_clockevent = {
99 .name = "decrementer",
100 .rating = 200,
101 .irq = 0,
102 .set_next_event = decrementer_set_next_event,
103 .set_state_oneshot_stopped = decrementer_shutdown,
104 .set_state_shutdown = decrementer_shutdown,
105 .tick_resume = decrementer_shutdown,
106 .features = CLOCK_EVT_FEAT_ONESHOT |
107 CLOCK_EVT_FEAT_C3STOP,
108 };
109 EXPORT_SYMBOL(decrementer_clockevent);
110
111 /*
112 * This always puts next_tb beyond now, so the clock event will never fire
113 * with the usual comparison, no need for a separate test for stopped.
114 */
115 #define DEC_CLOCKEVENT_STOPPED ~0ULL
116 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
117 EXPORT_SYMBOL_GPL(decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119
120 #define XSEC_PER_SEC (1024*1024)
121
122 #ifdef CONFIG_PPC64
123 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
124 #else
125 /* compute ((xsec << 12) * max) >> 32 */
126 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
127 #endif
128
129 unsigned long tb_ticks_per_jiffy;
130 unsigned long tb_ticks_per_usec = 100; /* sane default */
131 EXPORT_SYMBOL(tb_ticks_per_usec);
132 unsigned long tb_ticks_per_sec;
133 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
134
135 DEFINE_SPINLOCK(rtc_lock);
136 EXPORT_SYMBOL_GPL(rtc_lock);
137
138 static u64 tb_to_ns_scale __read_mostly;
139 static unsigned tb_to_ns_shift __read_mostly;
140 static u64 boot_tb __read_mostly;
141
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL_GPL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 EXPORT_SYMBOL_GPL(ppc_tb_freq);
149
150 bool tb_invalid;
151
152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153 /*
154 * Factor for converting from cputime_t (timebase ticks) to
155 * microseconds. This is stored as 0.64 fixed-point binary fraction.
156 */
157 u64 __cputime_usec_factor;
158 EXPORT_SYMBOL(__cputime_usec_factor);
159
calc_cputime_factors(void)160 static void calc_cputime_factors(void)
161 {
162 struct div_result res;
163
164 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
165 __cputime_usec_factor = res.result_low;
166 }
167
168 /*
169 * Read the SPURR on systems that have it, otherwise the PURR,
170 * or if that doesn't exist return the timebase value passed in.
171 */
read_spurr(unsigned long tb)172 static inline unsigned long read_spurr(unsigned long tb)
173 {
174 if (cpu_has_feature(CPU_FTR_SPURR))
175 return mfspr(SPRN_SPURR);
176 if (cpu_has_feature(CPU_FTR_PURR))
177 return mfspr(SPRN_PURR);
178 return tb;
179 }
180
181 #ifdef CONFIG_PPC_SPLPAR
182
183 #include <asm/dtl.h>
184
185 void (*dtl_consumer)(struct dtl_entry *, u64);
186
187 /*
188 * Scan the dispatch trace log and count up the stolen time.
189 * Should be called with interrupts disabled.
190 */
scan_dispatch_log(u64 stop_tb)191 static u64 scan_dispatch_log(u64 stop_tb)
192 {
193 u64 i = local_paca->dtl_ridx;
194 struct dtl_entry *dtl = local_paca->dtl_curr;
195 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
196 struct lppaca *vpa = local_paca->lppaca_ptr;
197 u64 tb_delta;
198 u64 stolen = 0;
199 u64 dtb;
200
201 if (!dtl)
202 return 0;
203
204 if (i == be64_to_cpu(vpa->dtl_idx))
205 return 0;
206 while (i < be64_to_cpu(vpa->dtl_idx)) {
207 dtb = be64_to_cpu(dtl->timebase);
208 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
209 be32_to_cpu(dtl->ready_to_enqueue_time);
210 barrier();
211 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
212 /* buffer has overflowed */
213 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
214 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
215 continue;
216 }
217 if (dtb > stop_tb)
218 break;
219 if (dtl_consumer)
220 dtl_consumer(dtl, i);
221 stolen += tb_delta;
222 ++i;
223 ++dtl;
224 if (dtl == dtl_end)
225 dtl = local_paca->dispatch_log;
226 }
227 local_paca->dtl_ridx = i;
228 local_paca->dtl_curr = dtl;
229 return stolen;
230 }
231
232 /*
233 * Accumulate stolen time by scanning the dispatch trace log.
234 * Called on entry from user mode.
235 */
accumulate_stolen_time(void)236 void notrace accumulate_stolen_time(void)
237 {
238 u64 sst, ust;
239 struct cpu_accounting_data *acct = &local_paca->accounting;
240
241 sst = scan_dispatch_log(acct->starttime_user);
242 ust = scan_dispatch_log(acct->starttime);
243 acct->stime -= sst;
244 acct->utime -= ust;
245 acct->steal_time += ust + sst;
246 }
247
calculate_stolen_time(u64 stop_tb)248 static inline u64 calculate_stolen_time(u64 stop_tb)
249 {
250 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
251 return 0;
252
253 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
254 return scan_dispatch_log(stop_tb);
255
256 return 0;
257 }
258
259 #else /* CONFIG_PPC_SPLPAR */
calculate_stolen_time(u64 stop_tb)260 static inline u64 calculate_stolen_time(u64 stop_tb)
261 {
262 return 0;
263 }
264
265 #endif /* CONFIG_PPC_SPLPAR */
266
267 /*
268 * Account time for a transition between system, hard irq
269 * or soft irq state.
270 */
vtime_delta_scaled(struct cpu_accounting_data * acct,unsigned long now,unsigned long stime)271 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
272 unsigned long now, unsigned long stime)
273 {
274 unsigned long stime_scaled = 0;
275 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
276 unsigned long nowscaled, deltascaled;
277 unsigned long utime, utime_scaled;
278
279 nowscaled = read_spurr(now);
280 deltascaled = nowscaled - acct->startspurr;
281 acct->startspurr = nowscaled;
282 utime = acct->utime - acct->utime_sspurr;
283 acct->utime_sspurr = acct->utime;
284
285 /*
286 * Because we don't read the SPURR on every kernel entry/exit,
287 * deltascaled includes both user and system SPURR ticks.
288 * Apportion these ticks to system SPURR ticks and user
289 * SPURR ticks in the same ratio as the system time (delta)
290 * and user time (udelta) values obtained from the timebase
291 * over the same interval. The system ticks get accounted here;
292 * the user ticks get saved up in paca->user_time_scaled to be
293 * used by account_process_tick.
294 */
295 stime_scaled = stime;
296 utime_scaled = utime;
297 if (deltascaled != stime + utime) {
298 if (utime) {
299 stime_scaled = deltascaled * stime / (stime + utime);
300 utime_scaled = deltascaled - stime_scaled;
301 } else {
302 stime_scaled = deltascaled;
303 }
304 }
305 acct->utime_scaled += utime_scaled;
306 #endif
307
308 return stime_scaled;
309 }
310
vtime_delta(struct cpu_accounting_data * acct,unsigned long * stime_scaled,unsigned long * steal_time)311 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
312 unsigned long *stime_scaled,
313 unsigned long *steal_time)
314 {
315 unsigned long now, stime;
316
317 WARN_ON_ONCE(!irqs_disabled());
318
319 now = mftb();
320 stime = now - acct->starttime;
321 acct->starttime = now;
322
323 *stime_scaled = vtime_delta_scaled(acct, now, stime);
324
325 *steal_time = calculate_stolen_time(now);
326
327 return stime;
328 }
329
vtime_delta_kernel(struct cpu_accounting_data * acct,unsigned long * stime,unsigned long * stime_scaled)330 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
331 unsigned long *stime, unsigned long *stime_scaled)
332 {
333 unsigned long steal_time;
334
335 *stime = vtime_delta(acct, stime_scaled, &steal_time);
336 *stime -= min(*stime, steal_time);
337 acct->steal_time += steal_time;
338 }
339
vtime_account_kernel(struct task_struct * tsk)340 void vtime_account_kernel(struct task_struct *tsk)
341 {
342 struct cpu_accounting_data *acct = get_accounting(tsk);
343 unsigned long stime, stime_scaled;
344
345 vtime_delta_kernel(acct, &stime, &stime_scaled);
346
347 if (tsk->flags & PF_VCPU) {
348 acct->gtime += stime;
349 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
350 acct->utime_scaled += stime_scaled;
351 #endif
352 } else {
353 acct->stime += stime;
354 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
355 acct->stime_scaled += stime_scaled;
356 #endif
357 }
358 }
359 EXPORT_SYMBOL_GPL(vtime_account_kernel);
360
vtime_account_idle(struct task_struct * tsk)361 void vtime_account_idle(struct task_struct *tsk)
362 {
363 unsigned long stime, stime_scaled, steal_time;
364 struct cpu_accounting_data *acct = get_accounting(tsk);
365
366 stime = vtime_delta(acct, &stime_scaled, &steal_time);
367 acct->idle_time += stime + steal_time;
368 }
369
vtime_account_irq_field(struct cpu_accounting_data * acct,unsigned long * field)370 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
371 unsigned long *field)
372 {
373 unsigned long stime, stime_scaled;
374
375 vtime_delta_kernel(acct, &stime, &stime_scaled);
376 *field += stime;
377 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
378 acct->stime_scaled += stime_scaled;
379 #endif
380 }
381
vtime_account_softirq(struct task_struct * tsk)382 void vtime_account_softirq(struct task_struct *tsk)
383 {
384 struct cpu_accounting_data *acct = get_accounting(tsk);
385 vtime_account_irq_field(acct, &acct->softirq_time);
386 }
387
vtime_account_hardirq(struct task_struct * tsk)388 void vtime_account_hardirq(struct task_struct *tsk)
389 {
390 struct cpu_accounting_data *acct = get_accounting(tsk);
391 vtime_account_irq_field(acct, &acct->hardirq_time);
392 }
393
vtime_flush_scaled(struct task_struct * tsk,struct cpu_accounting_data * acct)394 static void vtime_flush_scaled(struct task_struct *tsk,
395 struct cpu_accounting_data *acct)
396 {
397 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
398 if (acct->utime_scaled)
399 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
400 if (acct->stime_scaled)
401 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
402
403 acct->utime_scaled = 0;
404 acct->utime_sspurr = 0;
405 acct->stime_scaled = 0;
406 #endif
407 }
408
409 /*
410 * Account the whole cputime accumulated in the paca
411 * Must be called with interrupts disabled.
412 * Assumes that vtime_account_kernel/idle() has been called
413 * recently (i.e. since the last entry from usermode) so that
414 * get_paca()->user_time_scaled is up to date.
415 */
vtime_flush(struct task_struct * tsk)416 void vtime_flush(struct task_struct *tsk)
417 {
418 struct cpu_accounting_data *acct = get_accounting(tsk);
419
420 if (acct->utime)
421 account_user_time(tsk, cputime_to_nsecs(acct->utime));
422
423 if (acct->gtime)
424 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
425
426 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
427 account_steal_time(cputime_to_nsecs(acct->steal_time));
428 acct->steal_time = 0;
429 }
430
431 if (acct->idle_time)
432 account_idle_time(cputime_to_nsecs(acct->idle_time));
433
434 if (acct->stime)
435 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
436 CPUTIME_SYSTEM);
437
438 if (acct->hardirq_time)
439 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
440 CPUTIME_IRQ);
441 if (acct->softirq_time)
442 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
443 CPUTIME_SOFTIRQ);
444
445 vtime_flush_scaled(tsk, acct);
446
447 acct->utime = 0;
448 acct->gtime = 0;
449 acct->idle_time = 0;
450 acct->stime = 0;
451 acct->hardirq_time = 0;
452 acct->softirq_time = 0;
453 }
454
455 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
456 #define calc_cputime_factors()
457 #endif
458
__delay(unsigned long loops)459 void __delay(unsigned long loops)
460 {
461 unsigned long start;
462
463 spin_begin();
464 if (tb_invalid) {
465 /*
466 * TB is in error state and isn't ticking anymore.
467 * HMI handler was unable to recover from TB error.
468 * Return immediately, so that kernel won't get stuck here.
469 */
470 spin_cpu_relax();
471 } else {
472 start = mftb();
473 while (mftb() - start < loops)
474 spin_cpu_relax();
475 }
476 spin_end();
477 }
478 EXPORT_SYMBOL(__delay);
479
udelay(unsigned long usecs)480 void udelay(unsigned long usecs)
481 {
482 __delay(tb_ticks_per_usec * usecs);
483 }
484 EXPORT_SYMBOL(udelay);
485
486 #ifdef CONFIG_SMP
profile_pc(struct pt_regs * regs)487 unsigned long profile_pc(struct pt_regs *regs)
488 {
489 unsigned long pc = instruction_pointer(regs);
490
491 if (in_lock_functions(pc))
492 return regs->link;
493
494 return pc;
495 }
496 EXPORT_SYMBOL(profile_pc);
497 #endif
498
499 #ifdef CONFIG_IRQ_WORK
500
501 /*
502 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
503 */
504 #ifdef CONFIG_PPC64
test_irq_work_pending(void)505 static inline unsigned long test_irq_work_pending(void)
506 {
507 unsigned long x;
508
509 asm volatile("lbz %0,%1(13)"
510 : "=r" (x)
511 : "i" (offsetof(struct paca_struct, irq_work_pending)));
512 return x;
513 }
514
set_irq_work_pending_flag(void)515 static inline void set_irq_work_pending_flag(void)
516 {
517 asm volatile("stb %0,%1(13)" : :
518 "r" (1),
519 "i" (offsetof(struct paca_struct, irq_work_pending)));
520 }
521
clear_irq_work_pending(void)522 static inline void clear_irq_work_pending(void)
523 {
524 asm volatile("stb %0,%1(13)" : :
525 "r" (0),
526 "i" (offsetof(struct paca_struct, irq_work_pending)));
527 }
528
529 #else /* 32-bit */
530
531 DEFINE_PER_CPU(u8, irq_work_pending);
532
533 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
534 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
535 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
536
537 #endif /* 32 vs 64 bit */
538
arch_irq_work_raise(void)539 void arch_irq_work_raise(void)
540 {
541 /*
542 * 64-bit code that uses irq soft-mask can just cause an immediate
543 * interrupt here that gets soft masked, if this is called under
544 * local_irq_disable(). It might be possible to prevent that happening
545 * by noticing interrupts are disabled and setting decrementer pending
546 * to be replayed when irqs are enabled. The problem there is that
547 * tracing can call irq_work_raise, including in code that does low
548 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
549 * which could get tangled up if we're messing with the same state
550 * here.
551 */
552 preempt_disable();
553 set_irq_work_pending_flag();
554 set_dec(1);
555 preempt_enable();
556 }
557
set_dec_or_work(u64 val)558 static void set_dec_or_work(u64 val)
559 {
560 set_dec(val);
561 /* We may have raced with new irq work */
562 if (unlikely(test_irq_work_pending()))
563 set_dec(1);
564 }
565
566 #else /* CONFIG_IRQ_WORK */
567
568 #define test_irq_work_pending() 0
569 #define clear_irq_work_pending()
570
set_dec_or_work(u64 val)571 static void set_dec_or_work(u64 val)
572 {
573 set_dec(val);
574 }
575 #endif /* CONFIG_IRQ_WORK */
576
577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
timer_rearm_host_dec(u64 now)578 void timer_rearm_host_dec(u64 now)
579 {
580 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
581
582 WARN_ON_ONCE(!arch_irqs_disabled());
583 WARN_ON_ONCE(mfmsr() & MSR_EE);
584
585 if (now >= *next_tb) {
586 local_paca->irq_happened |= PACA_IRQ_DEC;
587 } else {
588 now = *next_tb - now;
589 if (now > decrementer_max)
590 now = decrementer_max;
591 set_dec_or_work(now);
592 }
593 }
594 EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
595 #endif
596
597 /*
598 * timer_interrupt - gets called when the decrementer overflows,
599 * with interrupts disabled.
600 */
DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)601 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
602 {
603 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
604 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
605 struct pt_regs *old_regs;
606 u64 now;
607
608 /*
609 * Some implementations of hotplug will get timer interrupts while
610 * offline, just ignore these.
611 */
612 if (unlikely(!cpu_online(smp_processor_id()))) {
613 set_dec(decrementer_max);
614 return;
615 }
616
617 /*
618 * Ensure a positive value is written to the decrementer, or
619 * else some CPUs will continue to take decrementer exceptions.
620 * When the PPC_WATCHDOG (decrementer based) is configured,
621 * keep this at most 31 bits, which is about 4 seconds on most
622 * systems, which gives the watchdog a chance of catching timer
623 * interrupt hard lockups.
624 */
625 if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
626 set_dec(0x7fffffff);
627 else
628 set_dec(decrementer_max);
629
630 /* Conditionally hard-enable interrupts. */
631 if (should_hard_irq_enable())
632 do_hard_irq_enable();
633
634 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
635 if (atomic_read(&ppc_n_lost_interrupts) != 0)
636 __do_IRQ(regs);
637 #endif
638
639 old_regs = set_irq_regs(regs);
640
641 trace_timer_interrupt_entry(regs);
642
643 if (test_irq_work_pending()) {
644 clear_irq_work_pending();
645 mce_run_irq_context_handlers();
646 irq_work_run();
647 }
648
649 now = get_tb();
650 if (now >= *next_tb) {
651 evt->event_handler(evt);
652 __this_cpu_inc(irq_stat.timer_irqs_event);
653 } else {
654 now = *next_tb - now;
655 if (now > decrementer_max)
656 now = decrementer_max;
657 set_dec_or_work(now);
658 __this_cpu_inc(irq_stat.timer_irqs_others);
659 }
660
661 trace_timer_interrupt_exit(regs);
662
663 set_irq_regs(old_regs);
664 }
665 EXPORT_SYMBOL(timer_interrupt);
666
667 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
timer_broadcast_interrupt(void)668 void timer_broadcast_interrupt(void)
669 {
670 tick_receive_broadcast();
671 __this_cpu_inc(irq_stat.broadcast_irqs_event);
672 }
673 #endif
674
675 #ifdef CONFIG_SUSPEND
676 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_disable_irqs(void)677 void arch_suspend_disable_irqs(void)
678 {
679 if (ppc_md.suspend_disable_irqs)
680 ppc_md.suspend_disable_irqs();
681
682 /* Disable the decrementer, so that it doesn't interfere
683 * with suspending.
684 */
685
686 set_dec(decrementer_max);
687 local_irq_disable();
688 set_dec(decrementer_max);
689 }
690
691 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_enable_irqs(void)692 void arch_suspend_enable_irqs(void)
693 {
694 local_irq_enable();
695
696 if (ppc_md.suspend_enable_irqs)
697 ppc_md.suspend_enable_irqs();
698 }
699 #endif
700
tb_to_ns(unsigned long long ticks)701 unsigned long long tb_to_ns(unsigned long long ticks)
702 {
703 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
704 }
705 EXPORT_SYMBOL_GPL(tb_to_ns);
706
707 /*
708 * Scheduler clock - returns current time in nanosec units.
709 *
710 * Note: mulhdu(a, b) (multiply high double unsigned) returns
711 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
712 * are 64-bit unsigned numbers.
713 */
sched_clock(void)714 notrace unsigned long long sched_clock(void)
715 {
716 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
717 }
718
719
720 #ifdef CONFIG_PPC_PSERIES
721
722 /*
723 * Running clock - attempts to give a view of time passing for a virtualised
724 * kernels.
725 * Uses the VTB register if available otherwise a next best guess.
726 */
running_clock(void)727 unsigned long long running_clock(void)
728 {
729 /*
730 * Don't read the VTB as a host since KVM does not switch in host
731 * timebase into the VTB when it takes a guest off the CPU, reading the
732 * VTB would result in reading 'last switched out' guest VTB.
733 *
734 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
735 * would be unsafe to rely only on the #ifdef above.
736 */
737 if (firmware_has_feature(FW_FEATURE_LPAR) &&
738 cpu_has_feature(CPU_FTR_ARCH_207S))
739 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
740
741 /*
742 * This is a next best approximation without a VTB.
743 * On a host which is running bare metal there should never be any stolen
744 * time and on a host which doesn't do any virtualisation TB *should* equal
745 * VTB so it makes no difference anyway.
746 */
747 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
748 }
749 #endif
750
get_freq(char * name,int cells,unsigned long * val)751 static int __init get_freq(char *name, int cells, unsigned long *val)
752 {
753 struct device_node *cpu;
754 const __be32 *fp;
755 int found = 0;
756
757 /* The cpu node should have timebase and clock frequency properties */
758 cpu = of_find_node_by_type(NULL, "cpu");
759
760 if (cpu) {
761 fp = of_get_property(cpu, name, NULL);
762 if (fp) {
763 found = 1;
764 *val = of_read_ulong(fp, cells);
765 }
766
767 of_node_put(cpu);
768 }
769
770 return found;
771 }
772
start_cpu_decrementer(void)773 static void start_cpu_decrementer(void)
774 {
775 #ifdef CONFIG_BOOKE_OR_40x
776 unsigned int tcr;
777
778 /* Clear any pending timer interrupts */
779 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
780
781 tcr = mfspr(SPRN_TCR);
782 /*
783 * The watchdog may have already been enabled by u-boot. So leave
784 * TRC[WP] (Watchdog Period) alone.
785 */
786 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
787 tcr |= TCR_DIE; /* Enable decrementer */
788 mtspr(SPRN_TCR, tcr);
789 #endif
790 }
791
generic_calibrate_decr(void)792 void __init generic_calibrate_decr(void)
793 {
794 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
795
796 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
797 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
798
799 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
800 "(not found)\n");
801 }
802
803 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
804
805 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
806 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
807
808 printk(KERN_ERR "WARNING: Estimating processor frequency "
809 "(not found)\n");
810 }
811 }
812
update_persistent_clock64(struct timespec64 now)813 int update_persistent_clock64(struct timespec64 now)
814 {
815 struct rtc_time tm;
816
817 if (!ppc_md.set_rtc_time)
818 return -ENODEV;
819
820 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
821
822 return ppc_md.set_rtc_time(&tm);
823 }
824
__read_persistent_clock(struct timespec64 * ts)825 static void __read_persistent_clock(struct timespec64 *ts)
826 {
827 struct rtc_time tm;
828 static int first = 1;
829
830 ts->tv_nsec = 0;
831 /* XXX this is a little fragile but will work okay in the short term */
832 if (first) {
833 first = 0;
834 if (ppc_md.time_init)
835 timezone_offset = ppc_md.time_init();
836
837 /* get_boot_time() isn't guaranteed to be safe to call late */
838 if (ppc_md.get_boot_time) {
839 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
840 return;
841 }
842 }
843 if (!ppc_md.get_rtc_time) {
844 ts->tv_sec = 0;
845 return;
846 }
847 ppc_md.get_rtc_time(&tm);
848
849 ts->tv_sec = rtc_tm_to_time64(&tm);
850 }
851
read_persistent_clock64(struct timespec64 * ts)852 void read_persistent_clock64(struct timespec64 *ts)
853 {
854 __read_persistent_clock(ts);
855
856 /* Sanitize it in case real time clock is set below EPOCH */
857 if (ts->tv_sec < 0) {
858 ts->tv_sec = 0;
859 ts->tv_nsec = 0;
860 }
861
862 }
863
864 /* clocksource code */
timebase_read(struct clocksource * cs)865 static notrace u64 timebase_read(struct clocksource *cs)
866 {
867 return (u64)get_tb();
868 }
869
clocksource_init(void)870 static void __init clocksource_init(void)
871 {
872 struct clocksource *clock = &clocksource_timebase;
873
874 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
875 printk(KERN_ERR "clocksource: %s is already registered\n",
876 clock->name);
877 return;
878 }
879
880 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
881 clock->name, clock->mult, clock->shift);
882 }
883
decrementer_set_next_event(unsigned long evt,struct clock_event_device * dev)884 static int decrementer_set_next_event(unsigned long evt,
885 struct clock_event_device *dev)
886 {
887 __this_cpu_write(decrementers_next_tb, get_tb() + evt);
888 set_dec_or_work(evt);
889
890 return 0;
891 }
892
decrementer_shutdown(struct clock_event_device * dev)893 static int decrementer_shutdown(struct clock_event_device *dev)
894 {
895 __this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
896 set_dec_or_work(decrementer_max);
897
898 return 0;
899 }
900
register_decrementer_clockevent(int cpu)901 static void register_decrementer_clockevent(int cpu)
902 {
903 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
904
905 *dec = decrementer_clockevent;
906 dec->cpumask = cpumask_of(cpu);
907
908 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
909
910 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
911 dec->name, dec->mult, dec->shift, cpu);
912
913 /* Set values for KVM, see kvm_emulate_dec() */
914 decrementer_clockevent.mult = dec->mult;
915 decrementer_clockevent.shift = dec->shift;
916 }
917
enable_large_decrementer(void)918 static void enable_large_decrementer(void)
919 {
920 if (!cpu_has_feature(CPU_FTR_ARCH_300))
921 return;
922
923 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
924 return;
925
926 /*
927 * If we're running as the hypervisor we need to enable the LD manually
928 * otherwise firmware should have done it for us.
929 */
930 if (cpu_has_feature(CPU_FTR_HVMODE))
931 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
932 }
933
set_decrementer_max(void)934 static void __init set_decrementer_max(void)
935 {
936 struct device_node *cpu;
937 u32 bits = 32;
938
939 /* Prior to ISAv3 the decrementer is always 32 bit */
940 if (!cpu_has_feature(CPU_FTR_ARCH_300))
941 return;
942
943 cpu = of_find_node_by_type(NULL, "cpu");
944
945 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
946 if (bits > 64 || bits < 32) {
947 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
948 bits = 32;
949 }
950
951 /* calculate the signed maximum given this many bits */
952 decrementer_max = (1ul << (bits - 1)) - 1;
953 }
954
955 of_node_put(cpu);
956
957 pr_info("time_init: %u bit decrementer (max: %llx)\n",
958 bits, decrementer_max);
959 }
960
init_decrementer_clockevent(void)961 static void __init init_decrementer_clockevent(void)
962 {
963 register_decrementer_clockevent(smp_processor_id());
964 }
965
secondary_cpu_time_init(void)966 void secondary_cpu_time_init(void)
967 {
968 /* Enable and test the large decrementer for this cpu */
969 enable_large_decrementer();
970
971 /* Start the decrementer on CPUs that have manual control
972 * such as BookE
973 */
974 start_cpu_decrementer();
975
976 /* FIME: Should make unrelated change to move snapshot_timebase
977 * call here ! */
978 register_decrementer_clockevent(smp_processor_id());
979 }
980
981 /* This function is only called on the boot processor */
time_init(void)982 void __init time_init(void)
983 {
984 struct div_result res;
985 u64 scale;
986 unsigned shift;
987
988 /* Normal PowerPC with timebase register */
989 ppc_md.calibrate_decr();
990 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
991 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
992 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
993 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
994
995 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
996 tb_ticks_per_sec = ppc_tb_freq;
997 tb_ticks_per_usec = ppc_tb_freq / 1000000;
998 calc_cputime_factors();
999
1000 /*
1001 * Compute scale factor for sched_clock.
1002 * The calibrate_decr() function has set tb_ticks_per_sec,
1003 * which is the timebase frequency.
1004 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1005 * the 128-bit result as a 64.64 fixed-point number.
1006 * We then shift that number right until it is less than 1.0,
1007 * giving us the scale factor and shift count to use in
1008 * sched_clock().
1009 */
1010 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1011 scale = res.result_low;
1012 for (shift = 0; res.result_high != 0; ++shift) {
1013 scale = (scale >> 1) | (res.result_high << 63);
1014 res.result_high >>= 1;
1015 }
1016 tb_to_ns_scale = scale;
1017 tb_to_ns_shift = shift;
1018 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1019 boot_tb = get_tb();
1020
1021 /* If platform provided a timezone (pmac), we correct the time */
1022 if (timezone_offset) {
1023 sys_tz.tz_minuteswest = -timezone_offset / 60;
1024 sys_tz.tz_dsttime = 0;
1025 }
1026
1027 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1028
1029 /* initialise and enable the large decrementer (if we have one) */
1030 set_decrementer_max();
1031 enable_large_decrementer();
1032
1033 /* Start the decrementer on CPUs that have manual control
1034 * such as BookE
1035 */
1036 start_cpu_decrementer();
1037
1038 /* Register the clocksource */
1039 clocksource_init();
1040
1041 init_decrementer_clockevent();
1042 tick_setup_hrtimer_broadcast();
1043
1044 of_clk_init(NULL);
1045 enable_sched_clock_irqtime();
1046 }
1047
1048 /*
1049 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1050 * result.
1051 */
div128_by_32(u64 dividend_high,u64 dividend_low,unsigned divisor,struct div_result * dr)1052 void div128_by_32(u64 dividend_high, u64 dividend_low,
1053 unsigned divisor, struct div_result *dr)
1054 {
1055 unsigned long a, b, c, d;
1056 unsigned long w, x, y, z;
1057 u64 ra, rb, rc;
1058
1059 a = dividend_high >> 32;
1060 b = dividend_high & 0xffffffff;
1061 c = dividend_low >> 32;
1062 d = dividend_low & 0xffffffff;
1063
1064 w = a / divisor;
1065 ra = ((u64)(a - (w * divisor)) << 32) + b;
1066
1067 rb = ((u64) do_div(ra, divisor) << 32) + c;
1068 x = ra;
1069
1070 rc = ((u64) do_div(rb, divisor) << 32) + d;
1071 y = rb;
1072
1073 do_div(rc, divisor);
1074 z = rc;
1075
1076 dr->result_high = ((u64)w << 32) + x;
1077 dr->result_low = ((u64)y << 32) + z;
1078
1079 }
1080
1081 /* We don't need to calibrate delay, we use the CPU timebase for that */
calibrate_delay(void)1082 void calibrate_delay(void)
1083 {
1084 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1085 * as the number of __delay(1) in a jiffy, so make it so
1086 */
1087 loops_per_jiffy = tb_ticks_per_jiffy;
1088 }
1089
1090 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
rtc_generic_get_time(struct device * dev,struct rtc_time * tm)1091 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1092 {
1093 ppc_md.get_rtc_time(tm);
1094 return 0;
1095 }
1096
rtc_generic_set_time(struct device * dev,struct rtc_time * tm)1097 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1098 {
1099 if (!ppc_md.set_rtc_time)
1100 return -EOPNOTSUPP;
1101
1102 if (ppc_md.set_rtc_time(tm) < 0)
1103 return -EOPNOTSUPP;
1104
1105 return 0;
1106 }
1107
1108 static const struct rtc_class_ops rtc_generic_ops = {
1109 .read_time = rtc_generic_get_time,
1110 .set_time = rtc_generic_set_time,
1111 };
1112
rtc_init(void)1113 static int __init rtc_init(void)
1114 {
1115 struct platform_device *pdev;
1116
1117 if (!ppc_md.get_rtc_time)
1118 return -ENODEV;
1119
1120 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1121 &rtc_generic_ops,
1122 sizeof(rtc_generic_ops));
1123
1124 return PTR_ERR_OR_ZERO(pdev);
1125 }
1126
1127 device_initcall(rtc_init);
1128 #endif
1129