1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM helpers
4 *
5 * Copyright (C) 2020, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 */
8
9 #include <linux/idr.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12
13 #include "tb.h"
14
15 /* Intel specific NVM offsets */
16 #define INTEL_NVM_DEVID 0x05
17 #define INTEL_NVM_VERSION 0x08
18 #define INTEL_NVM_CSS 0x10
19 #define INTEL_NVM_FLASH_SIZE 0x45
20
21 /* ASMedia specific NVM offsets */
22 #define ASMEDIA_NVM_DATE 0x1c
23 #define ASMEDIA_NVM_VERSION 0x28
24
25 static DEFINE_IDA(nvm_ida);
26
27 /**
28 * struct tb_nvm_vendor_ops - Vendor specific NVM operations
29 * @read_version: Reads out NVM version from the flash
30 * @validate: Validates the NVM image before update (optional)
31 * @write_headers: Writes headers before the rest of the image (optional)
32 */
33 struct tb_nvm_vendor_ops {
34 int (*read_version)(struct tb_nvm *nvm);
35 int (*validate)(struct tb_nvm *nvm);
36 int (*write_headers)(struct tb_nvm *nvm);
37 };
38
39 /**
40 * struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping
41 * @vendor: Vendor ID
42 * @vops: Vendor specific NVM operations
43 *
44 * Maps vendor ID to NVM vendor operations. If there is no mapping then
45 * NVM firmware upgrade is disabled for the device.
46 */
47 struct tb_nvm_vendor {
48 u16 vendor;
49 const struct tb_nvm_vendor_ops *vops;
50 };
51
intel_switch_nvm_version(struct tb_nvm * nvm)52 static int intel_switch_nvm_version(struct tb_nvm *nvm)
53 {
54 struct tb_switch *sw = tb_to_switch(nvm->dev);
55 u32 val, nvm_size, hdr_size;
56 int ret;
57
58 /*
59 * If the switch is in safe-mode the only accessible portion of
60 * the NVM is the non-active one where userspace is expected to
61 * write new functional NVM.
62 */
63 if (sw->safe_mode)
64 return 0;
65
66 ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val));
67 if (ret)
68 return ret;
69
70 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
71 nvm_size = (SZ_1M << (val & 7)) / 8;
72 nvm_size = (nvm_size - hdr_size) / 2;
73
74 ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val));
75 if (ret)
76 return ret;
77
78 nvm->major = (val >> 16) & 0xff;
79 nvm->minor = (val >> 8) & 0xff;
80 nvm->active_size = nvm_size;
81
82 return 0;
83 }
84
intel_switch_nvm_validate(struct tb_nvm * nvm)85 static int intel_switch_nvm_validate(struct tb_nvm *nvm)
86 {
87 struct tb_switch *sw = tb_to_switch(nvm->dev);
88 unsigned int image_size, hdr_size;
89 u16 ds_size, device_id;
90 u8 *buf = nvm->buf;
91
92 image_size = nvm->buf_data_size;
93
94 /*
95 * FARB pointer must point inside the image and must at least
96 * contain parts of the digital section we will be reading here.
97 */
98 hdr_size = (*(u32 *)buf) & 0xffffff;
99 if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size)
100 return -EINVAL;
101
102 /* Digital section start should be aligned to 4k page */
103 if (!IS_ALIGNED(hdr_size, SZ_4K))
104 return -EINVAL;
105
106 /*
107 * Read digital section size and check that it also fits inside
108 * the image.
109 */
110 ds_size = *(u16 *)(buf + hdr_size);
111 if (ds_size >= image_size)
112 return -EINVAL;
113
114 if (sw->safe_mode)
115 return 0;
116
117 /*
118 * Make sure the device ID in the image matches the one
119 * we read from the switch config space.
120 */
121 device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID);
122 if (device_id != sw->config.device_id)
123 return -EINVAL;
124
125 /* Skip headers in the image */
126 nvm->buf_data_start = buf + hdr_size;
127 nvm->buf_data_size = image_size - hdr_size;
128
129 return 0;
130 }
131
intel_switch_nvm_write_headers(struct tb_nvm * nvm)132 static int intel_switch_nvm_write_headers(struct tb_nvm *nvm)
133 {
134 struct tb_switch *sw = tb_to_switch(nvm->dev);
135
136 if (sw->generation < 3) {
137 int ret;
138
139 /* Write CSS headers first */
140 ret = dma_port_flash_write(sw->dma_port,
141 DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS,
142 DMA_PORT_CSS_MAX_SIZE);
143 if (ret)
144 return ret;
145 }
146
147 return 0;
148 }
149
150 static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = {
151 .read_version = intel_switch_nvm_version,
152 .validate = intel_switch_nvm_validate,
153 .write_headers = intel_switch_nvm_write_headers,
154 };
155
asmedia_switch_nvm_version(struct tb_nvm * nvm)156 static int asmedia_switch_nvm_version(struct tb_nvm *nvm)
157 {
158 struct tb_switch *sw = tb_to_switch(nvm->dev);
159 u32 val;
160 int ret;
161
162 ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val));
163 if (ret)
164 return ret;
165
166 nvm->major = (val << 16) & 0xff0000;
167 nvm->major |= val & 0x00ff00;
168 nvm->major |= (val >> 16) & 0x0000ff;
169
170 ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val));
171 if (ret)
172 return ret;
173
174 nvm->minor = (val << 16) & 0xff0000;
175 nvm->minor |= val & 0x00ff00;
176 nvm->minor |= (val >> 16) & 0x0000ff;
177
178 /* ASMedia NVM size is fixed to 512k */
179 nvm->active_size = SZ_512K;
180
181 return 0;
182 }
183
184 static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = {
185 .read_version = asmedia_switch_nvm_version,
186 };
187
188 /* Router vendor NVM support table */
189 static const struct tb_nvm_vendor switch_nvm_vendors[] = {
190 { 0x174c, &asmedia_switch_nvm_ops },
191 { PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops },
192 { 0x8087, &intel_switch_nvm_ops },
193 };
194
intel_retimer_nvm_version(struct tb_nvm * nvm)195 static int intel_retimer_nvm_version(struct tb_nvm *nvm)
196 {
197 struct tb_retimer *rt = tb_to_retimer(nvm->dev);
198 u32 val, nvm_size;
199 int ret;
200
201 ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val));
202 if (ret)
203 return ret;
204
205 nvm->major = (val >> 16) & 0xff;
206 nvm->minor = (val >> 8) & 0xff;
207
208 ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val));
209 if (ret)
210 return ret;
211
212 nvm_size = (SZ_1M << (val & 7)) / 8;
213 nvm_size = (nvm_size - SZ_16K) / 2;
214 nvm->active_size = nvm_size;
215
216 return 0;
217 }
218
intel_retimer_nvm_validate(struct tb_nvm * nvm)219 static int intel_retimer_nvm_validate(struct tb_nvm *nvm)
220 {
221 struct tb_retimer *rt = tb_to_retimer(nvm->dev);
222 unsigned int image_size, hdr_size;
223 u8 *buf = nvm->buf;
224 u16 ds_size, device;
225
226 image_size = nvm->buf_data_size;
227
228 /*
229 * FARB pointer must point inside the image and must at least
230 * contain parts of the digital section we will be reading here.
231 */
232 hdr_size = (*(u32 *)buf) & 0xffffff;
233 if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size)
234 return -EINVAL;
235
236 /* Digital section start should be aligned to 4k page */
237 if (!IS_ALIGNED(hdr_size, SZ_4K))
238 return -EINVAL;
239
240 /*
241 * Read digital section size and check that it also fits inside
242 * the image.
243 */
244 ds_size = *(u16 *)(buf + hdr_size);
245 if (ds_size >= image_size)
246 return -EINVAL;
247
248 /*
249 * Make sure the device ID in the image matches the retimer
250 * hardware.
251 */
252 device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID);
253 if (device != rt->device)
254 return -EINVAL;
255
256 /* Skip headers in the image */
257 nvm->buf_data_start = buf + hdr_size;
258 nvm->buf_data_size = image_size - hdr_size;
259
260 return 0;
261 }
262
263 static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = {
264 .read_version = intel_retimer_nvm_version,
265 .validate = intel_retimer_nvm_validate,
266 };
267
268 /* Retimer vendor NVM support table */
269 static const struct tb_nvm_vendor retimer_nvm_vendors[] = {
270 { 0x8087, &intel_retimer_nvm_ops },
271 };
272
273 /**
274 * tb_nvm_alloc() - Allocate new NVM structure
275 * @dev: Device owning the NVM
276 *
277 * Allocates new NVM structure with unique @id and returns it. In case
278 * of error returns ERR_PTR(). Specifically returns %-EOPNOTSUPP if the
279 * NVM format of the @dev is not known by the kernel.
280 */
tb_nvm_alloc(struct device * dev)281 struct tb_nvm *tb_nvm_alloc(struct device *dev)
282 {
283 const struct tb_nvm_vendor_ops *vops = NULL;
284 struct tb_nvm *nvm;
285 int ret, i;
286
287 if (tb_is_switch(dev)) {
288 const struct tb_switch *sw = tb_to_switch(dev);
289
290 for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) {
291 const struct tb_nvm_vendor *v = &switch_nvm_vendors[i];
292
293 if (v->vendor == sw->config.vendor_id) {
294 vops = v->vops;
295 break;
296 }
297 }
298
299 if (!vops) {
300 tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n",
301 sw->config.vendor_id);
302 return ERR_PTR(-EOPNOTSUPP);
303 }
304 } else if (tb_is_retimer(dev)) {
305 const struct tb_retimer *rt = tb_to_retimer(dev);
306
307 for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) {
308 const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i];
309
310 if (v->vendor == rt->vendor) {
311 vops = v->vops;
312 break;
313 }
314 }
315
316 if (!vops) {
317 dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n",
318 rt->vendor);
319 return ERR_PTR(-EOPNOTSUPP);
320 }
321 } else {
322 return ERR_PTR(-EOPNOTSUPP);
323 }
324
325 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
326 if (!nvm)
327 return ERR_PTR(-ENOMEM);
328
329 ret = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
330 if (ret < 0) {
331 kfree(nvm);
332 return ERR_PTR(ret);
333 }
334
335 nvm->id = ret;
336 nvm->dev = dev;
337 nvm->vops = vops;
338
339 return nvm;
340 }
341
342 /**
343 * tb_nvm_read_version() - Read and populate NVM version
344 * @nvm: NVM structure
345 *
346 * Uses vendor specific means to read out and fill in the existing
347 * active NVM version. Returns %0 in case of success and negative errno
348 * otherwise.
349 */
tb_nvm_read_version(struct tb_nvm * nvm)350 int tb_nvm_read_version(struct tb_nvm *nvm)
351 {
352 const struct tb_nvm_vendor_ops *vops = nvm->vops;
353
354 if (vops && vops->read_version)
355 return vops->read_version(nvm);
356
357 return -EOPNOTSUPP;
358 }
359
360 /**
361 * tb_nvm_validate() - Validate new NVM image
362 * @nvm: NVM structure
363 *
364 * Runs vendor specific validation over the new NVM image and if all
365 * checks pass returns %0. As side effect updates @nvm->buf_data_start
366 * and @nvm->buf_data_size fields to match the actual data to be written
367 * to the NVM.
368 *
369 * If the validation does not pass then returns negative errno.
370 */
tb_nvm_validate(struct tb_nvm * nvm)371 int tb_nvm_validate(struct tb_nvm *nvm)
372 {
373 const struct tb_nvm_vendor_ops *vops = nvm->vops;
374 unsigned int image_size;
375 u8 *buf = nvm->buf;
376
377 if (!buf)
378 return -EINVAL;
379 if (!vops)
380 return -EOPNOTSUPP;
381
382 /* Just do basic image size checks */
383 image_size = nvm->buf_data_size;
384 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
385 return -EINVAL;
386
387 /*
388 * Set the default data start in the buffer. The validate method
389 * below can change this if needed.
390 */
391 nvm->buf_data_start = buf;
392
393 return vops->validate ? vops->validate(nvm) : 0;
394 }
395
396 /**
397 * tb_nvm_write_headers() - Write headers before the rest of the image
398 * @nvm: NVM structure
399 *
400 * If the vendor NVM format requires writing headers before the rest of
401 * the image, this function does that. Can be called even if the device
402 * does not need this.
403 *
404 * Returns %0 in case of success and negative errno otherwise.
405 */
tb_nvm_write_headers(struct tb_nvm * nvm)406 int tb_nvm_write_headers(struct tb_nvm *nvm)
407 {
408 const struct tb_nvm_vendor_ops *vops = nvm->vops;
409
410 return vops->write_headers ? vops->write_headers(nvm) : 0;
411 }
412
413 /**
414 * tb_nvm_add_active() - Adds active NVMem device to NVM
415 * @nvm: NVM structure
416 * @reg_read: Pointer to the function to read the NVM (passed directly to the
417 * NVMem device)
418 *
419 * Registers new active NVmem device for @nvm. The @reg_read is called
420 * directly from NVMem so it must handle possible concurrent access if
421 * needed. The first parameter passed to @reg_read is @nvm structure.
422 * Returns %0 in success and negative errno otherwise.
423 */
tb_nvm_add_active(struct tb_nvm * nvm,nvmem_reg_read_t reg_read)424 int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read)
425 {
426 struct nvmem_config config;
427 struct nvmem_device *nvmem;
428
429 memset(&config, 0, sizeof(config));
430
431 config.name = "nvm_active";
432 config.reg_read = reg_read;
433 config.read_only = true;
434 config.id = nvm->id;
435 config.stride = 4;
436 config.word_size = 4;
437 config.size = nvm->active_size;
438 config.dev = nvm->dev;
439 config.owner = THIS_MODULE;
440 config.priv = nvm;
441
442 nvmem = nvmem_register(&config);
443 if (IS_ERR(nvmem))
444 return PTR_ERR(nvmem);
445
446 nvm->active = nvmem;
447 return 0;
448 }
449
450 /**
451 * tb_nvm_write_buf() - Write data to @nvm buffer
452 * @nvm: NVM structure
453 * @offset: Offset where to write the data
454 * @val: Data buffer to write
455 * @bytes: Number of bytes to write
456 *
457 * Helper function to cache the new NVM image before it is actually
458 * written to the flash. Copies @bytes from @val to @nvm->buf starting
459 * from @offset.
460 */
tb_nvm_write_buf(struct tb_nvm * nvm,unsigned int offset,void * val,size_t bytes)461 int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val,
462 size_t bytes)
463 {
464 if (!nvm->buf) {
465 nvm->buf = vmalloc(NVM_MAX_SIZE);
466 if (!nvm->buf)
467 return -ENOMEM;
468 }
469
470 nvm->flushed = false;
471 nvm->buf_data_size = offset + bytes;
472 memcpy(nvm->buf + offset, val, bytes);
473 return 0;
474 }
475
476 /**
477 * tb_nvm_add_non_active() - Adds non-active NVMem device to NVM
478 * @nvm: NVM structure
479 * @reg_write: Pointer to the function to write the NVM (passed directly
480 * to the NVMem device)
481 *
482 * Registers new non-active NVmem device for @nvm. The @reg_write is called
483 * directly from NVMem so it must handle possible concurrent access if
484 * needed. The first parameter passed to @reg_write is @nvm structure.
485 * The size of the NVMem device is set to %NVM_MAX_SIZE.
486 *
487 * Returns %0 in success and negative errno otherwise.
488 */
tb_nvm_add_non_active(struct tb_nvm * nvm,nvmem_reg_write_t reg_write)489 int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write)
490 {
491 struct nvmem_config config;
492 struct nvmem_device *nvmem;
493
494 memset(&config, 0, sizeof(config));
495
496 config.name = "nvm_non_active";
497 config.reg_write = reg_write;
498 config.root_only = true;
499 config.id = nvm->id;
500 config.stride = 4;
501 config.word_size = 4;
502 config.size = NVM_MAX_SIZE;
503 config.dev = nvm->dev;
504 config.owner = THIS_MODULE;
505 config.priv = nvm;
506
507 nvmem = nvmem_register(&config);
508 if (IS_ERR(nvmem))
509 return PTR_ERR(nvmem);
510
511 nvm->non_active = nvmem;
512 return 0;
513 }
514
515 /**
516 * tb_nvm_free() - Release NVM and its resources
517 * @nvm: NVM structure to release
518 *
519 * Releases NVM and the NVMem devices if they were registered.
520 */
tb_nvm_free(struct tb_nvm * nvm)521 void tb_nvm_free(struct tb_nvm *nvm)
522 {
523 if (nvm) {
524 nvmem_unregister(nvm->non_active);
525 nvmem_unregister(nvm->active);
526 vfree(nvm->buf);
527 ida_simple_remove(&nvm_ida, nvm->id);
528 }
529 kfree(nvm);
530 }
531
532 /**
533 * tb_nvm_read_data() - Read data from NVM
534 * @address: Start address on the flash
535 * @buf: Buffer where the read data is copied
536 * @size: Size of the buffer in bytes
537 * @retries: Number of retries if block read fails
538 * @read_block: Function that reads block from the flash
539 * @read_block_data: Data passsed to @read_block
540 *
541 * This is a generic function that reads data from NVM or NVM like
542 * device.
543 *
544 * Returns %0 on success and negative errno otherwise.
545 */
tb_nvm_read_data(unsigned int address,void * buf,size_t size,unsigned int retries,read_block_fn read_block,void * read_block_data)546 int tb_nvm_read_data(unsigned int address, void *buf, size_t size,
547 unsigned int retries, read_block_fn read_block,
548 void *read_block_data)
549 {
550 do {
551 unsigned int dwaddress, dwords, offset;
552 u8 data[NVM_DATA_DWORDS * 4];
553 size_t nbytes;
554 int ret;
555
556 offset = address & 3;
557 nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4);
558
559 dwaddress = address / 4;
560 dwords = ALIGN(nbytes, 4) / 4;
561
562 ret = read_block(read_block_data, dwaddress, data, dwords);
563 if (ret) {
564 if (ret != -ENODEV && retries--)
565 continue;
566 return ret;
567 }
568
569 nbytes -= offset;
570 memcpy(buf, data + offset, nbytes);
571
572 size -= nbytes;
573 address += nbytes;
574 buf += nbytes;
575 } while (size > 0);
576
577 return 0;
578 }
579
580 /**
581 * tb_nvm_write_data() - Write data to NVM
582 * @address: Start address on the flash
583 * @buf: Buffer where the data is copied from
584 * @size: Size of the buffer in bytes
585 * @retries: Number of retries if the block write fails
586 * @write_block: Function that writes block to the flash
587 * @write_block_data: Data passwd to @write_block
588 *
589 * This is generic function that writes data to NVM or NVM like device.
590 *
591 * Returns %0 on success and negative errno otherwise.
592 */
tb_nvm_write_data(unsigned int address,const void * buf,size_t size,unsigned int retries,write_block_fn write_block,void * write_block_data)593 int tb_nvm_write_data(unsigned int address, const void *buf, size_t size,
594 unsigned int retries, write_block_fn write_block,
595 void *write_block_data)
596 {
597 do {
598 unsigned int offset, dwaddress;
599 u8 data[NVM_DATA_DWORDS * 4];
600 size_t nbytes;
601 int ret;
602
603 offset = address & 3;
604 nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4);
605
606 memcpy(data + offset, buf, nbytes);
607
608 dwaddress = address / 4;
609 ret = write_block(write_block_data, dwaddress, data, nbytes / 4);
610 if (ret) {
611 if (ret == -ETIMEDOUT) {
612 if (retries--)
613 continue;
614 ret = -EIO;
615 }
616 return ret;
617 }
618
619 size -= nbytes;
620 address += nbytes;
621 buf += nbytes;
622 } while (size > 0);
623
624 return 0;
625 }
626
tb_nvm_exit(void)627 void tb_nvm_exit(void)
628 {
629 ida_destroy(&nvm_ida);
630 }
631