1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 struct fpsimd_last_state_struct {
122 	struct user_fpsimd_state *st;
123 	void *sve_state;
124 	void *za_state;
125 	u64 *svcr;
126 	unsigned int sve_vl;
127 	unsigned int sme_vl;
128 };
129 
130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
131 
132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133 #ifdef CONFIG_ARM64_SVE
134 	[ARM64_VEC_SVE] = {
135 		.type			= ARM64_VEC_SVE,
136 		.name			= "SVE",
137 		.min_vl			= SVE_VL_MIN,
138 		.max_vl			= SVE_VL_MIN,
139 		.max_virtualisable_vl	= SVE_VL_MIN,
140 	},
141 #endif
142 #ifdef CONFIG_ARM64_SME
143 	[ARM64_VEC_SME] = {
144 		.type			= ARM64_VEC_SME,
145 		.name			= "SME",
146 	},
147 #endif
148 };
149 
vec_vl_inherit_flag(enum vec_type type)150 static unsigned int vec_vl_inherit_flag(enum vec_type type)
151 {
152 	switch (type) {
153 	case ARM64_VEC_SVE:
154 		return TIF_SVE_VL_INHERIT;
155 	case ARM64_VEC_SME:
156 		return TIF_SME_VL_INHERIT;
157 	default:
158 		WARN_ON_ONCE(1);
159 		return 0;
160 	}
161 }
162 
163 struct vl_config {
164 	int __default_vl;		/* Default VL for tasks */
165 };
166 
167 static struct vl_config vl_config[ARM64_VEC_MAX];
168 
get_default_vl(enum vec_type type)169 static inline int get_default_vl(enum vec_type type)
170 {
171 	return READ_ONCE(vl_config[type].__default_vl);
172 }
173 
174 #ifdef CONFIG_ARM64_SVE
175 
get_sve_default_vl(void)176 static inline int get_sve_default_vl(void)
177 {
178 	return get_default_vl(ARM64_VEC_SVE);
179 }
180 
set_default_vl(enum vec_type type,int val)181 static inline void set_default_vl(enum vec_type type, int val)
182 {
183 	WRITE_ONCE(vl_config[type].__default_vl, val);
184 }
185 
set_sve_default_vl(int val)186 static inline void set_sve_default_vl(int val)
187 {
188 	set_default_vl(ARM64_VEC_SVE, val);
189 }
190 
191 static void __percpu *efi_sve_state;
192 
193 #else /* ! CONFIG_ARM64_SVE */
194 
195 /* Dummy declaration for code that will be optimised out: */
196 extern void __percpu *efi_sve_state;
197 
198 #endif /* ! CONFIG_ARM64_SVE */
199 
200 #ifdef CONFIG_ARM64_SME
201 
get_sme_default_vl(void)202 static int get_sme_default_vl(void)
203 {
204 	return get_default_vl(ARM64_VEC_SME);
205 }
206 
set_sme_default_vl(int val)207 static void set_sme_default_vl(int val)
208 {
209 	set_default_vl(ARM64_VEC_SME, val);
210 }
211 
212 static void sme_free(struct task_struct *);
213 
214 #else
215 
sme_free(struct task_struct * t)216 static inline void sme_free(struct task_struct *t) { }
217 
218 #endif
219 
220 DEFINE_PER_CPU(bool, fpsimd_context_busy);
221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
222 
223 static void fpsimd_bind_task_to_cpu(void);
224 
__get_cpu_fpsimd_context(void)225 static void __get_cpu_fpsimd_context(void)
226 {
227 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
228 
229 	WARN_ON(busy);
230 }
231 
232 /*
233  * Claim ownership of the CPU FPSIMD context for use by the calling context.
234  *
235  * The caller may freely manipulate the FPSIMD context metadata until
236  * put_cpu_fpsimd_context() is called.
237  *
238  * The double-underscore version must only be called if you know the task
239  * can't be preempted.
240  *
241  * On RT kernels local_bh_disable() is not sufficient because it only
242  * serializes soft interrupt related sections via a local lock, but stays
243  * preemptible. Disabling preemption is the right choice here as bottom
244  * half processing is always in thread context on RT kernels so it
245  * implicitly prevents bottom half processing as well.
246  */
get_cpu_fpsimd_context(void)247 static void get_cpu_fpsimd_context(void)
248 {
249 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_bh_disable();
251 	else
252 		preempt_disable();
253 	__get_cpu_fpsimd_context();
254 }
255 
__put_cpu_fpsimd_context(void)256 static void __put_cpu_fpsimd_context(void)
257 {
258 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
259 
260 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
261 }
262 
263 /*
264  * Release the CPU FPSIMD context.
265  *
266  * Must be called from a context in which get_cpu_fpsimd_context() was
267  * previously called, with no call to put_cpu_fpsimd_context() in the
268  * meantime.
269  */
put_cpu_fpsimd_context(void)270 static void put_cpu_fpsimd_context(void)
271 {
272 	__put_cpu_fpsimd_context();
273 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
274 		local_bh_enable();
275 	else
276 		preempt_enable();
277 }
278 
have_cpu_fpsimd_context(void)279 static bool have_cpu_fpsimd_context(void)
280 {
281 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
282 }
283 
task_get_vl(const struct task_struct * task,enum vec_type type)284 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
285 {
286 	return task->thread.vl[type];
287 }
288 
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)289 void task_set_vl(struct task_struct *task, enum vec_type type,
290 		 unsigned long vl)
291 {
292 	task->thread.vl[type] = vl;
293 }
294 
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)295 unsigned int task_get_vl_onexec(const struct task_struct *task,
296 				enum vec_type type)
297 {
298 	return task->thread.vl_onexec[type];
299 }
300 
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)301 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
302 			unsigned long vl)
303 {
304 	task->thread.vl_onexec[type] = vl;
305 }
306 
307 /*
308  * TIF_SME controls whether a task can use SME without trapping while
309  * in userspace, when TIF_SME is set then we must have storage
310  * alocated in sve_state and za_state to store the contents of both ZA
311  * and the SVE registers for both streaming and non-streaming modes.
312  *
313  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
314  * may disable TIF_SME and reenable traps.
315  */
316 
317 
318 /*
319  * TIF_SVE controls whether a task can use SVE without trapping while
320  * in userspace, and also (together with TIF_SME) the way a task's
321  * FPSIMD/SVE state is stored in thread_struct.
322  *
323  * The kernel uses this flag to track whether a user task is actively
324  * using SVE, and therefore whether full SVE register state needs to
325  * be tracked.  If not, the cheaper FPSIMD context handling code can
326  * be used instead of the more costly SVE equivalents.
327  *
328  *  * TIF_SVE or SVCR.SM set:
329  *
330  *    The task can execute SVE instructions while in userspace without
331  *    trapping to the kernel.
332  *
333  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
334  *    corresponding Zn), P0-P15 and FFR are encoded in
335  *    task->thread.sve_state, formatted appropriately for vector
336  *    length task->thread.sve_vl or, if SVCR.SM is set,
337  *    task->thread.sme_vl.
338  *
339  *    task->thread.sve_state must point to a valid buffer at least
340  *    sve_state_size(task) bytes in size.
341  *
342  *    During any syscall, the kernel may optionally clear TIF_SVE and
343  *    discard the vector state except for the FPSIMD subset.
344  *
345  *  * TIF_SVE clear:
346  *
347  *    An attempt by the user task to execute an SVE instruction causes
348  *    do_sve_acc() to be called, which does some preparation and then
349  *    sets TIF_SVE.
350  *
351  *    When stored, FPSIMD registers V0-V31 are encoded in
352  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
353  *    logically zero but not stored anywhere; P0-P15 and FFR are not
354  *    stored and have unspecified values from userspace's point of
355  *    view.  For hygiene purposes, the kernel zeroes them on next use,
356  *    but userspace is discouraged from relying on this.
357  *
358  *    task->thread.sve_state does not need to be non-NULL, valid or any
359  *    particular size: it must not be dereferenced.
360  *
361  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
362  *    irrespective of whether TIF_SVE is clear or set, since these are
363  *    not vector length dependent.
364  */
365 
366 /*
367  * Update current's FPSIMD/SVE registers from thread_struct.
368  *
369  * This function should be called only when the FPSIMD/SVE state in
370  * thread_struct is known to be up to date, when preparing to enter
371  * userspace.
372  */
task_fpsimd_load(void)373 static void task_fpsimd_load(void)
374 {
375 	bool restore_sve_regs = false;
376 	bool restore_ffr;
377 
378 	WARN_ON(!system_supports_fpsimd());
379 	WARN_ON(!have_cpu_fpsimd_context());
380 
381 	/* Check if we should restore SVE first */
382 	if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
383 		sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
384 		restore_sve_regs = true;
385 		restore_ffr = true;
386 	}
387 
388 	/* Restore SME, override SVE register configuration if needed */
389 	if (system_supports_sme()) {
390 		unsigned long sme_vl = task_get_sme_vl(current);
391 
392 		/* Ensure VL is set up for restoring data */
393 		if (test_thread_flag(TIF_SME))
394 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
395 
396 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
397 
398 		if (thread_za_enabled(&current->thread))
399 			za_load_state(current->thread.za_state);
400 
401 		if (thread_sm_enabled(&current->thread)) {
402 			restore_sve_regs = true;
403 			restore_ffr = system_supports_fa64();
404 		}
405 	}
406 
407 	if (restore_sve_regs)
408 		sve_load_state(sve_pffr(&current->thread),
409 			       &current->thread.uw.fpsimd_state.fpsr,
410 			       restore_ffr);
411 	else
412 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
413 }
414 
415 /*
416  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
417  * date with respect to the CPU registers. Note carefully that the
418  * current context is the context last bound to the CPU stored in
419  * last, if KVM is involved this may be the guest VM context rather
420  * than the host thread for the VM pointed to by current. This means
421  * that we must always reference the state storage via last rather
422  * than via current, other than the TIF_ flags which KVM will
423  * carefully maintain for us.
424  */
fpsimd_save(void)425 static void fpsimd_save(void)
426 {
427 	struct fpsimd_last_state_struct const *last =
428 		this_cpu_ptr(&fpsimd_last_state);
429 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
430 	bool save_sve_regs = false;
431 	bool save_ffr;
432 	unsigned int vl;
433 
434 	WARN_ON(!system_supports_fpsimd());
435 	WARN_ON(!have_cpu_fpsimd_context());
436 
437 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
438 		return;
439 
440 	if (test_thread_flag(TIF_SVE)) {
441 		save_sve_regs = true;
442 		save_ffr = true;
443 		vl = last->sve_vl;
444 	}
445 
446 	if (system_supports_sme()) {
447 		u64 *svcr = last->svcr;
448 		*svcr = read_sysreg_s(SYS_SVCR);
449 
450 		*svcr = read_sysreg_s(SYS_SVCR);
451 
452 		if (*svcr & SVCR_ZA_MASK)
453 			za_save_state(last->za_state);
454 
455 		/* If we are in streaming mode override regular SVE. */
456 		if (*svcr & SVCR_SM_MASK) {
457 			save_sve_regs = true;
458 			save_ffr = system_supports_fa64();
459 			vl = last->sme_vl;
460 		}
461 	}
462 
463 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
464 		/* Get the configured VL from RDVL, will account for SM */
465 		if (WARN_ON(sve_get_vl() != vl)) {
466 			/*
467 			 * Can't save the user regs, so current would
468 			 * re-enter user with corrupt state.
469 			 * There's no way to recover, so kill it:
470 			 */
471 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
472 			return;
473 		}
474 
475 		sve_save_state((char *)last->sve_state +
476 					sve_ffr_offset(vl),
477 			       &last->st->fpsr, save_ffr);
478 	} else {
479 		fpsimd_save_state(last->st);
480 	}
481 }
482 
483 /*
484  * All vector length selection from userspace comes through here.
485  * We're on a slow path, so some sanity-checks are included.
486  * If things go wrong there's a bug somewhere, but try to fall back to a
487  * safe choice.
488  */
find_supported_vector_length(enum vec_type type,unsigned int vl)489 static unsigned int find_supported_vector_length(enum vec_type type,
490 						 unsigned int vl)
491 {
492 	struct vl_info *info = &vl_info[type];
493 	int bit;
494 	int max_vl = info->max_vl;
495 
496 	if (WARN_ON(!sve_vl_valid(vl)))
497 		vl = info->min_vl;
498 
499 	if (WARN_ON(!sve_vl_valid(max_vl)))
500 		max_vl = info->min_vl;
501 
502 	if (vl > max_vl)
503 		vl = max_vl;
504 	if (vl < info->min_vl)
505 		vl = info->min_vl;
506 
507 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
508 			    __vq_to_bit(sve_vq_from_vl(vl)));
509 	return sve_vl_from_vq(__bit_to_vq(bit));
510 }
511 
512 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
513 
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)514 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
515 				  void *buffer, size_t *lenp, loff_t *ppos)
516 {
517 	struct vl_info *info = table->extra1;
518 	enum vec_type type = info->type;
519 	int ret;
520 	int vl = get_default_vl(type);
521 	struct ctl_table tmp_table = {
522 		.data = &vl,
523 		.maxlen = sizeof(vl),
524 	};
525 
526 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
527 	if (ret || !write)
528 		return ret;
529 
530 	/* Writing -1 has the special meaning "set to max": */
531 	if (vl == -1)
532 		vl = info->max_vl;
533 
534 	if (!sve_vl_valid(vl))
535 		return -EINVAL;
536 
537 	set_default_vl(type, find_supported_vector_length(type, vl));
538 	return 0;
539 }
540 
541 static struct ctl_table sve_default_vl_table[] = {
542 	{
543 		.procname	= "sve_default_vector_length",
544 		.mode		= 0644,
545 		.proc_handler	= vec_proc_do_default_vl,
546 		.extra1		= &vl_info[ARM64_VEC_SVE],
547 	},
548 	{ }
549 };
550 
sve_sysctl_init(void)551 static int __init sve_sysctl_init(void)
552 {
553 	if (system_supports_sve())
554 		if (!register_sysctl("abi", sve_default_vl_table))
555 			return -EINVAL;
556 
557 	return 0;
558 }
559 
560 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)561 static int __init sve_sysctl_init(void) { return 0; }
562 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
563 
564 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
565 static struct ctl_table sme_default_vl_table[] = {
566 	{
567 		.procname	= "sme_default_vector_length",
568 		.mode		= 0644,
569 		.proc_handler	= vec_proc_do_default_vl,
570 		.extra1		= &vl_info[ARM64_VEC_SME],
571 	},
572 	{ }
573 };
574 
sme_sysctl_init(void)575 static int __init sme_sysctl_init(void)
576 {
577 	if (system_supports_sme())
578 		if (!register_sysctl("abi", sme_default_vl_table))
579 			return -EINVAL;
580 
581 	return 0;
582 }
583 
584 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)585 static int __init sme_sysctl_init(void) { return 0; }
586 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
587 
588 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
589 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
590 
591 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)592 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
593 {
594 	u64 a = swab64(x);
595 	u64 b = swab64(x >> 64);
596 
597 	return ((__uint128_t)a << 64) | b;
598 }
599 #else
arm64_cpu_to_le128(__uint128_t x)600 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
601 {
602 	return x;
603 }
604 #endif
605 
606 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
607 
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)608 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
609 			    unsigned int vq)
610 {
611 	unsigned int i;
612 	__uint128_t *p;
613 
614 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
615 		p = (__uint128_t *)ZREG(sst, vq, i);
616 		*p = arm64_cpu_to_le128(fst->vregs[i]);
617 	}
618 }
619 
620 /*
621  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
622  * task->thread.sve_state.
623  *
624  * Task can be a non-runnable task, or current.  In the latter case,
625  * the caller must have ownership of the cpu FPSIMD context before calling
626  * this function.
627  * task->thread.sve_state must point to at least sve_state_size(task)
628  * bytes of allocated kernel memory.
629  * task->thread.uw.fpsimd_state must be up to date before calling this
630  * function.
631  */
fpsimd_to_sve(struct task_struct * task)632 static void fpsimd_to_sve(struct task_struct *task)
633 {
634 	unsigned int vq;
635 	void *sst = task->thread.sve_state;
636 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
637 
638 	if (!system_supports_sve())
639 		return;
640 
641 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
642 	__fpsimd_to_sve(sst, fst, vq);
643 }
644 
645 /*
646  * Transfer the SVE state in task->thread.sve_state to
647  * task->thread.uw.fpsimd_state.
648  *
649  * Task can be a non-runnable task, or current.  In the latter case,
650  * the caller must have ownership of the cpu FPSIMD context before calling
651  * this function.
652  * task->thread.sve_state must point to at least sve_state_size(task)
653  * bytes of allocated kernel memory.
654  * task->thread.sve_state must be up to date before calling this function.
655  */
sve_to_fpsimd(struct task_struct * task)656 static void sve_to_fpsimd(struct task_struct *task)
657 {
658 	unsigned int vq, vl;
659 	void const *sst = task->thread.sve_state;
660 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
661 	unsigned int i;
662 	__uint128_t const *p;
663 
664 	if (!system_supports_sve())
665 		return;
666 
667 	vl = thread_get_cur_vl(&task->thread);
668 	vq = sve_vq_from_vl(vl);
669 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
670 		p = (__uint128_t const *)ZREG(sst, vq, i);
671 		fst->vregs[i] = arm64_le128_to_cpu(*p);
672 	}
673 }
674 
675 #ifdef CONFIG_ARM64_SVE
676 /*
677  * Call __sve_free() directly only if you know task can't be scheduled
678  * or preempted.
679  */
__sve_free(struct task_struct * task)680 static void __sve_free(struct task_struct *task)
681 {
682 	kfree(task->thread.sve_state);
683 	task->thread.sve_state = NULL;
684 }
685 
sve_free(struct task_struct * task)686 static void sve_free(struct task_struct *task)
687 {
688 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
689 
690 	__sve_free(task);
691 }
692 
693 /*
694  * Return how many bytes of memory are required to store the full SVE
695  * state for task, given task's currently configured vector length.
696  */
sve_state_size(struct task_struct const * task)697 size_t sve_state_size(struct task_struct const *task)
698 {
699 	unsigned int vl = 0;
700 
701 	if (system_supports_sve())
702 		vl = task_get_sve_vl(task);
703 	if (system_supports_sme())
704 		vl = max(vl, task_get_sme_vl(task));
705 
706 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
707 }
708 
709 /*
710  * Ensure that task->thread.sve_state is allocated and sufficiently large.
711  *
712  * This function should be used only in preparation for replacing
713  * task->thread.sve_state with new data.  The memory is always zeroed
714  * here to prevent stale data from showing through: this is done in
715  * the interest of testability and predictability: except in the
716  * do_sve_acc() case, there is no ABI requirement to hide stale data
717  * written previously be task.
718  */
sve_alloc(struct task_struct * task,bool flush)719 void sve_alloc(struct task_struct *task, bool flush)
720 {
721 	if (task->thread.sve_state) {
722 		if (flush)
723 			memset(task->thread.sve_state, 0,
724 			       sve_state_size(task));
725 		return;
726 	}
727 
728 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
729 	task->thread.sve_state =
730 		kzalloc(sve_state_size(task), GFP_KERNEL);
731 }
732 
733 
734 /*
735  * Force the FPSIMD state shared with SVE to be updated in the SVE state
736  * even if the SVE state is the current active state.
737  *
738  * This should only be called by ptrace.  task must be non-runnable.
739  * task->thread.sve_state must point to at least sve_state_size(task)
740  * bytes of allocated kernel memory.
741  */
fpsimd_force_sync_to_sve(struct task_struct * task)742 void fpsimd_force_sync_to_sve(struct task_struct *task)
743 {
744 	fpsimd_to_sve(task);
745 }
746 
747 /*
748  * Ensure that task->thread.sve_state is up to date with respect to
749  * the user task, irrespective of when SVE is in use or not.
750  *
751  * This should only be called by ptrace.  task must be non-runnable.
752  * task->thread.sve_state must point to at least sve_state_size(task)
753  * bytes of allocated kernel memory.
754  */
fpsimd_sync_to_sve(struct task_struct * task)755 void fpsimd_sync_to_sve(struct task_struct *task)
756 {
757 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
758 	    !thread_sm_enabled(&task->thread))
759 		fpsimd_to_sve(task);
760 }
761 
762 /*
763  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
764  * the user task, irrespective of whether SVE is in use or not.
765  *
766  * This should only be called by ptrace.  task must be non-runnable.
767  * task->thread.sve_state must point to at least sve_state_size(task)
768  * bytes of allocated kernel memory.
769  */
sve_sync_to_fpsimd(struct task_struct * task)770 void sve_sync_to_fpsimd(struct task_struct *task)
771 {
772 	if (test_tsk_thread_flag(task, TIF_SVE) ||
773 	    thread_sm_enabled(&task->thread))
774 		sve_to_fpsimd(task);
775 }
776 
777 /*
778  * Ensure that task->thread.sve_state is up to date with respect to
779  * the task->thread.uw.fpsimd_state.
780  *
781  * This should only be called by ptrace to merge new FPSIMD register
782  * values into a task for which SVE is currently active.
783  * task must be non-runnable.
784  * task->thread.sve_state must point to at least sve_state_size(task)
785  * bytes of allocated kernel memory.
786  * task->thread.uw.fpsimd_state must already have been initialised with
787  * the new FPSIMD register values to be merged in.
788  */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)789 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
790 {
791 	unsigned int vq;
792 	void *sst = task->thread.sve_state;
793 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
794 
795 	if (!test_tsk_thread_flag(task, TIF_SVE))
796 		return;
797 
798 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
799 
800 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
801 	__fpsimd_to_sve(sst, fst, vq);
802 }
803 
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)804 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
805 			  unsigned long vl, unsigned long flags)
806 {
807 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
808 				     PR_SVE_SET_VL_ONEXEC))
809 		return -EINVAL;
810 
811 	if (!sve_vl_valid(vl))
812 		return -EINVAL;
813 
814 	/*
815 	 * Clamp to the maximum vector length that VL-agnostic code
816 	 * can work with.  A flag may be assigned in the future to
817 	 * allow setting of larger vector lengths without confusing
818 	 * older software.
819 	 */
820 	if (vl > VL_ARCH_MAX)
821 		vl = VL_ARCH_MAX;
822 
823 	vl = find_supported_vector_length(type, vl);
824 
825 	if (flags & (PR_SVE_VL_INHERIT |
826 		     PR_SVE_SET_VL_ONEXEC))
827 		task_set_vl_onexec(task, type, vl);
828 	else
829 		/* Reset VL to system default on next exec: */
830 		task_set_vl_onexec(task, type, 0);
831 
832 	/* Only actually set the VL if not deferred: */
833 	if (flags & PR_SVE_SET_VL_ONEXEC)
834 		goto out;
835 
836 	if (vl == task_get_vl(task, type))
837 		goto out;
838 
839 	/*
840 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
841 	 * write any live register state back to task_struct, and convert to a
842 	 * regular FPSIMD thread.
843 	 */
844 	if (task == current) {
845 		get_cpu_fpsimd_context();
846 
847 		fpsimd_save();
848 	}
849 
850 	fpsimd_flush_task_state(task);
851 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
852 	    thread_sm_enabled(&task->thread))
853 		sve_to_fpsimd(task);
854 
855 	if (system_supports_sme() && type == ARM64_VEC_SME) {
856 		task->thread.svcr &= ~(SVCR_SM_MASK |
857 				       SVCR_ZA_MASK);
858 		clear_thread_flag(TIF_SME);
859 	}
860 
861 	if (task == current)
862 		put_cpu_fpsimd_context();
863 
864 	/*
865 	 * Force reallocation of task SVE and SME state to the correct
866 	 * size on next use:
867 	 */
868 	sve_free(task);
869 	if (system_supports_sme() && type == ARM64_VEC_SME)
870 		sme_free(task);
871 
872 	task_set_vl(task, type, vl);
873 
874 out:
875 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
876 			       flags & PR_SVE_VL_INHERIT);
877 
878 	return 0;
879 }
880 
881 /*
882  * Encode the current vector length and flags for return.
883  * This is only required for prctl(): ptrace has separate fields.
884  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
885  *
886  * flags are as for vec_set_vector_length().
887  */
vec_prctl_status(enum vec_type type,unsigned long flags)888 static int vec_prctl_status(enum vec_type type, unsigned long flags)
889 {
890 	int ret;
891 
892 	if (flags & PR_SVE_SET_VL_ONEXEC)
893 		ret = task_get_vl_onexec(current, type);
894 	else
895 		ret = task_get_vl(current, type);
896 
897 	if (test_thread_flag(vec_vl_inherit_flag(type)))
898 		ret |= PR_SVE_VL_INHERIT;
899 
900 	return ret;
901 }
902 
903 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)904 int sve_set_current_vl(unsigned long arg)
905 {
906 	unsigned long vl, flags;
907 	int ret;
908 
909 	vl = arg & PR_SVE_VL_LEN_MASK;
910 	flags = arg & ~vl;
911 
912 	if (!system_supports_sve() || is_compat_task())
913 		return -EINVAL;
914 
915 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
916 	if (ret)
917 		return ret;
918 
919 	return vec_prctl_status(ARM64_VEC_SVE, flags);
920 }
921 
922 /* PR_SVE_GET_VL */
sve_get_current_vl(void)923 int sve_get_current_vl(void)
924 {
925 	if (!system_supports_sve() || is_compat_task())
926 		return -EINVAL;
927 
928 	return vec_prctl_status(ARM64_VEC_SVE, 0);
929 }
930 
931 #ifdef CONFIG_ARM64_SME
932 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)933 int sme_set_current_vl(unsigned long arg)
934 {
935 	unsigned long vl, flags;
936 	int ret;
937 
938 	vl = arg & PR_SME_VL_LEN_MASK;
939 	flags = arg & ~vl;
940 
941 	if (!system_supports_sme() || is_compat_task())
942 		return -EINVAL;
943 
944 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
945 	if (ret)
946 		return ret;
947 
948 	return vec_prctl_status(ARM64_VEC_SME, flags);
949 }
950 
951 /* PR_SME_GET_VL */
sme_get_current_vl(void)952 int sme_get_current_vl(void)
953 {
954 	if (!system_supports_sme() || is_compat_task())
955 		return -EINVAL;
956 
957 	return vec_prctl_status(ARM64_VEC_SME, 0);
958 }
959 #endif /* CONFIG_ARM64_SME */
960 
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))961 static void vec_probe_vqs(struct vl_info *info,
962 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
963 {
964 	unsigned int vq, vl;
965 
966 	bitmap_zero(map, SVE_VQ_MAX);
967 
968 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
969 		write_vl(info->type, vq - 1); /* self-syncing */
970 
971 		switch (info->type) {
972 		case ARM64_VEC_SVE:
973 			vl = sve_get_vl();
974 			break;
975 		case ARM64_VEC_SME:
976 			vl = sme_get_vl();
977 			break;
978 		default:
979 			vl = 0;
980 			break;
981 		}
982 
983 		/* Minimum VL identified? */
984 		if (sve_vq_from_vl(vl) > vq)
985 			break;
986 
987 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
988 		set_bit(__vq_to_bit(vq), map);
989 	}
990 }
991 
992 /*
993  * Initialise the set of known supported VQs for the boot CPU.
994  * This is called during kernel boot, before secondary CPUs are brought up.
995  */
vec_init_vq_map(enum vec_type type)996 void __init vec_init_vq_map(enum vec_type type)
997 {
998 	struct vl_info *info = &vl_info[type];
999 	vec_probe_vqs(info, info->vq_map);
1000 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1001 }
1002 
1003 /*
1004  * If we haven't committed to the set of supported VQs yet, filter out
1005  * those not supported by the current CPU.
1006  * This function is called during the bring-up of early secondary CPUs only.
1007  */
vec_update_vq_map(enum vec_type type)1008 void vec_update_vq_map(enum vec_type type)
1009 {
1010 	struct vl_info *info = &vl_info[type];
1011 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1012 
1013 	vec_probe_vqs(info, tmp_map);
1014 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1015 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1016 		  SVE_VQ_MAX);
1017 }
1018 
1019 /*
1020  * Check whether the current CPU supports all VQs in the committed set.
1021  * This function is called during the bring-up of late secondary CPUs only.
1022  */
vec_verify_vq_map(enum vec_type type)1023 int vec_verify_vq_map(enum vec_type type)
1024 {
1025 	struct vl_info *info = &vl_info[type];
1026 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1027 	unsigned long b;
1028 
1029 	vec_probe_vqs(info, tmp_map);
1030 
1031 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1032 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1033 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1034 			info->name, smp_processor_id());
1035 		return -EINVAL;
1036 	}
1037 
1038 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1039 		return 0;
1040 
1041 	/*
1042 	 * For KVM, it is necessary to ensure that this CPU doesn't
1043 	 * support any vector length that guests may have probed as
1044 	 * unsupported.
1045 	 */
1046 
1047 	/* Recover the set of supported VQs: */
1048 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1049 	/* Find VQs supported that are not globally supported: */
1050 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1051 
1052 	/* Find the lowest such VQ, if any: */
1053 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1054 	if (b >= SVE_VQ_MAX)
1055 		return 0; /* no mismatches */
1056 
1057 	/*
1058 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1059 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1060 	 */
1061 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1062 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1063 			info->name, smp_processor_id());
1064 		return -EINVAL;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
sve_efi_setup(void)1070 static void __init sve_efi_setup(void)
1071 {
1072 	int max_vl = 0;
1073 	int i;
1074 
1075 	if (!IS_ENABLED(CONFIG_EFI))
1076 		return;
1077 
1078 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1079 		max_vl = max(vl_info[i].max_vl, max_vl);
1080 
1081 	/*
1082 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1083 	 * This is evidence of a crippled system and we are returning void,
1084 	 * so no attempt is made to handle this situation here.
1085 	 */
1086 	if (!sve_vl_valid(max_vl))
1087 		goto fail;
1088 
1089 	efi_sve_state = __alloc_percpu(
1090 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1091 	if (!efi_sve_state)
1092 		goto fail;
1093 
1094 	return;
1095 
1096 fail:
1097 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1098 }
1099 
1100 /*
1101  * Enable SVE for EL1.
1102  * Intended for use by the cpufeatures code during CPU boot.
1103  */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1104 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1105 {
1106 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1107 	isb();
1108 }
1109 
1110 /*
1111  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1112  * vector length.
1113  *
1114  * Use only if SVE is present.
1115  * This function clobbers the SVE vector length.
1116  */
read_zcr_features(void)1117 u64 read_zcr_features(void)
1118 {
1119 	u64 zcr;
1120 	unsigned int vq_max;
1121 
1122 	/*
1123 	 * Set the maximum possible VL, and write zeroes to all other
1124 	 * bits to see if they stick.
1125 	 */
1126 	sve_kernel_enable(NULL);
1127 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1128 
1129 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1130 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1131 	vq_max = sve_vq_from_vl(sve_get_vl());
1132 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1133 
1134 	return zcr;
1135 }
1136 
sve_setup(void)1137 void __init sve_setup(void)
1138 {
1139 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1140 	u64 zcr;
1141 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1142 	unsigned long b;
1143 
1144 	if (!system_supports_sve())
1145 		return;
1146 
1147 	/*
1148 	 * The SVE architecture mandates support for 128-bit vectors,
1149 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1150 	 * If something went wrong, at least try to patch it up:
1151 	 */
1152 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1153 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1154 
1155 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1156 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1157 
1158 	/*
1159 	 * Sanity-check that the max VL we determined through CPU features
1160 	 * corresponds properly to sve_vq_map.  If not, do our best:
1161 	 */
1162 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1163 								 info->max_vl)))
1164 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1165 							    info->max_vl);
1166 
1167 	/*
1168 	 * For the default VL, pick the maximum supported value <= 64.
1169 	 * VL == 64 is guaranteed not to grow the signal frame.
1170 	 */
1171 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1172 
1173 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1174 		      SVE_VQ_MAX);
1175 
1176 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1177 	if (b >= SVE_VQ_MAX)
1178 		/* No non-virtualisable VLs found */
1179 		info->max_virtualisable_vl = SVE_VQ_MAX;
1180 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1181 		/* No virtualisable VLs?  This is architecturally forbidden. */
1182 		info->max_virtualisable_vl = SVE_VQ_MIN;
1183 	else /* b + 1 < SVE_VQ_MAX */
1184 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1185 
1186 	if (info->max_virtualisable_vl > info->max_vl)
1187 		info->max_virtualisable_vl = info->max_vl;
1188 
1189 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1190 		info->name, info->max_vl);
1191 	pr_info("%s: default vector length %u bytes per vector\n",
1192 		info->name, get_sve_default_vl());
1193 
1194 	/* KVM decides whether to support mismatched systems. Just warn here: */
1195 	if (sve_max_virtualisable_vl() < sve_max_vl())
1196 		pr_warn("%s: unvirtualisable vector lengths present\n",
1197 			info->name);
1198 
1199 	sve_efi_setup();
1200 }
1201 
1202 /*
1203  * Called from the put_task_struct() path, which cannot get here
1204  * unless dead_task is really dead and not schedulable.
1205  */
fpsimd_release_task(struct task_struct * dead_task)1206 void fpsimd_release_task(struct task_struct *dead_task)
1207 {
1208 	__sve_free(dead_task);
1209 	sme_free(dead_task);
1210 }
1211 
1212 #endif /* CONFIG_ARM64_SVE */
1213 
1214 #ifdef CONFIG_ARM64_SME
1215 
1216 /*
1217  * Ensure that task->thread.za_state is allocated and sufficiently large.
1218  *
1219  * This function should be used only in preparation for replacing
1220  * task->thread.za_state with new data.  The memory is always zeroed
1221  * here to prevent stale data from showing through: this is done in
1222  * the interest of testability and predictability, the architecture
1223  * guarantees that when ZA is enabled it will be zeroed.
1224  */
sme_alloc(struct task_struct * task)1225 void sme_alloc(struct task_struct *task)
1226 {
1227 	if (task->thread.za_state) {
1228 		memset(task->thread.za_state, 0, za_state_size(task));
1229 		return;
1230 	}
1231 
1232 	/* This could potentially be up to 64K. */
1233 	task->thread.za_state =
1234 		kzalloc(za_state_size(task), GFP_KERNEL);
1235 }
1236 
sme_free(struct task_struct * task)1237 static void sme_free(struct task_struct *task)
1238 {
1239 	kfree(task->thread.za_state);
1240 	task->thread.za_state = NULL;
1241 }
1242 
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1243 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1244 {
1245 	/* Set priority for all PEs to architecturally defined minimum */
1246 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1247 		       SYS_SMPRI_EL1);
1248 
1249 	/* Allow SME in kernel */
1250 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1251 	isb();
1252 
1253 	/* Allow EL0 to access TPIDR2 */
1254 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1255 	isb();
1256 }
1257 
1258 /*
1259  * This must be called after sme_kernel_enable(), we rely on the
1260  * feature table being sorted to ensure this.
1261  */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1262 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1263 {
1264 	/* Allow use of FA64 */
1265 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1266 		       SYS_SMCR_EL1);
1267 }
1268 
1269 /*
1270  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1271  * vector length.
1272  *
1273  * Use only if SME is present.
1274  * This function clobbers the SME vector length.
1275  */
read_smcr_features(void)1276 u64 read_smcr_features(void)
1277 {
1278 	u64 smcr;
1279 	unsigned int vq_max;
1280 
1281 	sme_kernel_enable(NULL);
1282 	sme_smstart_sm();
1283 
1284 	/*
1285 	 * Set the maximum possible VL.
1286 	 */
1287 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1288 		       SYS_SMCR_EL1);
1289 
1290 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1291 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1292 	vq_max = sve_vq_from_vl(sve_get_vl());
1293 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1294 
1295 	sme_smstop_sm();
1296 
1297 	return smcr;
1298 }
1299 
sme_setup(void)1300 void __init sme_setup(void)
1301 {
1302 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1303 	u64 smcr;
1304 	int min_bit;
1305 
1306 	if (!system_supports_sme())
1307 		return;
1308 
1309 	/*
1310 	 * SME doesn't require any particular vector length be
1311 	 * supported but it does require at least one.  We should have
1312 	 * disabled the feature entirely while bringing up CPUs but
1313 	 * let's double check here.
1314 	 */
1315 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1316 
1317 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1318 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1319 
1320 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1321 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1322 
1323 	/*
1324 	 * Sanity-check that the max VL we determined through CPU features
1325 	 * corresponds properly to sme_vq_map.  If not, do our best:
1326 	 */
1327 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1328 								 info->max_vl)))
1329 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1330 							    info->max_vl);
1331 
1332 	WARN_ON(info->min_vl > info->max_vl);
1333 
1334 	/*
1335 	 * For the default VL, pick the maximum supported value <= 32
1336 	 * (256 bits) if there is one since this is guaranteed not to
1337 	 * grow the signal frame when in streaming mode, otherwise the
1338 	 * minimum available VL will be used.
1339 	 */
1340 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1341 
1342 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1343 		info->min_vl);
1344 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1345 		info->max_vl);
1346 	pr_info("SME: default vector length %u bytes per vector\n",
1347 		get_sme_default_vl());
1348 }
1349 
1350 #endif /* CONFIG_ARM64_SME */
1351 
sve_init_regs(void)1352 static void sve_init_regs(void)
1353 {
1354 	/*
1355 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1356 	 * is not shared with FPSIMD. If (as is likely) the current
1357 	 * state is live in the registers then do this there and
1358 	 * update our metadata for the current task including
1359 	 * disabling the trap, otherwise update our in-memory copy.
1360 	 * We are guaranteed to not be in streaming mode, we can only
1361 	 * take a SVE trap when not in streaming mode and we can't be
1362 	 * in streaming mode when taking a SME trap.
1363 	 */
1364 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1365 		unsigned long vq_minus_one =
1366 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1367 		sve_set_vq(vq_minus_one);
1368 		sve_flush_live(true, vq_minus_one);
1369 		fpsimd_bind_task_to_cpu();
1370 	} else {
1371 		fpsimd_to_sve(current);
1372 	}
1373 }
1374 
1375 /*
1376  * Trapped SVE access
1377  *
1378  * Storage is allocated for the full SVE state, the current FPSIMD
1379  * register contents are migrated across, and the access trap is
1380  * disabled.
1381  *
1382  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1383  * would have disabled the SVE access trap for userspace during
1384  * ret_to_user, making an SVE access trap impossible in that case.
1385  */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1386 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1387 {
1388 	/* Even if we chose not to use SVE, the hardware could still trap: */
1389 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1390 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1391 		return;
1392 	}
1393 
1394 	sve_alloc(current, true);
1395 	if (!current->thread.sve_state) {
1396 		force_sig(SIGKILL);
1397 		return;
1398 	}
1399 
1400 	get_cpu_fpsimd_context();
1401 
1402 	if (test_and_set_thread_flag(TIF_SVE))
1403 		WARN_ON(1); /* SVE access shouldn't have trapped */
1404 
1405 	/*
1406 	 * Even if the task can have used streaming mode we can only
1407 	 * generate SVE access traps in normal SVE mode and
1408 	 * transitioning out of streaming mode may discard any
1409 	 * streaming mode state.  Always clear the high bits to avoid
1410 	 * any potential errors tracking what is properly initialised.
1411 	 */
1412 	sve_init_regs();
1413 
1414 	put_cpu_fpsimd_context();
1415 }
1416 
1417 /*
1418  * Trapped SME access
1419  *
1420  * Storage is allocated for the full SVE and SME state, the current
1421  * FPSIMD register contents are migrated to SVE if SVE is not already
1422  * active, and the access trap is disabled.
1423  *
1424  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1425  * would have disabled the SME access trap for userspace during
1426  * ret_to_user, making an SVE access trap impossible in that case.
1427  */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1428 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1429 {
1430 	/* Even if we chose not to use SME, the hardware could still trap: */
1431 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1432 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1433 		return;
1434 	}
1435 
1436 	/*
1437 	 * If this not a trap due to SME being disabled then something
1438 	 * is being used in the wrong mode, report as SIGILL.
1439 	 */
1440 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1441 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1442 		return;
1443 	}
1444 
1445 	sve_alloc(current, false);
1446 	sme_alloc(current);
1447 	if (!current->thread.sve_state || !current->thread.za_state) {
1448 		force_sig(SIGKILL);
1449 		return;
1450 	}
1451 
1452 	get_cpu_fpsimd_context();
1453 
1454 	/* With TIF_SME userspace shouldn't generate any traps */
1455 	if (test_and_set_thread_flag(TIF_SME))
1456 		WARN_ON(1);
1457 
1458 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1459 		unsigned long vq_minus_one =
1460 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1461 		sme_set_vq(vq_minus_one);
1462 
1463 		fpsimd_bind_task_to_cpu();
1464 	}
1465 
1466 	put_cpu_fpsimd_context();
1467 }
1468 
1469 /*
1470  * Trapped FP/ASIMD access.
1471  */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1472 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1473 {
1474 	/* TODO: implement lazy context saving/restoring */
1475 	WARN_ON(1);
1476 }
1477 
1478 /*
1479  * Raise a SIGFPE for the current process.
1480  */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1481 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1482 {
1483 	unsigned int si_code = FPE_FLTUNK;
1484 
1485 	if (esr & ESR_ELx_FP_EXC_TFV) {
1486 		if (esr & FPEXC_IOF)
1487 			si_code = FPE_FLTINV;
1488 		else if (esr & FPEXC_DZF)
1489 			si_code = FPE_FLTDIV;
1490 		else if (esr & FPEXC_OFF)
1491 			si_code = FPE_FLTOVF;
1492 		else if (esr & FPEXC_UFF)
1493 			si_code = FPE_FLTUND;
1494 		else if (esr & FPEXC_IXF)
1495 			si_code = FPE_FLTRES;
1496 	}
1497 
1498 	send_sig_fault(SIGFPE, si_code,
1499 		       (void __user *)instruction_pointer(regs),
1500 		       current);
1501 }
1502 
fpsimd_thread_switch(struct task_struct * next)1503 void fpsimd_thread_switch(struct task_struct *next)
1504 {
1505 	bool wrong_task, wrong_cpu;
1506 
1507 	if (!system_supports_fpsimd())
1508 		return;
1509 
1510 	__get_cpu_fpsimd_context();
1511 
1512 	/* Save unsaved fpsimd state, if any: */
1513 	fpsimd_save();
1514 
1515 	/*
1516 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1517 	 * state.  For kernel threads, FPSIMD registers are never loaded
1518 	 * and wrong_task and wrong_cpu will always be true.
1519 	 */
1520 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1521 					&next->thread.uw.fpsimd_state;
1522 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1523 
1524 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1525 			       wrong_task || wrong_cpu);
1526 
1527 	__put_cpu_fpsimd_context();
1528 }
1529 
fpsimd_flush_thread_vl(enum vec_type type)1530 static void fpsimd_flush_thread_vl(enum vec_type type)
1531 {
1532 	int vl, supported_vl;
1533 
1534 	/*
1535 	 * Reset the task vector length as required.  This is where we
1536 	 * ensure that all user tasks have a valid vector length
1537 	 * configured: no kernel task can become a user task without
1538 	 * an exec and hence a call to this function.  By the time the
1539 	 * first call to this function is made, all early hardware
1540 	 * probing is complete, so __sve_default_vl should be valid.
1541 	 * If a bug causes this to go wrong, we make some noise and
1542 	 * try to fudge thread.sve_vl to a safe value here.
1543 	 */
1544 	vl = task_get_vl_onexec(current, type);
1545 	if (!vl)
1546 		vl = get_default_vl(type);
1547 
1548 	if (WARN_ON(!sve_vl_valid(vl)))
1549 		vl = vl_info[type].min_vl;
1550 
1551 	supported_vl = find_supported_vector_length(type, vl);
1552 	if (WARN_ON(supported_vl != vl))
1553 		vl = supported_vl;
1554 
1555 	task_set_vl(current, type, vl);
1556 
1557 	/*
1558 	 * If the task is not set to inherit, ensure that the vector
1559 	 * length will be reset by a subsequent exec:
1560 	 */
1561 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1562 		task_set_vl_onexec(current, type, 0);
1563 }
1564 
fpsimd_flush_thread(void)1565 void fpsimd_flush_thread(void)
1566 {
1567 	void *sve_state = NULL;
1568 	void *za_state = NULL;
1569 
1570 	if (!system_supports_fpsimd())
1571 		return;
1572 
1573 	get_cpu_fpsimd_context();
1574 
1575 	fpsimd_flush_task_state(current);
1576 	memset(&current->thread.uw.fpsimd_state, 0,
1577 	       sizeof(current->thread.uw.fpsimd_state));
1578 
1579 	if (system_supports_sve()) {
1580 		clear_thread_flag(TIF_SVE);
1581 
1582 		/* Defer kfree() while in atomic context */
1583 		sve_state = current->thread.sve_state;
1584 		current->thread.sve_state = NULL;
1585 
1586 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1587 	}
1588 
1589 	if (system_supports_sme()) {
1590 		clear_thread_flag(TIF_SME);
1591 
1592 		/* Defer kfree() while in atomic context */
1593 		za_state = current->thread.za_state;
1594 		current->thread.za_state = NULL;
1595 
1596 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1597 		current->thread.svcr = 0;
1598 	}
1599 
1600 	put_cpu_fpsimd_context();
1601 	kfree(sve_state);
1602 	kfree(za_state);
1603 }
1604 
1605 /*
1606  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1607  * currently held in the registers does in fact belong to 'current'
1608  */
fpsimd_preserve_current_state(void)1609 void fpsimd_preserve_current_state(void)
1610 {
1611 	if (!system_supports_fpsimd())
1612 		return;
1613 
1614 	get_cpu_fpsimd_context();
1615 	fpsimd_save();
1616 	put_cpu_fpsimd_context();
1617 }
1618 
1619 /*
1620  * Like fpsimd_preserve_current_state(), but ensure that
1621  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1622  * the signal frame.
1623  */
fpsimd_signal_preserve_current_state(void)1624 void fpsimd_signal_preserve_current_state(void)
1625 {
1626 	fpsimd_preserve_current_state();
1627 	if (test_thread_flag(TIF_SVE))
1628 		sve_to_fpsimd(current);
1629 }
1630 
1631 /*
1632  * Associate current's FPSIMD context with this cpu
1633  * The caller must have ownership of the cpu FPSIMD context before calling
1634  * this function.
1635  */
fpsimd_bind_task_to_cpu(void)1636 static void fpsimd_bind_task_to_cpu(void)
1637 {
1638 	struct fpsimd_last_state_struct *last =
1639 		this_cpu_ptr(&fpsimd_last_state);
1640 
1641 	WARN_ON(!system_supports_fpsimd());
1642 	last->st = &current->thread.uw.fpsimd_state;
1643 	last->sve_state = current->thread.sve_state;
1644 	last->za_state = current->thread.za_state;
1645 	last->sve_vl = task_get_sve_vl(current);
1646 	last->sme_vl = task_get_sme_vl(current);
1647 	last->svcr = &current->thread.svcr;
1648 	current->thread.fpsimd_cpu = smp_processor_id();
1649 
1650 	/*
1651 	 * Toggle SVE and SME trapping for userspace if needed, these
1652 	 * are serialsied by ret_to_user().
1653 	 */
1654 	if (system_supports_sme()) {
1655 		if (test_thread_flag(TIF_SME))
1656 			sme_user_enable();
1657 		else
1658 			sme_user_disable();
1659 	}
1660 
1661 	if (system_supports_sve()) {
1662 		if (test_thread_flag(TIF_SVE))
1663 			sve_user_enable();
1664 		else
1665 			sve_user_disable();
1666 	}
1667 }
1668 
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl,void * za_state,unsigned int sme_vl,u64 * svcr)1669 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1670 			      unsigned int sve_vl, void *za_state,
1671 			      unsigned int sme_vl, u64 *svcr)
1672 {
1673 	struct fpsimd_last_state_struct *last =
1674 		this_cpu_ptr(&fpsimd_last_state);
1675 
1676 	WARN_ON(!system_supports_fpsimd());
1677 	WARN_ON(!in_softirq() && !irqs_disabled());
1678 
1679 	last->st = st;
1680 	last->svcr = svcr;
1681 	last->sve_state = sve_state;
1682 	last->za_state = za_state;
1683 	last->sve_vl = sve_vl;
1684 	last->sme_vl = sme_vl;
1685 }
1686 
1687 /*
1688  * Load the userland FPSIMD state of 'current' from memory, but only if the
1689  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1690  * state of 'current'.  This is called when we are preparing to return to
1691  * userspace to ensure that userspace sees a good register state.
1692  */
fpsimd_restore_current_state(void)1693 void fpsimd_restore_current_state(void)
1694 {
1695 	/*
1696 	 * For the tasks that were created before we detected the absence of
1697 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1698 	 * e.g, init. This could be then inherited by the children processes.
1699 	 * If we later detect that the system doesn't support FP/SIMD,
1700 	 * we must clear the flag for  all the tasks to indicate that the
1701 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1702 	 * do_notify_resume().
1703 	 */
1704 	if (!system_supports_fpsimd()) {
1705 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1706 		return;
1707 	}
1708 
1709 	get_cpu_fpsimd_context();
1710 
1711 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1712 		task_fpsimd_load();
1713 		fpsimd_bind_task_to_cpu();
1714 	}
1715 
1716 	put_cpu_fpsimd_context();
1717 }
1718 
1719 /*
1720  * Load an updated userland FPSIMD state for 'current' from memory and set the
1721  * flag that indicates that the FPSIMD register contents are the most recent
1722  * FPSIMD state of 'current'. This is used by the signal code to restore the
1723  * register state when returning from a signal handler in FPSIMD only cases,
1724  * any SVE context will be discarded.
1725  */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1726 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1727 {
1728 	if (WARN_ON(!system_supports_fpsimd()))
1729 		return;
1730 
1731 	get_cpu_fpsimd_context();
1732 
1733 	current->thread.uw.fpsimd_state = *state;
1734 	if (test_thread_flag(TIF_SVE))
1735 		fpsimd_to_sve(current);
1736 
1737 	task_fpsimd_load();
1738 	fpsimd_bind_task_to_cpu();
1739 
1740 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1741 
1742 	put_cpu_fpsimd_context();
1743 }
1744 
1745 /*
1746  * Invalidate live CPU copies of task t's FPSIMD state
1747  *
1748  * This function may be called with preemption enabled.  The barrier()
1749  * ensures that the assignment to fpsimd_cpu is visible to any
1750  * preemption/softirq that could race with set_tsk_thread_flag(), so
1751  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1752  *
1753  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1754  * subsequent code.
1755  */
fpsimd_flush_task_state(struct task_struct * t)1756 void fpsimd_flush_task_state(struct task_struct *t)
1757 {
1758 	t->thread.fpsimd_cpu = NR_CPUS;
1759 	/*
1760 	 * If we don't support fpsimd, bail out after we have
1761 	 * reset the fpsimd_cpu for this task and clear the
1762 	 * FPSTATE.
1763 	 */
1764 	if (!system_supports_fpsimd())
1765 		return;
1766 	barrier();
1767 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1768 
1769 	barrier();
1770 }
1771 
1772 /*
1773  * Invalidate any task's FPSIMD state that is present on this cpu.
1774  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1775  * before calling this function.
1776  */
fpsimd_flush_cpu_state(void)1777 static void fpsimd_flush_cpu_state(void)
1778 {
1779 	WARN_ON(!system_supports_fpsimd());
1780 	__this_cpu_write(fpsimd_last_state.st, NULL);
1781 
1782 	/*
1783 	 * Leaving streaming mode enabled will cause issues for any kernel
1784 	 * NEON and leaving streaming mode or ZA enabled may increase power
1785 	 * consumption.
1786 	 */
1787 	if (system_supports_sme())
1788 		sme_smstop();
1789 
1790 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1791 }
1792 
1793 /*
1794  * Save the FPSIMD state to memory and invalidate cpu view.
1795  * This function must be called with preemption disabled.
1796  */
fpsimd_save_and_flush_cpu_state(void)1797 void fpsimd_save_and_flush_cpu_state(void)
1798 {
1799 	if (!system_supports_fpsimd())
1800 		return;
1801 	WARN_ON(preemptible());
1802 	__get_cpu_fpsimd_context();
1803 	fpsimd_save();
1804 	fpsimd_flush_cpu_state();
1805 	__put_cpu_fpsimd_context();
1806 }
1807 
1808 #ifdef CONFIG_KERNEL_MODE_NEON
1809 
1810 /*
1811  * Kernel-side NEON support functions
1812  */
1813 
1814 /*
1815  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1816  * context
1817  *
1818  * Must not be called unless may_use_simd() returns true.
1819  * Task context in the FPSIMD registers is saved back to memory as necessary.
1820  *
1821  * A matching call to kernel_neon_end() must be made before returning from the
1822  * calling context.
1823  *
1824  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1825  * called.
1826  */
kernel_neon_begin(void)1827 void kernel_neon_begin(void)
1828 {
1829 	if (WARN_ON(!system_supports_fpsimd()))
1830 		return;
1831 
1832 	BUG_ON(!may_use_simd());
1833 
1834 	get_cpu_fpsimd_context();
1835 
1836 	/* Save unsaved fpsimd state, if any: */
1837 	fpsimd_save();
1838 
1839 	/* Invalidate any task state remaining in the fpsimd regs: */
1840 	fpsimd_flush_cpu_state();
1841 }
1842 EXPORT_SYMBOL(kernel_neon_begin);
1843 
1844 /*
1845  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1846  *
1847  * Must be called from a context in which kernel_neon_begin() was previously
1848  * called, with no call to kernel_neon_end() in the meantime.
1849  *
1850  * The caller must not use the FPSIMD registers after this function is called,
1851  * unless kernel_neon_begin() is called again in the meantime.
1852  */
kernel_neon_end(void)1853 void kernel_neon_end(void)
1854 {
1855 	if (!system_supports_fpsimd())
1856 		return;
1857 
1858 	put_cpu_fpsimd_context();
1859 }
1860 EXPORT_SYMBOL(kernel_neon_end);
1861 
1862 #ifdef CONFIG_EFI
1863 
1864 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1865 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1866 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1867 static DEFINE_PER_CPU(bool, efi_sm_state);
1868 
1869 /*
1870  * EFI runtime services support functions
1871  *
1872  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1873  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1874  * is always used rather than being an optional accelerator.
1875  *
1876  * These functions provide the necessary support for ensuring FPSIMD
1877  * save/restore in the contexts from which EFI is used.
1878  *
1879  * Do not use them for any other purpose -- if tempted to do so, you are
1880  * either doing something wrong or you need to propose some refactoring.
1881  */
1882 
1883 /*
1884  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1885  */
__efi_fpsimd_begin(void)1886 void __efi_fpsimd_begin(void)
1887 {
1888 	if (!system_supports_fpsimd())
1889 		return;
1890 
1891 	WARN_ON(preemptible());
1892 
1893 	if (may_use_simd()) {
1894 		kernel_neon_begin();
1895 	} else {
1896 		/*
1897 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1898 		 * preserving:
1899 		 */
1900 		if (system_supports_sve() && likely(efi_sve_state)) {
1901 			char *sve_state = this_cpu_ptr(efi_sve_state);
1902 			bool ffr = true;
1903 			u64 svcr;
1904 
1905 			__this_cpu_write(efi_sve_state_used, true);
1906 
1907 			if (system_supports_sme()) {
1908 				svcr = read_sysreg_s(SYS_SVCR);
1909 
1910 				__this_cpu_write(efi_sm_state,
1911 						 svcr & SVCR_SM_MASK);
1912 
1913 				/*
1914 				 * Unless we have FA64 FFR does not
1915 				 * exist in streaming mode.
1916 				 */
1917 				if (!system_supports_fa64())
1918 					ffr = !(svcr & SVCR_SM_MASK);
1919 			}
1920 
1921 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1922 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1923 				       ffr);
1924 
1925 			if (system_supports_sme())
1926 				sysreg_clear_set_s(SYS_SVCR,
1927 						   SVCR_SM_MASK, 0);
1928 
1929 		} else {
1930 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1931 		}
1932 
1933 		__this_cpu_write(efi_fpsimd_state_used, true);
1934 	}
1935 }
1936 
1937 /*
1938  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1939  */
__efi_fpsimd_end(void)1940 void __efi_fpsimd_end(void)
1941 {
1942 	if (!system_supports_fpsimd())
1943 		return;
1944 
1945 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1946 		kernel_neon_end();
1947 	} else {
1948 		if (system_supports_sve() &&
1949 		    likely(__this_cpu_read(efi_sve_state_used))) {
1950 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1951 			bool ffr = true;
1952 
1953 			/*
1954 			 * Restore streaming mode; EFI calls are
1955 			 * normal function calls so should not return in
1956 			 * streaming mode.
1957 			 */
1958 			if (system_supports_sme()) {
1959 				if (__this_cpu_read(efi_sm_state)) {
1960 					sysreg_clear_set_s(SYS_SVCR,
1961 							   0,
1962 							   SVCR_SM_MASK);
1963 
1964 					/*
1965 					 * Unless we have FA64 FFR does not
1966 					 * exist in streaming mode.
1967 					 */
1968 					if (!system_supports_fa64())
1969 						ffr = false;
1970 				}
1971 			}
1972 
1973 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1974 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1975 				       ffr);
1976 
1977 			__this_cpu_write(efi_sve_state_used, false);
1978 		} else {
1979 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1980 		}
1981 	}
1982 }
1983 
1984 #endif /* CONFIG_EFI */
1985 
1986 #endif /* CONFIG_KERNEL_MODE_NEON */
1987 
1988 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1989 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1990 				  unsigned long cmd, void *v)
1991 {
1992 	switch (cmd) {
1993 	case CPU_PM_ENTER:
1994 		fpsimd_save_and_flush_cpu_state();
1995 		break;
1996 	case CPU_PM_EXIT:
1997 		break;
1998 	case CPU_PM_ENTER_FAILED:
1999 	default:
2000 		return NOTIFY_DONE;
2001 	}
2002 	return NOTIFY_OK;
2003 }
2004 
2005 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2006 	.notifier_call = fpsimd_cpu_pm_notifier,
2007 };
2008 
fpsimd_pm_init(void)2009 static void __init fpsimd_pm_init(void)
2010 {
2011 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2012 }
2013 
2014 #else
fpsimd_pm_init(void)2015 static inline void fpsimd_pm_init(void) { }
2016 #endif /* CONFIG_CPU_PM */
2017 
2018 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2019 static int fpsimd_cpu_dead(unsigned int cpu)
2020 {
2021 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2022 	return 0;
2023 }
2024 
fpsimd_hotplug_init(void)2025 static inline void fpsimd_hotplug_init(void)
2026 {
2027 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2028 				  NULL, fpsimd_cpu_dead);
2029 }
2030 
2031 #else
fpsimd_hotplug_init(void)2032 static inline void fpsimd_hotplug_init(void) { }
2033 #endif
2034 
2035 /*
2036  * FP/SIMD support code initialisation.
2037  */
fpsimd_init(void)2038 static int __init fpsimd_init(void)
2039 {
2040 	if (cpu_have_named_feature(FP)) {
2041 		fpsimd_pm_init();
2042 		fpsimd_hotplug_init();
2043 	} else {
2044 		pr_notice("Floating-point is not implemented\n");
2045 	}
2046 
2047 	if (!cpu_have_named_feature(ASIMD))
2048 		pr_notice("Advanced SIMD is not implemented\n");
2049 
2050 
2051 	if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2052 		pr_notice("SME is implemented but not SVE\n");
2053 
2054 	sve_sysctl_init();
2055 	sme_sysctl_init();
2056 
2057 	return 0;
2058 }
2059 core_initcall(fpsimd_init);
2060