1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121 struct fpsimd_last_state_struct {
122 struct user_fpsimd_state *st;
123 void *sve_state;
124 void *za_state;
125 u64 *svcr;
126 unsigned int sve_vl;
127 unsigned int sme_vl;
128 };
129
130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
131
132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133 #ifdef CONFIG_ARM64_SVE
134 [ARM64_VEC_SVE] = {
135 .type = ARM64_VEC_SVE,
136 .name = "SVE",
137 .min_vl = SVE_VL_MIN,
138 .max_vl = SVE_VL_MIN,
139 .max_virtualisable_vl = SVE_VL_MIN,
140 },
141 #endif
142 #ifdef CONFIG_ARM64_SME
143 [ARM64_VEC_SME] = {
144 .type = ARM64_VEC_SME,
145 .name = "SME",
146 },
147 #endif
148 };
149
vec_vl_inherit_flag(enum vec_type type)150 static unsigned int vec_vl_inherit_flag(enum vec_type type)
151 {
152 switch (type) {
153 case ARM64_VEC_SVE:
154 return TIF_SVE_VL_INHERIT;
155 case ARM64_VEC_SME:
156 return TIF_SME_VL_INHERIT;
157 default:
158 WARN_ON_ONCE(1);
159 return 0;
160 }
161 }
162
163 struct vl_config {
164 int __default_vl; /* Default VL for tasks */
165 };
166
167 static struct vl_config vl_config[ARM64_VEC_MAX];
168
get_default_vl(enum vec_type type)169 static inline int get_default_vl(enum vec_type type)
170 {
171 return READ_ONCE(vl_config[type].__default_vl);
172 }
173
174 #ifdef CONFIG_ARM64_SVE
175
get_sve_default_vl(void)176 static inline int get_sve_default_vl(void)
177 {
178 return get_default_vl(ARM64_VEC_SVE);
179 }
180
set_default_vl(enum vec_type type,int val)181 static inline void set_default_vl(enum vec_type type, int val)
182 {
183 WRITE_ONCE(vl_config[type].__default_vl, val);
184 }
185
set_sve_default_vl(int val)186 static inline void set_sve_default_vl(int val)
187 {
188 set_default_vl(ARM64_VEC_SVE, val);
189 }
190
191 static void __percpu *efi_sve_state;
192
193 #else /* ! CONFIG_ARM64_SVE */
194
195 /* Dummy declaration for code that will be optimised out: */
196 extern void __percpu *efi_sve_state;
197
198 #endif /* ! CONFIG_ARM64_SVE */
199
200 #ifdef CONFIG_ARM64_SME
201
get_sme_default_vl(void)202 static int get_sme_default_vl(void)
203 {
204 return get_default_vl(ARM64_VEC_SME);
205 }
206
set_sme_default_vl(int val)207 static void set_sme_default_vl(int val)
208 {
209 set_default_vl(ARM64_VEC_SME, val);
210 }
211
212 static void sme_free(struct task_struct *);
213
214 #else
215
sme_free(struct task_struct * t)216 static inline void sme_free(struct task_struct *t) { }
217
218 #endif
219
220 DEFINE_PER_CPU(bool, fpsimd_context_busy);
221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
222
223 static void fpsimd_bind_task_to_cpu(void);
224
__get_cpu_fpsimd_context(void)225 static void __get_cpu_fpsimd_context(void)
226 {
227 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
228
229 WARN_ON(busy);
230 }
231
232 /*
233 * Claim ownership of the CPU FPSIMD context for use by the calling context.
234 *
235 * The caller may freely manipulate the FPSIMD context metadata until
236 * put_cpu_fpsimd_context() is called.
237 *
238 * The double-underscore version must only be called if you know the task
239 * can't be preempted.
240 *
241 * On RT kernels local_bh_disable() is not sufficient because it only
242 * serializes soft interrupt related sections via a local lock, but stays
243 * preemptible. Disabling preemption is the right choice here as bottom
244 * half processing is always in thread context on RT kernels so it
245 * implicitly prevents bottom half processing as well.
246 */
get_cpu_fpsimd_context(void)247 static void get_cpu_fpsimd_context(void)
248 {
249 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 local_bh_disable();
251 else
252 preempt_disable();
253 __get_cpu_fpsimd_context();
254 }
255
__put_cpu_fpsimd_context(void)256 static void __put_cpu_fpsimd_context(void)
257 {
258 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
259
260 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
261 }
262
263 /*
264 * Release the CPU FPSIMD context.
265 *
266 * Must be called from a context in which get_cpu_fpsimd_context() was
267 * previously called, with no call to put_cpu_fpsimd_context() in the
268 * meantime.
269 */
put_cpu_fpsimd_context(void)270 static void put_cpu_fpsimd_context(void)
271 {
272 __put_cpu_fpsimd_context();
273 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
274 local_bh_enable();
275 else
276 preempt_enable();
277 }
278
have_cpu_fpsimd_context(void)279 static bool have_cpu_fpsimd_context(void)
280 {
281 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
282 }
283
task_get_vl(const struct task_struct * task,enum vec_type type)284 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
285 {
286 return task->thread.vl[type];
287 }
288
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)289 void task_set_vl(struct task_struct *task, enum vec_type type,
290 unsigned long vl)
291 {
292 task->thread.vl[type] = vl;
293 }
294
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)295 unsigned int task_get_vl_onexec(const struct task_struct *task,
296 enum vec_type type)
297 {
298 return task->thread.vl_onexec[type];
299 }
300
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)301 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
302 unsigned long vl)
303 {
304 task->thread.vl_onexec[type] = vl;
305 }
306
307 /*
308 * TIF_SME controls whether a task can use SME without trapping while
309 * in userspace, when TIF_SME is set then we must have storage
310 * alocated in sve_state and za_state to store the contents of both ZA
311 * and the SVE registers for both streaming and non-streaming modes.
312 *
313 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
314 * may disable TIF_SME and reenable traps.
315 */
316
317
318 /*
319 * TIF_SVE controls whether a task can use SVE without trapping while
320 * in userspace, and also (together with TIF_SME) the way a task's
321 * FPSIMD/SVE state is stored in thread_struct.
322 *
323 * The kernel uses this flag to track whether a user task is actively
324 * using SVE, and therefore whether full SVE register state needs to
325 * be tracked. If not, the cheaper FPSIMD context handling code can
326 * be used instead of the more costly SVE equivalents.
327 *
328 * * TIF_SVE or SVCR.SM set:
329 *
330 * The task can execute SVE instructions while in userspace without
331 * trapping to the kernel.
332 *
333 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
334 * corresponding Zn), P0-P15 and FFR are encoded in
335 * task->thread.sve_state, formatted appropriately for vector
336 * length task->thread.sve_vl or, if SVCR.SM is set,
337 * task->thread.sme_vl.
338 *
339 * task->thread.sve_state must point to a valid buffer at least
340 * sve_state_size(task) bytes in size.
341 *
342 * During any syscall, the kernel may optionally clear TIF_SVE and
343 * discard the vector state except for the FPSIMD subset.
344 *
345 * * TIF_SVE clear:
346 *
347 * An attempt by the user task to execute an SVE instruction causes
348 * do_sve_acc() to be called, which does some preparation and then
349 * sets TIF_SVE.
350 *
351 * When stored, FPSIMD registers V0-V31 are encoded in
352 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
353 * logically zero but not stored anywhere; P0-P15 and FFR are not
354 * stored and have unspecified values from userspace's point of
355 * view. For hygiene purposes, the kernel zeroes them on next use,
356 * but userspace is discouraged from relying on this.
357 *
358 * task->thread.sve_state does not need to be non-NULL, valid or any
359 * particular size: it must not be dereferenced.
360 *
361 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
362 * irrespective of whether TIF_SVE is clear or set, since these are
363 * not vector length dependent.
364 */
365
366 /*
367 * Update current's FPSIMD/SVE registers from thread_struct.
368 *
369 * This function should be called only when the FPSIMD/SVE state in
370 * thread_struct is known to be up to date, when preparing to enter
371 * userspace.
372 */
task_fpsimd_load(void)373 static void task_fpsimd_load(void)
374 {
375 bool restore_sve_regs = false;
376 bool restore_ffr;
377
378 WARN_ON(!system_supports_fpsimd());
379 WARN_ON(!have_cpu_fpsimd_context());
380
381 /* Check if we should restore SVE first */
382 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
383 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
384 restore_sve_regs = true;
385 restore_ffr = true;
386 }
387
388 /* Restore SME, override SVE register configuration if needed */
389 if (system_supports_sme()) {
390 unsigned long sme_vl = task_get_sme_vl(current);
391
392 /* Ensure VL is set up for restoring data */
393 if (test_thread_flag(TIF_SME))
394 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
395
396 write_sysreg_s(current->thread.svcr, SYS_SVCR);
397
398 if (thread_za_enabled(¤t->thread))
399 za_load_state(current->thread.za_state);
400
401 if (thread_sm_enabled(¤t->thread)) {
402 restore_sve_regs = true;
403 restore_ffr = system_supports_fa64();
404 }
405 }
406
407 if (restore_sve_regs)
408 sve_load_state(sve_pffr(¤t->thread),
409 ¤t->thread.uw.fpsimd_state.fpsr,
410 restore_ffr);
411 else
412 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
413 }
414
415 /*
416 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
417 * date with respect to the CPU registers. Note carefully that the
418 * current context is the context last bound to the CPU stored in
419 * last, if KVM is involved this may be the guest VM context rather
420 * than the host thread for the VM pointed to by current. This means
421 * that we must always reference the state storage via last rather
422 * than via current, other than the TIF_ flags which KVM will
423 * carefully maintain for us.
424 */
fpsimd_save(void)425 static void fpsimd_save(void)
426 {
427 struct fpsimd_last_state_struct const *last =
428 this_cpu_ptr(&fpsimd_last_state);
429 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
430 bool save_sve_regs = false;
431 bool save_ffr;
432 unsigned int vl;
433
434 WARN_ON(!system_supports_fpsimd());
435 WARN_ON(!have_cpu_fpsimd_context());
436
437 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
438 return;
439
440 if (test_thread_flag(TIF_SVE)) {
441 save_sve_regs = true;
442 save_ffr = true;
443 vl = last->sve_vl;
444 }
445
446 if (system_supports_sme()) {
447 u64 *svcr = last->svcr;
448
449 *svcr = read_sysreg_s(SYS_SVCR);
450
451 if (*svcr & SVCR_ZA_MASK)
452 za_save_state(last->za_state);
453
454 /* If we are in streaming mode override regular SVE. */
455 if (*svcr & SVCR_SM_MASK) {
456 save_sve_regs = true;
457 save_ffr = system_supports_fa64();
458 vl = last->sme_vl;
459 }
460 }
461
462 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
463 /* Get the configured VL from RDVL, will account for SM */
464 if (WARN_ON(sve_get_vl() != vl)) {
465 /*
466 * Can't save the user regs, so current would
467 * re-enter user with corrupt state.
468 * There's no way to recover, so kill it:
469 */
470 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
471 return;
472 }
473
474 sve_save_state((char *)last->sve_state +
475 sve_ffr_offset(vl),
476 &last->st->fpsr, save_ffr);
477 } else {
478 fpsimd_save_state(last->st);
479 }
480 }
481
482 /*
483 * All vector length selection from userspace comes through here.
484 * We're on a slow path, so some sanity-checks are included.
485 * If things go wrong there's a bug somewhere, but try to fall back to a
486 * safe choice.
487 */
find_supported_vector_length(enum vec_type type,unsigned int vl)488 static unsigned int find_supported_vector_length(enum vec_type type,
489 unsigned int vl)
490 {
491 struct vl_info *info = &vl_info[type];
492 int bit;
493 int max_vl = info->max_vl;
494
495 if (WARN_ON(!sve_vl_valid(vl)))
496 vl = info->min_vl;
497
498 if (WARN_ON(!sve_vl_valid(max_vl)))
499 max_vl = info->min_vl;
500
501 if (vl > max_vl)
502 vl = max_vl;
503 if (vl < info->min_vl)
504 vl = info->min_vl;
505
506 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
507 __vq_to_bit(sve_vq_from_vl(vl)));
508 return sve_vl_from_vq(__bit_to_vq(bit));
509 }
510
511 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
512
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)513 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
514 void *buffer, size_t *lenp, loff_t *ppos)
515 {
516 struct vl_info *info = table->extra1;
517 enum vec_type type = info->type;
518 int ret;
519 int vl = get_default_vl(type);
520 struct ctl_table tmp_table = {
521 .data = &vl,
522 .maxlen = sizeof(vl),
523 };
524
525 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
526 if (ret || !write)
527 return ret;
528
529 /* Writing -1 has the special meaning "set to max": */
530 if (vl == -1)
531 vl = info->max_vl;
532
533 if (!sve_vl_valid(vl))
534 return -EINVAL;
535
536 set_default_vl(type, find_supported_vector_length(type, vl));
537 return 0;
538 }
539
540 static struct ctl_table sve_default_vl_table[] = {
541 {
542 .procname = "sve_default_vector_length",
543 .mode = 0644,
544 .proc_handler = vec_proc_do_default_vl,
545 .extra1 = &vl_info[ARM64_VEC_SVE],
546 },
547 { }
548 };
549
sve_sysctl_init(void)550 static int __init sve_sysctl_init(void)
551 {
552 if (system_supports_sve())
553 if (!register_sysctl("abi", sve_default_vl_table))
554 return -EINVAL;
555
556 return 0;
557 }
558
559 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)560 static int __init sve_sysctl_init(void) { return 0; }
561 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
562
563 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
564 static struct ctl_table sme_default_vl_table[] = {
565 {
566 .procname = "sme_default_vector_length",
567 .mode = 0644,
568 .proc_handler = vec_proc_do_default_vl,
569 .extra1 = &vl_info[ARM64_VEC_SME],
570 },
571 { }
572 };
573
sme_sysctl_init(void)574 static int __init sme_sysctl_init(void)
575 {
576 if (system_supports_sme())
577 if (!register_sysctl("abi", sme_default_vl_table))
578 return -EINVAL;
579
580 return 0;
581 }
582
583 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)584 static int __init sme_sysctl_init(void) { return 0; }
585 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
586
587 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
588 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
589
590 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)591 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
592 {
593 u64 a = swab64(x);
594 u64 b = swab64(x >> 64);
595
596 return ((__uint128_t)a << 64) | b;
597 }
598 #else
arm64_cpu_to_le128(__uint128_t x)599 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
600 {
601 return x;
602 }
603 #endif
604
605 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
606
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)607 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
608 unsigned int vq)
609 {
610 unsigned int i;
611 __uint128_t *p;
612
613 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
614 p = (__uint128_t *)ZREG(sst, vq, i);
615 *p = arm64_cpu_to_le128(fst->vregs[i]);
616 }
617 }
618
619 /*
620 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
621 * task->thread.sve_state.
622 *
623 * Task can be a non-runnable task, or current. In the latter case,
624 * the caller must have ownership of the cpu FPSIMD context before calling
625 * this function.
626 * task->thread.sve_state must point to at least sve_state_size(task)
627 * bytes of allocated kernel memory.
628 * task->thread.uw.fpsimd_state must be up to date before calling this
629 * function.
630 */
fpsimd_to_sve(struct task_struct * task)631 static void fpsimd_to_sve(struct task_struct *task)
632 {
633 unsigned int vq;
634 void *sst = task->thread.sve_state;
635 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
636
637 if (!system_supports_sve())
638 return;
639
640 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
641 __fpsimd_to_sve(sst, fst, vq);
642 }
643
644 /*
645 * Transfer the SVE state in task->thread.sve_state to
646 * task->thread.uw.fpsimd_state.
647 *
648 * Task can be a non-runnable task, or current. In the latter case,
649 * the caller must have ownership of the cpu FPSIMD context before calling
650 * this function.
651 * task->thread.sve_state must point to at least sve_state_size(task)
652 * bytes of allocated kernel memory.
653 * task->thread.sve_state must be up to date before calling this function.
654 */
sve_to_fpsimd(struct task_struct * task)655 static void sve_to_fpsimd(struct task_struct *task)
656 {
657 unsigned int vq, vl;
658 void const *sst = task->thread.sve_state;
659 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
660 unsigned int i;
661 __uint128_t const *p;
662
663 if (!system_supports_sve())
664 return;
665
666 vl = thread_get_cur_vl(&task->thread);
667 vq = sve_vq_from_vl(vl);
668 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
669 p = (__uint128_t const *)ZREG(sst, vq, i);
670 fst->vregs[i] = arm64_le128_to_cpu(*p);
671 }
672 }
673
674 #ifdef CONFIG_ARM64_SVE
675 /*
676 * Call __sve_free() directly only if you know task can't be scheduled
677 * or preempted.
678 */
__sve_free(struct task_struct * task)679 static void __sve_free(struct task_struct *task)
680 {
681 kfree(task->thread.sve_state);
682 task->thread.sve_state = NULL;
683 }
684
sve_free(struct task_struct * task)685 static void sve_free(struct task_struct *task)
686 {
687 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
688
689 __sve_free(task);
690 }
691
692 /*
693 * Return how many bytes of memory are required to store the full SVE
694 * state for task, given task's currently configured vector length.
695 */
sve_state_size(struct task_struct const * task)696 size_t sve_state_size(struct task_struct const *task)
697 {
698 unsigned int vl = 0;
699
700 if (system_supports_sve())
701 vl = task_get_sve_vl(task);
702 if (system_supports_sme())
703 vl = max(vl, task_get_sme_vl(task));
704
705 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
706 }
707
708 /*
709 * Ensure that task->thread.sve_state is allocated and sufficiently large.
710 *
711 * This function should be used only in preparation for replacing
712 * task->thread.sve_state with new data. The memory is always zeroed
713 * here to prevent stale data from showing through: this is done in
714 * the interest of testability and predictability: except in the
715 * do_sve_acc() case, there is no ABI requirement to hide stale data
716 * written previously be task.
717 */
sve_alloc(struct task_struct * task,bool flush)718 void sve_alloc(struct task_struct *task, bool flush)
719 {
720 if (task->thread.sve_state) {
721 if (flush)
722 memset(task->thread.sve_state, 0,
723 sve_state_size(task));
724 return;
725 }
726
727 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
728 task->thread.sve_state =
729 kzalloc(sve_state_size(task), GFP_KERNEL);
730 }
731
732
733 /*
734 * Force the FPSIMD state shared with SVE to be updated in the SVE state
735 * even if the SVE state is the current active state.
736 *
737 * This should only be called by ptrace. task must be non-runnable.
738 * task->thread.sve_state must point to at least sve_state_size(task)
739 * bytes of allocated kernel memory.
740 */
fpsimd_force_sync_to_sve(struct task_struct * task)741 void fpsimd_force_sync_to_sve(struct task_struct *task)
742 {
743 fpsimd_to_sve(task);
744 }
745
746 /*
747 * Ensure that task->thread.sve_state is up to date with respect to
748 * the user task, irrespective of when SVE is in use or not.
749 *
750 * This should only be called by ptrace. task must be non-runnable.
751 * task->thread.sve_state must point to at least sve_state_size(task)
752 * bytes of allocated kernel memory.
753 */
fpsimd_sync_to_sve(struct task_struct * task)754 void fpsimd_sync_to_sve(struct task_struct *task)
755 {
756 if (!test_tsk_thread_flag(task, TIF_SVE) &&
757 !thread_sm_enabled(&task->thread))
758 fpsimd_to_sve(task);
759 }
760
761 /*
762 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
763 * the user task, irrespective of whether SVE is in use or not.
764 *
765 * This should only be called by ptrace. task must be non-runnable.
766 * task->thread.sve_state must point to at least sve_state_size(task)
767 * bytes of allocated kernel memory.
768 */
sve_sync_to_fpsimd(struct task_struct * task)769 void sve_sync_to_fpsimd(struct task_struct *task)
770 {
771 if (test_tsk_thread_flag(task, TIF_SVE) ||
772 thread_sm_enabled(&task->thread))
773 sve_to_fpsimd(task);
774 }
775
776 /*
777 * Ensure that task->thread.sve_state is up to date with respect to
778 * the task->thread.uw.fpsimd_state.
779 *
780 * This should only be called by ptrace to merge new FPSIMD register
781 * values into a task for which SVE is currently active.
782 * task must be non-runnable.
783 * task->thread.sve_state must point to at least sve_state_size(task)
784 * bytes of allocated kernel memory.
785 * task->thread.uw.fpsimd_state must already have been initialised with
786 * the new FPSIMD register values to be merged in.
787 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)788 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
789 {
790 unsigned int vq;
791 void *sst = task->thread.sve_state;
792 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
793
794 if (!test_tsk_thread_flag(task, TIF_SVE))
795 return;
796
797 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
798
799 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
800 __fpsimd_to_sve(sst, fst, vq);
801 }
802
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)803 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
804 unsigned long vl, unsigned long flags)
805 {
806 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
807 PR_SVE_SET_VL_ONEXEC))
808 return -EINVAL;
809
810 if (!sve_vl_valid(vl))
811 return -EINVAL;
812
813 /*
814 * Clamp to the maximum vector length that VL-agnostic code
815 * can work with. A flag may be assigned in the future to
816 * allow setting of larger vector lengths without confusing
817 * older software.
818 */
819 if (vl > VL_ARCH_MAX)
820 vl = VL_ARCH_MAX;
821
822 vl = find_supported_vector_length(type, vl);
823
824 if (flags & (PR_SVE_VL_INHERIT |
825 PR_SVE_SET_VL_ONEXEC))
826 task_set_vl_onexec(task, type, vl);
827 else
828 /* Reset VL to system default on next exec: */
829 task_set_vl_onexec(task, type, 0);
830
831 /* Only actually set the VL if not deferred: */
832 if (flags & PR_SVE_SET_VL_ONEXEC)
833 goto out;
834
835 if (vl == task_get_vl(task, type))
836 goto out;
837
838 /*
839 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
840 * write any live register state back to task_struct, and convert to a
841 * regular FPSIMD thread.
842 */
843 if (task == current) {
844 get_cpu_fpsimd_context();
845
846 fpsimd_save();
847 }
848
849 fpsimd_flush_task_state(task);
850 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
851 thread_sm_enabled(&task->thread))
852 sve_to_fpsimd(task);
853
854 if (system_supports_sme() && type == ARM64_VEC_SME) {
855 task->thread.svcr &= ~(SVCR_SM_MASK |
856 SVCR_ZA_MASK);
857 clear_thread_flag(TIF_SME);
858 }
859
860 if (task == current)
861 put_cpu_fpsimd_context();
862
863 /*
864 * Force reallocation of task SVE and SME state to the correct
865 * size on next use:
866 */
867 sve_free(task);
868 if (system_supports_sme() && type == ARM64_VEC_SME)
869 sme_free(task);
870
871 task_set_vl(task, type, vl);
872
873 out:
874 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
875 flags & PR_SVE_VL_INHERIT);
876
877 return 0;
878 }
879
880 /*
881 * Encode the current vector length and flags for return.
882 * This is only required for prctl(): ptrace has separate fields.
883 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
884 *
885 * flags are as for vec_set_vector_length().
886 */
vec_prctl_status(enum vec_type type,unsigned long flags)887 static int vec_prctl_status(enum vec_type type, unsigned long flags)
888 {
889 int ret;
890
891 if (flags & PR_SVE_SET_VL_ONEXEC)
892 ret = task_get_vl_onexec(current, type);
893 else
894 ret = task_get_vl(current, type);
895
896 if (test_thread_flag(vec_vl_inherit_flag(type)))
897 ret |= PR_SVE_VL_INHERIT;
898
899 return ret;
900 }
901
902 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)903 int sve_set_current_vl(unsigned long arg)
904 {
905 unsigned long vl, flags;
906 int ret;
907
908 vl = arg & PR_SVE_VL_LEN_MASK;
909 flags = arg & ~vl;
910
911 if (!system_supports_sve() || is_compat_task())
912 return -EINVAL;
913
914 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
915 if (ret)
916 return ret;
917
918 return vec_prctl_status(ARM64_VEC_SVE, flags);
919 }
920
921 /* PR_SVE_GET_VL */
sve_get_current_vl(void)922 int sve_get_current_vl(void)
923 {
924 if (!system_supports_sve() || is_compat_task())
925 return -EINVAL;
926
927 return vec_prctl_status(ARM64_VEC_SVE, 0);
928 }
929
930 #ifdef CONFIG_ARM64_SME
931 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)932 int sme_set_current_vl(unsigned long arg)
933 {
934 unsigned long vl, flags;
935 int ret;
936
937 vl = arg & PR_SME_VL_LEN_MASK;
938 flags = arg & ~vl;
939
940 if (!system_supports_sme() || is_compat_task())
941 return -EINVAL;
942
943 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
944 if (ret)
945 return ret;
946
947 return vec_prctl_status(ARM64_VEC_SME, flags);
948 }
949
950 /* PR_SME_GET_VL */
sme_get_current_vl(void)951 int sme_get_current_vl(void)
952 {
953 if (!system_supports_sme() || is_compat_task())
954 return -EINVAL;
955
956 return vec_prctl_status(ARM64_VEC_SME, 0);
957 }
958 #endif /* CONFIG_ARM64_SME */
959
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))960 static void vec_probe_vqs(struct vl_info *info,
961 DECLARE_BITMAP(map, SVE_VQ_MAX))
962 {
963 unsigned int vq, vl;
964
965 bitmap_zero(map, SVE_VQ_MAX);
966
967 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
968 write_vl(info->type, vq - 1); /* self-syncing */
969
970 switch (info->type) {
971 case ARM64_VEC_SVE:
972 vl = sve_get_vl();
973 break;
974 case ARM64_VEC_SME:
975 vl = sme_get_vl();
976 break;
977 default:
978 vl = 0;
979 break;
980 }
981
982 /* Minimum VL identified? */
983 if (sve_vq_from_vl(vl) > vq)
984 break;
985
986 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
987 set_bit(__vq_to_bit(vq), map);
988 }
989 }
990
991 /*
992 * Initialise the set of known supported VQs for the boot CPU.
993 * This is called during kernel boot, before secondary CPUs are brought up.
994 */
vec_init_vq_map(enum vec_type type)995 void __init vec_init_vq_map(enum vec_type type)
996 {
997 struct vl_info *info = &vl_info[type];
998 vec_probe_vqs(info, info->vq_map);
999 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1000 }
1001
1002 /*
1003 * If we haven't committed to the set of supported VQs yet, filter out
1004 * those not supported by the current CPU.
1005 * This function is called during the bring-up of early secondary CPUs only.
1006 */
vec_update_vq_map(enum vec_type type)1007 void vec_update_vq_map(enum vec_type type)
1008 {
1009 struct vl_info *info = &vl_info[type];
1010 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1011
1012 vec_probe_vqs(info, tmp_map);
1013 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1014 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1015 SVE_VQ_MAX);
1016 }
1017
1018 /*
1019 * Check whether the current CPU supports all VQs in the committed set.
1020 * This function is called during the bring-up of late secondary CPUs only.
1021 */
vec_verify_vq_map(enum vec_type type)1022 int vec_verify_vq_map(enum vec_type type)
1023 {
1024 struct vl_info *info = &vl_info[type];
1025 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1026 unsigned long b;
1027
1028 vec_probe_vqs(info, tmp_map);
1029
1030 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1031 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1032 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1033 info->name, smp_processor_id());
1034 return -EINVAL;
1035 }
1036
1037 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1038 return 0;
1039
1040 /*
1041 * For KVM, it is necessary to ensure that this CPU doesn't
1042 * support any vector length that guests may have probed as
1043 * unsupported.
1044 */
1045
1046 /* Recover the set of supported VQs: */
1047 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1048 /* Find VQs supported that are not globally supported: */
1049 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1050
1051 /* Find the lowest such VQ, if any: */
1052 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1053 if (b >= SVE_VQ_MAX)
1054 return 0; /* no mismatches */
1055
1056 /*
1057 * Mismatches above sve_max_virtualisable_vl are fine, since
1058 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1059 */
1060 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1061 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1062 info->name, smp_processor_id());
1063 return -EINVAL;
1064 }
1065
1066 return 0;
1067 }
1068
sve_efi_setup(void)1069 static void __init sve_efi_setup(void)
1070 {
1071 int max_vl = 0;
1072 int i;
1073
1074 if (!IS_ENABLED(CONFIG_EFI))
1075 return;
1076
1077 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1078 max_vl = max(vl_info[i].max_vl, max_vl);
1079
1080 /*
1081 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1082 * This is evidence of a crippled system and we are returning void,
1083 * so no attempt is made to handle this situation here.
1084 */
1085 if (!sve_vl_valid(max_vl))
1086 goto fail;
1087
1088 efi_sve_state = __alloc_percpu(
1089 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1090 if (!efi_sve_state)
1091 goto fail;
1092
1093 return;
1094
1095 fail:
1096 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1097 }
1098
1099 /*
1100 * Enable SVE for EL1.
1101 * Intended for use by the cpufeatures code during CPU boot.
1102 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1103 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1104 {
1105 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1106 isb();
1107 }
1108
1109 /*
1110 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1111 * vector length.
1112 *
1113 * Use only if SVE is present.
1114 * This function clobbers the SVE vector length.
1115 */
read_zcr_features(void)1116 u64 read_zcr_features(void)
1117 {
1118 u64 zcr;
1119 unsigned int vq_max;
1120
1121 /*
1122 * Set the maximum possible VL, and write zeroes to all other
1123 * bits to see if they stick.
1124 */
1125 sve_kernel_enable(NULL);
1126 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1127
1128 zcr = read_sysreg_s(SYS_ZCR_EL1);
1129 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1130 vq_max = sve_vq_from_vl(sve_get_vl());
1131 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1132
1133 return zcr;
1134 }
1135
sve_setup(void)1136 void __init sve_setup(void)
1137 {
1138 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1139 u64 zcr;
1140 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1141 unsigned long b;
1142
1143 if (!system_supports_sve())
1144 return;
1145
1146 /*
1147 * The SVE architecture mandates support for 128-bit vectors,
1148 * so sve_vq_map must have at least SVE_VQ_MIN set.
1149 * If something went wrong, at least try to patch it up:
1150 */
1151 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1152 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1153
1154 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1155 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1156
1157 /*
1158 * Sanity-check that the max VL we determined through CPU features
1159 * corresponds properly to sve_vq_map. If not, do our best:
1160 */
1161 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1162 info->max_vl)))
1163 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1164 info->max_vl);
1165
1166 /*
1167 * For the default VL, pick the maximum supported value <= 64.
1168 * VL == 64 is guaranteed not to grow the signal frame.
1169 */
1170 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1171
1172 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1173 SVE_VQ_MAX);
1174
1175 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1176 if (b >= SVE_VQ_MAX)
1177 /* No non-virtualisable VLs found */
1178 info->max_virtualisable_vl = SVE_VQ_MAX;
1179 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1180 /* No virtualisable VLs? This is architecturally forbidden. */
1181 info->max_virtualisable_vl = SVE_VQ_MIN;
1182 else /* b + 1 < SVE_VQ_MAX */
1183 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1184
1185 if (info->max_virtualisable_vl > info->max_vl)
1186 info->max_virtualisable_vl = info->max_vl;
1187
1188 pr_info("%s: maximum available vector length %u bytes per vector\n",
1189 info->name, info->max_vl);
1190 pr_info("%s: default vector length %u bytes per vector\n",
1191 info->name, get_sve_default_vl());
1192
1193 /* KVM decides whether to support mismatched systems. Just warn here: */
1194 if (sve_max_virtualisable_vl() < sve_max_vl())
1195 pr_warn("%s: unvirtualisable vector lengths present\n",
1196 info->name);
1197
1198 sve_efi_setup();
1199 }
1200
1201 /*
1202 * Called from the put_task_struct() path, which cannot get here
1203 * unless dead_task is really dead and not schedulable.
1204 */
fpsimd_release_task(struct task_struct * dead_task)1205 void fpsimd_release_task(struct task_struct *dead_task)
1206 {
1207 __sve_free(dead_task);
1208 sme_free(dead_task);
1209 }
1210
1211 #endif /* CONFIG_ARM64_SVE */
1212
1213 #ifdef CONFIG_ARM64_SME
1214
1215 /*
1216 * Ensure that task->thread.za_state is allocated and sufficiently large.
1217 *
1218 * This function should be used only in preparation for replacing
1219 * task->thread.za_state with new data. The memory is always zeroed
1220 * here to prevent stale data from showing through: this is done in
1221 * the interest of testability and predictability, the architecture
1222 * guarantees that when ZA is enabled it will be zeroed.
1223 */
sme_alloc(struct task_struct * task)1224 void sme_alloc(struct task_struct *task)
1225 {
1226 if (task->thread.za_state) {
1227 memset(task->thread.za_state, 0, za_state_size(task));
1228 return;
1229 }
1230
1231 /* This could potentially be up to 64K. */
1232 task->thread.za_state =
1233 kzalloc(za_state_size(task), GFP_KERNEL);
1234 }
1235
sme_free(struct task_struct * task)1236 static void sme_free(struct task_struct *task)
1237 {
1238 kfree(task->thread.za_state);
1239 task->thread.za_state = NULL;
1240 }
1241
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1242 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1243 {
1244 /* Set priority for all PEs to architecturally defined minimum */
1245 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1246 SYS_SMPRI_EL1);
1247
1248 /* Allow SME in kernel */
1249 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1250 isb();
1251
1252 /* Allow EL0 to access TPIDR2 */
1253 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1254 isb();
1255 }
1256
1257 /*
1258 * This must be called after sme_kernel_enable(), we rely on the
1259 * feature table being sorted to ensure this.
1260 */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1261 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1262 {
1263 /* Allow use of FA64 */
1264 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1265 SYS_SMCR_EL1);
1266 }
1267
1268 /*
1269 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1270 * vector length.
1271 *
1272 * Use only if SME is present.
1273 * This function clobbers the SME vector length.
1274 */
read_smcr_features(void)1275 u64 read_smcr_features(void)
1276 {
1277 u64 smcr;
1278 unsigned int vq_max;
1279
1280 sme_kernel_enable(NULL);
1281 sme_smstart_sm();
1282
1283 /*
1284 * Set the maximum possible VL.
1285 */
1286 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1287 SYS_SMCR_EL1);
1288
1289 smcr = read_sysreg_s(SYS_SMCR_EL1);
1290 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1291 vq_max = sve_vq_from_vl(sve_get_vl());
1292 smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1293
1294 sme_smstop_sm();
1295
1296 return smcr;
1297 }
1298
sme_setup(void)1299 void __init sme_setup(void)
1300 {
1301 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1302 u64 smcr;
1303 int min_bit;
1304
1305 if (!system_supports_sme())
1306 return;
1307
1308 /*
1309 * SME doesn't require any particular vector length be
1310 * supported but it does require at least one. We should have
1311 * disabled the feature entirely while bringing up CPUs but
1312 * let's double check here.
1313 */
1314 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1315
1316 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1317 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1318
1319 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1320 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1321
1322 /*
1323 * Sanity-check that the max VL we determined through CPU features
1324 * corresponds properly to sme_vq_map. If not, do our best:
1325 */
1326 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1327 info->max_vl)))
1328 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1329 info->max_vl);
1330
1331 WARN_ON(info->min_vl > info->max_vl);
1332
1333 /*
1334 * For the default VL, pick the maximum supported value <= 32
1335 * (256 bits) if there is one since this is guaranteed not to
1336 * grow the signal frame when in streaming mode, otherwise the
1337 * minimum available VL will be used.
1338 */
1339 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1340
1341 pr_info("SME: minimum available vector length %u bytes per vector\n",
1342 info->min_vl);
1343 pr_info("SME: maximum available vector length %u bytes per vector\n",
1344 info->max_vl);
1345 pr_info("SME: default vector length %u bytes per vector\n",
1346 get_sme_default_vl());
1347 }
1348
1349 #endif /* CONFIG_ARM64_SME */
1350
sve_init_regs(void)1351 static void sve_init_regs(void)
1352 {
1353 /*
1354 * Convert the FPSIMD state to SVE, zeroing all the state that
1355 * is not shared with FPSIMD. If (as is likely) the current
1356 * state is live in the registers then do this there and
1357 * update our metadata for the current task including
1358 * disabling the trap, otherwise update our in-memory copy.
1359 * We are guaranteed to not be in streaming mode, we can only
1360 * take a SVE trap when not in streaming mode and we can't be
1361 * in streaming mode when taking a SME trap.
1362 */
1363 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1364 unsigned long vq_minus_one =
1365 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1366 sve_set_vq(vq_minus_one);
1367 sve_flush_live(true, vq_minus_one);
1368 fpsimd_bind_task_to_cpu();
1369 } else {
1370 fpsimd_to_sve(current);
1371 }
1372 }
1373
1374 /*
1375 * Trapped SVE access
1376 *
1377 * Storage is allocated for the full SVE state, the current FPSIMD
1378 * register contents are migrated across, and the access trap is
1379 * disabled.
1380 *
1381 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1382 * would have disabled the SVE access trap for userspace during
1383 * ret_to_user, making an SVE access trap impossible in that case.
1384 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1385 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1386 {
1387 /* Even if we chose not to use SVE, the hardware could still trap: */
1388 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1389 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1390 return;
1391 }
1392
1393 sve_alloc(current, true);
1394 if (!current->thread.sve_state) {
1395 force_sig(SIGKILL);
1396 return;
1397 }
1398
1399 get_cpu_fpsimd_context();
1400
1401 if (test_and_set_thread_flag(TIF_SVE))
1402 WARN_ON(1); /* SVE access shouldn't have trapped */
1403
1404 /*
1405 * Even if the task can have used streaming mode we can only
1406 * generate SVE access traps in normal SVE mode and
1407 * transitioning out of streaming mode may discard any
1408 * streaming mode state. Always clear the high bits to avoid
1409 * any potential errors tracking what is properly initialised.
1410 */
1411 sve_init_regs();
1412
1413 put_cpu_fpsimd_context();
1414 }
1415
1416 /*
1417 * Trapped SME access
1418 *
1419 * Storage is allocated for the full SVE and SME state, the current
1420 * FPSIMD register contents are migrated to SVE if SVE is not already
1421 * active, and the access trap is disabled.
1422 *
1423 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1424 * would have disabled the SME access trap for userspace during
1425 * ret_to_user, making an SVE access trap impossible in that case.
1426 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1427 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1428 {
1429 /* Even if we chose not to use SME, the hardware could still trap: */
1430 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1431 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1432 return;
1433 }
1434
1435 /*
1436 * If this not a trap due to SME being disabled then something
1437 * is being used in the wrong mode, report as SIGILL.
1438 */
1439 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1440 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1441 return;
1442 }
1443
1444 sve_alloc(current, false);
1445 sme_alloc(current);
1446 if (!current->thread.sve_state || !current->thread.za_state) {
1447 force_sig(SIGKILL);
1448 return;
1449 }
1450
1451 get_cpu_fpsimd_context();
1452
1453 /* With TIF_SME userspace shouldn't generate any traps */
1454 if (test_and_set_thread_flag(TIF_SME))
1455 WARN_ON(1);
1456
1457 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1458 unsigned long vq_minus_one =
1459 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1460 sme_set_vq(vq_minus_one);
1461
1462 fpsimd_bind_task_to_cpu();
1463 }
1464
1465 put_cpu_fpsimd_context();
1466 }
1467
1468 /*
1469 * Trapped FP/ASIMD access.
1470 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1471 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1472 {
1473 /* TODO: implement lazy context saving/restoring */
1474 WARN_ON(1);
1475 }
1476
1477 /*
1478 * Raise a SIGFPE for the current process.
1479 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1480 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1481 {
1482 unsigned int si_code = FPE_FLTUNK;
1483
1484 if (esr & ESR_ELx_FP_EXC_TFV) {
1485 if (esr & FPEXC_IOF)
1486 si_code = FPE_FLTINV;
1487 else if (esr & FPEXC_DZF)
1488 si_code = FPE_FLTDIV;
1489 else if (esr & FPEXC_OFF)
1490 si_code = FPE_FLTOVF;
1491 else if (esr & FPEXC_UFF)
1492 si_code = FPE_FLTUND;
1493 else if (esr & FPEXC_IXF)
1494 si_code = FPE_FLTRES;
1495 }
1496
1497 send_sig_fault(SIGFPE, si_code,
1498 (void __user *)instruction_pointer(regs),
1499 current);
1500 }
1501
fpsimd_thread_switch(struct task_struct * next)1502 void fpsimd_thread_switch(struct task_struct *next)
1503 {
1504 bool wrong_task, wrong_cpu;
1505
1506 if (!system_supports_fpsimd())
1507 return;
1508
1509 __get_cpu_fpsimd_context();
1510
1511 /* Save unsaved fpsimd state, if any: */
1512 fpsimd_save();
1513
1514 /*
1515 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1516 * state. For kernel threads, FPSIMD registers are never loaded
1517 * and wrong_task and wrong_cpu will always be true.
1518 */
1519 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1520 &next->thread.uw.fpsimd_state;
1521 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1522
1523 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1524 wrong_task || wrong_cpu);
1525
1526 __put_cpu_fpsimd_context();
1527 }
1528
fpsimd_flush_thread_vl(enum vec_type type)1529 static void fpsimd_flush_thread_vl(enum vec_type type)
1530 {
1531 int vl, supported_vl;
1532
1533 /*
1534 * Reset the task vector length as required. This is where we
1535 * ensure that all user tasks have a valid vector length
1536 * configured: no kernel task can become a user task without
1537 * an exec and hence a call to this function. By the time the
1538 * first call to this function is made, all early hardware
1539 * probing is complete, so __sve_default_vl should be valid.
1540 * If a bug causes this to go wrong, we make some noise and
1541 * try to fudge thread.sve_vl to a safe value here.
1542 */
1543 vl = task_get_vl_onexec(current, type);
1544 if (!vl)
1545 vl = get_default_vl(type);
1546
1547 if (WARN_ON(!sve_vl_valid(vl)))
1548 vl = vl_info[type].min_vl;
1549
1550 supported_vl = find_supported_vector_length(type, vl);
1551 if (WARN_ON(supported_vl != vl))
1552 vl = supported_vl;
1553
1554 task_set_vl(current, type, vl);
1555
1556 /*
1557 * If the task is not set to inherit, ensure that the vector
1558 * length will be reset by a subsequent exec:
1559 */
1560 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1561 task_set_vl_onexec(current, type, 0);
1562 }
1563
fpsimd_flush_thread(void)1564 void fpsimd_flush_thread(void)
1565 {
1566 void *sve_state = NULL;
1567 void *za_state = NULL;
1568
1569 if (!system_supports_fpsimd())
1570 return;
1571
1572 get_cpu_fpsimd_context();
1573
1574 fpsimd_flush_task_state(current);
1575 memset(¤t->thread.uw.fpsimd_state, 0,
1576 sizeof(current->thread.uw.fpsimd_state));
1577
1578 if (system_supports_sve()) {
1579 clear_thread_flag(TIF_SVE);
1580
1581 /* Defer kfree() while in atomic context */
1582 sve_state = current->thread.sve_state;
1583 current->thread.sve_state = NULL;
1584
1585 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1586 }
1587
1588 if (system_supports_sme()) {
1589 clear_thread_flag(TIF_SME);
1590
1591 /* Defer kfree() while in atomic context */
1592 za_state = current->thread.za_state;
1593 current->thread.za_state = NULL;
1594
1595 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1596 current->thread.svcr = 0;
1597 }
1598
1599 put_cpu_fpsimd_context();
1600 kfree(sve_state);
1601 kfree(za_state);
1602 }
1603
1604 /*
1605 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1606 * currently held in the registers does in fact belong to 'current'
1607 */
fpsimd_preserve_current_state(void)1608 void fpsimd_preserve_current_state(void)
1609 {
1610 if (!system_supports_fpsimd())
1611 return;
1612
1613 get_cpu_fpsimd_context();
1614 fpsimd_save();
1615 put_cpu_fpsimd_context();
1616 }
1617
1618 /*
1619 * Like fpsimd_preserve_current_state(), but ensure that
1620 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1621 * the signal frame.
1622 */
fpsimd_signal_preserve_current_state(void)1623 void fpsimd_signal_preserve_current_state(void)
1624 {
1625 fpsimd_preserve_current_state();
1626 if (test_thread_flag(TIF_SVE))
1627 sve_to_fpsimd(current);
1628 }
1629
1630 /*
1631 * Associate current's FPSIMD context with this cpu
1632 * The caller must have ownership of the cpu FPSIMD context before calling
1633 * this function.
1634 */
fpsimd_bind_task_to_cpu(void)1635 static void fpsimd_bind_task_to_cpu(void)
1636 {
1637 struct fpsimd_last_state_struct *last =
1638 this_cpu_ptr(&fpsimd_last_state);
1639
1640 WARN_ON(!system_supports_fpsimd());
1641 last->st = ¤t->thread.uw.fpsimd_state;
1642 last->sve_state = current->thread.sve_state;
1643 last->za_state = current->thread.za_state;
1644 last->sve_vl = task_get_sve_vl(current);
1645 last->sme_vl = task_get_sme_vl(current);
1646 last->svcr = ¤t->thread.svcr;
1647 current->thread.fpsimd_cpu = smp_processor_id();
1648
1649 /*
1650 * Toggle SVE and SME trapping for userspace if needed, these
1651 * are serialsied by ret_to_user().
1652 */
1653 if (system_supports_sme()) {
1654 if (test_thread_flag(TIF_SME))
1655 sme_user_enable();
1656 else
1657 sme_user_disable();
1658 }
1659
1660 if (system_supports_sve()) {
1661 if (test_thread_flag(TIF_SVE))
1662 sve_user_enable();
1663 else
1664 sve_user_disable();
1665 }
1666 }
1667
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl,void * za_state,unsigned int sme_vl,u64 * svcr)1668 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1669 unsigned int sve_vl, void *za_state,
1670 unsigned int sme_vl, u64 *svcr)
1671 {
1672 struct fpsimd_last_state_struct *last =
1673 this_cpu_ptr(&fpsimd_last_state);
1674
1675 WARN_ON(!system_supports_fpsimd());
1676 WARN_ON(!in_softirq() && !irqs_disabled());
1677
1678 last->st = st;
1679 last->svcr = svcr;
1680 last->sve_state = sve_state;
1681 last->za_state = za_state;
1682 last->sve_vl = sve_vl;
1683 last->sme_vl = sme_vl;
1684 }
1685
1686 /*
1687 * Load the userland FPSIMD state of 'current' from memory, but only if the
1688 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1689 * state of 'current'. This is called when we are preparing to return to
1690 * userspace to ensure that userspace sees a good register state.
1691 */
fpsimd_restore_current_state(void)1692 void fpsimd_restore_current_state(void)
1693 {
1694 /*
1695 * For the tasks that were created before we detected the absence of
1696 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1697 * e.g, init. This could be then inherited by the children processes.
1698 * If we later detect that the system doesn't support FP/SIMD,
1699 * we must clear the flag for all the tasks to indicate that the
1700 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1701 * do_notify_resume().
1702 */
1703 if (!system_supports_fpsimd()) {
1704 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1705 return;
1706 }
1707
1708 get_cpu_fpsimd_context();
1709
1710 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1711 task_fpsimd_load();
1712 fpsimd_bind_task_to_cpu();
1713 }
1714
1715 put_cpu_fpsimd_context();
1716 }
1717
1718 /*
1719 * Load an updated userland FPSIMD state for 'current' from memory and set the
1720 * flag that indicates that the FPSIMD register contents are the most recent
1721 * FPSIMD state of 'current'. This is used by the signal code to restore the
1722 * register state when returning from a signal handler in FPSIMD only cases,
1723 * any SVE context will be discarded.
1724 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1725 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1726 {
1727 if (WARN_ON(!system_supports_fpsimd()))
1728 return;
1729
1730 get_cpu_fpsimd_context();
1731
1732 current->thread.uw.fpsimd_state = *state;
1733 if (test_thread_flag(TIF_SVE))
1734 fpsimd_to_sve(current);
1735
1736 task_fpsimd_load();
1737 fpsimd_bind_task_to_cpu();
1738
1739 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1740
1741 put_cpu_fpsimd_context();
1742 }
1743
1744 /*
1745 * Invalidate live CPU copies of task t's FPSIMD state
1746 *
1747 * This function may be called with preemption enabled. The barrier()
1748 * ensures that the assignment to fpsimd_cpu is visible to any
1749 * preemption/softirq that could race with set_tsk_thread_flag(), so
1750 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1751 *
1752 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1753 * subsequent code.
1754 */
fpsimd_flush_task_state(struct task_struct * t)1755 void fpsimd_flush_task_state(struct task_struct *t)
1756 {
1757 t->thread.fpsimd_cpu = NR_CPUS;
1758 /*
1759 * If we don't support fpsimd, bail out after we have
1760 * reset the fpsimd_cpu for this task and clear the
1761 * FPSTATE.
1762 */
1763 if (!system_supports_fpsimd())
1764 return;
1765 barrier();
1766 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1767
1768 barrier();
1769 }
1770
1771 /*
1772 * Invalidate any task's FPSIMD state that is present on this cpu.
1773 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1774 * before calling this function.
1775 */
fpsimd_flush_cpu_state(void)1776 static void fpsimd_flush_cpu_state(void)
1777 {
1778 WARN_ON(!system_supports_fpsimd());
1779 __this_cpu_write(fpsimd_last_state.st, NULL);
1780
1781 /*
1782 * Leaving streaming mode enabled will cause issues for any kernel
1783 * NEON and leaving streaming mode or ZA enabled may increase power
1784 * consumption.
1785 */
1786 if (system_supports_sme())
1787 sme_smstop();
1788
1789 set_thread_flag(TIF_FOREIGN_FPSTATE);
1790 }
1791
1792 /*
1793 * Save the FPSIMD state to memory and invalidate cpu view.
1794 * This function must be called with preemption disabled.
1795 */
fpsimd_save_and_flush_cpu_state(void)1796 void fpsimd_save_and_flush_cpu_state(void)
1797 {
1798 if (!system_supports_fpsimd())
1799 return;
1800 WARN_ON(preemptible());
1801 __get_cpu_fpsimd_context();
1802 fpsimd_save();
1803 fpsimd_flush_cpu_state();
1804 __put_cpu_fpsimd_context();
1805 }
1806
1807 #ifdef CONFIG_KERNEL_MODE_NEON
1808
1809 /*
1810 * Kernel-side NEON support functions
1811 */
1812
1813 /*
1814 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1815 * context
1816 *
1817 * Must not be called unless may_use_simd() returns true.
1818 * Task context in the FPSIMD registers is saved back to memory as necessary.
1819 *
1820 * A matching call to kernel_neon_end() must be made before returning from the
1821 * calling context.
1822 *
1823 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1824 * called.
1825 */
kernel_neon_begin(void)1826 void kernel_neon_begin(void)
1827 {
1828 if (WARN_ON(!system_supports_fpsimd()))
1829 return;
1830
1831 BUG_ON(!may_use_simd());
1832
1833 get_cpu_fpsimd_context();
1834
1835 /* Save unsaved fpsimd state, if any: */
1836 fpsimd_save();
1837
1838 /* Invalidate any task state remaining in the fpsimd regs: */
1839 fpsimd_flush_cpu_state();
1840 }
1841 EXPORT_SYMBOL(kernel_neon_begin);
1842
1843 /*
1844 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1845 *
1846 * Must be called from a context in which kernel_neon_begin() was previously
1847 * called, with no call to kernel_neon_end() in the meantime.
1848 *
1849 * The caller must not use the FPSIMD registers after this function is called,
1850 * unless kernel_neon_begin() is called again in the meantime.
1851 */
kernel_neon_end(void)1852 void kernel_neon_end(void)
1853 {
1854 if (!system_supports_fpsimd())
1855 return;
1856
1857 put_cpu_fpsimd_context();
1858 }
1859 EXPORT_SYMBOL(kernel_neon_end);
1860
1861 #ifdef CONFIG_EFI
1862
1863 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1864 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1865 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1866 static DEFINE_PER_CPU(bool, efi_sm_state);
1867
1868 /*
1869 * EFI runtime services support functions
1870 *
1871 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1872 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1873 * is always used rather than being an optional accelerator.
1874 *
1875 * These functions provide the necessary support for ensuring FPSIMD
1876 * save/restore in the contexts from which EFI is used.
1877 *
1878 * Do not use them for any other purpose -- if tempted to do so, you are
1879 * either doing something wrong or you need to propose some refactoring.
1880 */
1881
1882 /*
1883 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1884 */
__efi_fpsimd_begin(void)1885 void __efi_fpsimd_begin(void)
1886 {
1887 if (!system_supports_fpsimd())
1888 return;
1889
1890 WARN_ON(preemptible());
1891
1892 if (may_use_simd()) {
1893 kernel_neon_begin();
1894 } else {
1895 /*
1896 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1897 * preserving:
1898 */
1899 if (system_supports_sve() && likely(efi_sve_state)) {
1900 char *sve_state = this_cpu_ptr(efi_sve_state);
1901 bool ffr = true;
1902 u64 svcr;
1903
1904 __this_cpu_write(efi_sve_state_used, true);
1905
1906 if (system_supports_sme()) {
1907 svcr = read_sysreg_s(SYS_SVCR);
1908
1909 __this_cpu_write(efi_sm_state,
1910 svcr & SVCR_SM_MASK);
1911
1912 /*
1913 * Unless we have FA64 FFR does not
1914 * exist in streaming mode.
1915 */
1916 if (!system_supports_fa64())
1917 ffr = !(svcr & SVCR_SM_MASK);
1918 }
1919
1920 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1921 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1922 ffr);
1923
1924 if (system_supports_sme())
1925 sysreg_clear_set_s(SYS_SVCR,
1926 SVCR_SM_MASK, 0);
1927
1928 } else {
1929 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1930 }
1931
1932 __this_cpu_write(efi_fpsimd_state_used, true);
1933 }
1934 }
1935
1936 /*
1937 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1938 */
__efi_fpsimd_end(void)1939 void __efi_fpsimd_end(void)
1940 {
1941 if (!system_supports_fpsimd())
1942 return;
1943
1944 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1945 kernel_neon_end();
1946 } else {
1947 if (system_supports_sve() &&
1948 likely(__this_cpu_read(efi_sve_state_used))) {
1949 char const *sve_state = this_cpu_ptr(efi_sve_state);
1950 bool ffr = true;
1951
1952 /*
1953 * Restore streaming mode; EFI calls are
1954 * normal function calls so should not return in
1955 * streaming mode.
1956 */
1957 if (system_supports_sme()) {
1958 if (__this_cpu_read(efi_sm_state)) {
1959 sysreg_clear_set_s(SYS_SVCR,
1960 0,
1961 SVCR_SM_MASK);
1962
1963 /*
1964 * Unless we have FA64 FFR does not
1965 * exist in streaming mode.
1966 */
1967 if (!system_supports_fa64())
1968 ffr = false;
1969 }
1970 }
1971
1972 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1973 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1974 ffr);
1975
1976 __this_cpu_write(efi_sve_state_used, false);
1977 } else {
1978 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1979 }
1980 }
1981 }
1982
1983 #endif /* CONFIG_EFI */
1984
1985 #endif /* CONFIG_KERNEL_MODE_NEON */
1986
1987 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1988 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1989 unsigned long cmd, void *v)
1990 {
1991 switch (cmd) {
1992 case CPU_PM_ENTER:
1993 fpsimd_save_and_flush_cpu_state();
1994 break;
1995 case CPU_PM_EXIT:
1996 break;
1997 case CPU_PM_ENTER_FAILED:
1998 default:
1999 return NOTIFY_DONE;
2000 }
2001 return NOTIFY_OK;
2002 }
2003
2004 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2005 .notifier_call = fpsimd_cpu_pm_notifier,
2006 };
2007
fpsimd_pm_init(void)2008 static void __init fpsimd_pm_init(void)
2009 {
2010 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2011 }
2012
2013 #else
fpsimd_pm_init(void)2014 static inline void fpsimd_pm_init(void) { }
2015 #endif /* CONFIG_CPU_PM */
2016
2017 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2018 static int fpsimd_cpu_dead(unsigned int cpu)
2019 {
2020 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2021 return 0;
2022 }
2023
fpsimd_hotplug_init(void)2024 static inline void fpsimd_hotplug_init(void)
2025 {
2026 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2027 NULL, fpsimd_cpu_dead);
2028 }
2029
2030 #else
fpsimd_hotplug_init(void)2031 static inline void fpsimd_hotplug_init(void) { }
2032 #endif
2033
2034 /*
2035 * FP/SIMD support code initialisation.
2036 */
fpsimd_init(void)2037 static int __init fpsimd_init(void)
2038 {
2039 if (cpu_have_named_feature(FP)) {
2040 fpsimd_pm_init();
2041 fpsimd_hotplug_init();
2042 } else {
2043 pr_notice("Floating-point is not implemented\n");
2044 }
2045
2046 if (!cpu_have_named_feature(ASIMD))
2047 pr_notice("Advanced SIMD is not implemented\n");
2048
2049
2050 if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2051 pr_notice("SME is implemented but not SVE\n");
2052
2053 sve_sysctl_init();
2054 sme_sysctl_init();
2055
2056 return 0;
2057 }
2058 core_initcall(fpsimd_init);
2059