1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28 
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47 
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52 
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57 
58 static int sub_api_initialized;
59 
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68 
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 		struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81 
init_se_kmem_caches(void)82 int init_se_kmem_caches(void)
83 {
84 	se_sess_cache = kmem_cache_create("se_sess_cache",
85 			sizeof(struct se_session), __alignof__(struct se_session),
86 			0, NULL);
87 	if (!se_sess_cache) {
88 		pr_err("kmem_cache_create() for struct se_session"
89 				" failed\n");
90 		goto out;
91 	}
92 	se_ua_cache = kmem_cache_create("se_ua_cache",
93 			sizeof(struct se_ua), __alignof__(struct se_ua),
94 			0, NULL);
95 	if (!se_ua_cache) {
96 		pr_err("kmem_cache_create() for struct se_ua failed\n");
97 		goto out_free_sess_cache;
98 	}
99 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100 			sizeof(struct t10_pr_registration),
101 			__alignof__(struct t10_pr_registration), 0, NULL);
102 	if (!t10_pr_reg_cache) {
103 		pr_err("kmem_cache_create() for struct t10_pr_registration"
104 				" failed\n");
105 		goto out_free_ua_cache;
106 	}
107 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109 			0, NULL);
110 	if (!t10_alua_lu_gp_cache) {
111 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112 				" failed\n");
113 		goto out_free_pr_reg_cache;
114 	}
115 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116 			sizeof(struct t10_alua_lu_gp_member),
117 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118 	if (!t10_alua_lu_gp_mem_cache) {
119 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120 				"cache failed\n");
121 		goto out_free_lu_gp_cache;
122 	}
123 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124 			sizeof(struct t10_alua_tg_pt_gp),
125 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126 	if (!t10_alua_tg_pt_gp_cache) {
127 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 				"cache failed\n");
129 		goto out_free_lu_gp_mem_cache;
130 	}
131 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132 			"t10_alua_tg_pt_gp_mem_cache",
133 			sizeof(struct t10_alua_tg_pt_gp_member),
134 			__alignof__(struct t10_alua_tg_pt_gp_member),
135 			0, NULL);
136 	if (!t10_alua_tg_pt_gp_mem_cache) {
137 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138 				"mem_t failed\n");
139 		goto out_free_tg_pt_gp_cache;
140 	}
141 
142 	target_completion_wq = alloc_workqueue("target_completion",
143 					       WQ_MEM_RECLAIM, 0);
144 	if (!target_completion_wq)
145 		goto out_free_tg_pt_gp_mem_cache;
146 
147 	return 0;
148 
149 out_free_tg_pt_gp_mem_cache:
150 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178 
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182 
183 /*
184  * Allocate a new row index for the entry type specified
185  */
scsi_get_new_index(scsi_index_t type)186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188 	u32 new_index;
189 
190 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191 
192 	spin_lock(&scsi_mib_index_lock);
193 	new_index = ++scsi_mib_index[type];
194 	spin_unlock(&scsi_mib_index_lock);
195 
196 	return new_index;
197 }
198 
transport_init_queue_obj(struct se_queue_obj * qobj)199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201 	atomic_set(&qobj->queue_cnt, 0);
202 	INIT_LIST_HEAD(&qobj->qobj_list);
203 	init_waitqueue_head(&qobj->thread_wq);
204 	spin_lock_init(&qobj->cmd_queue_lock);
205 }
206 
transport_subsystem_check_init(void)207 void transport_subsystem_check_init(void)
208 {
209 	int ret;
210 
211 	if (sub_api_initialized)
212 		return;
213 
214 	ret = request_module("target_core_iblock");
215 	if (ret != 0)
216 		pr_err("Unable to load target_core_iblock\n");
217 
218 	ret = request_module("target_core_file");
219 	if (ret != 0)
220 		pr_err("Unable to load target_core_file\n");
221 
222 	ret = request_module("target_core_pscsi");
223 	if (ret != 0)
224 		pr_err("Unable to load target_core_pscsi\n");
225 
226 	ret = request_module("target_core_stgt");
227 	if (ret != 0)
228 		pr_err("Unable to load target_core_stgt\n");
229 
230 	sub_api_initialized = 1;
231 	return;
232 }
233 
transport_init_session(void)234 struct se_session *transport_init_session(void)
235 {
236 	struct se_session *se_sess;
237 
238 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239 	if (!se_sess) {
240 		pr_err("Unable to allocate struct se_session from"
241 				" se_sess_cache\n");
242 		return ERR_PTR(-ENOMEM);
243 	}
244 	INIT_LIST_HEAD(&se_sess->sess_list);
245 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
246 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
248 	spin_lock_init(&se_sess->sess_cmd_lock);
249 	kref_init(&se_sess->sess_kref);
250 
251 	return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254 
255 /*
256  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)258 void __transport_register_session(
259 	struct se_portal_group *se_tpg,
260 	struct se_node_acl *se_nacl,
261 	struct se_session *se_sess,
262 	void *fabric_sess_ptr)
263 {
264 	unsigned char buf[PR_REG_ISID_LEN];
265 
266 	se_sess->se_tpg = se_tpg;
267 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
268 	/*
269 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270 	 *
271 	 * Only set for struct se_session's that will actually be moving I/O.
272 	 * eg: *NOT* discovery sessions.
273 	 */
274 	if (se_nacl) {
275 		/*
276 		 * If the fabric module supports an ISID based TransportID,
277 		 * save this value in binary from the fabric I_T Nexus now.
278 		 */
279 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280 			memset(&buf[0], 0, PR_REG_ISID_LEN);
281 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282 					&buf[0], PR_REG_ISID_LEN);
283 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284 		}
285 		kref_get(&se_nacl->acl_kref);
286 
287 		spin_lock_irq(&se_nacl->nacl_sess_lock);
288 		/*
289 		 * The se_nacl->nacl_sess pointer will be set to the
290 		 * last active I_T Nexus for each struct se_node_acl.
291 		 */
292 		se_nacl->nacl_sess = se_sess;
293 
294 		list_add_tail(&se_sess->sess_acl_list,
295 			      &se_nacl->acl_sess_list);
296 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
297 	}
298 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299 
300 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)305 void transport_register_session(
306 	struct se_portal_group *se_tpg,
307 	struct se_node_acl *se_nacl,
308 	struct se_session *se_sess,
309 	void *fabric_sess_ptr)
310 {
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&se_tpg->session_lock, flags);
314 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318 
target_release_session(struct kref * kref)319 static void target_release_session(struct kref *kref)
320 {
321 	struct se_session *se_sess = container_of(kref,
322 			struct se_session, sess_kref);
323 	struct se_portal_group *se_tpg = se_sess->se_tpg;
324 
325 	se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327 
target_get_session(struct se_session * se_sess)328 void target_get_session(struct se_session *se_sess)
329 {
330 	kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333 
target_put_session(struct se_session * se_sess)334 int target_put_session(struct se_session *se_sess)
335 {
336 	return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339 
target_complete_nacl(struct kref * kref)340 static void target_complete_nacl(struct kref *kref)
341 {
342 	struct se_node_acl *nacl = container_of(kref,
343 				struct se_node_acl, acl_kref);
344 
345 	complete(&nacl->acl_free_comp);
346 }
347 
target_put_nacl(struct se_node_acl * nacl)348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350 	kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352 
transport_deregister_session_configfs(struct se_session * se_sess)353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355 	struct se_node_acl *se_nacl;
356 	unsigned long flags;
357 	/*
358 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359 	 */
360 	se_nacl = se_sess->se_node_acl;
361 	if (se_nacl) {
362 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363 		if (se_nacl->acl_stop == 0)
364 			list_del(&se_sess->sess_acl_list);
365 		/*
366 		 * If the session list is empty, then clear the pointer.
367 		 * Otherwise, set the struct se_session pointer from the tail
368 		 * element of the per struct se_node_acl active session list.
369 		 */
370 		if (list_empty(&se_nacl->acl_sess_list))
371 			se_nacl->nacl_sess = NULL;
372 		else {
373 			se_nacl->nacl_sess = container_of(
374 					se_nacl->acl_sess_list.prev,
375 					struct se_session, sess_acl_list);
376 		}
377 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 	}
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381 
transport_free_session(struct se_session * se_sess)382 void transport_free_session(struct se_session *se_sess)
383 {
384 	kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387 
transport_deregister_session(struct se_session * se_sess)388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 	struct se_portal_group *se_tpg = se_sess->se_tpg;
391 	struct target_core_fabric_ops *se_tfo;
392 	struct se_node_acl *se_nacl;
393 	unsigned long flags;
394 	bool comp_nacl = true;
395 
396 	if (!se_tpg) {
397 		transport_free_session(se_sess);
398 		return;
399 	}
400 	se_tfo = se_tpg->se_tpg_tfo;
401 
402 	spin_lock_irqsave(&se_tpg->session_lock, flags);
403 	list_del(&se_sess->sess_list);
404 	se_sess->se_tpg = NULL;
405 	se_sess->fabric_sess_ptr = NULL;
406 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407 
408 	/*
409 	 * Determine if we need to do extra work for this initiator node's
410 	 * struct se_node_acl if it had been previously dynamically generated.
411 	 */
412 	se_nacl = se_sess->se_node_acl;
413 
414 	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 	if (se_nacl && se_nacl->dynamic_node_acl) {
416 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417 			list_del(&se_nacl->acl_list);
418 			se_tpg->num_node_acls--;
419 			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420 			core_tpg_wait_for_nacl_pr_ref(se_nacl);
421 			core_free_device_list_for_node(se_nacl, se_tpg);
422 			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423 
424 			comp_nacl = false;
425 			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 		}
427 	}
428 	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429 
430 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 		se_tpg->se_tpg_tfo->get_fabric_name());
432 	/*
433 	 * If last kref is dropping now for an explict NodeACL, awake sleeping
434 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435 	 * removal context.
436 	 */
437 	if (se_nacl && comp_nacl == true)
438 		target_put_nacl(se_nacl);
439 
440 	transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443 
444 /*
445  * Called with cmd->t_state_lock held.
446  */
transport_all_task_dev_remove_state(struct se_cmd * cmd)447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449 	struct se_device *dev = cmd->se_dev;
450 	struct se_task *task;
451 	unsigned long flags;
452 
453 	if (!dev)
454 		return;
455 
456 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
457 		if (task->task_flags & TF_ACTIVE)
458 			continue;
459 
460 		spin_lock_irqsave(&dev->execute_task_lock, flags);
461 		if (task->t_state_active) {
462 			pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463 				cmd->se_tfo->get_task_tag(cmd), dev, task);
464 
465 			list_del(&task->t_state_list);
466 			atomic_dec(&cmd->t_task_cdbs_ex_left);
467 			task->t_state_active = false;
468 		}
469 		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470 	}
471 
472 }
473 
474 /*	transport_cmd_check_stop():
475  *
476  *	'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477  *	'transport_off = 2' determines if task_dev_state should be removed.
478  *
479  *	A non-zero u8 t_state sets cmd->t_state.
480  *	Returns 1 when command is stopped, else 0.
481  */
transport_cmd_check_stop(struct se_cmd * cmd,int transport_off,u8 t_state)482 static int transport_cmd_check_stop(
483 	struct se_cmd *cmd,
484 	int transport_off,
485 	u8 t_state)
486 {
487 	unsigned long flags;
488 
489 	spin_lock_irqsave(&cmd->t_state_lock, flags);
490 	/*
491 	 * Determine if IOCTL context caller in requesting the stopping of this
492 	 * command for LUN shutdown purposes.
493 	 */
494 	if (cmd->transport_state & CMD_T_LUN_STOP) {
495 		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496 			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497 
498 		cmd->transport_state &= ~CMD_T_ACTIVE;
499 		if (transport_off == 2)
500 			transport_all_task_dev_remove_state(cmd);
501 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502 
503 		complete(&cmd->transport_lun_stop_comp);
504 		return 1;
505 	}
506 	/*
507 	 * Determine if frontend context caller is requesting the stopping of
508 	 * this command for frontend exceptions.
509 	 */
510 	if (cmd->transport_state & CMD_T_STOP) {
511 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512 			__func__, __LINE__,
513 			cmd->se_tfo->get_task_tag(cmd));
514 
515 		if (transport_off == 2)
516 			transport_all_task_dev_remove_state(cmd);
517 
518 		/*
519 		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 		 * to FE.
521 		 */
522 		if (transport_off == 2)
523 			cmd->se_lun = NULL;
524 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525 
526 		complete(&cmd->t_transport_stop_comp);
527 		return 1;
528 	}
529 	if (transport_off) {
530 		cmd->transport_state &= ~CMD_T_ACTIVE;
531 		if (transport_off == 2) {
532 			transport_all_task_dev_remove_state(cmd);
533 			/*
534 			 * Clear struct se_cmd->se_lun before the transport_off == 2
535 			 * handoff to fabric module.
536 			 */
537 			cmd->se_lun = NULL;
538 			/*
539 			 * Some fabric modules like tcm_loop can release
540 			 * their internally allocated I/O reference now and
541 			 * struct se_cmd now.
542 			 *
543 			 * Fabric modules are expected to return '1' here if the
544 			 * se_cmd being passed is released at this point,
545 			 * or zero if not being released.
546 			 */
547 			if (cmd->se_tfo->check_stop_free != NULL) {
548 				spin_unlock_irqrestore(
549 					&cmd->t_state_lock, flags);
550 
551 				return cmd->se_tfo->check_stop_free(cmd);
552 			}
553 		}
554 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555 
556 		return 0;
557 	} else if (t_state)
558 		cmd->t_state = t_state;
559 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560 
561 	return 0;
562 }
563 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566 	return transport_cmd_check_stop(cmd, 2, 0);
567 }
568 
transport_lun_remove_cmd(struct se_cmd * cmd)569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571 	struct se_lun *lun = cmd->se_lun;
572 	unsigned long flags;
573 
574 	if (!lun)
575 		return;
576 
577 	spin_lock_irqsave(&cmd->t_state_lock, flags);
578 	if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580 		transport_all_task_dev_remove_state(cmd);
581 	}
582 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583 
584 	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585 	if (!list_empty(&cmd->se_lun_node))
586 		list_del_init(&cmd->se_lun_node);
587 	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593 		transport_lun_remove_cmd(cmd);
594 
595 	if (transport_cmd_check_stop_to_fabric(cmd))
596 		return;
597 	if (remove) {
598 		transport_remove_cmd_from_queue(cmd);
599 		transport_put_cmd(cmd);
600 	}
601 }
602 
transport_add_cmd_to_queue(struct se_cmd * cmd,int t_state,bool at_head)603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604 		bool at_head)
605 {
606 	struct se_device *dev = cmd->se_dev;
607 	struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 	unsigned long flags;
609 
610 	if (t_state) {
611 		spin_lock_irqsave(&cmd->t_state_lock, flags);
612 		cmd->t_state = t_state;
613 		cmd->transport_state |= CMD_T_ACTIVE;
614 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 	}
616 
617 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618 
619 	/* If the cmd is already on the list, remove it before we add it */
620 	if (!list_empty(&cmd->se_queue_node))
621 		list_del(&cmd->se_queue_node);
622 	else
623 		atomic_inc(&qobj->queue_cnt);
624 
625 	if (at_head)
626 		list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 	else
628 		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 	cmd->transport_state |= CMD_T_QUEUED;
630 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631 
632 	wake_up_interruptible(&qobj->thread_wq);
633 }
634 
635 static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj * qobj)636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 	struct se_cmd *cmd;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 	if (list_empty(&qobj->qobj_list)) {
643 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 		return NULL;
645 	}
646 	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647 
648 	cmd->transport_state &= ~CMD_T_QUEUED;
649 	list_del_init(&cmd->se_queue_node);
650 	atomic_dec(&qobj->queue_cnt);
651 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652 
653 	return cmd;
654 }
655 
transport_remove_cmd_from_queue(struct se_cmd * cmd)656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658 	struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662 	if (!(cmd->transport_state & CMD_T_QUEUED)) {
663 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664 		return;
665 	}
666 	cmd->transport_state &= ~CMD_T_QUEUED;
667 	atomic_dec(&qobj->queue_cnt);
668 	list_del_init(&cmd->se_queue_node);
669 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671 
672 /*
673  * Completion function used by TCM subsystem plugins (such as FILEIO)
674  * for queueing up response from struct se_subsystem_api->do_task()
675  */
transport_complete_sync_cache(struct se_cmd * cmd,int good)676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678 	struct se_task *task = list_entry(cmd->t_task_list.next,
679 				struct se_task, t_list);
680 
681 	if (good) {
682 		cmd->scsi_status = SAM_STAT_GOOD;
683 		task->task_scsi_status = GOOD;
684 	} else {
685 		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686 		task->task_se_cmd->scsi_sense_reason =
687 				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688 
689 	}
690 
691 	transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694 
target_complete_failure_work(struct work_struct * work)695 static void target_complete_failure_work(struct work_struct *work)
696 {
697 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698 
699 	transport_generic_request_failure(cmd);
700 }
701 
702 /*	transport_complete_task():
703  *
704  *	Called from interrupt and non interrupt context depending
705  *	on the transport plugin.
706  */
transport_complete_task(struct se_task * task,int success)707 void transport_complete_task(struct se_task *task, int success)
708 {
709 	struct se_cmd *cmd = task->task_se_cmd;
710 	struct se_device *dev = cmd->se_dev;
711 	unsigned long flags;
712 
713 	spin_lock_irqsave(&cmd->t_state_lock, flags);
714 	task->task_flags &= ~TF_ACTIVE;
715 
716 	/*
717 	 * See if any sense data exists, if so set the TASK_SENSE flag.
718 	 * Also check for any other post completion work that needs to be
719 	 * done by the plugins.
720 	 */
721 	if (dev && dev->transport->transport_complete) {
722 		if (dev->transport->transport_complete(task) != 0) {
723 			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724 			task->task_flags |= TF_HAS_SENSE;
725 			success = 1;
726 		}
727 	}
728 
729 	/*
730 	 * See if we are waiting for outstanding struct se_task
731 	 * to complete for an exception condition
732 	 */
733 	if (task->task_flags & TF_REQUEST_STOP) {
734 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735 		complete(&task->task_stop_comp);
736 		return;
737 	}
738 
739 	if (!success)
740 		cmd->transport_state |= CMD_T_FAILED;
741 
742 	/*
743 	 * Decrement the outstanding t_task_cdbs_left count.  The last
744 	 * struct se_task from struct se_cmd will complete itself into the
745 	 * device queue depending upon int success.
746 	 */
747 	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749 		return;
750 	}
751 	/*
752 	 * Check for case where an explict ABORT_TASK has been received
753 	 * and transport_wait_for_tasks() will be waiting for completion..
754 	 */
755 	if (cmd->transport_state & CMD_T_ABORTED &&
756 	    cmd->transport_state & CMD_T_STOP) {
757 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 		complete(&cmd->t_transport_stop_comp);
759 		return;
760 	} else if (cmd->transport_state & CMD_T_FAILED) {
761 		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762 		INIT_WORK(&cmd->work, target_complete_failure_work);
763 	} else {
764 		INIT_WORK(&cmd->work, target_complete_ok_work);
765 	}
766 
767 	cmd->t_state = TRANSPORT_COMPLETE;
768 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770 
771 	queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774 
775 /*
776  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777  * struct se_task list are ready to be added to the active execution list
778  * struct se_device
779 
780  * Called with se_dev_t->execute_task_lock called.
781  */
transport_add_task_check_sam_attr(struct se_task * task,struct se_task * task_prev,struct se_device * dev)782 static inline int transport_add_task_check_sam_attr(
783 	struct se_task *task,
784 	struct se_task *task_prev,
785 	struct se_device *dev)
786 {
787 	/*
788 	 * No SAM Task attribute emulation enabled, add to tail of
789 	 * execution queue
790 	 */
791 	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792 		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 		return 0;
794 	}
795 	/*
796 	 * HEAD_OF_QUEUE attribute for received CDB, which means
797 	 * the first task that is associated with a struct se_cmd goes to
798 	 * head of the struct se_device->execute_task_list, and task_prev
799 	 * after that for each subsequent task
800 	 */
801 	if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802 		list_add(&task->t_execute_list,
803 				(task_prev != NULL) ?
804 				&task_prev->t_execute_list :
805 				&dev->execute_task_list);
806 
807 		pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808 				" in execution queue\n",
809 				task->task_se_cmd->t_task_cdb[0]);
810 		return 1;
811 	}
812 	/*
813 	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814 	 * transitioned from Dermant -> Active state, and are added to the end
815 	 * of the struct se_device->execute_task_list
816 	 */
817 	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 	return 0;
819 }
820 
821 /*	__transport_add_task_to_execute_queue():
822  *
823  *	Called with se_dev_t->execute_task_lock called.
824  */
__transport_add_task_to_execute_queue(struct se_task * task,struct se_task * task_prev,struct se_device * dev)825 static void __transport_add_task_to_execute_queue(
826 	struct se_task *task,
827 	struct se_task *task_prev,
828 	struct se_device *dev)
829 {
830 	int head_of_queue;
831 
832 	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833 	atomic_inc(&dev->execute_tasks);
834 
835 	if (task->t_state_active)
836 		return;
837 	/*
838 	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
839 	 * state list as well.  Running with SAM Task Attribute emulation
840 	 * will always return head_of_queue == 0 here
841 	 */
842 	if (head_of_queue)
843 		list_add(&task->t_state_list, (task_prev) ?
844 				&task_prev->t_state_list :
845 				&dev->state_task_list);
846 	else
847 		list_add_tail(&task->t_state_list, &dev->state_task_list);
848 
849 	task->t_state_active = true;
850 
851 	pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 		task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853 		task, dev);
854 }
855 
transport_add_tasks_to_state_queue(struct se_cmd * cmd)856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858 	struct se_device *dev = cmd->se_dev;
859 	struct se_task *task;
860 	unsigned long flags;
861 
862 	spin_lock_irqsave(&cmd->t_state_lock, flags);
863 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
864 		spin_lock(&dev->execute_task_lock);
865 		if (!task->t_state_active) {
866 			list_add_tail(&task->t_state_list,
867 				      &dev->state_task_list);
868 			task->t_state_active = true;
869 
870 			pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 				task->task_se_cmd->se_tfo->get_task_tag(
872 				task->task_se_cmd), task, dev);
873 		}
874 		spin_unlock(&dev->execute_task_lock);
875 	}
876 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878 
__transport_add_tasks_from_cmd(struct se_cmd * cmd)879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 	struct se_device *dev = cmd->se_dev;
882 	struct se_task *task, *task_prev = NULL;
883 
884 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
885 		if (!list_empty(&task->t_execute_list))
886 			continue;
887 		/*
888 		 * __transport_add_task_to_execute_queue() handles the
889 		 * SAM Task Attribute emulation if enabled
890 		 */
891 		__transport_add_task_to_execute_queue(task, task_prev, dev);
892 		task_prev = task;
893 	}
894 }
895 
transport_add_tasks_from_cmd(struct se_cmd * cmd)896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898 	unsigned long flags;
899 	struct se_device *dev = cmd->se_dev;
900 
901 	spin_lock_irqsave(&dev->execute_task_lock, flags);
902 	__transport_add_tasks_from_cmd(cmd);
903 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905 
__transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907 		struct se_device *dev)
908 {
909 	list_del_init(&task->t_execute_list);
910 	atomic_dec(&dev->execute_tasks);
911 }
912 
transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)913 static void transport_remove_task_from_execute_queue(
914 	struct se_task *task,
915 	struct se_device *dev)
916 {
917 	unsigned long flags;
918 
919 	if (WARN_ON(list_empty(&task->t_execute_list)))
920 		return;
921 
922 	spin_lock_irqsave(&dev->execute_task_lock, flags);
923 	__transport_remove_task_from_execute_queue(task, dev);
924 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926 
927 /*
928  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929  */
930 
target_qf_do_work(struct work_struct * work)931 static void target_qf_do_work(struct work_struct *work)
932 {
933 	struct se_device *dev = container_of(work, struct se_device,
934 					qf_work_queue);
935 	LIST_HEAD(qf_cmd_list);
936 	struct se_cmd *cmd, *cmd_tmp;
937 
938 	spin_lock_irq(&dev->qf_cmd_lock);
939 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940 	spin_unlock_irq(&dev->qf_cmd_lock);
941 
942 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943 		list_del(&cmd->se_qf_node);
944 		atomic_dec(&dev->dev_qf_count);
945 		smp_mb__after_atomic_dec();
946 
947 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951 			: "UNKNOWN");
952 
953 		transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954 	}
955 }
956 
transport_dump_cmd_direction(struct se_cmd * cmd)957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959 	switch (cmd->data_direction) {
960 	case DMA_NONE:
961 		return "NONE";
962 	case DMA_FROM_DEVICE:
963 		return "READ";
964 	case DMA_TO_DEVICE:
965 		return "WRITE";
966 	case DMA_BIDIRECTIONAL:
967 		return "BIDI";
968 	default:
969 		break;
970 	}
971 
972 	return "UNKNOWN";
973 }
974 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)975 void transport_dump_dev_state(
976 	struct se_device *dev,
977 	char *b,
978 	int *bl)
979 {
980 	*bl += sprintf(b + *bl, "Status: ");
981 	switch (dev->dev_status) {
982 	case TRANSPORT_DEVICE_ACTIVATED:
983 		*bl += sprintf(b + *bl, "ACTIVATED");
984 		break;
985 	case TRANSPORT_DEVICE_DEACTIVATED:
986 		*bl += sprintf(b + *bl, "DEACTIVATED");
987 		break;
988 	case TRANSPORT_DEVICE_SHUTDOWN:
989 		*bl += sprintf(b + *bl, "SHUTDOWN");
990 		break;
991 	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992 	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993 		*bl += sprintf(b + *bl, "OFFLINE");
994 		break;
995 	default:
996 		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997 		break;
998 	}
999 
1000 	*bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
1001 		atomic_read(&dev->execute_tasks), dev->queue_depth);
1002 	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1003 		dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004 	*bl += sprintf(b + *bl, "        ");
1005 }
1006 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1007 void transport_dump_vpd_proto_id(
1008 	struct t10_vpd *vpd,
1009 	unsigned char *p_buf,
1010 	int p_buf_len)
1011 {
1012 	unsigned char buf[VPD_TMP_BUF_SIZE];
1013 	int len;
1014 
1015 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1016 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017 
1018 	switch (vpd->protocol_identifier) {
1019 	case 0x00:
1020 		sprintf(buf+len, "Fibre Channel\n");
1021 		break;
1022 	case 0x10:
1023 		sprintf(buf+len, "Parallel SCSI\n");
1024 		break;
1025 	case 0x20:
1026 		sprintf(buf+len, "SSA\n");
1027 		break;
1028 	case 0x30:
1029 		sprintf(buf+len, "IEEE 1394\n");
1030 		break;
1031 	case 0x40:
1032 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033 				" Protocol\n");
1034 		break;
1035 	case 0x50:
1036 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037 		break;
1038 	case 0x60:
1039 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040 		break;
1041 	case 0x70:
1042 		sprintf(buf+len, "Automation/Drive Interface Transport"
1043 				" Protocol\n");
1044 		break;
1045 	case 0x80:
1046 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047 		break;
1048 	default:
1049 		sprintf(buf+len, "Unknown 0x%02x\n",
1050 				vpd->protocol_identifier);
1051 		break;
1052 	}
1053 
1054 	if (p_buf)
1055 		strncpy(p_buf, buf, p_buf_len);
1056 	else
1057 		pr_debug("%s", buf);
1058 }
1059 
1060 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063 	/*
1064 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1065 	 *
1066 	 * from spc3r23.pdf section 7.5.1
1067 	 */
1068 	 if (page_83[1] & 0x80) {
1069 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1070 		vpd->protocol_identifier_set = 1;
1071 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1072 	}
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1076 int transport_dump_vpd_assoc(
1077 	struct t10_vpd *vpd,
1078 	unsigned char *p_buf,
1079 	int p_buf_len)
1080 {
1081 	unsigned char buf[VPD_TMP_BUF_SIZE];
1082 	int ret = 0;
1083 	int len;
1084 
1085 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1086 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1087 
1088 	switch (vpd->association) {
1089 	case 0x00:
1090 		sprintf(buf+len, "addressed logical unit\n");
1091 		break;
1092 	case 0x10:
1093 		sprintf(buf+len, "target port\n");
1094 		break;
1095 	case 0x20:
1096 		sprintf(buf+len, "SCSI target device\n");
1097 		break;
1098 	default:
1099 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100 		ret = -EINVAL;
1101 		break;
1102 	}
1103 
1104 	if (p_buf)
1105 		strncpy(p_buf, buf, p_buf_len);
1106 	else
1107 		pr_debug("%s", buf);
1108 
1109 	return ret;
1110 }
1111 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114 	/*
1115 	 * The VPD identification association..
1116 	 *
1117 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1118 	 */
1119 	vpd->association = (page_83[1] & 0x30);
1120 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1124 int transport_dump_vpd_ident_type(
1125 	struct t10_vpd *vpd,
1126 	unsigned char *p_buf,
1127 	int p_buf_len)
1128 {
1129 	unsigned char buf[VPD_TMP_BUF_SIZE];
1130 	int ret = 0;
1131 	int len;
1132 
1133 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1134 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1135 
1136 	switch (vpd->device_identifier_type) {
1137 	case 0x00:
1138 		sprintf(buf+len, "Vendor specific\n");
1139 		break;
1140 	case 0x01:
1141 		sprintf(buf+len, "T10 Vendor ID based\n");
1142 		break;
1143 	case 0x02:
1144 		sprintf(buf+len, "EUI-64 based\n");
1145 		break;
1146 	case 0x03:
1147 		sprintf(buf+len, "NAA\n");
1148 		break;
1149 	case 0x04:
1150 		sprintf(buf+len, "Relative target port identifier\n");
1151 		break;
1152 	case 0x08:
1153 		sprintf(buf+len, "SCSI name string\n");
1154 		break;
1155 	default:
1156 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1157 				vpd->device_identifier_type);
1158 		ret = -EINVAL;
1159 		break;
1160 	}
1161 
1162 	if (p_buf) {
1163 		if (p_buf_len < strlen(buf)+1)
1164 			return -EINVAL;
1165 		strncpy(p_buf, buf, p_buf_len);
1166 	} else {
1167 		pr_debug("%s", buf);
1168 	}
1169 
1170 	return ret;
1171 }
1172 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175 	/*
1176 	 * The VPD identifier type..
1177 	 *
1178 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1179 	 */
1180 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1181 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1185 int transport_dump_vpd_ident(
1186 	struct t10_vpd *vpd,
1187 	unsigned char *p_buf,
1188 	int p_buf_len)
1189 {
1190 	unsigned char buf[VPD_TMP_BUF_SIZE];
1191 	int ret = 0;
1192 
1193 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1194 
1195 	switch (vpd->device_identifier_code_set) {
1196 	case 0x01: /* Binary */
1197 		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198 			&vpd->device_identifier[0]);
1199 		break;
1200 	case 0x02: /* ASCII */
1201 		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202 			&vpd->device_identifier[0]);
1203 		break;
1204 	case 0x03: /* UTF-8 */
1205 		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206 			&vpd->device_identifier[0]);
1207 		break;
1208 	default:
1209 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210 			" 0x%02x", vpd->device_identifier_code_set);
1211 		ret = -EINVAL;
1212 		break;
1213 	}
1214 
1215 	if (p_buf)
1216 		strncpy(p_buf, buf, p_buf_len);
1217 	else
1218 		pr_debug("%s", buf);
1219 
1220 	return ret;
1221 }
1222 
1223 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226 	static const char hex_str[] = "0123456789abcdef";
1227 	int j = 0, i = 4; /* offset to start of the identifer */
1228 
1229 	/*
1230 	 * The VPD Code Set (encoding)
1231 	 *
1232 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1233 	 */
1234 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235 	switch (vpd->device_identifier_code_set) {
1236 	case 0x01: /* Binary */
1237 		vpd->device_identifier[j++] =
1238 				hex_str[vpd->device_identifier_type];
1239 		while (i < (4 + page_83[3])) {
1240 			vpd->device_identifier[j++] =
1241 				hex_str[(page_83[i] & 0xf0) >> 4];
1242 			vpd->device_identifier[j++] =
1243 				hex_str[page_83[i] & 0x0f];
1244 			i++;
1245 		}
1246 		break;
1247 	case 0x02: /* ASCII */
1248 	case 0x03: /* UTF-8 */
1249 		while (i < (4 + page_83[3]))
1250 			vpd->device_identifier[j++] = page_83[i++];
1251 		break;
1252 	default:
1253 		break;
1254 	}
1255 
1256 	return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259 
core_setup_task_attr_emulation(struct se_device * dev)1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262 	/*
1263 	 * If this device is from Target_Core_Mod/pSCSI, disable the
1264 	 * SAM Task Attribute emulation.
1265 	 *
1266 	 * This is currently not available in upsream Linux/SCSI Target
1267 	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268 	 */
1269 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270 		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271 		return;
1272 	}
1273 
1274 	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275 	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276 		" device\n", dev->transport->name,
1277 		dev->transport->get_device_rev(dev));
1278 }
1279 
scsi_dump_inquiry(struct se_device * dev)1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282 	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283 	char buf[17];
1284 	int i, device_type;
1285 	/*
1286 	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287 	 */
1288 	for (i = 0; i < 8; i++)
1289 		if (wwn->vendor[i] >= 0x20)
1290 			buf[i] = wwn->vendor[i];
1291 		else
1292 			buf[i] = ' ';
1293 	buf[i] = '\0';
1294 	pr_debug("  Vendor: %s\n", buf);
1295 
1296 	for (i = 0; i < 16; i++)
1297 		if (wwn->model[i] >= 0x20)
1298 			buf[i] = wwn->model[i];
1299 		else
1300 			buf[i] = ' ';
1301 	buf[i] = '\0';
1302 	pr_debug("  Model: %s\n", buf);
1303 
1304 	for (i = 0; i < 4; i++)
1305 		if (wwn->revision[i] >= 0x20)
1306 			buf[i] = wwn->revision[i];
1307 		else
1308 			buf[i] = ' ';
1309 	buf[i] = '\0';
1310 	pr_debug("  Revision: %s\n", buf);
1311 
1312 	device_type = dev->transport->get_device_type(dev);
1313 	pr_debug("  Type:   %s ", scsi_device_type(device_type));
1314 	pr_debug("                 ANSI SCSI revision: %02x\n",
1315 				dev->transport->get_device_rev(dev));
1316 }
1317 
transport_add_device_to_core_hba(struct se_hba * hba,struct se_subsystem_api * transport,struct se_subsystem_dev * se_dev,u32 device_flags,void * transport_dev,struct se_dev_limits * dev_limits,const char * inquiry_prod,const char * inquiry_rev)1318 struct se_device *transport_add_device_to_core_hba(
1319 	struct se_hba *hba,
1320 	struct se_subsystem_api *transport,
1321 	struct se_subsystem_dev *se_dev,
1322 	u32 device_flags,
1323 	void *transport_dev,
1324 	struct se_dev_limits *dev_limits,
1325 	const char *inquiry_prod,
1326 	const char *inquiry_rev)
1327 {
1328 	int force_pt;
1329 	struct se_device  *dev;
1330 
1331 	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332 	if (!dev) {
1333 		pr_err("Unable to allocate memory for se_dev_t\n");
1334 		return NULL;
1335 	}
1336 
1337 	transport_init_queue_obj(&dev->dev_queue_obj);
1338 	dev->dev_flags		= device_flags;
1339 	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1340 	dev->dev_ptr		= transport_dev;
1341 	dev->se_hba		= hba;
1342 	dev->se_sub_dev		= se_dev;
1343 	dev->transport		= transport;
1344 	dev->dev_link_magic	= SE_DEV_LINK_MAGIC;
1345 	INIT_LIST_HEAD(&dev->dev_list);
1346 	INIT_LIST_HEAD(&dev->dev_sep_list);
1347 	INIT_LIST_HEAD(&dev->dev_tmr_list);
1348 	INIT_LIST_HEAD(&dev->execute_task_list);
1349 	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1350 	INIT_LIST_HEAD(&dev->state_task_list);
1351 	INIT_LIST_HEAD(&dev->qf_cmd_list);
1352 	spin_lock_init(&dev->execute_task_lock);
1353 	spin_lock_init(&dev->delayed_cmd_lock);
1354 	spin_lock_init(&dev->dev_reservation_lock);
1355 	spin_lock_init(&dev->dev_status_lock);
1356 	spin_lock_init(&dev->se_port_lock);
1357 	spin_lock_init(&dev->se_tmr_lock);
1358 	spin_lock_init(&dev->qf_cmd_lock);
1359 	atomic_set(&dev->dev_ordered_id, 0);
1360 
1361 	se_dev_set_default_attribs(dev, dev_limits);
1362 
1363 	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364 	dev->creation_time = get_jiffies_64();
1365 	spin_lock_init(&dev->stats_lock);
1366 
1367 	spin_lock(&hba->device_lock);
1368 	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369 	hba->dev_count++;
1370 	spin_unlock(&hba->device_lock);
1371 	/*
1372 	 * Setup the SAM Task Attribute emulation for struct se_device
1373 	 */
1374 	core_setup_task_attr_emulation(dev);
1375 	/*
1376 	 * Force PR and ALUA passthrough emulation with internal object use.
1377 	 */
1378 	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379 	/*
1380 	 * Setup the Reservations infrastructure for struct se_device
1381 	 */
1382 	core_setup_reservations(dev, force_pt);
1383 	/*
1384 	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385 	 */
1386 	if (core_setup_alua(dev, force_pt) < 0)
1387 		goto out;
1388 
1389 	/*
1390 	 * Startup the struct se_device processing thread
1391 	 */
1392 	dev->process_thread = kthread_run(transport_processing_thread, dev,
1393 					  "LIO_%s", dev->transport->name);
1394 	if (IS_ERR(dev->process_thread)) {
1395 		pr_err("Unable to create kthread: LIO_%s\n",
1396 			dev->transport->name);
1397 		goto out;
1398 	}
1399 	/*
1400 	 * Setup work_queue for QUEUE_FULL
1401 	 */
1402 	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403 	/*
1404 	 * Preload the initial INQUIRY const values if we are doing
1405 	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 	 * passthrough because this is being provided by the backend LLD.
1407 	 * This is required so that transport_get_inquiry() copies these
1408 	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1409 	 * setup.
1410 	 */
1411 	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412 		if (!inquiry_prod || !inquiry_rev) {
1413 			pr_err("All non TCM/pSCSI plugins require"
1414 				" INQUIRY consts\n");
1415 			goto out;
1416 		}
1417 
1418 		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419 		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420 		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421 	}
1422 	scsi_dump_inquiry(dev);
1423 
1424 	return dev;
1425 out:
1426 	kthread_stop(dev->process_thread);
1427 
1428 	spin_lock(&hba->device_lock);
1429 	list_del(&dev->dev_list);
1430 	hba->dev_count--;
1431 	spin_unlock(&hba->device_lock);
1432 
1433 	se_release_vpd_for_dev(dev);
1434 
1435 	kfree(dev);
1436 
1437 	return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440 
1441 /*	transport_generic_prepare_cdb():
1442  *
1443  *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1444  *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445  *	The point of this is since we are mapping iSCSI LUNs to
1446  *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447  *	devices and HBAs for a loop.
1448  */
transport_generic_prepare_cdb(unsigned char * cdb)1449 static inline void transport_generic_prepare_cdb(
1450 	unsigned char *cdb)
1451 {
1452 	switch (cdb[0]) {
1453 	case READ_10: /* SBC - RDProtect */
1454 	case READ_12: /* SBC - RDProtect */
1455 	case READ_16: /* SBC - RDProtect */
1456 	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457 	case VERIFY: /* SBC - VRProtect */
1458 	case VERIFY_16: /* SBC - VRProtect */
1459 	case WRITE_VERIFY: /* SBC - VRProtect */
1460 	case WRITE_VERIFY_12: /* SBC - VRProtect */
1461 	case MAINTENANCE_IN: /* SPC - Parameter Data Format for SA RTPG */
1462 		break;
1463 	default:
1464 		cdb[1] &= 0x1f; /* clear logical unit number */
1465 		break;
1466 	}
1467 }
1468 
1469 static struct se_task *
transport_generic_get_task(struct se_cmd * cmd,enum dma_data_direction data_direction)1470 transport_generic_get_task(struct se_cmd *cmd,
1471 		enum dma_data_direction data_direction)
1472 {
1473 	struct se_task *task;
1474 	struct se_device *dev = cmd->se_dev;
1475 
1476 	task = dev->transport->alloc_task(cmd->t_task_cdb);
1477 	if (!task) {
1478 		pr_err("Unable to allocate struct se_task\n");
1479 		return NULL;
1480 	}
1481 
1482 	INIT_LIST_HEAD(&task->t_list);
1483 	INIT_LIST_HEAD(&task->t_execute_list);
1484 	INIT_LIST_HEAD(&task->t_state_list);
1485 	init_completion(&task->task_stop_comp);
1486 	task->task_se_cmd = cmd;
1487 	task->task_data_direction = data_direction;
1488 
1489 	return task;
1490 }
1491 
1492 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1493 
1494 /*
1495  * Used by fabric modules containing a local struct se_cmd within their
1496  * fabric dependent per I/O descriptor.
1497  */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1498 void transport_init_se_cmd(
1499 	struct se_cmd *cmd,
1500 	struct target_core_fabric_ops *tfo,
1501 	struct se_session *se_sess,
1502 	u32 data_length,
1503 	int data_direction,
1504 	int task_attr,
1505 	unsigned char *sense_buffer)
1506 {
1507 	INIT_LIST_HEAD(&cmd->se_lun_node);
1508 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1509 	INIT_LIST_HEAD(&cmd->se_qf_node);
1510 	INIT_LIST_HEAD(&cmd->se_queue_node);
1511 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1512 	INIT_LIST_HEAD(&cmd->t_task_list);
1513 	init_completion(&cmd->transport_lun_fe_stop_comp);
1514 	init_completion(&cmd->transport_lun_stop_comp);
1515 	init_completion(&cmd->t_transport_stop_comp);
1516 	init_completion(&cmd->cmd_wait_comp);
1517 	spin_lock_init(&cmd->t_state_lock);
1518 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1519 
1520 	cmd->se_tfo = tfo;
1521 	cmd->se_sess = se_sess;
1522 	cmd->data_length = data_length;
1523 	cmd->data_direction = data_direction;
1524 	cmd->sam_task_attr = task_attr;
1525 	cmd->sense_buffer = sense_buffer;
1526 }
1527 EXPORT_SYMBOL(transport_init_se_cmd);
1528 
transport_check_alloc_task_attr(struct se_cmd * cmd)1529 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1530 {
1531 	/*
1532 	 * Check if SAM Task Attribute emulation is enabled for this
1533 	 * struct se_device storage object
1534 	 */
1535 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1536 		return 0;
1537 
1538 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1539 		pr_debug("SAM Task Attribute ACA"
1540 			" emulation is not supported\n");
1541 		return -EINVAL;
1542 	}
1543 	/*
1544 	 * Used to determine when ORDERED commands should go from
1545 	 * Dormant to Active status.
1546 	 */
1547 	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1548 	smp_mb__after_atomic_inc();
1549 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550 			cmd->se_ordered_id, cmd->sam_task_attr,
1551 			cmd->se_dev->transport->name);
1552 	return 0;
1553 }
1554 
1555 /*	transport_generic_allocate_tasks():
1556  *
1557  *	Called from fabric RX Thread.
1558  */
transport_generic_allocate_tasks(struct se_cmd * cmd,unsigned char * cdb)1559 int transport_generic_allocate_tasks(
1560 	struct se_cmd *cmd,
1561 	unsigned char *cdb)
1562 {
1563 	int ret;
1564 
1565 	transport_generic_prepare_cdb(cdb);
1566 	/*
1567 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1568 	 * for VARIABLE_LENGTH_CMD
1569 	 */
1570 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1571 		pr_err("Received SCSI CDB with command_size: %d that"
1572 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1574 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1575 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1576 		return -EINVAL;
1577 	}
1578 	/*
1579 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1580 	 * allocate the additional extended CDB buffer now..  Otherwise
1581 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1582 	 */
1583 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1584 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1585 						GFP_KERNEL);
1586 		if (!cmd->t_task_cdb) {
1587 			pr_err("Unable to allocate cmd->t_task_cdb"
1588 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1589 				scsi_command_size(cdb),
1590 				(unsigned long)sizeof(cmd->__t_task_cdb));
1591 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1592 			cmd->scsi_sense_reason =
1593 					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1594 			return -ENOMEM;
1595 		}
1596 	} else
1597 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1598 	/*
1599 	 * Copy the original CDB into cmd->
1600 	 */
1601 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1602 	/*
1603 	 * Setup the received CDB based on SCSI defined opcodes and
1604 	 * perform unit attention, persistent reservations and ALUA
1605 	 * checks for virtual device backends.  The cmd->t_task_cdb
1606 	 * pointer is expected to be setup before we reach this point.
1607 	 */
1608 	ret = transport_generic_cmd_sequencer(cmd, cdb);
1609 	if (ret < 0)
1610 		return ret;
1611 	/*
1612 	 * Check for SAM Task Attribute Emulation
1613 	 */
1614 	if (transport_check_alloc_task_attr(cmd) < 0) {
1615 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1616 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1617 		return -EINVAL;
1618 	}
1619 	spin_lock(&cmd->se_lun->lun_sep_lock);
1620 	if (cmd->se_lun->lun_sep)
1621 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1622 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1626 
1627 /*
1628  * Used by fabric module frontends to queue tasks directly.
1629  * Many only be used from process context only
1630  */
transport_handle_cdb_direct(struct se_cmd * cmd)1631 int transport_handle_cdb_direct(
1632 	struct se_cmd *cmd)
1633 {
1634 	int ret;
1635 
1636 	if (!cmd->se_lun) {
1637 		dump_stack();
1638 		pr_err("cmd->se_lun is NULL\n");
1639 		return -EINVAL;
1640 	}
1641 	if (in_interrupt()) {
1642 		dump_stack();
1643 		pr_err("transport_generic_handle_cdb cannot be called"
1644 				" from interrupt context\n");
1645 		return -EINVAL;
1646 	}
1647 	/*
1648 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1649 	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1650 	 * in existing usage to ensure that outstanding descriptors are handled
1651 	 * correctly during shutdown via transport_wait_for_tasks()
1652 	 *
1653 	 * Also, we don't take cmd->t_state_lock here as we only expect
1654 	 * this to be called for initial descriptor submission.
1655 	 */
1656 	cmd->t_state = TRANSPORT_NEW_CMD;
1657 	cmd->transport_state |= CMD_T_ACTIVE;
1658 
1659 	/*
1660 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1661 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1662 	 * and call transport_generic_request_failure() if necessary..
1663 	 */
1664 	ret = transport_generic_new_cmd(cmd);
1665 	if (ret < 0)
1666 		transport_generic_request_failure(cmd);
1667 
1668 	return 0;
1669 }
1670 EXPORT_SYMBOL(transport_handle_cdb_direct);
1671 
1672 /**
1673  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1674  *
1675  * @se_cmd: command descriptor to submit
1676  * @se_sess: associated se_sess for endpoint
1677  * @cdb: pointer to SCSI CDB
1678  * @sense: pointer to SCSI sense buffer
1679  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1680  * @data_length: fabric expected data transfer length
1681  * @task_addr: SAM task attribute
1682  * @data_dir: DMA data direction
1683  * @flags: flags for command submission from target_sc_flags_tables
1684  *
1685  * This may only be called from process context, and also currently
1686  * assumes internal allocation of fabric payload buffer by target-core.
1687  **/
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1688 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1689 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1690 		u32 data_length, int task_attr, int data_dir, int flags)
1691 {
1692 	struct se_portal_group *se_tpg;
1693 	int rc;
1694 
1695 	se_tpg = se_sess->se_tpg;
1696 	BUG_ON(!se_tpg);
1697 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1698 	BUG_ON(in_interrupt());
1699 	/*
1700 	 * Initialize se_cmd for target operation.  From this point
1701 	 * exceptions are handled by sending exception status via
1702 	 * target_core_fabric_ops->queue_status() callback
1703 	 */
1704 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1705 				data_length, data_dir, task_attr, sense);
1706 	/*
1707 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1708 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1709 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1710 	 * kref_put() to happen during fabric packet acknowledgement.
1711 	 */
1712 	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1713 	/*
1714 	 * Signal bidirectional data payloads to target-core
1715 	 */
1716 	if (flags & TARGET_SCF_BIDI_OP)
1717 		se_cmd->se_cmd_flags |= SCF_BIDI;
1718 	/*
1719 	 * Locate se_lun pointer and attach it to struct se_cmd
1720 	 */
1721 	if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1722 		transport_send_check_condition_and_sense(se_cmd,
1723 				se_cmd->scsi_sense_reason, 0);
1724 		target_put_sess_cmd(se_sess, se_cmd);
1725 		return;
1726 	}
1727 	/*
1728 	 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1729 	 * allocate the necessary tasks to complete the received CDB+data
1730 	 */
1731 	rc = transport_generic_allocate_tasks(se_cmd, cdb);
1732 	if (rc != 0) {
1733 		transport_generic_request_failure(se_cmd);
1734 		return;
1735 	}
1736 	/*
1737 	 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1738 	 * for immediate execution of READs, otherwise wait for
1739 	 * transport_generic_handle_data() to be called for WRITEs
1740 	 * when fabric has filled the incoming buffer.
1741 	 */
1742 	transport_handle_cdb_direct(se_cmd);
1743 	return;
1744 }
1745 EXPORT_SYMBOL(target_submit_cmd);
1746 
target_complete_tmr_failure(struct work_struct * work)1747 static void target_complete_tmr_failure(struct work_struct *work)
1748 {
1749 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1750 
1751 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1752 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1753 
1754 	transport_cmd_check_stop_to_fabric(se_cmd);
1755 }
1756 
1757 /**
1758  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1759  *                     for TMR CDBs
1760  *
1761  * @se_cmd: command descriptor to submit
1762  * @se_sess: associated se_sess for endpoint
1763  * @sense: pointer to SCSI sense buffer
1764  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1765  * @fabric_context: fabric context for TMR req
1766  * @tm_type: Type of TM request
1767  * @gfp: gfp type for caller
1768  * @tag: referenced task tag for TMR_ABORT_TASK
1769  * @flags: submit cmd flags
1770  *
1771  * Callable from all contexts.
1772  **/
1773 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1774 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1775 		unsigned char *sense, u32 unpacked_lun,
1776 		void *fabric_tmr_ptr, unsigned char tm_type,
1777 		gfp_t gfp, unsigned int tag, int flags)
1778 {
1779 	struct se_portal_group *se_tpg;
1780 	int ret;
1781 
1782 	se_tpg = se_sess->se_tpg;
1783 	BUG_ON(!se_tpg);
1784 
1785 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1786 			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1787 	/*
1788 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1789 	 * allocation failure.
1790 	 */
1791 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1792 	if (ret < 0)
1793 		return -ENOMEM;
1794 
1795 	if (tm_type == TMR_ABORT_TASK)
1796 		se_cmd->se_tmr_req->ref_task_tag = tag;
1797 
1798 	/* See target_submit_cmd for commentary */
1799 	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1800 
1801 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1802 	if (ret) {
1803 		/*
1804 		 * For callback during failure handling, push this work off
1805 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1806 		 */
1807 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1808 		schedule_work(&se_cmd->work);
1809 		return 0;
1810 	}
1811 	transport_generic_handle_tmr(se_cmd);
1812 	return 0;
1813 }
1814 EXPORT_SYMBOL(target_submit_tmr);
1815 
1816 /*
1817  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1818  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1819  * complete setup in TCM process context w/ TFO->new_cmd_map().
1820  */
transport_generic_handle_cdb_map(struct se_cmd * cmd)1821 int transport_generic_handle_cdb_map(
1822 	struct se_cmd *cmd)
1823 {
1824 	if (!cmd->se_lun) {
1825 		dump_stack();
1826 		pr_err("cmd->se_lun is NULL\n");
1827 		return -EINVAL;
1828 	}
1829 
1830 	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1831 	return 0;
1832 }
1833 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1834 
1835 /*	transport_generic_handle_data():
1836  *
1837  *
1838  */
transport_generic_handle_data(struct se_cmd * cmd)1839 int transport_generic_handle_data(
1840 	struct se_cmd *cmd)
1841 {
1842 	/*
1843 	 * For the software fabric case, then we assume the nexus is being
1844 	 * failed/shutdown when signals are pending from the kthread context
1845 	 * caller, so we return a failure.  For the HW target mode case running
1846 	 * in interrupt code, the signal_pending() check is skipped.
1847 	 */
1848 	if (!in_interrupt() && signal_pending(current))
1849 		return -EPERM;
1850 	/*
1851 	 * If the received CDB has aleady been ABORTED by the generic
1852 	 * target engine, we now call transport_check_aborted_status()
1853 	 * to queue any delated TASK_ABORTED status for the received CDB to the
1854 	 * fabric module as we are expecting no further incoming DATA OUT
1855 	 * sequences at this point.
1856 	 */
1857 	if (transport_check_aborted_status(cmd, 1) != 0)
1858 		return 0;
1859 
1860 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(transport_generic_handle_data);
1864 
1865 /*	transport_generic_handle_tmr():
1866  *
1867  *
1868  */
transport_generic_handle_tmr(struct se_cmd * cmd)1869 int transport_generic_handle_tmr(
1870 	struct se_cmd *cmd)
1871 {
1872 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1873 	return 0;
1874 }
1875 EXPORT_SYMBOL(transport_generic_handle_tmr);
1876 
1877 /*
1878  * If the task is active, request it to be stopped and sleep until it
1879  * has completed.
1880  */
target_stop_task(struct se_task * task,unsigned long * flags)1881 bool target_stop_task(struct se_task *task, unsigned long *flags)
1882 {
1883 	struct se_cmd *cmd = task->task_se_cmd;
1884 	bool was_active = false;
1885 
1886 	if (task->task_flags & TF_ACTIVE) {
1887 		task->task_flags |= TF_REQUEST_STOP;
1888 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1889 
1890 		pr_debug("Task %p waiting to complete\n", task);
1891 		wait_for_completion(&task->task_stop_comp);
1892 		pr_debug("Task %p stopped successfully\n", task);
1893 
1894 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1895 		atomic_dec(&cmd->t_task_cdbs_left);
1896 		task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1897 		was_active = true;
1898 	}
1899 
1900 	return was_active;
1901 }
1902 
transport_stop_tasks_for_cmd(struct se_cmd * cmd)1903 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1904 {
1905 	struct se_task *task, *task_tmp;
1906 	unsigned long flags;
1907 	int ret = 0;
1908 
1909 	pr_debug("ITT[0x%08x] - Stopping tasks\n",
1910 		cmd->se_tfo->get_task_tag(cmd));
1911 
1912 	/*
1913 	 * No tasks remain in the execution queue
1914 	 */
1915 	spin_lock_irqsave(&cmd->t_state_lock, flags);
1916 	list_for_each_entry_safe(task, task_tmp,
1917 				&cmd->t_task_list, t_list) {
1918 		pr_debug("Processing task %p\n", task);
1919 		/*
1920 		 * If the struct se_task has not been sent and is not active,
1921 		 * remove the struct se_task from the execution queue.
1922 		 */
1923 		if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1924 			spin_unlock_irqrestore(&cmd->t_state_lock,
1925 					flags);
1926 			transport_remove_task_from_execute_queue(task,
1927 					cmd->se_dev);
1928 
1929 			pr_debug("Task %p removed from execute queue\n", task);
1930 			spin_lock_irqsave(&cmd->t_state_lock, flags);
1931 			continue;
1932 		}
1933 
1934 		if (!target_stop_task(task, &flags)) {
1935 			pr_debug("Task %p - did nothing\n", task);
1936 			ret++;
1937 		}
1938 	}
1939 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1940 
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Handle SAM-esque emulation for generic transport request failures.
1946  */
transport_generic_request_failure(struct se_cmd * cmd)1947 void transport_generic_request_failure(struct se_cmd *cmd)
1948 {
1949 	int ret = 0;
1950 
1951 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1952 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1953 		cmd->t_task_cdb[0]);
1954 	pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1955 		cmd->se_tfo->get_cmd_state(cmd),
1956 		cmd->t_state, cmd->scsi_sense_reason);
1957 	pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1958 		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1959 		" CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1960 		cmd->t_task_list_num,
1961 		atomic_read(&cmd->t_task_cdbs_left),
1962 		atomic_read(&cmd->t_task_cdbs_sent),
1963 		atomic_read(&cmd->t_task_cdbs_ex_left),
1964 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1965 		(cmd->transport_state & CMD_T_STOP) != 0,
1966 		(cmd->transport_state & CMD_T_SENT) != 0);
1967 
1968 	/*
1969 	 * For SAM Task Attribute emulation for failed struct se_cmd
1970 	 */
1971 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1972 		transport_complete_task_attr(cmd);
1973 
1974 	switch (cmd->scsi_sense_reason) {
1975 	case TCM_NON_EXISTENT_LUN:
1976 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1977 	case TCM_INVALID_CDB_FIELD:
1978 	case TCM_INVALID_PARAMETER_LIST:
1979 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1980 	case TCM_UNKNOWN_MODE_PAGE:
1981 	case TCM_WRITE_PROTECTED:
1982 	case TCM_ADDRESS_OUT_OF_RANGE:
1983 	case TCM_CHECK_CONDITION_ABORT_CMD:
1984 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1985 	case TCM_CHECK_CONDITION_NOT_READY:
1986 		break;
1987 	case TCM_RESERVATION_CONFLICT:
1988 		/*
1989 		 * No SENSE Data payload for this case, set SCSI Status
1990 		 * and queue the response to $FABRIC_MOD.
1991 		 *
1992 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1993 		 */
1994 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1995 		/*
1996 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1997 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1998 		 * CONFLICT STATUS.
1999 		 *
2000 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2001 		 */
2002 		if (cmd->se_sess &&
2003 		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2004 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2005 				cmd->orig_fe_lun, 0x2C,
2006 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2007 
2008 		ret = cmd->se_tfo->queue_status(cmd);
2009 		if (ret == -EAGAIN || ret == -ENOMEM)
2010 			goto queue_full;
2011 		goto check_stop;
2012 	default:
2013 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2014 			cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2015 		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2016 		break;
2017 	}
2018 	/*
2019 	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2020 	 * make the call to transport_send_check_condition_and_sense()
2021 	 * directly.  Otherwise expect the fabric to make the call to
2022 	 * transport_send_check_condition_and_sense() after handling
2023 	 * possible unsoliticied write data payloads.
2024 	 */
2025 	ret = transport_send_check_condition_and_sense(cmd,
2026 			cmd->scsi_sense_reason, 0);
2027 	if (ret == -EAGAIN || ret == -ENOMEM)
2028 		goto queue_full;
2029 
2030 check_stop:
2031 	transport_lun_remove_cmd(cmd);
2032 	if (!transport_cmd_check_stop_to_fabric(cmd))
2033 		;
2034 	return;
2035 
2036 queue_full:
2037 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2038 	transport_handle_queue_full(cmd, cmd->se_dev);
2039 }
2040 EXPORT_SYMBOL(transport_generic_request_failure);
2041 
transport_lba_21(unsigned char * cdb)2042 static inline u32 transport_lba_21(unsigned char *cdb)
2043 {
2044 	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2045 }
2046 
transport_lba_32(unsigned char * cdb)2047 static inline u32 transport_lba_32(unsigned char *cdb)
2048 {
2049 	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2050 }
2051 
transport_lba_64(unsigned char * cdb)2052 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2053 {
2054 	unsigned int __v1, __v2;
2055 
2056 	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2057 	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2058 
2059 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2060 }
2061 
2062 /*
2063  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2064  */
transport_lba_64_ext(unsigned char * cdb)2065 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2066 {
2067 	unsigned int __v1, __v2;
2068 
2069 	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2070 	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2071 
2072 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2073 }
2074 
transport_set_supported_SAM_opcode(struct se_cmd * se_cmd)2075 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2076 {
2077 	unsigned long flags;
2078 
2079 	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2080 	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2081 	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2082 }
2083 
2084 /*
2085  * Called from Fabric Module context from transport_execute_tasks()
2086  *
2087  * The return of this function determins if the tasks from struct se_cmd
2088  * get added to the execution queue in transport_execute_tasks(),
2089  * or are added to the delayed or ordered lists here.
2090  */
transport_execute_task_attr(struct se_cmd * cmd)2091 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2092 {
2093 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2094 		return 1;
2095 	/*
2096 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2097 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2098 	 */
2099 	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2100 		pr_debug("Added HEAD_OF_QUEUE for CDB:"
2101 			" 0x%02x, se_ordered_id: %u\n",
2102 			cmd->t_task_cdb[0],
2103 			cmd->se_ordered_id);
2104 		return 1;
2105 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2106 		atomic_inc(&cmd->se_dev->dev_ordered_sync);
2107 		smp_mb__after_atomic_inc();
2108 
2109 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2110 				" list, se_ordered_id: %u\n",
2111 				cmd->t_task_cdb[0],
2112 				cmd->se_ordered_id);
2113 		/*
2114 		 * Add ORDERED command to tail of execution queue if
2115 		 * no other older commands exist that need to be
2116 		 * completed first.
2117 		 */
2118 		if (!atomic_read(&cmd->se_dev->simple_cmds))
2119 			return 1;
2120 	} else {
2121 		/*
2122 		 * For SIMPLE and UNTAGGED Task Attribute commands
2123 		 */
2124 		atomic_inc(&cmd->se_dev->simple_cmds);
2125 		smp_mb__after_atomic_inc();
2126 	}
2127 	/*
2128 	 * Otherwise if one or more outstanding ORDERED task attribute exist,
2129 	 * add the dormant task(s) built for the passed struct se_cmd to the
2130 	 * execution queue and become in Active state for this struct se_device.
2131 	 */
2132 	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2133 		/*
2134 		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2135 		 * will be drained upon completion of HEAD_OF_QUEUE task.
2136 		 */
2137 		spin_lock(&cmd->se_dev->delayed_cmd_lock);
2138 		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2139 		list_add_tail(&cmd->se_delayed_node,
2140 				&cmd->se_dev->delayed_cmd_list);
2141 		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2142 
2143 		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2144 			" delayed CMD list, se_ordered_id: %u\n",
2145 			cmd->t_task_cdb[0], cmd->sam_task_attr,
2146 			cmd->se_ordered_id);
2147 		/*
2148 		 * Return zero to let transport_execute_tasks() know
2149 		 * not to add the delayed tasks to the execution list.
2150 		 */
2151 		return 0;
2152 	}
2153 	/*
2154 	 * Otherwise, no ORDERED task attributes exist..
2155 	 */
2156 	return 1;
2157 }
2158 
2159 /*
2160  * Called from fabric module context in transport_generic_new_cmd() and
2161  * transport_generic_process_write()
2162  */
transport_execute_tasks(struct se_cmd * cmd)2163 static int transport_execute_tasks(struct se_cmd *cmd)
2164 {
2165 	int add_tasks;
2166 	struct se_device *se_dev = cmd->se_dev;
2167 	/*
2168 	 * Call transport_cmd_check_stop() to see if a fabric exception
2169 	 * has occurred that prevents execution.
2170 	 */
2171 	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2172 		/*
2173 		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2174 		 * attribute for the tasks of the received struct se_cmd CDB
2175 		 */
2176 		add_tasks = transport_execute_task_attr(cmd);
2177 		if (!add_tasks)
2178 			goto execute_tasks;
2179 		/*
2180 		 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2181 		 * adds associated se_tasks while holding dev->execute_task_lock
2182 		 * before I/O dispath to avoid a double spinlock access.
2183 		 */
2184 		__transport_execute_tasks(se_dev, cmd);
2185 		return 0;
2186 	}
2187 
2188 execute_tasks:
2189 	__transport_execute_tasks(se_dev, NULL);
2190 	return 0;
2191 }
2192 
2193 /*
2194  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2195  * from struct se_device->execute_task_list and
2196  *
2197  * Called from transport_processing_thread()
2198  */
__transport_execute_tasks(struct se_device * dev,struct se_cmd * new_cmd)2199 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2200 {
2201 	int error;
2202 	struct se_cmd *cmd = NULL;
2203 	struct se_task *task = NULL;
2204 	unsigned long flags;
2205 
2206 check_depth:
2207 	spin_lock_irq(&dev->execute_task_lock);
2208 	if (new_cmd != NULL)
2209 		__transport_add_tasks_from_cmd(new_cmd);
2210 
2211 	if (list_empty(&dev->execute_task_list)) {
2212 		spin_unlock_irq(&dev->execute_task_lock);
2213 		return 0;
2214 	}
2215 	task = list_first_entry(&dev->execute_task_list,
2216 				struct se_task, t_execute_list);
2217 	__transport_remove_task_from_execute_queue(task, dev);
2218 	spin_unlock_irq(&dev->execute_task_lock);
2219 
2220 	cmd = task->task_se_cmd;
2221 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2222 	task->task_flags |= (TF_ACTIVE | TF_SENT);
2223 	atomic_inc(&cmd->t_task_cdbs_sent);
2224 
2225 	if (atomic_read(&cmd->t_task_cdbs_sent) ==
2226 	    cmd->t_task_list_num)
2227 		cmd->transport_state |= CMD_T_SENT;
2228 
2229 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2230 
2231 	if (cmd->execute_task)
2232 		error = cmd->execute_task(task);
2233 	else
2234 		error = dev->transport->do_task(task);
2235 	if (error != 0) {
2236 		spin_lock_irqsave(&cmd->t_state_lock, flags);
2237 		task->task_flags &= ~TF_ACTIVE;
2238 		cmd->transport_state &= ~CMD_T_SENT;
2239 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2240 
2241 		transport_stop_tasks_for_cmd(cmd);
2242 		transport_generic_request_failure(cmd);
2243 	}
2244 
2245 	new_cmd = NULL;
2246 	goto check_depth;
2247 
2248 	return 0;
2249 }
2250 
transport_get_sectors_6(unsigned char * cdb,struct se_cmd * cmd,int * ret)2251 static inline u32 transport_get_sectors_6(
2252 	unsigned char *cdb,
2253 	struct se_cmd *cmd,
2254 	int *ret)
2255 {
2256 	struct se_device *dev = cmd->se_dev;
2257 
2258 	/*
2259 	 * Assume TYPE_DISK for non struct se_device objects.
2260 	 * Use 8-bit sector value.
2261 	 */
2262 	if (!dev)
2263 		goto type_disk;
2264 
2265 	/*
2266 	 * Use 24-bit allocation length for TYPE_TAPE.
2267 	 */
2268 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2269 		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2270 
2271 	/*
2272 	 * Everything else assume TYPE_DISK Sector CDB location.
2273 	 * Use 8-bit sector value.  SBC-3 says:
2274 	 *
2275 	 *   A TRANSFER LENGTH field set to zero specifies that 256
2276 	 *   logical blocks shall be written.  Any other value
2277 	 *   specifies the number of logical blocks that shall be
2278 	 *   written.
2279 	 */
2280 type_disk:
2281 	return cdb[4] ? : 256;
2282 }
2283 
transport_get_sectors_10(unsigned char * cdb,struct se_cmd * cmd,int * ret)2284 static inline u32 transport_get_sectors_10(
2285 	unsigned char *cdb,
2286 	struct se_cmd *cmd,
2287 	int *ret)
2288 {
2289 	struct se_device *dev = cmd->se_dev;
2290 
2291 	/*
2292 	 * Assume TYPE_DISK for non struct se_device objects.
2293 	 * Use 16-bit sector value.
2294 	 */
2295 	if (!dev)
2296 		goto type_disk;
2297 
2298 	/*
2299 	 * XXX_10 is not defined in SSC, throw an exception
2300 	 */
2301 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2302 		*ret = -EINVAL;
2303 		return 0;
2304 	}
2305 
2306 	/*
2307 	 * Everything else assume TYPE_DISK Sector CDB location.
2308 	 * Use 16-bit sector value.
2309 	 */
2310 type_disk:
2311 	return (u32)(cdb[7] << 8) + cdb[8];
2312 }
2313 
transport_get_sectors_12(unsigned char * cdb,struct se_cmd * cmd,int * ret)2314 static inline u32 transport_get_sectors_12(
2315 	unsigned char *cdb,
2316 	struct se_cmd *cmd,
2317 	int *ret)
2318 {
2319 	struct se_device *dev = cmd->se_dev;
2320 
2321 	/*
2322 	 * Assume TYPE_DISK for non struct se_device objects.
2323 	 * Use 32-bit sector value.
2324 	 */
2325 	if (!dev)
2326 		goto type_disk;
2327 
2328 	/*
2329 	 * XXX_12 is not defined in SSC, throw an exception
2330 	 */
2331 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2332 		*ret = -EINVAL;
2333 		return 0;
2334 	}
2335 
2336 	/*
2337 	 * Everything else assume TYPE_DISK Sector CDB location.
2338 	 * Use 32-bit sector value.
2339 	 */
2340 type_disk:
2341 	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2342 }
2343 
transport_get_sectors_16(unsigned char * cdb,struct se_cmd * cmd,int * ret)2344 static inline u32 transport_get_sectors_16(
2345 	unsigned char *cdb,
2346 	struct se_cmd *cmd,
2347 	int *ret)
2348 {
2349 	struct se_device *dev = cmd->se_dev;
2350 
2351 	/*
2352 	 * Assume TYPE_DISK for non struct se_device objects.
2353 	 * Use 32-bit sector value.
2354 	 */
2355 	if (!dev)
2356 		goto type_disk;
2357 
2358 	/*
2359 	 * Use 24-bit allocation length for TYPE_TAPE.
2360 	 */
2361 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2362 		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2363 
2364 type_disk:
2365 	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2366 		    (cdb[12] << 8) + cdb[13];
2367 }
2368 
2369 /*
2370  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2371  */
transport_get_sectors_32(unsigned char * cdb,struct se_cmd * cmd,int * ret)2372 static inline u32 transport_get_sectors_32(
2373 	unsigned char *cdb,
2374 	struct se_cmd *cmd,
2375 	int *ret)
2376 {
2377 	/*
2378 	 * Assume TYPE_DISK for non struct se_device objects.
2379 	 * Use 32-bit sector value.
2380 	 */
2381 	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2382 		    (cdb[30] << 8) + cdb[31];
2383 
2384 }
2385 
transport_get_size(u32 sectors,unsigned char * cdb,struct se_cmd * cmd)2386 static inline u32 transport_get_size(
2387 	u32 sectors,
2388 	unsigned char *cdb,
2389 	struct se_cmd *cmd)
2390 {
2391 	struct se_device *dev = cmd->se_dev;
2392 
2393 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2394 		if (cdb[1] & 1) { /* sectors */
2395 			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2396 		} else /* bytes */
2397 			return sectors;
2398 	}
2399 #if 0
2400 	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2401 			" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2402 			dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2403 			dev->transport->name);
2404 #endif
2405 	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2406 }
2407 
transport_xor_callback(struct se_cmd * cmd)2408 static void transport_xor_callback(struct se_cmd *cmd)
2409 {
2410 	unsigned char *buf, *addr;
2411 	struct scatterlist *sg;
2412 	unsigned int offset;
2413 	int i;
2414 	int count;
2415 	/*
2416 	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2417 	 *
2418 	 * 1) read the specified logical block(s);
2419 	 * 2) transfer logical blocks from the data-out buffer;
2420 	 * 3) XOR the logical blocks transferred from the data-out buffer with
2421 	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2422 	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2423 	 *    blocks transferred from the data-out buffer; and
2424 	 * 5) transfer the resulting XOR data to the data-in buffer.
2425 	 */
2426 	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2427 	if (!buf) {
2428 		pr_err("Unable to allocate xor_callback buf\n");
2429 		return;
2430 	}
2431 	/*
2432 	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2433 	 * into the locally allocated *buf
2434 	 */
2435 	sg_copy_to_buffer(cmd->t_data_sg,
2436 			  cmd->t_data_nents,
2437 			  buf,
2438 			  cmd->data_length);
2439 
2440 	/*
2441 	 * Now perform the XOR against the BIDI read memory located at
2442 	 * cmd->t_mem_bidi_list
2443 	 */
2444 
2445 	offset = 0;
2446 	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2447 		addr = kmap_atomic(sg_page(sg));
2448 		if (!addr)
2449 			goto out;
2450 
2451 		for (i = 0; i < sg->length; i++)
2452 			*(addr + sg->offset + i) ^= *(buf + offset + i);
2453 
2454 		offset += sg->length;
2455 		kunmap_atomic(addr);
2456 	}
2457 
2458 out:
2459 	kfree(buf);
2460 }
2461 
2462 /*
2463  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2464  */
transport_get_sense_data(struct se_cmd * cmd)2465 static int transport_get_sense_data(struct se_cmd *cmd)
2466 {
2467 	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2468 	struct se_device *dev = cmd->se_dev;
2469 	struct se_task *task = NULL, *task_tmp;
2470 	unsigned long flags;
2471 	u32 offset = 0;
2472 
2473 	WARN_ON(!cmd->se_lun);
2474 
2475 	if (!dev)
2476 		return 0;
2477 
2478 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2479 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2480 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2481 		return 0;
2482 	}
2483 
2484 	list_for_each_entry_safe(task, task_tmp,
2485 				&cmd->t_task_list, t_list) {
2486 		if (!(task->task_flags & TF_HAS_SENSE))
2487 			continue;
2488 
2489 		if (!dev->transport->get_sense_buffer) {
2490 			pr_err("dev->transport->get_sense_buffer"
2491 					" is NULL\n");
2492 			continue;
2493 		}
2494 
2495 		sense_buffer = dev->transport->get_sense_buffer(task);
2496 		if (!sense_buffer) {
2497 			pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2498 				" sense buffer for task with sense\n",
2499 				cmd->se_tfo->get_task_tag(cmd), task);
2500 			continue;
2501 		}
2502 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2503 
2504 		offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2505 				TRANSPORT_SENSE_BUFFER);
2506 
2507 		memcpy(&buffer[offset], sense_buffer,
2508 				TRANSPORT_SENSE_BUFFER);
2509 		cmd->scsi_status = task->task_scsi_status;
2510 		/* Automatically padded */
2511 		cmd->scsi_sense_length =
2512 				(TRANSPORT_SENSE_BUFFER + offset);
2513 
2514 		pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2515 				" and sense\n",
2516 			dev->se_hba->hba_id, dev->transport->name,
2517 				cmd->scsi_status);
2518 		return 0;
2519 	}
2520 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2521 
2522 	return -1;
2523 }
2524 
transport_dev_end_lba(struct se_device * dev)2525 static inline long long transport_dev_end_lba(struct se_device *dev)
2526 {
2527 	return dev->transport->get_blocks(dev) + 1;
2528 }
2529 
transport_cmd_get_valid_sectors(struct se_cmd * cmd)2530 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2531 {
2532 	struct se_device *dev = cmd->se_dev;
2533 	u32 sectors;
2534 
2535 	if (dev->transport->get_device_type(dev) != TYPE_DISK)
2536 		return 0;
2537 
2538 	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2539 
2540 	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2541 		pr_err("LBA: %llu Sectors: %u exceeds"
2542 			" transport_dev_end_lba(): %llu\n",
2543 			cmd->t_task_lba, sectors,
2544 			transport_dev_end_lba(dev));
2545 		return -EINVAL;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
target_check_write_same_discard(unsigned char * flags,struct se_device * dev)2551 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2552 {
2553 	/*
2554 	 * Determine if the received WRITE_SAME is used to for direct
2555 	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2556 	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2557 	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2558 	 */
2559 	int passthrough = (dev->transport->transport_type ==
2560 				TRANSPORT_PLUGIN_PHBA_PDEV);
2561 
2562 	if (!passthrough) {
2563 		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2564 			pr_err("WRITE_SAME PBDATA and LBDATA"
2565 				" bits not supported for Block Discard"
2566 				" Emulation\n");
2567 			return -ENOSYS;
2568 		}
2569 		/*
2570 		 * Currently for the emulated case we only accept
2571 		 * tpws with the UNMAP=1 bit set.
2572 		 */
2573 		if (!(flags[0] & 0x08)) {
2574 			pr_err("WRITE_SAME w/o UNMAP bit not"
2575 				" supported for Block Discard Emulation\n");
2576 			return -ENOSYS;
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 /*	transport_generic_cmd_sequencer():
2584  *
2585  *	Generic Command Sequencer that should work for most DAS transport
2586  *	drivers.
2587  *
2588  *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2589  *	RX Thread.
2590  *
2591  *	FIXME: Need to support other SCSI OPCODES where as well.
2592  */
transport_generic_cmd_sequencer(struct se_cmd * cmd,unsigned char * cdb)2593 static int transport_generic_cmd_sequencer(
2594 	struct se_cmd *cmd,
2595 	unsigned char *cdb)
2596 {
2597 	struct se_device *dev = cmd->se_dev;
2598 	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2599 	int ret = 0, sector_ret = 0, passthrough;
2600 	u32 sectors = 0, size = 0, pr_reg_type = 0;
2601 	u16 service_action;
2602 	u8 alua_ascq = 0;
2603 	/*
2604 	 * Check for an existing UNIT ATTENTION condition
2605 	 */
2606 	if (core_scsi3_ua_check(cmd, cdb) < 0) {
2607 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2608 		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2609 		return -EINVAL;
2610 	}
2611 	/*
2612 	 * Check status of Asymmetric Logical Unit Assignment port
2613 	 */
2614 	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2615 	if (ret != 0) {
2616 		/*
2617 		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2618 		 * The ALUA additional sense code qualifier (ASCQ) is determined
2619 		 * by the ALUA primary or secondary access state..
2620 		 */
2621 		if (ret > 0) {
2622 #if 0
2623 			pr_debug("[%s]: ALUA TG Port not available,"
2624 				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2625 				cmd->se_tfo->get_fabric_name(), alua_ascq);
2626 #endif
2627 			transport_set_sense_codes(cmd, 0x04, alua_ascq);
2628 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2629 			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2630 			return -EINVAL;
2631 		}
2632 		goto out_invalid_cdb_field;
2633 	}
2634 	/*
2635 	 * Check status for SPC-3 Persistent Reservations
2636 	 */
2637 	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2638 		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2639 					cmd, cdb, pr_reg_type) != 0) {
2640 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2641 			cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2642 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2643 			cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2644 			return -EBUSY;
2645 		}
2646 		/*
2647 		 * This means the CDB is allowed for the SCSI Initiator port
2648 		 * when said port is *NOT* holding the legacy SPC-2 or
2649 		 * SPC-3 Persistent Reservation.
2650 		 */
2651 	}
2652 
2653 	/*
2654 	 * If we operate in passthrough mode we skip most CDB emulation and
2655 	 * instead hand the commands down to the physical SCSI device.
2656 	 */
2657 	passthrough =
2658 		(dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2659 
2660 	switch (cdb[0]) {
2661 	case READ_6:
2662 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2663 		if (sector_ret)
2664 			goto out_unsupported_cdb;
2665 		size = transport_get_size(sectors, cdb, cmd);
2666 		cmd->t_task_lba = transport_lba_21(cdb);
2667 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2668 		break;
2669 	case READ_10:
2670 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2671 		if (sector_ret)
2672 			goto out_unsupported_cdb;
2673 		size = transport_get_size(sectors, cdb, cmd);
2674 		cmd->t_task_lba = transport_lba_32(cdb);
2675 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2676 		break;
2677 	case READ_12:
2678 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2679 		if (sector_ret)
2680 			goto out_unsupported_cdb;
2681 		size = transport_get_size(sectors, cdb, cmd);
2682 		cmd->t_task_lba = transport_lba_32(cdb);
2683 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2684 		break;
2685 	case READ_16:
2686 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2687 		if (sector_ret)
2688 			goto out_unsupported_cdb;
2689 		size = transport_get_size(sectors, cdb, cmd);
2690 		cmd->t_task_lba = transport_lba_64(cdb);
2691 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2692 		break;
2693 	case WRITE_6:
2694 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2695 		if (sector_ret)
2696 			goto out_unsupported_cdb;
2697 		size = transport_get_size(sectors, cdb, cmd);
2698 		cmd->t_task_lba = transport_lba_21(cdb);
2699 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2700 		break;
2701 	case WRITE_10:
2702 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2703 		if (sector_ret)
2704 			goto out_unsupported_cdb;
2705 		size = transport_get_size(sectors, cdb, cmd);
2706 		cmd->t_task_lba = transport_lba_32(cdb);
2707 		if (cdb[1] & 0x8)
2708 			cmd->se_cmd_flags |= SCF_FUA;
2709 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2710 		break;
2711 	case WRITE_12:
2712 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2713 		if (sector_ret)
2714 			goto out_unsupported_cdb;
2715 		size = transport_get_size(sectors, cdb, cmd);
2716 		cmd->t_task_lba = transport_lba_32(cdb);
2717 		if (cdb[1] & 0x8)
2718 			cmd->se_cmd_flags |= SCF_FUA;
2719 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2720 		break;
2721 	case WRITE_16:
2722 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2723 		if (sector_ret)
2724 			goto out_unsupported_cdb;
2725 		size = transport_get_size(sectors, cdb, cmd);
2726 		cmd->t_task_lba = transport_lba_64(cdb);
2727 		if (cdb[1] & 0x8)
2728 			cmd->se_cmd_flags |= SCF_FUA;
2729 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2730 		break;
2731 	case XDWRITEREAD_10:
2732 		if ((cmd->data_direction != DMA_TO_DEVICE) ||
2733 		    !(cmd->se_cmd_flags & SCF_BIDI))
2734 			goto out_invalid_cdb_field;
2735 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2736 		if (sector_ret)
2737 			goto out_unsupported_cdb;
2738 		size = transport_get_size(sectors, cdb, cmd);
2739 		cmd->t_task_lba = transport_lba_32(cdb);
2740 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2741 
2742 		/*
2743 		 * Do now allow BIDI commands for passthrough mode.
2744 		 */
2745 		if (passthrough)
2746 			goto out_unsupported_cdb;
2747 
2748 		/*
2749 		 * Setup BIDI XOR callback to be run after I/O completion.
2750 		 */
2751 		cmd->transport_complete_callback = &transport_xor_callback;
2752 		if (cdb[1] & 0x8)
2753 			cmd->se_cmd_flags |= SCF_FUA;
2754 		break;
2755 	case VARIABLE_LENGTH_CMD:
2756 		service_action = get_unaligned_be16(&cdb[8]);
2757 		switch (service_action) {
2758 		case XDWRITEREAD_32:
2759 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2760 			if (sector_ret)
2761 				goto out_unsupported_cdb;
2762 			size = transport_get_size(sectors, cdb, cmd);
2763 			/*
2764 			 * Use WRITE_32 and READ_32 opcodes for the emulated
2765 			 * XDWRITE_READ_32 logic.
2766 			 */
2767 			cmd->t_task_lba = transport_lba_64_ext(cdb);
2768 			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2769 
2770 			/*
2771 			 * Do now allow BIDI commands for passthrough mode.
2772 			 */
2773 			if (passthrough)
2774 				goto out_unsupported_cdb;
2775 
2776 			/*
2777 			 * Setup BIDI XOR callback to be run during after I/O
2778 			 * completion.
2779 			 */
2780 			cmd->transport_complete_callback = &transport_xor_callback;
2781 			if (cdb[1] & 0x8)
2782 				cmd->se_cmd_flags |= SCF_FUA;
2783 			break;
2784 		case WRITE_SAME_32:
2785 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2786 			if (sector_ret)
2787 				goto out_unsupported_cdb;
2788 
2789 			if (sectors)
2790 				size = transport_get_size(1, cdb, cmd);
2791 			else {
2792 				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2793 				       " supported\n");
2794 				goto out_invalid_cdb_field;
2795 			}
2796 
2797 			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2798 			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2799 
2800 			if (target_check_write_same_discard(&cdb[10], dev) < 0)
2801 				goto out_unsupported_cdb;
2802 			if (!passthrough)
2803 				cmd->execute_task = target_emulate_write_same;
2804 			break;
2805 		default:
2806 			pr_err("VARIABLE_LENGTH_CMD service action"
2807 				" 0x%04x not supported\n", service_action);
2808 			goto out_unsupported_cdb;
2809 		}
2810 		break;
2811 	case MAINTENANCE_IN:
2812 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2813 			/* MAINTENANCE_IN from SCC-2 */
2814 			/*
2815 			 * Check for emulated MI_REPORT_TARGET_PGS.
2816 			 */
2817 			if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS &&
2818 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2819 				cmd->execute_task =
2820 					target_emulate_report_target_port_groups;
2821 			}
2822 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2823 			       (cdb[8] << 8) | cdb[9];
2824 		} else {
2825 			/* GPCMD_SEND_KEY from multi media commands */
2826 			size = (cdb[8] << 8) + cdb[9];
2827 		}
2828 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829 		break;
2830 	case MODE_SELECT:
2831 		size = cdb[4];
2832 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833 		break;
2834 	case MODE_SELECT_10:
2835 		size = (cdb[7] << 8) + cdb[8];
2836 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837 		break;
2838 	case MODE_SENSE:
2839 		size = cdb[4];
2840 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841 		if (!passthrough)
2842 			cmd->execute_task = target_emulate_modesense;
2843 		break;
2844 	case MODE_SENSE_10:
2845 		size = (cdb[7] << 8) + cdb[8];
2846 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2847 		if (!passthrough)
2848 			cmd->execute_task = target_emulate_modesense;
2849 		break;
2850 	case GPCMD_READ_BUFFER_CAPACITY:
2851 	case GPCMD_SEND_OPC:
2852 	case LOG_SELECT:
2853 	case LOG_SENSE:
2854 		size = (cdb[7] << 8) + cdb[8];
2855 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2856 		break;
2857 	case READ_BLOCK_LIMITS:
2858 		size = READ_BLOCK_LEN;
2859 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860 		break;
2861 	case GPCMD_GET_CONFIGURATION:
2862 	case GPCMD_READ_FORMAT_CAPACITIES:
2863 	case GPCMD_READ_DISC_INFO:
2864 	case GPCMD_READ_TRACK_RZONE_INFO:
2865 		size = (cdb[7] << 8) + cdb[8];
2866 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2867 		break;
2868 	case PERSISTENT_RESERVE_IN:
2869 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2870 			cmd->execute_task = target_scsi3_emulate_pr_in;
2871 		size = (cdb[7] << 8) + cdb[8];
2872 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873 		break;
2874 	case PERSISTENT_RESERVE_OUT:
2875 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2876 			cmd->execute_task = target_scsi3_emulate_pr_out;
2877 		size = (cdb[7] << 8) + cdb[8];
2878 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879 		break;
2880 	case GPCMD_MECHANISM_STATUS:
2881 	case GPCMD_READ_DVD_STRUCTURE:
2882 		size = (cdb[8] << 8) + cdb[9];
2883 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884 		break;
2885 	case READ_POSITION:
2886 		size = READ_POSITION_LEN;
2887 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2888 		break;
2889 	case MAINTENANCE_OUT:
2890 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2891 			/* MAINTENANCE_OUT from SCC-2
2892 			 *
2893 			 * Check for emulated MO_SET_TARGET_PGS.
2894 			 */
2895 			if (cdb[1] == MO_SET_TARGET_PGS &&
2896 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2897 				cmd->execute_task =
2898 					target_emulate_set_target_port_groups;
2899 			}
2900 
2901 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2902 			       (cdb[8] << 8) | cdb[9];
2903 		} else  {
2904 			/* GPCMD_REPORT_KEY from multi media commands */
2905 			size = (cdb[8] << 8) + cdb[9];
2906 		}
2907 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2908 		break;
2909 	case INQUIRY:
2910 		size = (cdb[3] << 8) + cdb[4];
2911 		/*
2912 		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2913 		 * See spc4r17 section 5.3
2914 		 */
2915 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2916 			cmd->sam_task_attr = MSG_HEAD_TAG;
2917 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2918 		if (!passthrough)
2919 			cmd->execute_task = target_emulate_inquiry;
2920 		break;
2921 	case READ_BUFFER:
2922 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2923 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2924 		break;
2925 	case READ_CAPACITY:
2926 		size = READ_CAP_LEN;
2927 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2928 		if (!passthrough)
2929 			cmd->execute_task = target_emulate_readcapacity;
2930 		break;
2931 	case READ_MEDIA_SERIAL_NUMBER:
2932 	case SECURITY_PROTOCOL_IN:
2933 	case SECURITY_PROTOCOL_OUT:
2934 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2935 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2936 		break;
2937 	case SERVICE_ACTION_IN:
2938 		switch (cmd->t_task_cdb[1] & 0x1f) {
2939 		case SAI_READ_CAPACITY_16:
2940 			if (!passthrough)
2941 				cmd->execute_task =
2942 					target_emulate_readcapacity_16;
2943 			break;
2944 		default:
2945 			if (passthrough)
2946 				break;
2947 
2948 			pr_err("Unsupported SA: 0x%02x\n",
2949 				cmd->t_task_cdb[1] & 0x1f);
2950 			goto out_invalid_cdb_field;
2951 		}
2952 		/*FALLTHROUGH*/
2953 	case ACCESS_CONTROL_IN:
2954 	case ACCESS_CONTROL_OUT:
2955 	case EXTENDED_COPY:
2956 	case READ_ATTRIBUTE:
2957 	case RECEIVE_COPY_RESULTS:
2958 	case WRITE_ATTRIBUTE:
2959 		size = (cdb[10] << 24) | (cdb[11] << 16) |
2960 		       (cdb[12] << 8) | cdb[13];
2961 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2962 		break;
2963 	case RECEIVE_DIAGNOSTIC:
2964 	case SEND_DIAGNOSTIC:
2965 		size = (cdb[3] << 8) | cdb[4];
2966 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2967 		break;
2968 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2969 #if 0
2970 	case GPCMD_READ_CD:
2971 		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2972 		size = (2336 * sectors);
2973 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2974 		break;
2975 #endif
2976 	case READ_TOC:
2977 		size = cdb[8];
2978 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2979 		break;
2980 	case REQUEST_SENSE:
2981 		size = cdb[4];
2982 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2983 		if (!passthrough)
2984 			cmd->execute_task = target_emulate_request_sense;
2985 		break;
2986 	case READ_ELEMENT_STATUS:
2987 		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2988 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2989 		break;
2990 	case WRITE_BUFFER:
2991 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2992 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2993 		break;
2994 	case RESERVE:
2995 	case RESERVE_10:
2996 		/*
2997 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2998 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2999 		 */
3000 		if (cdb[0] == RESERVE_10)
3001 			size = (cdb[7] << 8) | cdb[8];
3002 		else
3003 			size = cmd->data_length;
3004 
3005 		/*
3006 		 * Setup the legacy emulated handler for SPC-2 and
3007 		 * >= SPC-3 compatible reservation handling (CRH=1)
3008 		 * Otherwise, we assume the underlying SCSI logic is
3009 		 * is running in SPC_PASSTHROUGH, and wants reservations
3010 		 * emulation disabled.
3011 		 */
3012 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3013 			cmd->execute_task = target_scsi2_reservation_reserve;
3014 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3015 		break;
3016 	case RELEASE:
3017 	case RELEASE_10:
3018 		/*
3019 		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3020 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3021 		*/
3022 		if (cdb[0] == RELEASE_10)
3023 			size = (cdb[7] << 8) | cdb[8];
3024 		else
3025 			size = cmd->data_length;
3026 
3027 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3028 			cmd->execute_task = target_scsi2_reservation_release;
3029 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3030 		break;
3031 	case SYNCHRONIZE_CACHE:
3032 	case SYNCHRONIZE_CACHE_16:
3033 		/*
3034 		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3035 		 */
3036 		if (cdb[0] == SYNCHRONIZE_CACHE) {
3037 			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3038 			cmd->t_task_lba = transport_lba_32(cdb);
3039 		} else {
3040 			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3041 			cmd->t_task_lba = transport_lba_64(cdb);
3042 		}
3043 		if (sector_ret)
3044 			goto out_unsupported_cdb;
3045 
3046 		size = transport_get_size(sectors, cdb, cmd);
3047 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3048 
3049 		if (passthrough)
3050 			break;
3051 
3052 		/*
3053 		 * Check to ensure that LBA + Range does not exceed past end of
3054 		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3055 		 */
3056 		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3057 			if (transport_cmd_get_valid_sectors(cmd) < 0)
3058 				goto out_invalid_cdb_field;
3059 		}
3060 		cmd->execute_task = target_emulate_synchronize_cache;
3061 		break;
3062 	case UNMAP:
3063 		size = get_unaligned_be16(&cdb[7]);
3064 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3065 		if (!passthrough)
3066 			cmd->execute_task = target_emulate_unmap;
3067 		break;
3068 	case WRITE_SAME_16:
3069 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3070 		if (sector_ret)
3071 			goto out_unsupported_cdb;
3072 
3073 		if (sectors)
3074 			size = transport_get_size(1, cdb, cmd);
3075 		else {
3076 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3077 			goto out_invalid_cdb_field;
3078 		}
3079 
3080 		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3081 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3082 
3083 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3084 			goto out_unsupported_cdb;
3085 		if (!passthrough)
3086 			cmd->execute_task = target_emulate_write_same;
3087 		break;
3088 	case WRITE_SAME:
3089 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3090 		if (sector_ret)
3091 			goto out_unsupported_cdb;
3092 
3093 		if (sectors)
3094 			size = transport_get_size(1, cdb, cmd);
3095 		else {
3096 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3097 			goto out_invalid_cdb_field;
3098 		}
3099 
3100 		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3101 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3102 		/*
3103 		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3104 		 * of byte 1 bit 3 UNMAP instead of original reserved field
3105 		 */
3106 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3107 			goto out_unsupported_cdb;
3108 		if (!passthrough)
3109 			cmd->execute_task = target_emulate_write_same;
3110 		break;
3111 	case ALLOW_MEDIUM_REMOVAL:
3112 	case ERASE:
3113 	case REZERO_UNIT:
3114 	case SEEK_10:
3115 	case SPACE:
3116 	case START_STOP:
3117 	case TEST_UNIT_READY:
3118 	case VERIFY:
3119 	case WRITE_FILEMARKS:
3120 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3121 		if (!passthrough)
3122 			cmd->execute_task = target_emulate_noop;
3123 		break;
3124 	case GPCMD_CLOSE_TRACK:
3125 	case INITIALIZE_ELEMENT_STATUS:
3126 	case GPCMD_LOAD_UNLOAD:
3127 	case GPCMD_SET_SPEED:
3128 	case MOVE_MEDIUM:
3129 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3130 		break;
3131 	case REPORT_LUNS:
3132 		cmd->execute_task = target_report_luns;
3133 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3134 		/*
3135 		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3136 		 * See spc4r17 section 5.3
3137 		 */
3138 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3139 			cmd->sam_task_attr = MSG_HEAD_TAG;
3140 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3141 		break;
3142 	default:
3143 		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3144 			" 0x%02x, sending CHECK_CONDITION.\n",
3145 			cmd->se_tfo->get_fabric_name(), cdb[0]);
3146 		goto out_unsupported_cdb;
3147 	}
3148 
3149 	if (size != cmd->data_length) {
3150 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3151 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3152 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3153 				cmd->data_length, size, cdb[0]);
3154 
3155 		cmd->cmd_spdtl = size;
3156 
3157 		if (cmd->data_direction == DMA_TO_DEVICE) {
3158 			pr_err("Rejecting underflow/overflow"
3159 					" WRITE data\n");
3160 			goto out_invalid_cdb_field;
3161 		}
3162 		/*
3163 		 * Reject READ_* or WRITE_* with overflow/underflow for
3164 		 * type SCF_SCSI_DATA_SG_IO_CDB.
3165 		 */
3166 		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3167 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3168 				" CDB on non 512-byte sector setup subsystem"
3169 				" plugin: %s\n", dev->transport->name);
3170 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3171 			goto out_invalid_cdb_field;
3172 		}
3173 		/*
3174 		 * For the overflow case keep the existing fabric provided
3175 		 * ->data_length.  Otherwise for the underflow case, reset
3176 		 * ->data_length to the smaller SCSI expected data transfer
3177 		 * length.
3178 		 */
3179 		if (size > cmd->data_length) {
3180 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3181 			cmd->residual_count = (size - cmd->data_length);
3182 		} else {
3183 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3184 			cmd->residual_count = (cmd->data_length - size);
3185 			cmd->data_length = size;
3186 		}
3187 	}
3188 
3189 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3190 	    sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3191 		printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3192 				   cdb[0], sectors);
3193 		goto out_invalid_cdb_field;
3194 	}
3195 
3196 	/* reject any command that we don't have a handler for */
3197 	if (!(passthrough || cmd->execute_task ||
3198 	     (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3199 		goto out_unsupported_cdb;
3200 
3201 	transport_set_supported_SAM_opcode(cmd);
3202 	return ret;
3203 
3204 out_unsupported_cdb:
3205 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3206 	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3207 	return -EINVAL;
3208 out_invalid_cdb_field:
3209 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3210 	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3211 	return -EINVAL;
3212 }
3213 
3214 /*
3215  * Called from I/O completion to determine which dormant/delayed
3216  * and ordered cmds need to have their tasks added to the execution queue.
3217  */
transport_complete_task_attr(struct se_cmd * cmd)3218 static void transport_complete_task_attr(struct se_cmd *cmd)
3219 {
3220 	struct se_device *dev = cmd->se_dev;
3221 	struct se_cmd *cmd_p, *cmd_tmp;
3222 	int new_active_tasks = 0;
3223 
3224 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3225 		atomic_dec(&dev->simple_cmds);
3226 		smp_mb__after_atomic_dec();
3227 		dev->dev_cur_ordered_id++;
3228 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3229 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3230 			cmd->se_ordered_id);
3231 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3232 		dev->dev_cur_ordered_id++;
3233 		pr_debug("Incremented dev_cur_ordered_id: %u for"
3234 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3235 			cmd->se_ordered_id);
3236 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3237 		atomic_dec(&dev->dev_ordered_sync);
3238 		smp_mb__after_atomic_dec();
3239 
3240 		dev->dev_cur_ordered_id++;
3241 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3242 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3243 	}
3244 	/*
3245 	 * Process all commands up to the last received
3246 	 * ORDERED task attribute which requires another blocking
3247 	 * boundary
3248 	 */
3249 	spin_lock(&dev->delayed_cmd_lock);
3250 	list_for_each_entry_safe(cmd_p, cmd_tmp,
3251 			&dev->delayed_cmd_list, se_delayed_node) {
3252 
3253 		list_del(&cmd_p->se_delayed_node);
3254 		spin_unlock(&dev->delayed_cmd_lock);
3255 
3256 		pr_debug("Calling add_tasks() for"
3257 			" cmd_p: 0x%02x Task Attr: 0x%02x"
3258 			" Dormant -> Active, se_ordered_id: %u\n",
3259 			cmd_p->t_task_cdb[0],
3260 			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3261 
3262 		transport_add_tasks_from_cmd(cmd_p);
3263 		new_active_tasks++;
3264 
3265 		spin_lock(&dev->delayed_cmd_lock);
3266 		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3267 			break;
3268 	}
3269 	spin_unlock(&dev->delayed_cmd_lock);
3270 	/*
3271 	 * If new tasks have become active, wake up the transport thread
3272 	 * to do the processing of the Active tasks.
3273 	 */
3274 	if (new_active_tasks != 0)
3275 		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3276 }
3277 
transport_complete_qf(struct se_cmd * cmd)3278 static void transport_complete_qf(struct se_cmd *cmd)
3279 {
3280 	int ret = 0;
3281 
3282 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3283 		transport_complete_task_attr(cmd);
3284 
3285 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3286 		ret = cmd->se_tfo->queue_status(cmd);
3287 		if (ret)
3288 			goto out;
3289 	}
3290 
3291 	switch (cmd->data_direction) {
3292 	case DMA_FROM_DEVICE:
3293 		ret = cmd->se_tfo->queue_data_in(cmd);
3294 		break;
3295 	case DMA_TO_DEVICE:
3296 		if (cmd->t_bidi_data_sg) {
3297 			ret = cmd->se_tfo->queue_data_in(cmd);
3298 			if (ret < 0)
3299 				break;
3300 		}
3301 		/* Fall through for DMA_TO_DEVICE */
3302 	case DMA_NONE:
3303 		ret = cmd->se_tfo->queue_status(cmd);
3304 		break;
3305 	default:
3306 		break;
3307 	}
3308 
3309 out:
3310 	if (ret < 0) {
3311 		transport_handle_queue_full(cmd, cmd->se_dev);
3312 		return;
3313 	}
3314 	transport_lun_remove_cmd(cmd);
3315 	transport_cmd_check_stop_to_fabric(cmd);
3316 }
3317 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)3318 static void transport_handle_queue_full(
3319 	struct se_cmd *cmd,
3320 	struct se_device *dev)
3321 {
3322 	spin_lock_irq(&dev->qf_cmd_lock);
3323 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3324 	atomic_inc(&dev->dev_qf_count);
3325 	smp_mb__after_atomic_inc();
3326 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3327 
3328 	schedule_work(&cmd->se_dev->qf_work_queue);
3329 }
3330 
target_complete_ok_work(struct work_struct * work)3331 static void target_complete_ok_work(struct work_struct *work)
3332 {
3333 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3334 	int reason = 0, ret;
3335 
3336 	/*
3337 	 * Check if we need to move delayed/dormant tasks from cmds on the
3338 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3339 	 * Attribute.
3340 	 */
3341 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3342 		transport_complete_task_attr(cmd);
3343 	/*
3344 	 * Check to schedule QUEUE_FULL work, or execute an existing
3345 	 * cmd->transport_qf_callback()
3346 	 */
3347 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3348 		schedule_work(&cmd->se_dev->qf_work_queue);
3349 
3350 	/*
3351 	 * Check if we need to retrieve a sense buffer from
3352 	 * the struct se_cmd in question.
3353 	 */
3354 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3355 		if (transport_get_sense_data(cmd) < 0)
3356 			reason = TCM_NON_EXISTENT_LUN;
3357 
3358 		/*
3359 		 * Only set when an struct se_task->task_scsi_status returned
3360 		 * a non GOOD status.
3361 		 */
3362 		if (cmd->scsi_status) {
3363 			ret = transport_send_check_condition_and_sense(
3364 					cmd, reason, 1);
3365 			if (ret == -EAGAIN || ret == -ENOMEM)
3366 				goto queue_full;
3367 
3368 			transport_lun_remove_cmd(cmd);
3369 			transport_cmd_check_stop_to_fabric(cmd);
3370 			return;
3371 		}
3372 	}
3373 	/*
3374 	 * Check for a callback, used by amongst other things
3375 	 * XDWRITE_READ_10 emulation.
3376 	 */
3377 	if (cmd->transport_complete_callback)
3378 		cmd->transport_complete_callback(cmd);
3379 
3380 	switch (cmd->data_direction) {
3381 	case DMA_FROM_DEVICE:
3382 		spin_lock(&cmd->se_lun->lun_sep_lock);
3383 		if (cmd->se_lun->lun_sep) {
3384 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3385 					cmd->data_length;
3386 		}
3387 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3388 
3389 		ret = cmd->se_tfo->queue_data_in(cmd);
3390 		if (ret == -EAGAIN || ret == -ENOMEM)
3391 			goto queue_full;
3392 		break;
3393 	case DMA_TO_DEVICE:
3394 		spin_lock(&cmd->se_lun->lun_sep_lock);
3395 		if (cmd->se_lun->lun_sep) {
3396 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3397 				cmd->data_length;
3398 		}
3399 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3400 		/*
3401 		 * Check if we need to send READ payload for BIDI-COMMAND
3402 		 */
3403 		if (cmd->t_bidi_data_sg) {
3404 			spin_lock(&cmd->se_lun->lun_sep_lock);
3405 			if (cmd->se_lun->lun_sep) {
3406 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3407 					cmd->data_length;
3408 			}
3409 			spin_unlock(&cmd->se_lun->lun_sep_lock);
3410 			ret = cmd->se_tfo->queue_data_in(cmd);
3411 			if (ret == -EAGAIN || ret == -ENOMEM)
3412 				goto queue_full;
3413 			break;
3414 		}
3415 		/* Fall through for DMA_TO_DEVICE */
3416 	case DMA_NONE:
3417 		ret = cmd->se_tfo->queue_status(cmd);
3418 		if (ret == -EAGAIN || ret == -ENOMEM)
3419 			goto queue_full;
3420 		break;
3421 	default:
3422 		break;
3423 	}
3424 
3425 	transport_lun_remove_cmd(cmd);
3426 	transport_cmd_check_stop_to_fabric(cmd);
3427 	return;
3428 
3429 queue_full:
3430 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3431 		" data_direction: %d\n", cmd, cmd->data_direction);
3432 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3433 	transport_handle_queue_full(cmd, cmd->se_dev);
3434 }
3435 
transport_free_dev_tasks(struct se_cmd * cmd)3436 static void transport_free_dev_tasks(struct se_cmd *cmd)
3437 {
3438 	struct se_task *task, *task_tmp;
3439 	unsigned long flags;
3440 	LIST_HEAD(dispose_list);
3441 
3442 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3443 	list_for_each_entry_safe(task, task_tmp,
3444 				&cmd->t_task_list, t_list) {
3445 		if (!(task->task_flags & TF_ACTIVE))
3446 			list_move_tail(&task->t_list, &dispose_list);
3447 	}
3448 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3449 
3450 	while (!list_empty(&dispose_list)) {
3451 		task = list_first_entry(&dispose_list, struct se_task, t_list);
3452 
3453 		if (task->task_sg != cmd->t_data_sg &&
3454 		    task->task_sg != cmd->t_bidi_data_sg)
3455 			kfree(task->task_sg);
3456 
3457 		list_del(&task->t_list);
3458 
3459 		cmd->se_dev->transport->free_task(task);
3460 	}
3461 }
3462 
transport_free_sgl(struct scatterlist * sgl,int nents)3463 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3464 {
3465 	struct scatterlist *sg;
3466 	int count;
3467 
3468 	for_each_sg(sgl, sg, nents, count)
3469 		__free_page(sg_page(sg));
3470 
3471 	kfree(sgl);
3472 }
3473 
transport_free_pages(struct se_cmd * cmd)3474 static inline void transport_free_pages(struct se_cmd *cmd)
3475 {
3476 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3477 		return;
3478 
3479 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3480 	cmd->t_data_sg = NULL;
3481 	cmd->t_data_nents = 0;
3482 
3483 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3484 	cmd->t_bidi_data_sg = NULL;
3485 	cmd->t_bidi_data_nents = 0;
3486 }
3487 
3488 /**
3489  * transport_release_cmd - free a command
3490  * @cmd:       command to free
3491  *
3492  * This routine unconditionally frees a command, and reference counting
3493  * or list removal must be done in the caller.
3494  */
transport_release_cmd(struct se_cmd * cmd)3495 static void transport_release_cmd(struct se_cmd *cmd)
3496 {
3497 	BUG_ON(!cmd->se_tfo);
3498 
3499 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3500 		core_tmr_release_req(cmd->se_tmr_req);
3501 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3502 		kfree(cmd->t_task_cdb);
3503 	/*
3504 	 * If this cmd has been setup with target_get_sess_cmd(), drop
3505 	 * the kref and call ->release_cmd() in kref callback.
3506 	 */
3507 	 if (cmd->check_release != 0) {
3508 		target_put_sess_cmd(cmd->se_sess, cmd);
3509 		return;
3510 	}
3511 	cmd->se_tfo->release_cmd(cmd);
3512 }
3513 
3514 /**
3515  * transport_put_cmd - release a reference to a command
3516  * @cmd:       command to release
3517  *
3518  * This routine releases our reference to the command and frees it if possible.
3519  */
transport_put_cmd(struct se_cmd * cmd)3520 static void transport_put_cmd(struct se_cmd *cmd)
3521 {
3522 	unsigned long flags;
3523 	int free_tasks = 0;
3524 
3525 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3526 	if (atomic_read(&cmd->t_fe_count)) {
3527 		if (!atomic_dec_and_test(&cmd->t_fe_count))
3528 			goto out_busy;
3529 	}
3530 
3531 	if (atomic_read(&cmd->t_se_count)) {
3532 		if (!atomic_dec_and_test(&cmd->t_se_count))
3533 			goto out_busy;
3534 	}
3535 
3536 	if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3537 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3538 		transport_all_task_dev_remove_state(cmd);
3539 		free_tasks = 1;
3540 	}
3541 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3542 
3543 	if (free_tasks != 0)
3544 		transport_free_dev_tasks(cmd);
3545 
3546 	transport_free_pages(cmd);
3547 	transport_release_cmd(cmd);
3548 	return;
3549 out_busy:
3550 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3551 }
3552 
3553 /*
3554  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3555  * allocating in the core.
3556  * @cmd:  Associated se_cmd descriptor
3557  * @mem:  SGL style memory for TCM WRITE / READ
3558  * @sg_mem_num: Number of SGL elements
3559  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3560  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3561  *
3562  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3563  * of parameters.
3564  */
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)3565 int transport_generic_map_mem_to_cmd(
3566 	struct se_cmd *cmd,
3567 	struct scatterlist *sgl,
3568 	u32 sgl_count,
3569 	struct scatterlist *sgl_bidi,
3570 	u32 sgl_bidi_count)
3571 {
3572 	if (!sgl || !sgl_count)
3573 		return 0;
3574 
3575 	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3576 	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3577 		/*
3578 		 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3579 		 * scatterlists already have been set to follow what the fabric
3580 		 * passes for the original expected data transfer length.
3581 		 */
3582 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3583 			pr_warn("Rejecting SCSI DATA overflow for fabric using"
3584 				" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3585 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3586 			cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3587 			return -EINVAL;
3588 		}
3589 
3590 		cmd->t_data_sg = sgl;
3591 		cmd->t_data_nents = sgl_count;
3592 
3593 		if (sgl_bidi && sgl_bidi_count) {
3594 			cmd->t_bidi_data_sg = sgl_bidi;
3595 			cmd->t_bidi_data_nents = sgl_bidi_count;
3596 		}
3597 		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3598 	}
3599 
3600 	return 0;
3601 }
3602 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3603 
transport_kmap_data_sg(struct se_cmd * cmd)3604 void *transport_kmap_data_sg(struct se_cmd *cmd)
3605 {
3606 	struct scatterlist *sg = cmd->t_data_sg;
3607 	struct page **pages;
3608 	int i;
3609 
3610 	BUG_ON(!sg);
3611 	/*
3612 	 * We need to take into account a possible offset here for fabrics like
3613 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3614 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3615 	 */
3616 	if (!cmd->t_data_nents)
3617 		return NULL;
3618 	else if (cmd->t_data_nents == 1)
3619 		return kmap(sg_page(sg)) + sg->offset;
3620 
3621 	/* >1 page. use vmap */
3622 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3623 	if (!pages)
3624 		return NULL;
3625 
3626 	/* convert sg[] to pages[] */
3627 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3628 		pages[i] = sg_page(sg);
3629 	}
3630 
3631 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3632 	kfree(pages);
3633 	if (!cmd->t_data_vmap)
3634 		return NULL;
3635 
3636 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3637 }
3638 EXPORT_SYMBOL(transport_kmap_data_sg);
3639 
transport_kunmap_data_sg(struct se_cmd * cmd)3640 void transport_kunmap_data_sg(struct se_cmd *cmd)
3641 {
3642 	if (!cmd->t_data_nents) {
3643 		return;
3644 	} else if (cmd->t_data_nents == 1) {
3645 		kunmap(sg_page(cmd->t_data_sg));
3646 		return;
3647 	}
3648 
3649 	vunmap(cmd->t_data_vmap);
3650 	cmd->t_data_vmap = NULL;
3651 }
3652 EXPORT_SYMBOL(transport_kunmap_data_sg);
3653 
3654 static int
transport_generic_get_mem(struct se_cmd * cmd)3655 transport_generic_get_mem(struct se_cmd *cmd)
3656 {
3657 	u32 length = cmd->data_length;
3658 	unsigned int nents;
3659 	struct page *page;
3660 	gfp_t zero_flag;
3661 	int i = 0;
3662 
3663 	nents = DIV_ROUND_UP(length, PAGE_SIZE);
3664 	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3665 	if (!cmd->t_data_sg)
3666 		return -ENOMEM;
3667 
3668 	cmd->t_data_nents = nents;
3669 	sg_init_table(cmd->t_data_sg, nents);
3670 
3671 	zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3672 
3673 	while (length) {
3674 		u32 page_len = min_t(u32, length, PAGE_SIZE);
3675 		page = alloc_page(GFP_KERNEL | zero_flag);
3676 		if (!page)
3677 			goto out;
3678 
3679 		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3680 		length -= page_len;
3681 		i++;
3682 	}
3683 	return 0;
3684 
3685 out:
3686 	while (i > 0) {
3687 		i--;
3688 		__free_page(sg_page(&cmd->t_data_sg[i]));
3689 	}
3690 	kfree(cmd->t_data_sg);
3691 	cmd->t_data_sg = NULL;
3692 	return -ENOMEM;
3693 }
3694 
3695 /* Reduce sectors if they are too long for the device */
transport_limit_task_sectors(struct se_device * dev,unsigned long long lba,sector_t sectors)3696 static inline sector_t transport_limit_task_sectors(
3697 	struct se_device *dev,
3698 	unsigned long long lba,
3699 	sector_t sectors)
3700 {
3701 	sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3702 
3703 	if (dev->transport->get_device_type(dev) == TYPE_DISK)
3704 		if ((lba + sectors) > transport_dev_end_lba(dev))
3705 			sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3706 
3707 	return sectors;
3708 }
3709 
3710 
3711 /*
3712  * This function can be used by HW target mode drivers to create a linked
3713  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3714  * This is intended to be called during the completion path by TCM Core
3715  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3716  */
transport_do_task_sg_chain(struct se_cmd * cmd)3717 void transport_do_task_sg_chain(struct se_cmd *cmd)
3718 {
3719 	struct scatterlist *sg_first = NULL;
3720 	struct scatterlist *sg_prev = NULL;
3721 	int sg_prev_nents = 0;
3722 	struct scatterlist *sg;
3723 	struct se_task *task;
3724 	u32 chained_nents = 0;
3725 	int i;
3726 
3727 	BUG_ON(!cmd->se_tfo->task_sg_chaining);
3728 
3729 	/*
3730 	 * Walk the struct se_task list and setup scatterlist chains
3731 	 * for each contiguously allocated struct se_task->task_sg[].
3732 	 */
3733 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
3734 		if (!task->task_sg)
3735 			continue;
3736 
3737 		if (!sg_first) {
3738 			sg_first = task->task_sg;
3739 			chained_nents = task->task_sg_nents;
3740 		} else {
3741 			sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3742 			chained_nents += task->task_sg_nents;
3743 		}
3744 		/*
3745 		 * For the padded tasks, use the extra SGL vector allocated
3746 		 * in transport_allocate_data_tasks() for the sg_prev_nents
3747 		 * offset into sg_chain() above.
3748 		 *
3749 		 * We do not need the padding for the last task (or a single
3750 		 * task), but in that case we will never use the sg_prev_nents
3751 		 * value below which would be incorrect.
3752 		 */
3753 		sg_prev_nents = (task->task_sg_nents + 1);
3754 		sg_prev = task->task_sg;
3755 	}
3756 	/*
3757 	 * Setup the starting pointer and total t_tasks_sg_linked_no including
3758 	 * padding SGs for linking and to mark the end.
3759 	 */
3760 	cmd->t_tasks_sg_chained = sg_first;
3761 	cmd->t_tasks_sg_chained_no = chained_nents;
3762 
3763 	pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3764 		" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3765 		cmd->t_tasks_sg_chained_no);
3766 
3767 	for_each_sg(cmd->t_tasks_sg_chained, sg,
3768 			cmd->t_tasks_sg_chained_no, i) {
3769 
3770 		pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3771 			i, sg, sg_page(sg), sg->length, sg->offset);
3772 		if (sg_is_chain(sg))
3773 			pr_debug("SG: %p sg_is_chain=1\n", sg);
3774 		if (sg_is_last(sg))
3775 			pr_debug("SG: %p sg_is_last=1\n", sg);
3776 	}
3777 }
3778 EXPORT_SYMBOL(transport_do_task_sg_chain);
3779 
3780 /*
3781  * Break up cmd into chunks transport can handle
3782  */
3783 static int
transport_allocate_data_tasks(struct se_cmd * cmd,enum dma_data_direction data_direction,struct scatterlist * cmd_sg,unsigned int sgl_nents)3784 transport_allocate_data_tasks(struct se_cmd *cmd,
3785 	enum dma_data_direction data_direction,
3786 	struct scatterlist *cmd_sg, unsigned int sgl_nents)
3787 {
3788 	struct se_device *dev = cmd->se_dev;
3789 	int task_count, i;
3790 	unsigned long long lba;
3791 	sector_t sectors, dev_max_sectors;
3792 	u32 sector_size;
3793 
3794 	if (transport_cmd_get_valid_sectors(cmd) < 0)
3795 		return -EINVAL;
3796 
3797 	dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3798 	sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3799 
3800 	WARN_ON(cmd->data_length % sector_size);
3801 
3802 	lba = cmd->t_task_lba;
3803 	sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3804 	task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3805 
3806 	/*
3807 	 * If we need just a single task reuse the SG list in the command
3808 	 * and avoid a lot of work.
3809 	 */
3810 	if (task_count == 1) {
3811 		struct se_task *task;
3812 		unsigned long flags;
3813 
3814 		task = transport_generic_get_task(cmd, data_direction);
3815 		if (!task)
3816 			return -ENOMEM;
3817 
3818 		task->task_sg = cmd_sg;
3819 		task->task_sg_nents = sgl_nents;
3820 
3821 		task->task_lba = lba;
3822 		task->task_sectors = sectors;
3823 		task->task_size = task->task_sectors * sector_size;
3824 
3825 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3826 		list_add_tail(&task->t_list, &cmd->t_task_list);
3827 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3828 
3829 		return task_count;
3830 	}
3831 
3832 	for (i = 0; i < task_count; i++) {
3833 		struct se_task *task;
3834 		unsigned int task_size, task_sg_nents_padded;
3835 		struct scatterlist *sg;
3836 		unsigned long flags;
3837 		int count;
3838 
3839 		task = transport_generic_get_task(cmd, data_direction);
3840 		if (!task)
3841 			return -ENOMEM;
3842 
3843 		task->task_lba = lba;
3844 		task->task_sectors = min(sectors, dev_max_sectors);
3845 		task->task_size = task->task_sectors * sector_size;
3846 
3847 		/*
3848 		 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3849 		 * in order to calculate the number per task SGL entries
3850 		 */
3851 		task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3852 		/*
3853 		 * Check if the fabric module driver is requesting that all
3854 		 * struct se_task->task_sg[] be chained together..  If so,
3855 		 * then allocate an extra padding SG entry for linking and
3856 		 * marking the end of the chained SGL for every task except
3857 		 * the last one for (task_count > 1) operation, or skipping
3858 		 * the extra padding for the (task_count == 1) case.
3859 		 */
3860 		if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3861 			task_sg_nents_padded = (task->task_sg_nents + 1);
3862 		} else
3863 			task_sg_nents_padded = task->task_sg_nents;
3864 
3865 		task->task_sg = kmalloc(sizeof(struct scatterlist) *
3866 					task_sg_nents_padded, GFP_KERNEL);
3867 		if (!task->task_sg) {
3868 			cmd->se_dev->transport->free_task(task);
3869 			return -ENOMEM;
3870 		}
3871 
3872 		sg_init_table(task->task_sg, task_sg_nents_padded);
3873 
3874 		task_size = task->task_size;
3875 
3876 		/* Build new sgl, only up to task_size */
3877 		for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3878 			if (cmd_sg->length > task_size)
3879 				break;
3880 
3881 			*sg = *cmd_sg;
3882 			task_size -= cmd_sg->length;
3883 			cmd_sg = sg_next(cmd_sg);
3884 		}
3885 
3886 		lba += task->task_sectors;
3887 		sectors -= task->task_sectors;
3888 
3889 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3890 		list_add_tail(&task->t_list, &cmd->t_task_list);
3891 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3892 	}
3893 
3894 	return task_count;
3895 }
3896 
3897 static int
transport_allocate_control_task(struct se_cmd * cmd)3898 transport_allocate_control_task(struct se_cmd *cmd)
3899 {
3900 	struct se_task *task;
3901 	unsigned long flags;
3902 
3903 	/* Workaround for handling zero-length control CDBs */
3904 	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3905 	    !cmd->data_length)
3906 		return 0;
3907 
3908 	task = transport_generic_get_task(cmd, cmd->data_direction);
3909 	if (!task)
3910 		return -ENOMEM;
3911 
3912 	task->task_sg = cmd->t_data_sg;
3913 	task->task_size = cmd->data_length;
3914 	task->task_sg_nents = cmd->t_data_nents;
3915 
3916 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3917 	list_add_tail(&task->t_list, &cmd->t_task_list);
3918 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3919 
3920 	/* Success! Return number of tasks allocated */
3921 	return 1;
3922 }
3923 
3924 /*
3925  * Allocate any required ressources to execute the command, and either place
3926  * it on the execution queue if possible.  For writes we might not have the
3927  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3928  */
transport_generic_new_cmd(struct se_cmd * cmd)3929 int transport_generic_new_cmd(struct se_cmd *cmd)
3930 {
3931 	struct se_device *dev = cmd->se_dev;
3932 	int task_cdbs, task_cdbs_bidi = 0;
3933 	int set_counts = 1;
3934 	int ret = 0;
3935 
3936 	/*
3937 	 * Determine is the TCM fabric module has already allocated physical
3938 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3939 	 * beforehand.
3940 	 */
3941 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3942 	    cmd->data_length) {
3943 		ret = transport_generic_get_mem(cmd);
3944 		if (ret < 0)
3945 			goto out_fail;
3946 	}
3947 
3948 	/*
3949 	 * For BIDI command set up the read tasks first.
3950 	 */
3951 	if (cmd->t_bidi_data_sg &&
3952 	    dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3953 		BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3954 
3955 		task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3956 				DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3957 				cmd->t_bidi_data_nents);
3958 		if (task_cdbs_bidi <= 0)
3959 			goto out_fail;
3960 
3961 		atomic_inc(&cmd->t_fe_count);
3962 		atomic_inc(&cmd->t_se_count);
3963 		set_counts = 0;
3964 	}
3965 
3966 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3967 		task_cdbs = transport_allocate_data_tasks(cmd,
3968 					cmd->data_direction, cmd->t_data_sg,
3969 					cmd->t_data_nents);
3970 	} else {
3971 		task_cdbs = transport_allocate_control_task(cmd);
3972 	}
3973 
3974 	if (task_cdbs < 0)
3975 		goto out_fail;
3976 	else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3977 		spin_lock_irq(&cmd->t_state_lock);
3978 		cmd->t_state = TRANSPORT_COMPLETE;
3979 		cmd->transport_state |= CMD_T_ACTIVE;
3980 		spin_unlock_irq(&cmd->t_state_lock);
3981 
3982 		if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3983 			u8 ua_asc = 0, ua_ascq = 0;
3984 
3985 			core_scsi3_ua_clear_for_request_sense(cmd,
3986 					&ua_asc, &ua_ascq);
3987 		}
3988 
3989 		INIT_WORK(&cmd->work, target_complete_ok_work);
3990 		queue_work(target_completion_wq, &cmd->work);
3991 		return 0;
3992 	}
3993 
3994 	if (set_counts) {
3995 		atomic_inc(&cmd->t_fe_count);
3996 		atomic_inc(&cmd->t_se_count);
3997 	}
3998 
3999 	cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
4000 	atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
4001 	atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
4002 
4003 	/*
4004 	 * For WRITEs, let the fabric know its buffer is ready..
4005 	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4006 	 * will be added to the struct se_device execution queue after its WRITE
4007 	 * data has arrived. (ie: It gets handled by the transport processing
4008 	 * thread a second time)
4009 	 */
4010 	if (cmd->data_direction == DMA_TO_DEVICE) {
4011 		transport_add_tasks_to_state_queue(cmd);
4012 		return transport_generic_write_pending(cmd);
4013 	}
4014 	/*
4015 	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4016 	 * to the execution queue.
4017 	 */
4018 	transport_execute_tasks(cmd);
4019 	return 0;
4020 
4021 out_fail:
4022 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4023 	cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4024 	return -EINVAL;
4025 }
4026 EXPORT_SYMBOL(transport_generic_new_cmd);
4027 
4028 /*	transport_generic_process_write():
4029  *
4030  *
4031  */
transport_generic_process_write(struct se_cmd * cmd)4032 void transport_generic_process_write(struct se_cmd *cmd)
4033 {
4034 	transport_execute_tasks(cmd);
4035 }
4036 EXPORT_SYMBOL(transport_generic_process_write);
4037 
transport_write_pending_qf(struct se_cmd * cmd)4038 static void transport_write_pending_qf(struct se_cmd *cmd)
4039 {
4040 	int ret;
4041 
4042 	ret = cmd->se_tfo->write_pending(cmd);
4043 	if (ret == -EAGAIN || ret == -ENOMEM) {
4044 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4045 			 cmd);
4046 		transport_handle_queue_full(cmd, cmd->se_dev);
4047 	}
4048 }
4049 
transport_generic_write_pending(struct se_cmd * cmd)4050 static int transport_generic_write_pending(struct se_cmd *cmd)
4051 {
4052 	unsigned long flags;
4053 	int ret;
4054 
4055 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4056 	cmd->t_state = TRANSPORT_WRITE_PENDING;
4057 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4058 
4059 	/*
4060 	 * Clear the se_cmd for WRITE_PENDING status in order to set
4061 	 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4062 	 * from HW target mode interrupt code.  This is safe to be called
4063 	 * with transport_off=1 before the cmd->se_tfo->write_pending
4064 	 * because the se_cmd->se_lun pointer is not being cleared.
4065 	 */
4066 	transport_cmd_check_stop(cmd, 1, 0);
4067 
4068 	/*
4069 	 * Call the fabric write_pending function here to let the
4070 	 * frontend know that WRITE buffers are ready.
4071 	 */
4072 	ret = cmd->se_tfo->write_pending(cmd);
4073 	if (ret == -EAGAIN || ret == -ENOMEM)
4074 		goto queue_full;
4075 	else if (ret < 0)
4076 		return ret;
4077 
4078 	return 1;
4079 
4080 queue_full:
4081 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4082 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4083 	transport_handle_queue_full(cmd, cmd->se_dev);
4084 	return 0;
4085 }
4086 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)4087 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4088 {
4089 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4090 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4091 			 transport_wait_for_tasks(cmd);
4092 
4093 		transport_release_cmd(cmd);
4094 	} else {
4095 		if (wait_for_tasks)
4096 			transport_wait_for_tasks(cmd);
4097 
4098 		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4099 
4100 		if (cmd->se_lun)
4101 			transport_lun_remove_cmd(cmd);
4102 
4103 		transport_free_dev_tasks(cmd);
4104 
4105 		transport_put_cmd(cmd);
4106 	}
4107 }
4108 EXPORT_SYMBOL(transport_generic_free_cmd);
4109 
4110 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4111  * @se_sess:	session to reference
4112  * @se_cmd:	command descriptor to add
4113  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
4114  */
target_get_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd,bool ack_kref)4115 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4116 			bool ack_kref)
4117 {
4118 	unsigned long flags;
4119 
4120 	kref_init(&se_cmd->cmd_kref);
4121 	/*
4122 	 * Add a second kref if the fabric caller is expecting to handle
4123 	 * fabric acknowledgement that requires two target_put_sess_cmd()
4124 	 * invocations before se_cmd descriptor release.
4125 	 */
4126 	if (ack_kref == true) {
4127 		kref_get(&se_cmd->cmd_kref);
4128 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4129 	}
4130 
4131 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4132 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4133 	se_cmd->check_release = 1;
4134 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4135 }
4136 EXPORT_SYMBOL(target_get_sess_cmd);
4137 
target_release_cmd_kref(struct kref * kref)4138 static void target_release_cmd_kref(struct kref *kref)
4139 {
4140 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4141 	struct se_session *se_sess = se_cmd->se_sess;
4142 	unsigned long flags;
4143 
4144 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4145 	if (list_empty(&se_cmd->se_cmd_list)) {
4146 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4147 		se_cmd->se_tfo->release_cmd(se_cmd);
4148 		return;
4149 	}
4150 	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4151 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4152 		complete(&se_cmd->cmd_wait_comp);
4153 		return;
4154 	}
4155 	list_del(&se_cmd->se_cmd_list);
4156 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4157 
4158 	se_cmd->se_tfo->release_cmd(se_cmd);
4159 }
4160 
4161 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4162  * @se_sess:	session to reference
4163  * @se_cmd:	command descriptor to drop
4164  */
target_put_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd)4165 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4166 {
4167 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4168 }
4169 EXPORT_SYMBOL(target_put_sess_cmd);
4170 
4171 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4172  * @se_sess:	session to split
4173  */
target_splice_sess_cmd_list(struct se_session * se_sess)4174 void target_splice_sess_cmd_list(struct se_session *se_sess)
4175 {
4176 	struct se_cmd *se_cmd;
4177 	unsigned long flags;
4178 
4179 	WARN_ON(!list_empty(&se_sess->sess_wait_list));
4180 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
4181 
4182 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4183 	se_sess->sess_tearing_down = 1;
4184 
4185 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4186 
4187 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4188 		se_cmd->cmd_wait_set = 1;
4189 
4190 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4191 }
4192 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4193 
4194 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4195  * @se_sess:    session to wait for active I/O
4196  * @wait_for_tasks:	Make extra transport_wait_for_tasks call
4197  */
target_wait_for_sess_cmds(struct se_session * se_sess,int wait_for_tasks)4198 void target_wait_for_sess_cmds(
4199 	struct se_session *se_sess,
4200 	int wait_for_tasks)
4201 {
4202 	struct se_cmd *se_cmd, *tmp_cmd;
4203 	bool rc = false;
4204 
4205 	list_for_each_entry_safe(se_cmd, tmp_cmd,
4206 				&se_sess->sess_wait_list, se_cmd_list) {
4207 		list_del(&se_cmd->se_cmd_list);
4208 
4209 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4210 			" %d\n", se_cmd, se_cmd->t_state,
4211 			se_cmd->se_tfo->get_cmd_state(se_cmd));
4212 
4213 		if (wait_for_tasks) {
4214 			pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4215 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4216 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4217 
4218 			rc = transport_wait_for_tasks(se_cmd);
4219 
4220 			pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4221 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4222 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4223 		}
4224 
4225 		if (!rc) {
4226 			wait_for_completion(&se_cmd->cmd_wait_comp);
4227 			pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4228 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4229 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4230 		}
4231 
4232 		se_cmd->se_tfo->release_cmd(se_cmd);
4233 	}
4234 }
4235 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4236 
4237 /*	transport_lun_wait_for_tasks():
4238  *
4239  *	Called from ConfigFS context to stop the passed struct se_cmd to allow
4240  *	an struct se_lun to be successfully shutdown.
4241  */
transport_lun_wait_for_tasks(struct se_cmd * cmd,struct se_lun * lun)4242 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4243 {
4244 	unsigned long flags;
4245 	int ret;
4246 	/*
4247 	 * If the frontend has already requested this struct se_cmd to
4248 	 * be stopped, we can safely ignore this struct se_cmd.
4249 	 */
4250 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4251 	if (cmd->transport_state & CMD_T_STOP) {
4252 		cmd->transport_state &= ~CMD_T_LUN_STOP;
4253 
4254 		pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4255 			 cmd->se_tfo->get_task_tag(cmd));
4256 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4257 		transport_cmd_check_stop(cmd, 1, 0);
4258 		return -EPERM;
4259 	}
4260 	cmd->transport_state |= CMD_T_LUN_FE_STOP;
4261 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4262 
4263 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4264 
4265 	ret = transport_stop_tasks_for_cmd(cmd);
4266 
4267 	pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4268 			" %d\n", cmd, cmd->t_task_list_num, ret);
4269 	if (!ret) {
4270 		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4271 				cmd->se_tfo->get_task_tag(cmd));
4272 		wait_for_completion(&cmd->transport_lun_stop_comp);
4273 		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4274 				cmd->se_tfo->get_task_tag(cmd));
4275 	}
4276 	transport_remove_cmd_from_queue(cmd);
4277 
4278 	return 0;
4279 }
4280 
__transport_clear_lun_from_sessions(struct se_lun * lun)4281 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4282 {
4283 	struct se_cmd *cmd = NULL;
4284 	unsigned long lun_flags, cmd_flags;
4285 	/*
4286 	 * Do exception processing and return CHECK_CONDITION status to the
4287 	 * Initiator Port.
4288 	 */
4289 	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4290 	while (!list_empty(&lun->lun_cmd_list)) {
4291 		cmd = list_first_entry(&lun->lun_cmd_list,
4292 		       struct se_cmd, se_lun_node);
4293 		list_del_init(&cmd->se_lun_node);
4294 
4295 		/*
4296 		 * This will notify iscsi_target_transport.c:
4297 		 * transport_cmd_check_stop() that a LUN shutdown is in
4298 		 * progress for the iscsi_cmd_t.
4299 		 */
4300 		spin_lock(&cmd->t_state_lock);
4301 		pr_debug("SE_LUN[%d] - Setting cmd->transport"
4302 			"_lun_stop for  ITT: 0x%08x\n",
4303 			cmd->se_lun->unpacked_lun,
4304 			cmd->se_tfo->get_task_tag(cmd));
4305 		cmd->transport_state |= CMD_T_LUN_STOP;
4306 		spin_unlock(&cmd->t_state_lock);
4307 
4308 		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4309 
4310 		if (!cmd->se_lun) {
4311 			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4312 				cmd->se_tfo->get_task_tag(cmd),
4313 				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4314 			BUG();
4315 		}
4316 		/*
4317 		 * If the Storage engine still owns the iscsi_cmd_t, determine
4318 		 * and/or stop its context.
4319 		 */
4320 		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4321 			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4322 			cmd->se_tfo->get_task_tag(cmd));
4323 
4324 		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4325 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4326 			continue;
4327 		}
4328 
4329 		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4330 			"_wait_for_tasks(): SUCCESS\n",
4331 			cmd->se_lun->unpacked_lun,
4332 			cmd->se_tfo->get_task_tag(cmd));
4333 
4334 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4335 		if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4336 			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4337 			goto check_cond;
4338 		}
4339 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4340 		transport_all_task_dev_remove_state(cmd);
4341 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4342 
4343 		transport_free_dev_tasks(cmd);
4344 		/*
4345 		 * The Storage engine stopped this struct se_cmd before it was
4346 		 * send to the fabric frontend for delivery back to the
4347 		 * Initiator Node.  Return this SCSI CDB back with an
4348 		 * CHECK_CONDITION status.
4349 		 */
4350 check_cond:
4351 		transport_send_check_condition_and_sense(cmd,
4352 				TCM_NON_EXISTENT_LUN, 0);
4353 		/*
4354 		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
4355 		 * be released, notify the waiting thread now that LU has
4356 		 * finished accessing it.
4357 		 */
4358 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4359 		if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4360 			pr_debug("SE_LUN[%d] - Detected FE stop for"
4361 				" struct se_cmd: %p ITT: 0x%08x\n",
4362 				lun->unpacked_lun,
4363 				cmd, cmd->se_tfo->get_task_tag(cmd));
4364 
4365 			spin_unlock_irqrestore(&cmd->t_state_lock,
4366 					cmd_flags);
4367 			transport_cmd_check_stop(cmd, 1, 0);
4368 			complete(&cmd->transport_lun_fe_stop_comp);
4369 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4370 			continue;
4371 		}
4372 		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4373 			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4374 
4375 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4376 		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4377 	}
4378 	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4379 }
4380 
transport_clear_lun_thread(void * p)4381 static int transport_clear_lun_thread(void *p)
4382 {
4383 	struct se_lun *lun = p;
4384 
4385 	__transport_clear_lun_from_sessions(lun);
4386 	complete(&lun->lun_shutdown_comp);
4387 
4388 	return 0;
4389 }
4390 
transport_clear_lun_from_sessions(struct se_lun * lun)4391 int transport_clear_lun_from_sessions(struct se_lun *lun)
4392 {
4393 	struct task_struct *kt;
4394 
4395 	kt = kthread_run(transport_clear_lun_thread, lun,
4396 			"tcm_cl_%u", lun->unpacked_lun);
4397 	if (IS_ERR(kt)) {
4398 		pr_err("Unable to start clear_lun thread\n");
4399 		return PTR_ERR(kt);
4400 	}
4401 	wait_for_completion(&lun->lun_shutdown_comp);
4402 
4403 	return 0;
4404 }
4405 
4406 /**
4407  * transport_wait_for_tasks - wait for completion to occur
4408  * @cmd:	command to wait
4409  *
4410  * Called from frontend fabric context to wait for storage engine
4411  * to pause and/or release frontend generated struct se_cmd.
4412  */
transport_wait_for_tasks(struct se_cmd * cmd)4413 bool transport_wait_for_tasks(struct se_cmd *cmd)
4414 {
4415 	unsigned long flags;
4416 
4417 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4418 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4419 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4420 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4421 		return false;
4422 	}
4423 	/*
4424 	 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4425 	 * has been set in transport_set_supported_SAM_opcode().
4426 	 */
4427 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4428 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4429 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4430 		return false;
4431 	}
4432 	/*
4433 	 * If we are already stopped due to an external event (ie: LUN shutdown)
4434 	 * sleep until the connection can have the passed struct se_cmd back.
4435 	 * The cmd->transport_lun_stopped_sem will be upped by
4436 	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4437 	 * has completed its operation on the struct se_cmd.
4438 	 */
4439 	if (cmd->transport_state & CMD_T_LUN_STOP) {
4440 		pr_debug("wait_for_tasks: Stopping"
4441 			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
4442 			"_stop_comp); for ITT: 0x%08x\n",
4443 			cmd->se_tfo->get_task_tag(cmd));
4444 		/*
4445 		 * There is a special case for WRITES where a FE exception +
4446 		 * LUN shutdown means ConfigFS context is still sleeping on
4447 		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4448 		 * We go ahead and up transport_lun_stop_comp just to be sure
4449 		 * here.
4450 		 */
4451 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4452 		complete(&cmd->transport_lun_stop_comp);
4453 		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4454 		spin_lock_irqsave(&cmd->t_state_lock, flags);
4455 
4456 		transport_all_task_dev_remove_state(cmd);
4457 		/*
4458 		 * At this point, the frontend who was the originator of this
4459 		 * struct se_cmd, now owns the structure and can be released through
4460 		 * normal means below.
4461 		 */
4462 		pr_debug("wait_for_tasks: Stopped"
4463 			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4464 			"stop_comp); for ITT: 0x%08x\n",
4465 			cmd->se_tfo->get_task_tag(cmd));
4466 
4467 		cmd->transport_state &= ~CMD_T_LUN_STOP;
4468 	}
4469 
4470 	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4471 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4472 		return false;
4473 	}
4474 
4475 	cmd->transport_state |= CMD_T_STOP;
4476 
4477 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4478 		" i_state: %d, t_state: %d, CMD_T_STOP\n",
4479 		cmd, cmd->se_tfo->get_task_tag(cmd),
4480 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4481 
4482 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4483 
4484 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4485 
4486 	wait_for_completion(&cmd->t_transport_stop_comp);
4487 
4488 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4489 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4490 
4491 	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4492 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4493 		cmd->se_tfo->get_task_tag(cmd));
4494 
4495 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4496 
4497 	return true;
4498 }
4499 EXPORT_SYMBOL(transport_wait_for_tasks);
4500 
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)4501 static int transport_get_sense_codes(
4502 	struct se_cmd *cmd,
4503 	u8 *asc,
4504 	u8 *ascq)
4505 {
4506 	*asc = cmd->scsi_asc;
4507 	*ascq = cmd->scsi_ascq;
4508 
4509 	return 0;
4510 }
4511 
transport_set_sense_codes(struct se_cmd * cmd,u8 asc,u8 ascq)4512 static int transport_set_sense_codes(
4513 	struct se_cmd *cmd,
4514 	u8 asc,
4515 	u8 ascq)
4516 {
4517 	cmd->scsi_asc = asc;
4518 	cmd->scsi_ascq = ascq;
4519 
4520 	return 0;
4521 }
4522 
transport_send_check_condition_and_sense(struct se_cmd * cmd,u8 reason,int from_transport)4523 int transport_send_check_condition_and_sense(
4524 	struct se_cmd *cmd,
4525 	u8 reason,
4526 	int from_transport)
4527 {
4528 	unsigned char *buffer = cmd->sense_buffer;
4529 	unsigned long flags;
4530 	int offset;
4531 	u8 asc = 0, ascq = 0;
4532 
4533 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4534 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4535 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4536 		return 0;
4537 	}
4538 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4539 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4540 
4541 	if (!reason && from_transport)
4542 		goto after_reason;
4543 
4544 	if (!from_transport)
4545 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4546 	/*
4547 	 * Data Segment and SenseLength of the fabric response PDU.
4548 	 *
4549 	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4550 	 * from include/scsi/scsi_cmnd.h
4551 	 */
4552 	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4553 				TRANSPORT_SENSE_BUFFER);
4554 	/*
4555 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4556 	 * SENSE KEY values from include/scsi/scsi.h
4557 	 */
4558 	switch (reason) {
4559 	case TCM_NON_EXISTENT_LUN:
4560 		/* CURRENT ERROR */
4561 		buffer[offset] = 0x70;
4562 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4563 		/* ILLEGAL REQUEST */
4564 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4565 		/* LOGICAL UNIT NOT SUPPORTED */
4566 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4567 		break;
4568 	case TCM_UNSUPPORTED_SCSI_OPCODE:
4569 	case TCM_SECTOR_COUNT_TOO_MANY:
4570 		/* CURRENT ERROR */
4571 		buffer[offset] = 0x70;
4572 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4573 		/* ILLEGAL REQUEST */
4574 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4575 		/* INVALID COMMAND OPERATION CODE */
4576 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4577 		break;
4578 	case TCM_UNKNOWN_MODE_PAGE:
4579 		/* CURRENT ERROR */
4580 		buffer[offset] = 0x70;
4581 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4582 		/* ILLEGAL REQUEST */
4583 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4584 		/* INVALID FIELD IN CDB */
4585 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4586 		break;
4587 	case TCM_CHECK_CONDITION_ABORT_CMD:
4588 		/* CURRENT ERROR */
4589 		buffer[offset] = 0x70;
4590 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4591 		/* ABORTED COMMAND */
4592 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4593 		/* BUS DEVICE RESET FUNCTION OCCURRED */
4594 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4595 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4596 		break;
4597 	case TCM_INCORRECT_AMOUNT_OF_DATA:
4598 		/* CURRENT ERROR */
4599 		buffer[offset] = 0x70;
4600 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4601 		/* ABORTED COMMAND */
4602 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4603 		/* WRITE ERROR */
4604 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4605 		/* NOT ENOUGH UNSOLICITED DATA */
4606 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4607 		break;
4608 	case TCM_INVALID_CDB_FIELD:
4609 		/* CURRENT ERROR */
4610 		buffer[offset] = 0x70;
4611 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4612 		/* ILLEGAL REQUEST */
4613 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4614 		/* INVALID FIELD IN CDB */
4615 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4616 		break;
4617 	case TCM_INVALID_PARAMETER_LIST:
4618 		/* CURRENT ERROR */
4619 		buffer[offset] = 0x70;
4620 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4621 		/* ILLEGAL REQUEST */
4622 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4623 		/* INVALID FIELD IN PARAMETER LIST */
4624 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4625 		break;
4626 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
4627 		/* CURRENT ERROR */
4628 		buffer[offset] = 0x70;
4629 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4630 		/* ABORTED COMMAND */
4631 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4632 		/* WRITE ERROR */
4633 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4634 		/* UNEXPECTED_UNSOLICITED_DATA */
4635 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4636 		break;
4637 	case TCM_SERVICE_CRC_ERROR:
4638 		/* CURRENT ERROR */
4639 		buffer[offset] = 0x70;
4640 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4641 		/* ABORTED COMMAND */
4642 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4643 		/* PROTOCOL SERVICE CRC ERROR */
4644 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4645 		/* N/A */
4646 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4647 		break;
4648 	case TCM_SNACK_REJECTED:
4649 		/* CURRENT ERROR */
4650 		buffer[offset] = 0x70;
4651 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4652 		/* ABORTED COMMAND */
4653 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4654 		/* READ ERROR */
4655 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4656 		/* FAILED RETRANSMISSION REQUEST */
4657 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4658 		break;
4659 	case TCM_WRITE_PROTECTED:
4660 		/* CURRENT ERROR */
4661 		buffer[offset] = 0x70;
4662 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4663 		/* DATA PROTECT */
4664 		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4665 		/* WRITE PROTECTED */
4666 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4667 		break;
4668 	case TCM_ADDRESS_OUT_OF_RANGE:
4669 		/* CURRENT ERROR */
4670 		buffer[offset] = 0x70;
4671 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4672 		/* ILLEGAL REQUEST */
4673 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4674 		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4675 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4676 		break;
4677 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4678 		/* CURRENT ERROR */
4679 		buffer[offset] = 0x70;
4680 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4681 		/* UNIT ATTENTION */
4682 		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4683 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4684 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4685 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4686 		break;
4687 	case TCM_CHECK_CONDITION_NOT_READY:
4688 		/* CURRENT ERROR */
4689 		buffer[offset] = 0x70;
4690 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4691 		/* Not Ready */
4692 		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4693 		transport_get_sense_codes(cmd, &asc, &ascq);
4694 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4695 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4696 		break;
4697 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4698 	default:
4699 		/* CURRENT ERROR */
4700 		buffer[offset] = 0x70;
4701 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4702 		/* ILLEGAL REQUEST */
4703 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4704 		/* LOGICAL UNIT COMMUNICATION FAILURE */
4705 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x08;
4706 		break;
4707 	}
4708 	/*
4709 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
4710 	 */
4711 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4712 	/*
4713 	 * Automatically padded, this value is encoded in the fabric's
4714 	 * data_length response PDU containing the SCSI defined sense data.
4715 	 */
4716 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4717 
4718 after_reason:
4719 	return cmd->se_tfo->queue_status(cmd);
4720 }
4721 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4722 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)4723 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4724 {
4725 	int ret = 0;
4726 
4727 	if (cmd->transport_state & CMD_T_ABORTED) {
4728 		if (!send_status ||
4729 		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4730 			return 1;
4731 #if 0
4732 		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4733 			" status for CDB: 0x%02x ITT: 0x%08x\n",
4734 			cmd->t_task_cdb[0],
4735 			cmd->se_tfo->get_task_tag(cmd));
4736 #endif
4737 		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4738 		cmd->se_tfo->queue_status(cmd);
4739 		ret = 1;
4740 	}
4741 	return ret;
4742 }
4743 EXPORT_SYMBOL(transport_check_aborted_status);
4744 
transport_send_task_abort(struct se_cmd * cmd)4745 void transport_send_task_abort(struct se_cmd *cmd)
4746 {
4747 	unsigned long flags;
4748 
4749 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4750 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4751 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4752 		return;
4753 	}
4754 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4755 
4756 	/*
4757 	 * If there are still expected incoming fabric WRITEs, we wait
4758 	 * until until they have completed before sending a TASK_ABORTED
4759 	 * response.  This response with TASK_ABORTED status will be
4760 	 * queued back to fabric module by transport_check_aborted_status().
4761 	 */
4762 	if (cmd->data_direction == DMA_TO_DEVICE) {
4763 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4764 			cmd->transport_state |= CMD_T_ABORTED;
4765 			smp_mb__after_atomic_inc();
4766 		}
4767 	}
4768 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4769 #if 0
4770 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4771 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4772 		cmd->se_tfo->get_task_tag(cmd));
4773 #endif
4774 	cmd->se_tfo->queue_status(cmd);
4775 }
4776 
transport_generic_do_tmr(struct se_cmd * cmd)4777 static int transport_generic_do_tmr(struct se_cmd *cmd)
4778 {
4779 	struct se_device *dev = cmd->se_dev;
4780 	struct se_tmr_req *tmr = cmd->se_tmr_req;
4781 	int ret;
4782 
4783 	switch (tmr->function) {
4784 	case TMR_ABORT_TASK:
4785 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
4786 		break;
4787 	case TMR_ABORT_TASK_SET:
4788 	case TMR_CLEAR_ACA:
4789 	case TMR_CLEAR_TASK_SET:
4790 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4791 		break;
4792 	case TMR_LUN_RESET:
4793 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4794 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4795 					 TMR_FUNCTION_REJECTED;
4796 		break;
4797 	case TMR_TARGET_WARM_RESET:
4798 		tmr->response = TMR_FUNCTION_REJECTED;
4799 		break;
4800 	case TMR_TARGET_COLD_RESET:
4801 		tmr->response = TMR_FUNCTION_REJECTED;
4802 		break;
4803 	default:
4804 		pr_err("Uknown TMR function: 0x%02x.\n",
4805 				tmr->function);
4806 		tmr->response = TMR_FUNCTION_REJECTED;
4807 		break;
4808 	}
4809 
4810 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4811 	cmd->se_tfo->queue_tm_rsp(cmd);
4812 
4813 	transport_cmd_check_stop_to_fabric(cmd);
4814 	return 0;
4815 }
4816 
4817 /*	transport_processing_thread():
4818  *
4819  *
4820  */
transport_processing_thread(void * param)4821 static int transport_processing_thread(void *param)
4822 {
4823 	int ret;
4824 	struct se_cmd *cmd;
4825 	struct se_device *dev = param;
4826 
4827 	while (!kthread_should_stop()) {
4828 		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4829 				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4830 				kthread_should_stop());
4831 		if (ret < 0)
4832 			goto out;
4833 
4834 get_cmd:
4835 		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4836 		if (!cmd)
4837 			continue;
4838 
4839 		switch (cmd->t_state) {
4840 		case TRANSPORT_NEW_CMD:
4841 			BUG();
4842 			break;
4843 		case TRANSPORT_NEW_CMD_MAP:
4844 			if (!cmd->se_tfo->new_cmd_map) {
4845 				pr_err("cmd->se_tfo->new_cmd_map is"
4846 					" NULL for TRANSPORT_NEW_CMD_MAP\n");
4847 				BUG();
4848 			}
4849 			ret = cmd->se_tfo->new_cmd_map(cmd);
4850 			if (ret < 0) {
4851 				transport_generic_request_failure(cmd);
4852 				break;
4853 			}
4854 			ret = transport_generic_new_cmd(cmd);
4855 			if (ret < 0) {
4856 				transport_generic_request_failure(cmd);
4857 				break;
4858 			}
4859 			break;
4860 		case TRANSPORT_PROCESS_WRITE:
4861 			transport_generic_process_write(cmd);
4862 			break;
4863 		case TRANSPORT_PROCESS_TMR:
4864 			transport_generic_do_tmr(cmd);
4865 			break;
4866 		case TRANSPORT_COMPLETE_QF_WP:
4867 			transport_write_pending_qf(cmd);
4868 			break;
4869 		case TRANSPORT_COMPLETE_QF_OK:
4870 			transport_complete_qf(cmd);
4871 			break;
4872 		default:
4873 			pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4874 				"i_state: %d on SE LUN: %u\n",
4875 				cmd->t_state,
4876 				cmd->se_tfo->get_task_tag(cmd),
4877 				cmd->se_tfo->get_cmd_state(cmd),
4878 				cmd->se_lun->unpacked_lun);
4879 			BUG();
4880 		}
4881 
4882 		goto get_cmd;
4883 	}
4884 
4885 out:
4886 	WARN_ON(!list_empty(&dev->state_task_list));
4887 	WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4888 	dev->process_thread = NULL;
4889 	return 0;
4890 }
4891