1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75 * Max interrupt hold-off timer value in us. Queues fall back to this value
76 * under extreme memory pressure so it's largish to give the system time to
77 * recover.
78 */
79 #define MAX_SGE_TIMERVAL 200U
80
81 #ifdef CONFIG_PCI_IOV
82 /*
83 * Virtual Function provisioning constants. We need two extra Ingress Queues
84 * with Interrupt capability to serve as the VF's Firmware Event Queue and
85 * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free
86 * Lists associated with them). For each Ethernet/Control Egress Queue and
87 * for each Free List, we need an Egress Context.
88 */
89 enum {
90 VFRES_NPORTS = 1, /* # of "ports" per VF */
91 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
92
93 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
94 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
95 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
96 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
97 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
98 VFRES_TC = 0, /* PCI-E traffic class */
99 VFRES_NEXACTF = 16, /* # of exact MPS filters */
100
101 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
102 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
103 };
104
105 /*
106 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
107 * static and likely not to be useful in the long run. We really need to
108 * implement some form of persistent configuration which the firmware
109 * controls.
110 */
pfvfres_pmask(struct adapter * adapter,unsigned int pf,unsigned int vf)111 static unsigned int pfvfres_pmask(struct adapter *adapter,
112 unsigned int pf, unsigned int vf)
113 {
114 unsigned int portn, portvec;
115
116 /*
117 * Give PF's access to all of the ports.
118 */
119 if (vf == 0)
120 return FW_PFVF_CMD_PMASK_MASK;
121
122 /*
123 * For VFs, we'll assign them access to the ports based purely on the
124 * PF. We assign active ports in order, wrapping around if there are
125 * fewer active ports than PFs: e.g. active port[pf % nports].
126 * Unfortunately the adapter's port_info structs haven't been
127 * initialized yet so we have to compute this.
128 */
129 if (adapter->params.nports == 0)
130 return 0;
131
132 portn = pf % adapter->params.nports;
133 portvec = adapter->params.portvec;
134 for (;;) {
135 /*
136 * Isolate the lowest set bit in the port vector. If we're at
137 * the port number that we want, return that as the pmask.
138 * otherwise mask that bit out of the port vector and
139 * decrement our port number ...
140 */
141 unsigned int pmask = portvec ^ (portvec & (portvec-1));
142 if (portn == 0)
143 return pmask;
144 portn--;
145 portvec &= ~pmask;
146 }
147 /*NOTREACHED*/
148 }
149 #endif
150
151 enum {
152 MEMWIN0_APERTURE = 65536,
153 MEMWIN0_BASE = 0x30000,
154 MEMWIN1_APERTURE = 32768,
155 MEMWIN1_BASE = 0x28000,
156 MEMWIN2_APERTURE = 2048,
157 MEMWIN2_BASE = 0x1b800,
158 };
159
160 enum {
161 MAX_TXQ_ENTRIES = 16384,
162 MAX_CTRL_TXQ_ENTRIES = 1024,
163 MAX_RSPQ_ENTRIES = 16384,
164 MAX_RX_BUFFERS = 16384,
165 MIN_TXQ_ENTRIES = 32,
166 MIN_CTRL_TXQ_ENTRIES = 32,
167 MIN_RSPQ_ENTRIES = 128,
168 MIN_FL_ENTRIES = 16
169 };
170
171 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
172 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
173 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
174
175 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
176
177 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
178 CH_DEVICE(0xa000, 0), /* PE10K */
179 CH_DEVICE(0x4001, -1),
180 CH_DEVICE(0x4002, -1),
181 CH_DEVICE(0x4003, -1),
182 CH_DEVICE(0x4004, -1),
183 CH_DEVICE(0x4005, -1),
184 CH_DEVICE(0x4006, -1),
185 CH_DEVICE(0x4007, -1),
186 CH_DEVICE(0x4008, -1),
187 CH_DEVICE(0x4009, -1),
188 CH_DEVICE(0x400a, -1),
189 CH_DEVICE(0x4401, 4),
190 CH_DEVICE(0x4402, 4),
191 CH_DEVICE(0x4403, 4),
192 CH_DEVICE(0x4404, 4),
193 CH_DEVICE(0x4405, 4),
194 CH_DEVICE(0x4406, 4),
195 CH_DEVICE(0x4407, 4),
196 CH_DEVICE(0x4408, 4),
197 CH_DEVICE(0x4409, 4),
198 CH_DEVICE(0x440a, 4),
199 CH_DEVICE(0x440d, 4),
200 CH_DEVICE(0x440e, 4),
201 { 0, }
202 };
203
204 #define FW_FNAME "cxgb4/t4fw.bin"
205
206 MODULE_DESCRIPTION(DRV_DESC);
207 MODULE_AUTHOR("Chelsio Communications");
208 MODULE_LICENSE("Dual BSD/GPL");
209 MODULE_VERSION(DRV_VERSION);
210 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
211 MODULE_FIRMWARE(FW_FNAME);
212
213 static int dflt_msg_enable = DFLT_MSG_ENABLE;
214
215 module_param(dflt_msg_enable, int, 0644);
216 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
217
218 /*
219 * The driver uses the best interrupt scheme available on a platform in the
220 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
221 * of these schemes the driver may consider as follows:
222 *
223 * msi = 2: choose from among all three options
224 * msi = 1: only consider MSI and INTx interrupts
225 * msi = 0: force INTx interrupts
226 */
227 static int msi = 2;
228
229 module_param(msi, int, 0644);
230 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
231
232 /*
233 * Queue interrupt hold-off timer values. Queues default to the first of these
234 * upon creation.
235 */
236 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
237
238 module_param_array(intr_holdoff, uint, NULL, 0644);
239 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
240 "0..4 in microseconds");
241
242 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
243
244 module_param_array(intr_cnt, uint, NULL, 0644);
245 MODULE_PARM_DESC(intr_cnt,
246 "thresholds 1..3 for queue interrupt packet counters");
247
248 static bool vf_acls;
249
250 #ifdef CONFIG_PCI_IOV
251 module_param(vf_acls, bool, 0644);
252 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
253
254 static unsigned int num_vf[4];
255
256 module_param_array(num_vf, uint, NULL, 0644);
257 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
258 #endif
259
260 static struct dentry *cxgb4_debugfs_root;
261
262 static LIST_HEAD(adapter_list);
263 static DEFINE_MUTEX(uld_mutex);
264 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
265 static const char *uld_str[] = { "RDMA", "iSCSI" };
266
link_report(struct net_device * dev)267 static void link_report(struct net_device *dev)
268 {
269 if (!netif_carrier_ok(dev))
270 netdev_info(dev, "link down\n");
271 else {
272 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
273
274 const char *s = "10Mbps";
275 const struct port_info *p = netdev_priv(dev);
276
277 switch (p->link_cfg.speed) {
278 case SPEED_10000:
279 s = "10Gbps";
280 break;
281 case SPEED_1000:
282 s = "1000Mbps";
283 break;
284 case SPEED_100:
285 s = "100Mbps";
286 break;
287 }
288
289 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
290 fc[p->link_cfg.fc]);
291 }
292 }
293
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)294 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
295 {
296 struct net_device *dev = adapter->port[port_id];
297
298 /* Skip changes from disabled ports. */
299 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
300 if (link_stat)
301 netif_carrier_on(dev);
302 else
303 netif_carrier_off(dev);
304
305 link_report(dev);
306 }
307 }
308
t4_os_portmod_changed(const struct adapter * adap,int port_id)309 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
310 {
311 static const char *mod_str[] = {
312 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
313 };
314
315 const struct net_device *dev = adap->port[port_id];
316 const struct port_info *pi = netdev_priv(dev);
317
318 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
319 netdev_info(dev, "port module unplugged\n");
320 else if (pi->mod_type < ARRAY_SIZE(mod_str))
321 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
322 }
323
324 /*
325 * Configure the exact and hash address filters to handle a port's multicast
326 * and secondary unicast MAC addresses.
327 */
set_addr_filters(const struct net_device * dev,bool sleep)328 static int set_addr_filters(const struct net_device *dev, bool sleep)
329 {
330 u64 mhash = 0;
331 u64 uhash = 0;
332 bool free = true;
333 u16 filt_idx[7];
334 const u8 *addr[7];
335 int ret, naddr = 0;
336 const struct netdev_hw_addr *ha;
337 int uc_cnt = netdev_uc_count(dev);
338 int mc_cnt = netdev_mc_count(dev);
339 const struct port_info *pi = netdev_priv(dev);
340 unsigned int mb = pi->adapter->fn;
341
342 /* first do the secondary unicast addresses */
343 netdev_for_each_uc_addr(ha, dev) {
344 addr[naddr++] = ha->addr;
345 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
346 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
347 naddr, addr, filt_idx, &uhash, sleep);
348 if (ret < 0)
349 return ret;
350
351 free = false;
352 naddr = 0;
353 }
354 }
355
356 /* next set up the multicast addresses */
357 netdev_for_each_mc_addr(ha, dev) {
358 addr[naddr++] = ha->addr;
359 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
360 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
361 naddr, addr, filt_idx, &mhash, sleep);
362 if (ret < 0)
363 return ret;
364
365 free = false;
366 naddr = 0;
367 }
368 }
369
370 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
371 uhash | mhash, sleep);
372 }
373
374 /*
375 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
376 * If @mtu is -1 it is left unchanged.
377 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)378 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
379 {
380 int ret;
381 struct port_info *pi = netdev_priv(dev);
382
383 ret = set_addr_filters(dev, sleep_ok);
384 if (ret == 0)
385 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
386 (dev->flags & IFF_PROMISC) ? 1 : 0,
387 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
388 sleep_ok);
389 return ret;
390 }
391
392 /**
393 * link_start - enable a port
394 * @dev: the port to enable
395 *
396 * Performs the MAC and PHY actions needed to enable a port.
397 */
link_start(struct net_device * dev)398 static int link_start(struct net_device *dev)
399 {
400 int ret;
401 struct port_info *pi = netdev_priv(dev);
402 unsigned int mb = pi->adapter->fn;
403
404 /*
405 * We do not set address filters and promiscuity here, the stack does
406 * that step explicitly.
407 */
408 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
409 !!(dev->features & NETIF_F_HW_VLAN_RX), true);
410 if (ret == 0) {
411 ret = t4_change_mac(pi->adapter, mb, pi->viid,
412 pi->xact_addr_filt, dev->dev_addr, true,
413 true);
414 if (ret >= 0) {
415 pi->xact_addr_filt = ret;
416 ret = 0;
417 }
418 }
419 if (ret == 0)
420 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
421 &pi->link_cfg);
422 if (ret == 0)
423 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
424 return ret;
425 }
426
427 /*
428 * Response queue handler for the FW event queue.
429 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)430 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
431 const struct pkt_gl *gl)
432 {
433 u8 opcode = ((const struct rss_header *)rsp)->opcode;
434
435 rsp++; /* skip RSS header */
436 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
437 const struct cpl_sge_egr_update *p = (void *)rsp;
438 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
439 struct sge_txq *txq;
440
441 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
442 txq->restarts++;
443 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
444 struct sge_eth_txq *eq;
445
446 eq = container_of(txq, struct sge_eth_txq, q);
447 netif_tx_wake_queue(eq->txq);
448 } else {
449 struct sge_ofld_txq *oq;
450
451 oq = container_of(txq, struct sge_ofld_txq, q);
452 tasklet_schedule(&oq->qresume_tsk);
453 }
454 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
455 const struct cpl_fw6_msg *p = (void *)rsp;
456
457 if (p->type == 0)
458 t4_handle_fw_rpl(q->adap, p->data);
459 } else if (opcode == CPL_L2T_WRITE_RPL) {
460 const struct cpl_l2t_write_rpl *p = (void *)rsp;
461
462 do_l2t_write_rpl(q->adap, p);
463 } else
464 dev_err(q->adap->pdev_dev,
465 "unexpected CPL %#x on FW event queue\n", opcode);
466 return 0;
467 }
468
469 /**
470 * uldrx_handler - response queue handler for ULD queues
471 * @q: the response queue that received the packet
472 * @rsp: the response queue descriptor holding the offload message
473 * @gl: the gather list of packet fragments
474 *
475 * Deliver an ingress offload packet to a ULD. All processing is done by
476 * the ULD, we just maintain statistics.
477 */
uldrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)478 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
479 const struct pkt_gl *gl)
480 {
481 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
482
483 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
484 rxq->stats.nomem++;
485 return -1;
486 }
487 if (gl == NULL)
488 rxq->stats.imm++;
489 else if (gl == CXGB4_MSG_AN)
490 rxq->stats.an++;
491 else
492 rxq->stats.pkts++;
493 return 0;
494 }
495
disable_msi(struct adapter * adapter)496 static void disable_msi(struct adapter *adapter)
497 {
498 if (adapter->flags & USING_MSIX) {
499 pci_disable_msix(adapter->pdev);
500 adapter->flags &= ~USING_MSIX;
501 } else if (adapter->flags & USING_MSI) {
502 pci_disable_msi(adapter->pdev);
503 adapter->flags &= ~USING_MSI;
504 }
505 }
506
507 /*
508 * Interrupt handler for non-data events used with MSI-X.
509 */
t4_nondata_intr(int irq,void * cookie)510 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
511 {
512 struct adapter *adap = cookie;
513
514 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
515 if (v & PFSW) {
516 adap->swintr = 1;
517 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
518 }
519 t4_slow_intr_handler(adap);
520 return IRQ_HANDLED;
521 }
522
523 /*
524 * Name the MSI-X interrupts.
525 */
name_msix_vecs(struct adapter * adap)526 static void name_msix_vecs(struct adapter *adap)
527 {
528 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
529
530 /* non-data interrupts */
531 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
532
533 /* FW events */
534 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
535 adap->port[0]->name);
536
537 /* Ethernet queues */
538 for_each_port(adap, j) {
539 struct net_device *d = adap->port[j];
540 const struct port_info *pi = netdev_priv(d);
541
542 for (i = 0; i < pi->nqsets; i++, msi_idx++)
543 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
544 d->name, i);
545 }
546
547 /* offload queues */
548 for_each_ofldrxq(&adap->sge, i)
549 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
550 adap->port[0]->name, i);
551
552 for_each_rdmarxq(&adap->sge, i)
553 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
554 adap->port[0]->name, i);
555 }
556
request_msix_queue_irqs(struct adapter * adap)557 static int request_msix_queue_irqs(struct adapter *adap)
558 {
559 struct sge *s = &adap->sge;
560 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
561
562 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
563 adap->msix_info[1].desc, &s->fw_evtq);
564 if (err)
565 return err;
566
567 for_each_ethrxq(s, ethqidx) {
568 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
569 adap->msix_info[msi].desc,
570 &s->ethrxq[ethqidx].rspq);
571 if (err)
572 goto unwind;
573 msi++;
574 }
575 for_each_ofldrxq(s, ofldqidx) {
576 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
577 adap->msix_info[msi].desc,
578 &s->ofldrxq[ofldqidx].rspq);
579 if (err)
580 goto unwind;
581 msi++;
582 }
583 for_each_rdmarxq(s, rdmaqidx) {
584 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
585 adap->msix_info[msi].desc,
586 &s->rdmarxq[rdmaqidx].rspq);
587 if (err)
588 goto unwind;
589 msi++;
590 }
591 return 0;
592
593 unwind:
594 while (--rdmaqidx >= 0)
595 free_irq(adap->msix_info[--msi].vec,
596 &s->rdmarxq[rdmaqidx].rspq);
597 while (--ofldqidx >= 0)
598 free_irq(adap->msix_info[--msi].vec,
599 &s->ofldrxq[ofldqidx].rspq);
600 while (--ethqidx >= 0)
601 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
602 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
603 return err;
604 }
605
free_msix_queue_irqs(struct adapter * adap)606 static void free_msix_queue_irqs(struct adapter *adap)
607 {
608 int i, msi = 2;
609 struct sge *s = &adap->sge;
610
611 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
612 for_each_ethrxq(s, i)
613 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
614 for_each_ofldrxq(s, i)
615 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
616 for_each_rdmarxq(s, i)
617 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
618 }
619
620 /**
621 * write_rss - write the RSS table for a given port
622 * @pi: the port
623 * @queues: array of queue indices for RSS
624 *
625 * Sets up the portion of the HW RSS table for the port's VI to distribute
626 * packets to the Rx queues in @queues.
627 */
write_rss(const struct port_info * pi,const u16 * queues)628 static int write_rss(const struct port_info *pi, const u16 *queues)
629 {
630 u16 *rss;
631 int i, err;
632 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
633
634 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
635 if (!rss)
636 return -ENOMEM;
637
638 /* map the queue indices to queue ids */
639 for (i = 0; i < pi->rss_size; i++, queues++)
640 rss[i] = q[*queues].rspq.abs_id;
641
642 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
643 pi->rss_size, rss, pi->rss_size);
644 kfree(rss);
645 return err;
646 }
647
648 /**
649 * setup_rss - configure RSS
650 * @adap: the adapter
651 *
652 * Sets up RSS for each port.
653 */
setup_rss(struct adapter * adap)654 static int setup_rss(struct adapter *adap)
655 {
656 int i, err;
657
658 for_each_port(adap, i) {
659 const struct port_info *pi = adap2pinfo(adap, i);
660
661 err = write_rss(pi, pi->rss);
662 if (err)
663 return err;
664 }
665 return 0;
666 }
667
668 /*
669 * Return the channel of the ingress queue with the given qid.
670 */
rxq_to_chan(const struct sge * p,unsigned int qid)671 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
672 {
673 qid -= p->ingr_start;
674 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
675 }
676
677 /*
678 * Wait until all NAPI handlers are descheduled.
679 */
quiesce_rx(struct adapter * adap)680 static void quiesce_rx(struct adapter *adap)
681 {
682 int i;
683
684 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
685 struct sge_rspq *q = adap->sge.ingr_map[i];
686
687 if (q && q->handler)
688 napi_disable(&q->napi);
689 }
690 }
691
692 /*
693 * Enable NAPI scheduling and interrupt generation for all Rx queues.
694 */
enable_rx(struct adapter * adap)695 static void enable_rx(struct adapter *adap)
696 {
697 int i;
698
699 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
700 struct sge_rspq *q = adap->sge.ingr_map[i];
701
702 if (!q)
703 continue;
704 if (q->handler)
705 napi_enable(&q->napi);
706 /* 0-increment GTS to start the timer and enable interrupts */
707 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
708 SEINTARM(q->intr_params) |
709 INGRESSQID(q->cntxt_id));
710 }
711 }
712
713 /**
714 * setup_sge_queues - configure SGE Tx/Rx/response queues
715 * @adap: the adapter
716 *
717 * Determines how many sets of SGE queues to use and initializes them.
718 * We support multiple queue sets per port if we have MSI-X, otherwise
719 * just one queue set per port.
720 */
setup_sge_queues(struct adapter * adap)721 static int setup_sge_queues(struct adapter *adap)
722 {
723 int err, msi_idx, i, j;
724 struct sge *s = &adap->sge;
725
726 bitmap_zero(s->starving_fl, MAX_EGRQ);
727 bitmap_zero(s->txq_maperr, MAX_EGRQ);
728
729 if (adap->flags & USING_MSIX)
730 msi_idx = 1; /* vector 0 is for non-queue interrupts */
731 else {
732 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
733 NULL, NULL);
734 if (err)
735 return err;
736 msi_idx = -((int)s->intrq.abs_id + 1);
737 }
738
739 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
740 msi_idx, NULL, fwevtq_handler);
741 if (err) {
742 freeout: t4_free_sge_resources(adap);
743 return err;
744 }
745
746 for_each_port(adap, i) {
747 struct net_device *dev = adap->port[i];
748 struct port_info *pi = netdev_priv(dev);
749 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
750 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
751
752 for (j = 0; j < pi->nqsets; j++, q++) {
753 if (msi_idx > 0)
754 msi_idx++;
755 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
756 msi_idx, &q->fl,
757 t4_ethrx_handler);
758 if (err)
759 goto freeout;
760 q->rspq.idx = j;
761 memset(&q->stats, 0, sizeof(q->stats));
762 }
763 for (j = 0; j < pi->nqsets; j++, t++) {
764 err = t4_sge_alloc_eth_txq(adap, t, dev,
765 netdev_get_tx_queue(dev, j),
766 s->fw_evtq.cntxt_id);
767 if (err)
768 goto freeout;
769 }
770 }
771
772 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
773 for_each_ofldrxq(s, i) {
774 struct sge_ofld_rxq *q = &s->ofldrxq[i];
775 struct net_device *dev = adap->port[i / j];
776
777 if (msi_idx > 0)
778 msi_idx++;
779 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
780 &q->fl, uldrx_handler);
781 if (err)
782 goto freeout;
783 memset(&q->stats, 0, sizeof(q->stats));
784 s->ofld_rxq[i] = q->rspq.abs_id;
785 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
786 s->fw_evtq.cntxt_id);
787 if (err)
788 goto freeout;
789 }
790
791 for_each_rdmarxq(s, i) {
792 struct sge_ofld_rxq *q = &s->rdmarxq[i];
793
794 if (msi_idx > 0)
795 msi_idx++;
796 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
797 msi_idx, &q->fl, uldrx_handler);
798 if (err)
799 goto freeout;
800 memset(&q->stats, 0, sizeof(q->stats));
801 s->rdma_rxq[i] = q->rspq.abs_id;
802 }
803
804 for_each_port(adap, i) {
805 /*
806 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
807 * have RDMA queues, and that's the right value.
808 */
809 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
810 s->fw_evtq.cntxt_id,
811 s->rdmarxq[i].rspq.cntxt_id);
812 if (err)
813 goto freeout;
814 }
815
816 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
817 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
818 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
819 return 0;
820 }
821
822 /*
823 * Returns 0 if new FW was successfully loaded, a positive errno if a load was
824 * started but failed, and a negative errno if flash load couldn't start.
825 */
upgrade_fw(struct adapter * adap)826 static int upgrade_fw(struct adapter *adap)
827 {
828 int ret;
829 u32 vers;
830 const struct fw_hdr *hdr;
831 const struct firmware *fw;
832 struct device *dev = adap->pdev_dev;
833
834 ret = request_firmware(&fw, FW_FNAME, dev);
835 if (ret < 0) {
836 dev_err(dev, "unable to load firmware image " FW_FNAME
837 ", error %d\n", ret);
838 return ret;
839 }
840
841 hdr = (const struct fw_hdr *)fw->data;
842 vers = ntohl(hdr->fw_ver);
843 if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
844 ret = -EINVAL; /* wrong major version, won't do */
845 goto out;
846 }
847
848 /*
849 * If the flash FW is unusable or we found something newer, load it.
850 */
851 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
852 vers > adap->params.fw_vers) {
853 ret = -t4_load_fw(adap, fw->data, fw->size);
854 if (!ret)
855 dev_info(dev, "firmware upgraded to version %pI4 from "
856 FW_FNAME "\n", &hdr->fw_ver);
857 }
858 out: release_firmware(fw);
859 return ret;
860 }
861
862 /*
863 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
864 * The allocated memory is cleared.
865 */
t4_alloc_mem(size_t size)866 void *t4_alloc_mem(size_t size)
867 {
868 void *p = kzalloc(size, GFP_KERNEL);
869
870 if (!p)
871 p = vzalloc(size);
872 return p;
873 }
874
875 /*
876 * Free memory allocated through alloc_mem().
877 */
t4_free_mem(void * addr)878 static void t4_free_mem(void *addr)
879 {
880 if (is_vmalloc_addr(addr))
881 vfree(addr);
882 else
883 kfree(addr);
884 }
885
is_offload(const struct adapter * adap)886 static inline int is_offload(const struct adapter *adap)
887 {
888 return adap->params.offload;
889 }
890
891 /*
892 * Implementation of ethtool operations.
893 */
894
get_msglevel(struct net_device * dev)895 static u32 get_msglevel(struct net_device *dev)
896 {
897 return netdev2adap(dev)->msg_enable;
898 }
899
set_msglevel(struct net_device * dev,u32 val)900 static void set_msglevel(struct net_device *dev, u32 val)
901 {
902 netdev2adap(dev)->msg_enable = val;
903 }
904
905 static char stats_strings[][ETH_GSTRING_LEN] = {
906 "TxOctetsOK ",
907 "TxFramesOK ",
908 "TxBroadcastFrames ",
909 "TxMulticastFrames ",
910 "TxUnicastFrames ",
911 "TxErrorFrames ",
912
913 "TxFrames64 ",
914 "TxFrames65To127 ",
915 "TxFrames128To255 ",
916 "TxFrames256To511 ",
917 "TxFrames512To1023 ",
918 "TxFrames1024To1518 ",
919 "TxFrames1519ToMax ",
920
921 "TxFramesDropped ",
922 "TxPauseFrames ",
923 "TxPPP0Frames ",
924 "TxPPP1Frames ",
925 "TxPPP2Frames ",
926 "TxPPP3Frames ",
927 "TxPPP4Frames ",
928 "TxPPP5Frames ",
929 "TxPPP6Frames ",
930 "TxPPP7Frames ",
931
932 "RxOctetsOK ",
933 "RxFramesOK ",
934 "RxBroadcastFrames ",
935 "RxMulticastFrames ",
936 "RxUnicastFrames ",
937
938 "RxFramesTooLong ",
939 "RxJabberErrors ",
940 "RxFCSErrors ",
941 "RxLengthErrors ",
942 "RxSymbolErrors ",
943 "RxRuntFrames ",
944
945 "RxFrames64 ",
946 "RxFrames65To127 ",
947 "RxFrames128To255 ",
948 "RxFrames256To511 ",
949 "RxFrames512To1023 ",
950 "RxFrames1024To1518 ",
951 "RxFrames1519ToMax ",
952
953 "RxPauseFrames ",
954 "RxPPP0Frames ",
955 "RxPPP1Frames ",
956 "RxPPP2Frames ",
957 "RxPPP3Frames ",
958 "RxPPP4Frames ",
959 "RxPPP5Frames ",
960 "RxPPP6Frames ",
961 "RxPPP7Frames ",
962
963 "RxBG0FramesDropped ",
964 "RxBG1FramesDropped ",
965 "RxBG2FramesDropped ",
966 "RxBG3FramesDropped ",
967 "RxBG0FramesTrunc ",
968 "RxBG1FramesTrunc ",
969 "RxBG2FramesTrunc ",
970 "RxBG3FramesTrunc ",
971
972 "TSO ",
973 "TxCsumOffload ",
974 "RxCsumGood ",
975 "VLANextractions ",
976 "VLANinsertions ",
977 "GROpackets ",
978 "GROmerged ",
979 };
980
get_sset_count(struct net_device * dev,int sset)981 static int get_sset_count(struct net_device *dev, int sset)
982 {
983 switch (sset) {
984 case ETH_SS_STATS:
985 return ARRAY_SIZE(stats_strings);
986 default:
987 return -EOPNOTSUPP;
988 }
989 }
990
991 #define T4_REGMAP_SIZE (160 * 1024)
992
get_regs_len(struct net_device * dev)993 static int get_regs_len(struct net_device *dev)
994 {
995 return T4_REGMAP_SIZE;
996 }
997
get_eeprom_len(struct net_device * dev)998 static int get_eeprom_len(struct net_device *dev)
999 {
1000 return EEPROMSIZE;
1001 }
1002
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1003 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1004 {
1005 struct adapter *adapter = netdev2adap(dev);
1006
1007 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1008 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1009 strlcpy(info->bus_info, pci_name(adapter->pdev),
1010 sizeof(info->bus_info));
1011
1012 if (adapter->params.fw_vers)
1013 snprintf(info->fw_version, sizeof(info->fw_version),
1014 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1015 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1016 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1017 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1018 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1019 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1020 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1021 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1022 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1023 }
1024
get_strings(struct net_device * dev,u32 stringset,u8 * data)1025 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1026 {
1027 if (stringset == ETH_SS_STATS)
1028 memcpy(data, stats_strings, sizeof(stats_strings));
1029 }
1030
1031 /*
1032 * port stats maintained per queue of the port. They should be in the same
1033 * order as in stats_strings above.
1034 */
1035 struct queue_port_stats {
1036 u64 tso;
1037 u64 tx_csum;
1038 u64 rx_csum;
1039 u64 vlan_ex;
1040 u64 vlan_ins;
1041 u64 gro_pkts;
1042 u64 gro_merged;
1043 };
1044
collect_sge_port_stats(const struct adapter * adap,const struct port_info * p,struct queue_port_stats * s)1045 static void collect_sge_port_stats(const struct adapter *adap,
1046 const struct port_info *p, struct queue_port_stats *s)
1047 {
1048 int i;
1049 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1050 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1051
1052 memset(s, 0, sizeof(*s));
1053 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1054 s->tso += tx->tso;
1055 s->tx_csum += tx->tx_cso;
1056 s->rx_csum += rx->stats.rx_cso;
1057 s->vlan_ex += rx->stats.vlan_ex;
1058 s->vlan_ins += tx->vlan_ins;
1059 s->gro_pkts += rx->stats.lro_pkts;
1060 s->gro_merged += rx->stats.lro_merged;
1061 }
1062 }
1063
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1064 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1065 u64 *data)
1066 {
1067 struct port_info *pi = netdev_priv(dev);
1068 struct adapter *adapter = pi->adapter;
1069
1070 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1071
1072 data += sizeof(struct port_stats) / sizeof(u64);
1073 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1074 }
1075
1076 /*
1077 * Return a version number to identify the type of adapter. The scheme is:
1078 * - bits 0..9: chip version
1079 * - bits 10..15: chip revision
1080 * - bits 16..23: register dump version
1081 */
mk_adap_vers(const struct adapter * ap)1082 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1083 {
1084 return 4 | (ap->params.rev << 10) | (1 << 16);
1085 }
1086
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1087 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1088 unsigned int end)
1089 {
1090 u32 *p = buf + start;
1091
1092 for ( ; start <= end; start += sizeof(u32))
1093 *p++ = t4_read_reg(ap, start);
1094 }
1095
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1096 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1097 void *buf)
1098 {
1099 static const unsigned int reg_ranges[] = {
1100 0x1008, 0x1108,
1101 0x1180, 0x11b4,
1102 0x11fc, 0x123c,
1103 0x1300, 0x173c,
1104 0x1800, 0x18fc,
1105 0x3000, 0x30d8,
1106 0x30e0, 0x5924,
1107 0x5960, 0x59d4,
1108 0x5a00, 0x5af8,
1109 0x6000, 0x6098,
1110 0x6100, 0x6150,
1111 0x6200, 0x6208,
1112 0x6240, 0x6248,
1113 0x6280, 0x6338,
1114 0x6370, 0x638c,
1115 0x6400, 0x643c,
1116 0x6500, 0x6524,
1117 0x6a00, 0x6a38,
1118 0x6a60, 0x6a78,
1119 0x6b00, 0x6b84,
1120 0x6bf0, 0x6c84,
1121 0x6cf0, 0x6d84,
1122 0x6df0, 0x6e84,
1123 0x6ef0, 0x6f84,
1124 0x6ff0, 0x7084,
1125 0x70f0, 0x7184,
1126 0x71f0, 0x7284,
1127 0x72f0, 0x7384,
1128 0x73f0, 0x7450,
1129 0x7500, 0x7530,
1130 0x7600, 0x761c,
1131 0x7680, 0x76cc,
1132 0x7700, 0x7798,
1133 0x77c0, 0x77fc,
1134 0x7900, 0x79fc,
1135 0x7b00, 0x7c38,
1136 0x7d00, 0x7efc,
1137 0x8dc0, 0x8e1c,
1138 0x8e30, 0x8e78,
1139 0x8ea0, 0x8f6c,
1140 0x8fc0, 0x9074,
1141 0x90fc, 0x90fc,
1142 0x9400, 0x9458,
1143 0x9600, 0x96bc,
1144 0x9800, 0x9808,
1145 0x9820, 0x983c,
1146 0x9850, 0x9864,
1147 0x9c00, 0x9c6c,
1148 0x9c80, 0x9cec,
1149 0x9d00, 0x9d6c,
1150 0x9d80, 0x9dec,
1151 0x9e00, 0x9e6c,
1152 0x9e80, 0x9eec,
1153 0x9f00, 0x9f6c,
1154 0x9f80, 0x9fec,
1155 0xd004, 0xd03c,
1156 0xdfc0, 0xdfe0,
1157 0xe000, 0xea7c,
1158 0xf000, 0x11190,
1159 0x19040, 0x1906c,
1160 0x19078, 0x19080,
1161 0x1908c, 0x19124,
1162 0x19150, 0x191b0,
1163 0x191d0, 0x191e8,
1164 0x19238, 0x1924c,
1165 0x193f8, 0x19474,
1166 0x19490, 0x194f8,
1167 0x19800, 0x19f30,
1168 0x1a000, 0x1a06c,
1169 0x1a0b0, 0x1a120,
1170 0x1a128, 0x1a138,
1171 0x1a190, 0x1a1c4,
1172 0x1a1fc, 0x1a1fc,
1173 0x1e040, 0x1e04c,
1174 0x1e284, 0x1e28c,
1175 0x1e2c0, 0x1e2c0,
1176 0x1e2e0, 0x1e2e0,
1177 0x1e300, 0x1e384,
1178 0x1e3c0, 0x1e3c8,
1179 0x1e440, 0x1e44c,
1180 0x1e684, 0x1e68c,
1181 0x1e6c0, 0x1e6c0,
1182 0x1e6e0, 0x1e6e0,
1183 0x1e700, 0x1e784,
1184 0x1e7c0, 0x1e7c8,
1185 0x1e840, 0x1e84c,
1186 0x1ea84, 0x1ea8c,
1187 0x1eac0, 0x1eac0,
1188 0x1eae0, 0x1eae0,
1189 0x1eb00, 0x1eb84,
1190 0x1ebc0, 0x1ebc8,
1191 0x1ec40, 0x1ec4c,
1192 0x1ee84, 0x1ee8c,
1193 0x1eec0, 0x1eec0,
1194 0x1eee0, 0x1eee0,
1195 0x1ef00, 0x1ef84,
1196 0x1efc0, 0x1efc8,
1197 0x1f040, 0x1f04c,
1198 0x1f284, 0x1f28c,
1199 0x1f2c0, 0x1f2c0,
1200 0x1f2e0, 0x1f2e0,
1201 0x1f300, 0x1f384,
1202 0x1f3c0, 0x1f3c8,
1203 0x1f440, 0x1f44c,
1204 0x1f684, 0x1f68c,
1205 0x1f6c0, 0x1f6c0,
1206 0x1f6e0, 0x1f6e0,
1207 0x1f700, 0x1f784,
1208 0x1f7c0, 0x1f7c8,
1209 0x1f840, 0x1f84c,
1210 0x1fa84, 0x1fa8c,
1211 0x1fac0, 0x1fac0,
1212 0x1fae0, 0x1fae0,
1213 0x1fb00, 0x1fb84,
1214 0x1fbc0, 0x1fbc8,
1215 0x1fc40, 0x1fc4c,
1216 0x1fe84, 0x1fe8c,
1217 0x1fec0, 0x1fec0,
1218 0x1fee0, 0x1fee0,
1219 0x1ff00, 0x1ff84,
1220 0x1ffc0, 0x1ffc8,
1221 0x20000, 0x2002c,
1222 0x20100, 0x2013c,
1223 0x20190, 0x201c8,
1224 0x20200, 0x20318,
1225 0x20400, 0x20528,
1226 0x20540, 0x20614,
1227 0x21000, 0x21040,
1228 0x2104c, 0x21060,
1229 0x210c0, 0x210ec,
1230 0x21200, 0x21268,
1231 0x21270, 0x21284,
1232 0x212fc, 0x21388,
1233 0x21400, 0x21404,
1234 0x21500, 0x21518,
1235 0x2152c, 0x2153c,
1236 0x21550, 0x21554,
1237 0x21600, 0x21600,
1238 0x21608, 0x21628,
1239 0x21630, 0x2163c,
1240 0x21700, 0x2171c,
1241 0x21780, 0x2178c,
1242 0x21800, 0x21c38,
1243 0x21c80, 0x21d7c,
1244 0x21e00, 0x21e04,
1245 0x22000, 0x2202c,
1246 0x22100, 0x2213c,
1247 0x22190, 0x221c8,
1248 0x22200, 0x22318,
1249 0x22400, 0x22528,
1250 0x22540, 0x22614,
1251 0x23000, 0x23040,
1252 0x2304c, 0x23060,
1253 0x230c0, 0x230ec,
1254 0x23200, 0x23268,
1255 0x23270, 0x23284,
1256 0x232fc, 0x23388,
1257 0x23400, 0x23404,
1258 0x23500, 0x23518,
1259 0x2352c, 0x2353c,
1260 0x23550, 0x23554,
1261 0x23600, 0x23600,
1262 0x23608, 0x23628,
1263 0x23630, 0x2363c,
1264 0x23700, 0x2371c,
1265 0x23780, 0x2378c,
1266 0x23800, 0x23c38,
1267 0x23c80, 0x23d7c,
1268 0x23e00, 0x23e04,
1269 0x24000, 0x2402c,
1270 0x24100, 0x2413c,
1271 0x24190, 0x241c8,
1272 0x24200, 0x24318,
1273 0x24400, 0x24528,
1274 0x24540, 0x24614,
1275 0x25000, 0x25040,
1276 0x2504c, 0x25060,
1277 0x250c0, 0x250ec,
1278 0x25200, 0x25268,
1279 0x25270, 0x25284,
1280 0x252fc, 0x25388,
1281 0x25400, 0x25404,
1282 0x25500, 0x25518,
1283 0x2552c, 0x2553c,
1284 0x25550, 0x25554,
1285 0x25600, 0x25600,
1286 0x25608, 0x25628,
1287 0x25630, 0x2563c,
1288 0x25700, 0x2571c,
1289 0x25780, 0x2578c,
1290 0x25800, 0x25c38,
1291 0x25c80, 0x25d7c,
1292 0x25e00, 0x25e04,
1293 0x26000, 0x2602c,
1294 0x26100, 0x2613c,
1295 0x26190, 0x261c8,
1296 0x26200, 0x26318,
1297 0x26400, 0x26528,
1298 0x26540, 0x26614,
1299 0x27000, 0x27040,
1300 0x2704c, 0x27060,
1301 0x270c0, 0x270ec,
1302 0x27200, 0x27268,
1303 0x27270, 0x27284,
1304 0x272fc, 0x27388,
1305 0x27400, 0x27404,
1306 0x27500, 0x27518,
1307 0x2752c, 0x2753c,
1308 0x27550, 0x27554,
1309 0x27600, 0x27600,
1310 0x27608, 0x27628,
1311 0x27630, 0x2763c,
1312 0x27700, 0x2771c,
1313 0x27780, 0x2778c,
1314 0x27800, 0x27c38,
1315 0x27c80, 0x27d7c,
1316 0x27e00, 0x27e04
1317 };
1318
1319 int i;
1320 struct adapter *ap = netdev2adap(dev);
1321
1322 regs->version = mk_adap_vers(ap);
1323
1324 memset(buf, 0, T4_REGMAP_SIZE);
1325 for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1326 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1327 }
1328
restart_autoneg(struct net_device * dev)1329 static int restart_autoneg(struct net_device *dev)
1330 {
1331 struct port_info *p = netdev_priv(dev);
1332
1333 if (!netif_running(dev))
1334 return -EAGAIN;
1335 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1336 return -EINVAL;
1337 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1338 return 0;
1339 }
1340
identify_port(struct net_device * dev,enum ethtool_phys_id_state state)1341 static int identify_port(struct net_device *dev,
1342 enum ethtool_phys_id_state state)
1343 {
1344 unsigned int val;
1345 struct adapter *adap = netdev2adap(dev);
1346
1347 if (state == ETHTOOL_ID_ACTIVE)
1348 val = 0xffff;
1349 else if (state == ETHTOOL_ID_INACTIVE)
1350 val = 0;
1351 else
1352 return -EINVAL;
1353
1354 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
1355 }
1356
from_fw_linkcaps(unsigned int type,unsigned int caps)1357 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1358 {
1359 unsigned int v = 0;
1360
1361 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1362 type == FW_PORT_TYPE_BT_XAUI) {
1363 v |= SUPPORTED_TP;
1364 if (caps & FW_PORT_CAP_SPEED_100M)
1365 v |= SUPPORTED_100baseT_Full;
1366 if (caps & FW_PORT_CAP_SPEED_1G)
1367 v |= SUPPORTED_1000baseT_Full;
1368 if (caps & FW_PORT_CAP_SPEED_10G)
1369 v |= SUPPORTED_10000baseT_Full;
1370 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1371 v |= SUPPORTED_Backplane;
1372 if (caps & FW_PORT_CAP_SPEED_1G)
1373 v |= SUPPORTED_1000baseKX_Full;
1374 if (caps & FW_PORT_CAP_SPEED_10G)
1375 v |= SUPPORTED_10000baseKX4_Full;
1376 } else if (type == FW_PORT_TYPE_KR)
1377 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1378 else if (type == FW_PORT_TYPE_BP_AP)
1379 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1380 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1381 else if (type == FW_PORT_TYPE_BP4_AP)
1382 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1383 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1384 SUPPORTED_10000baseKX4_Full;
1385 else if (type == FW_PORT_TYPE_FIBER_XFI ||
1386 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1387 v |= SUPPORTED_FIBRE;
1388
1389 if (caps & FW_PORT_CAP_ANEG)
1390 v |= SUPPORTED_Autoneg;
1391 return v;
1392 }
1393
to_fw_linkcaps(unsigned int caps)1394 static unsigned int to_fw_linkcaps(unsigned int caps)
1395 {
1396 unsigned int v = 0;
1397
1398 if (caps & ADVERTISED_100baseT_Full)
1399 v |= FW_PORT_CAP_SPEED_100M;
1400 if (caps & ADVERTISED_1000baseT_Full)
1401 v |= FW_PORT_CAP_SPEED_1G;
1402 if (caps & ADVERTISED_10000baseT_Full)
1403 v |= FW_PORT_CAP_SPEED_10G;
1404 return v;
1405 }
1406
get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1407 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1408 {
1409 const struct port_info *p = netdev_priv(dev);
1410
1411 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1412 p->port_type == FW_PORT_TYPE_BT_XFI ||
1413 p->port_type == FW_PORT_TYPE_BT_XAUI)
1414 cmd->port = PORT_TP;
1415 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1416 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1417 cmd->port = PORT_FIBRE;
1418 else if (p->port_type == FW_PORT_TYPE_SFP) {
1419 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1420 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1421 cmd->port = PORT_DA;
1422 else
1423 cmd->port = PORT_FIBRE;
1424 } else
1425 cmd->port = PORT_OTHER;
1426
1427 if (p->mdio_addr >= 0) {
1428 cmd->phy_address = p->mdio_addr;
1429 cmd->transceiver = XCVR_EXTERNAL;
1430 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1431 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1432 } else {
1433 cmd->phy_address = 0; /* not really, but no better option */
1434 cmd->transceiver = XCVR_INTERNAL;
1435 cmd->mdio_support = 0;
1436 }
1437
1438 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1439 cmd->advertising = from_fw_linkcaps(p->port_type,
1440 p->link_cfg.advertising);
1441 ethtool_cmd_speed_set(cmd,
1442 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
1443 cmd->duplex = DUPLEX_FULL;
1444 cmd->autoneg = p->link_cfg.autoneg;
1445 cmd->maxtxpkt = 0;
1446 cmd->maxrxpkt = 0;
1447 return 0;
1448 }
1449
speed_to_caps(int speed)1450 static unsigned int speed_to_caps(int speed)
1451 {
1452 if (speed == SPEED_100)
1453 return FW_PORT_CAP_SPEED_100M;
1454 if (speed == SPEED_1000)
1455 return FW_PORT_CAP_SPEED_1G;
1456 if (speed == SPEED_10000)
1457 return FW_PORT_CAP_SPEED_10G;
1458 return 0;
1459 }
1460
set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1461 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1462 {
1463 unsigned int cap;
1464 struct port_info *p = netdev_priv(dev);
1465 struct link_config *lc = &p->link_cfg;
1466 u32 speed = ethtool_cmd_speed(cmd);
1467
1468 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
1469 return -EINVAL;
1470
1471 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1472 /*
1473 * PHY offers a single speed. See if that's what's
1474 * being requested.
1475 */
1476 if (cmd->autoneg == AUTONEG_DISABLE &&
1477 (lc->supported & speed_to_caps(speed)))
1478 return 0;
1479 return -EINVAL;
1480 }
1481
1482 if (cmd->autoneg == AUTONEG_DISABLE) {
1483 cap = speed_to_caps(speed);
1484
1485 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
1486 (speed == SPEED_10000))
1487 return -EINVAL;
1488 lc->requested_speed = cap;
1489 lc->advertising = 0;
1490 } else {
1491 cap = to_fw_linkcaps(cmd->advertising);
1492 if (!(lc->supported & cap))
1493 return -EINVAL;
1494 lc->requested_speed = 0;
1495 lc->advertising = cap | FW_PORT_CAP_ANEG;
1496 }
1497 lc->autoneg = cmd->autoneg;
1498
1499 if (netif_running(dev))
1500 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1501 lc);
1502 return 0;
1503 }
1504
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1505 static void get_pauseparam(struct net_device *dev,
1506 struct ethtool_pauseparam *epause)
1507 {
1508 struct port_info *p = netdev_priv(dev);
1509
1510 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1511 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1512 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1513 }
1514
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1515 static int set_pauseparam(struct net_device *dev,
1516 struct ethtool_pauseparam *epause)
1517 {
1518 struct port_info *p = netdev_priv(dev);
1519 struct link_config *lc = &p->link_cfg;
1520
1521 if (epause->autoneg == AUTONEG_DISABLE)
1522 lc->requested_fc = 0;
1523 else if (lc->supported & FW_PORT_CAP_ANEG)
1524 lc->requested_fc = PAUSE_AUTONEG;
1525 else
1526 return -EINVAL;
1527
1528 if (epause->rx_pause)
1529 lc->requested_fc |= PAUSE_RX;
1530 if (epause->tx_pause)
1531 lc->requested_fc |= PAUSE_TX;
1532 if (netif_running(dev))
1533 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1534 lc);
1535 return 0;
1536 }
1537
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1538 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1539 {
1540 const struct port_info *pi = netdev_priv(dev);
1541 const struct sge *s = &pi->adapter->sge;
1542
1543 e->rx_max_pending = MAX_RX_BUFFERS;
1544 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1545 e->rx_jumbo_max_pending = 0;
1546 e->tx_max_pending = MAX_TXQ_ENTRIES;
1547
1548 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1549 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1550 e->rx_jumbo_pending = 0;
1551 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1552 }
1553
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1554 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1555 {
1556 int i;
1557 const struct port_info *pi = netdev_priv(dev);
1558 struct adapter *adapter = pi->adapter;
1559 struct sge *s = &adapter->sge;
1560
1561 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1562 e->tx_pending > MAX_TXQ_ENTRIES ||
1563 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1564 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1565 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1566 return -EINVAL;
1567
1568 if (adapter->flags & FULL_INIT_DONE)
1569 return -EBUSY;
1570
1571 for (i = 0; i < pi->nqsets; ++i) {
1572 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1573 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1574 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1575 }
1576 return 0;
1577 }
1578
closest_timer(const struct sge * s,int time)1579 static int closest_timer(const struct sge *s, int time)
1580 {
1581 int i, delta, match = 0, min_delta = INT_MAX;
1582
1583 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1584 delta = time - s->timer_val[i];
1585 if (delta < 0)
1586 delta = -delta;
1587 if (delta < min_delta) {
1588 min_delta = delta;
1589 match = i;
1590 }
1591 }
1592 return match;
1593 }
1594
closest_thres(const struct sge * s,int thres)1595 static int closest_thres(const struct sge *s, int thres)
1596 {
1597 int i, delta, match = 0, min_delta = INT_MAX;
1598
1599 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1600 delta = thres - s->counter_val[i];
1601 if (delta < 0)
1602 delta = -delta;
1603 if (delta < min_delta) {
1604 min_delta = delta;
1605 match = i;
1606 }
1607 }
1608 return match;
1609 }
1610
1611 /*
1612 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1613 */
qtimer_val(const struct adapter * adap,const struct sge_rspq * q)1614 static unsigned int qtimer_val(const struct adapter *adap,
1615 const struct sge_rspq *q)
1616 {
1617 unsigned int idx = q->intr_params >> 1;
1618
1619 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1620 }
1621
1622 /**
1623 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1624 * @adap: the adapter
1625 * @q: the Rx queue
1626 * @us: the hold-off time in us, or 0 to disable timer
1627 * @cnt: the hold-off packet count, or 0 to disable counter
1628 *
1629 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1630 * one of the two needs to be enabled for the queue to generate interrupts.
1631 */
set_rxq_intr_params(struct adapter * adap,struct sge_rspq * q,unsigned int us,unsigned int cnt)1632 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1633 unsigned int us, unsigned int cnt)
1634 {
1635 if ((us | cnt) == 0)
1636 cnt = 1;
1637
1638 if (cnt) {
1639 int err;
1640 u32 v, new_idx;
1641
1642 new_idx = closest_thres(&adap->sge, cnt);
1643 if (q->desc && q->pktcnt_idx != new_idx) {
1644 /* the queue has already been created, update it */
1645 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1646 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1647 FW_PARAMS_PARAM_YZ(q->cntxt_id);
1648 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1649 &new_idx);
1650 if (err)
1651 return err;
1652 }
1653 q->pktcnt_idx = new_idx;
1654 }
1655
1656 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1657 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1658 return 0;
1659 }
1660
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)1661 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1662 {
1663 const struct port_info *pi = netdev_priv(dev);
1664 struct adapter *adap = pi->adapter;
1665
1666 return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1667 c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1668 }
1669
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)1670 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1671 {
1672 const struct port_info *pi = netdev_priv(dev);
1673 const struct adapter *adap = pi->adapter;
1674 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1675
1676 c->rx_coalesce_usecs = qtimer_val(adap, rq);
1677 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1678 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1679 return 0;
1680 }
1681
1682 /**
1683 * eeprom_ptov - translate a physical EEPROM address to virtual
1684 * @phys_addr: the physical EEPROM address
1685 * @fn: the PCI function number
1686 * @sz: size of function-specific area
1687 *
1688 * Translate a physical EEPROM address to virtual. The first 1K is
1689 * accessed through virtual addresses starting at 31K, the rest is
1690 * accessed through virtual addresses starting at 0.
1691 *
1692 * The mapping is as follows:
1693 * [0..1K) -> [31K..32K)
1694 * [1K..1K+A) -> [31K-A..31K)
1695 * [1K+A..ES) -> [0..ES-A-1K)
1696 *
1697 * where A = @fn * @sz, and ES = EEPROM size.
1698 */
eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)1699 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
1700 {
1701 fn *= sz;
1702 if (phys_addr < 1024)
1703 return phys_addr + (31 << 10);
1704 if (phys_addr < 1024 + fn)
1705 return 31744 - fn + phys_addr - 1024;
1706 if (phys_addr < EEPROMSIZE)
1707 return phys_addr - 1024 - fn;
1708 return -EINVAL;
1709 }
1710
1711 /*
1712 * The next two routines implement eeprom read/write from physical addresses.
1713 */
eeprom_rd_phys(struct adapter * adap,unsigned int phys_addr,u32 * v)1714 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1715 {
1716 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1717
1718 if (vaddr >= 0)
1719 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1720 return vaddr < 0 ? vaddr : 0;
1721 }
1722
eeprom_wr_phys(struct adapter * adap,unsigned int phys_addr,u32 v)1723 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1724 {
1725 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1726
1727 if (vaddr >= 0)
1728 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1729 return vaddr < 0 ? vaddr : 0;
1730 }
1731
1732 #define EEPROM_MAGIC 0x38E2F10C
1733
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)1734 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1735 u8 *data)
1736 {
1737 int i, err = 0;
1738 struct adapter *adapter = netdev2adap(dev);
1739
1740 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1741 if (!buf)
1742 return -ENOMEM;
1743
1744 e->magic = EEPROM_MAGIC;
1745 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1746 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1747
1748 if (!err)
1749 memcpy(data, buf + e->offset, e->len);
1750 kfree(buf);
1751 return err;
1752 }
1753
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1754 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1755 u8 *data)
1756 {
1757 u8 *buf;
1758 int err = 0;
1759 u32 aligned_offset, aligned_len, *p;
1760 struct adapter *adapter = netdev2adap(dev);
1761
1762 if (eeprom->magic != EEPROM_MAGIC)
1763 return -EINVAL;
1764
1765 aligned_offset = eeprom->offset & ~3;
1766 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1767
1768 if (adapter->fn > 0) {
1769 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
1770
1771 if (aligned_offset < start ||
1772 aligned_offset + aligned_len > start + EEPROMPFSIZE)
1773 return -EPERM;
1774 }
1775
1776 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1777 /*
1778 * RMW possibly needed for first or last words.
1779 */
1780 buf = kmalloc(aligned_len, GFP_KERNEL);
1781 if (!buf)
1782 return -ENOMEM;
1783 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1784 if (!err && aligned_len > 4)
1785 err = eeprom_rd_phys(adapter,
1786 aligned_offset + aligned_len - 4,
1787 (u32 *)&buf[aligned_len - 4]);
1788 if (err)
1789 goto out;
1790 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1791 } else
1792 buf = data;
1793
1794 err = t4_seeprom_wp(adapter, false);
1795 if (err)
1796 goto out;
1797
1798 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1799 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1800 aligned_offset += 4;
1801 }
1802
1803 if (!err)
1804 err = t4_seeprom_wp(adapter, true);
1805 out:
1806 if (buf != data)
1807 kfree(buf);
1808 return err;
1809 }
1810
set_flash(struct net_device * netdev,struct ethtool_flash * ef)1811 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1812 {
1813 int ret;
1814 const struct firmware *fw;
1815 struct adapter *adap = netdev2adap(netdev);
1816
1817 ef->data[sizeof(ef->data) - 1] = '\0';
1818 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1819 if (ret < 0)
1820 return ret;
1821
1822 ret = t4_load_fw(adap, fw->data, fw->size);
1823 release_firmware(fw);
1824 if (!ret)
1825 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1826 return ret;
1827 }
1828
1829 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1830 #define BCAST_CRC 0xa0ccc1a6
1831
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1832 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1833 {
1834 wol->supported = WAKE_BCAST | WAKE_MAGIC;
1835 wol->wolopts = netdev2adap(dev)->wol;
1836 memset(&wol->sopass, 0, sizeof(wol->sopass));
1837 }
1838
set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1839 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1840 {
1841 int err = 0;
1842 struct port_info *pi = netdev_priv(dev);
1843
1844 if (wol->wolopts & ~WOL_SUPPORTED)
1845 return -EINVAL;
1846 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1847 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1848 if (wol->wolopts & WAKE_BCAST) {
1849 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1850 ~0ULL, 0, false);
1851 if (!err)
1852 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1853 ~6ULL, ~0ULL, BCAST_CRC, true);
1854 } else
1855 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1856 return err;
1857 }
1858
cxgb_set_features(struct net_device * dev,netdev_features_t features)1859 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1860 {
1861 const struct port_info *pi = netdev_priv(dev);
1862 netdev_features_t changed = dev->features ^ features;
1863 int err;
1864
1865 if (!(changed & NETIF_F_HW_VLAN_RX))
1866 return 0;
1867
1868 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1869 -1, -1, -1,
1870 !!(features & NETIF_F_HW_VLAN_RX), true);
1871 if (unlikely(err))
1872 dev->features = features ^ NETIF_F_HW_VLAN_RX;
1873 return err;
1874 }
1875
get_rss_table_size(struct net_device * dev)1876 static u32 get_rss_table_size(struct net_device *dev)
1877 {
1878 const struct port_info *pi = netdev_priv(dev);
1879
1880 return pi->rss_size;
1881 }
1882
get_rss_table(struct net_device * dev,u32 * p)1883 static int get_rss_table(struct net_device *dev, u32 *p)
1884 {
1885 const struct port_info *pi = netdev_priv(dev);
1886 unsigned int n = pi->rss_size;
1887
1888 while (n--)
1889 p[n] = pi->rss[n];
1890 return 0;
1891 }
1892
set_rss_table(struct net_device * dev,const u32 * p)1893 static int set_rss_table(struct net_device *dev, const u32 *p)
1894 {
1895 unsigned int i;
1896 struct port_info *pi = netdev_priv(dev);
1897
1898 for (i = 0; i < pi->rss_size; i++)
1899 pi->rss[i] = p[i];
1900 if (pi->adapter->flags & FULL_INIT_DONE)
1901 return write_rss(pi, pi->rss);
1902 return 0;
1903 }
1904
get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1905 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1906 u32 *rules)
1907 {
1908 const struct port_info *pi = netdev_priv(dev);
1909
1910 switch (info->cmd) {
1911 case ETHTOOL_GRXFH: {
1912 unsigned int v = pi->rss_mode;
1913
1914 info->data = 0;
1915 switch (info->flow_type) {
1916 case TCP_V4_FLOW:
1917 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
1918 info->data = RXH_IP_SRC | RXH_IP_DST |
1919 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1920 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1921 info->data = RXH_IP_SRC | RXH_IP_DST;
1922 break;
1923 case UDP_V4_FLOW:
1924 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
1925 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1926 info->data = RXH_IP_SRC | RXH_IP_DST |
1927 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1928 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1929 info->data = RXH_IP_SRC | RXH_IP_DST;
1930 break;
1931 case SCTP_V4_FLOW:
1932 case AH_ESP_V4_FLOW:
1933 case IPV4_FLOW:
1934 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1935 info->data = RXH_IP_SRC | RXH_IP_DST;
1936 break;
1937 case TCP_V6_FLOW:
1938 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
1939 info->data = RXH_IP_SRC | RXH_IP_DST |
1940 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1941 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1942 info->data = RXH_IP_SRC | RXH_IP_DST;
1943 break;
1944 case UDP_V6_FLOW:
1945 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
1946 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1947 info->data = RXH_IP_SRC | RXH_IP_DST |
1948 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1949 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1950 info->data = RXH_IP_SRC | RXH_IP_DST;
1951 break;
1952 case SCTP_V6_FLOW:
1953 case AH_ESP_V6_FLOW:
1954 case IPV6_FLOW:
1955 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1956 info->data = RXH_IP_SRC | RXH_IP_DST;
1957 break;
1958 }
1959 return 0;
1960 }
1961 case ETHTOOL_GRXRINGS:
1962 info->data = pi->nqsets;
1963 return 0;
1964 }
1965 return -EOPNOTSUPP;
1966 }
1967
1968 static const struct ethtool_ops cxgb_ethtool_ops = {
1969 .get_settings = get_settings,
1970 .set_settings = set_settings,
1971 .get_drvinfo = get_drvinfo,
1972 .get_msglevel = get_msglevel,
1973 .set_msglevel = set_msglevel,
1974 .get_ringparam = get_sge_param,
1975 .set_ringparam = set_sge_param,
1976 .get_coalesce = get_coalesce,
1977 .set_coalesce = set_coalesce,
1978 .get_eeprom_len = get_eeprom_len,
1979 .get_eeprom = get_eeprom,
1980 .set_eeprom = set_eeprom,
1981 .get_pauseparam = get_pauseparam,
1982 .set_pauseparam = set_pauseparam,
1983 .get_link = ethtool_op_get_link,
1984 .get_strings = get_strings,
1985 .set_phys_id = identify_port,
1986 .nway_reset = restart_autoneg,
1987 .get_sset_count = get_sset_count,
1988 .get_ethtool_stats = get_stats,
1989 .get_regs_len = get_regs_len,
1990 .get_regs = get_regs,
1991 .get_wol = get_wol,
1992 .set_wol = set_wol,
1993 .get_rxnfc = get_rxnfc,
1994 .get_rxfh_indir_size = get_rss_table_size,
1995 .get_rxfh_indir = get_rss_table,
1996 .set_rxfh_indir = set_rss_table,
1997 .flash_device = set_flash,
1998 };
1999
2000 /*
2001 * debugfs support
2002 */
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2003 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2004 loff_t *ppos)
2005 {
2006 loff_t pos = *ppos;
2007 loff_t avail = file->f_path.dentry->d_inode->i_size;
2008 unsigned int mem = (uintptr_t)file->private_data & 3;
2009 struct adapter *adap = file->private_data - mem;
2010
2011 if (pos < 0)
2012 return -EINVAL;
2013 if (pos >= avail)
2014 return 0;
2015 if (count > avail - pos)
2016 count = avail - pos;
2017
2018 while (count) {
2019 size_t len;
2020 int ret, ofst;
2021 __be32 data[16];
2022
2023 if (mem == MEM_MC)
2024 ret = t4_mc_read(adap, pos, data, NULL);
2025 else
2026 ret = t4_edc_read(adap, mem, pos, data, NULL);
2027 if (ret)
2028 return ret;
2029
2030 ofst = pos % sizeof(data);
2031 len = min(count, sizeof(data) - ofst);
2032 if (copy_to_user(buf, (u8 *)data + ofst, len))
2033 return -EFAULT;
2034
2035 buf += len;
2036 pos += len;
2037 count -= len;
2038 }
2039 count = pos - *ppos;
2040 *ppos = pos;
2041 return count;
2042 }
2043
2044 static const struct file_operations mem_debugfs_fops = {
2045 .owner = THIS_MODULE,
2046 .open = simple_open,
2047 .read = mem_read,
2048 .llseek = default_llseek,
2049 };
2050
add_debugfs_mem(struct adapter * adap,const char * name,unsigned int idx,unsigned int size_mb)2051 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
2052 unsigned int idx, unsigned int size_mb)
2053 {
2054 struct dentry *de;
2055
2056 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2057 (void *)adap + idx, &mem_debugfs_fops);
2058 if (de && de->d_inode)
2059 de->d_inode->i_size = size_mb << 20;
2060 }
2061
setup_debugfs(struct adapter * adap)2062 static int __devinit setup_debugfs(struct adapter *adap)
2063 {
2064 int i;
2065
2066 if (IS_ERR_OR_NULL(adap->debugfs_root))
2067 return -1;
2068
2069 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2070 if (i & EDRAM0_ENABLE)
2071 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2072 if (i & EDRAM1_ENABLE)
2073 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2074 if (i & EXT_MEM_ENABLE)
2075 add_debugfs_mem(adap, "mc", MEM_MC,
2076 EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2077 if (adap->l2t)
2078 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2079 &t4_l2t_fops);
2080 return 0;
2081 }
2082
2083 /*
2084 * upper-layer driver support
2085 */
2086
2087 /*
2088 * Allocate an active-open TID and set it to the supplied value.
2089 */
cxgb4_alloc_atid(struct tid_info * t,void * data)2090 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2091 {
2092 int atid = -1;
2093
2094 spin_lock_bh(&t->atid_lock);
2095 if (t->afree) {
2096 union aopen_entry *p = t->afree;
2097
2098 atid = p - t->atid_tab;
2099 t->afree = p->next;
2100 p->data = data;
2101 t->atids_in_use++;
2102 }
2103 spin_unlock_bh(&t->atid_lock);
2104 return atid;
2105 }
2106 EXPORT_SYMBOL(cxgb4_alloc_atid);
2107
2108 /*
2109 * Release an active-open TID.
2110 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)2111 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2112 {
2113 union aopen_entry *p = &t->atid_tab[atid];
2114
2115 spin_lock_bh(&t->atid_lock);
2116 p->next = t->afree;
2117 t->afree = p;
2118 t->atids_in_use--;
2119 spin_unlock_bh(&t->atid_lock);
2120 }
2121 EXPORT_SYMBOL(cxgb4_free_atid);
2122
2123 /*
2124 * Allocate a server TID and set it to the supplied value.
2125 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)2126 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2127 {
2128 int stid;
2129
2130 spin_lock_bh(&t->stid_lock);
2131 if (family == PF_INET) {
2132 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2133 if (stid < t->nstids)
2134 __set_bit(stid, t->stid_bmap);
2135 else
2136 stid = -1;
2137 } else {
2138 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2139 if (stid < 0)
2140 stid = -1;
2141 }
2142 if (stid >= 0) {
2143 t->stid_tab[stid].data = data;
2144 stid += t->stid_base;
2145 t->stids_in_use++;
2146 }
2147 spin_unlock_bh(&t->stid_lock);
2148 return stid;
2149 }
2150 EXPORT_SYMBOL(cxgb4_alloc_stid);
2151
2152 /*
2153 * Release a server TID.
2154 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)2155 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2156 {
2157 stid -= t->stid_base;
2158 spin_lock_bh(&t->stid_lock);
2159 if (family == PF_INET)
2160 __clear_bit(stid, t->stid_bmap);
2161 else
2162 bitmap_release_region(t->stid_bmap, stid, 2);
2163 t->stid_tab[stid].data = NULL;
2164 t->stids_in_use--;
2165 spin_unlock_bh(&t->stid_lock);
2166 }
2167 EXPORT_SYMBOL(cxgb4_free_stid);
2168
2169 /*
2170 * Populate a TID_RELEASE WR. Caller must properly size the skb.
2171 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)2172 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2173 unsigned int tid)
2174 {
2175 struct cpl_tid_release *req;
2176
2177 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2178 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2179 INIT_TP_WR(req, tid);
2180 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2181 }
2182
2183 /*
2184 * Queue a TID release request and if necessary schedule a work queue to
2185 * process it.
2186 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)2187 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2188 unsigned int tid)
2189 {
2190 void **p = &t->tid_tab[tid];
2191 struct adapter *adap = container_of(t, struct adapter, tids);
2192
2193 spin_lock_bh(&adap->tid_release_lock);
2194 *p = adap->tid_release_head;
2195 /* Low 2 bits encode the Tx channel number */
2196 adap->tid_release_head = (void **)((uintptr_t)p | chan);
2197 if (!adap->tid_release_task_busy) {
2198 adap->tid_release_task_busy = true;
2199 schedule_work(&adap->tid_release_task);
2200 }
2201 spin_unlock_bh(&adap->tid_release_lock);
2202 }
2203
2204 /*
2205 * Process the list of pending TID release requests.
2206 */
process_tid_release_list(struct work_struct * work)2207 static void process_tid_release_list(struct work_struct *work)
2208 {
2209 struct sk_buff *skb;
2210 struct adapter *adap;
2211
2212 adap = container_of(work, struct adapter, tid_release_task);
2213
2214 spin_lock_bh(&adap->tid_release_lock);
2215 while (adap->tid_release_head) {
2216 void **p = adap->tid_release_head;
2217 unsigned int chan = (uintptr_t)p & 3;
2218 p = (void *)p - chan;
2219
2220 adap->tid_release_head = *p;
2221 *p = NULL;
2222 spin_unlock_bh(&adap->tid_release_lock);
2223
2224 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2225 GFP_KERNEL)))
2226 schedule_timeout_uninterruptible(1);
2227
2228 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2229 t4_ofld_send(adap, skb);
2230 spin_lock_bh(&adap->tid_release_lock);
2231 }
2232 adap->tid_release_task_busy = false;
2233 spin_unlock_bh(&adap->tid_release_lock);
2234 }
2235
2236 /*
2237 * Release a TID and inform HW. If we are unable to allocate the release
2238 * message we defer to a work queue.
2239 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid)2240 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2241 {
2242 void *old;
2243 struct sk_buff *skb;
2244 struct adapter *adap = container_of(t, struct adapter, tids);
2245
2246 old = t->tid_tab[tid];
2247 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2248 if (likely(skb)) {
2249 t->tid_tab[tid] = NULL;
2250 mk_tid_release(skb, chan, tid);
2251 t4_ofld_send(adap, skb);
2252 } else
2253 cxgb4_queue_tid_release(t, chan, tid);
2254 if (old)
2255 atomic_dec(&t->tids_in_use);
2256 }
2257 EXPORT_SYMBOL(cxgb4_remove_tid);
2258
2259 /*
2260 * Allocate and initialize the TID tables. Returns 0 on success.
2261 */
tid_init(struct tid_info * t)2262 static int tid_init(struct tid_info *t)
2263 {
2264 size_t size;
2265 unsigned int natids = t->natids;
2266
2267 size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2268 t->nstids * sizeof(*t->stid_tab) +
2269 BITS_TO_LONGS(t->nstids) * sizeof(long);
2270 t->tid_tab = t4_alloc_mem(size);
2271 if (!t->tid_tab)
2272 return -ENOMEM;
2273
2274 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2275 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2276 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2277 spin_lock_init(&t->stid_lock);
2278 spin_lock_init(&t->atid_lock);
2279
2280 t->stids_in_use = 0;
2281 t->afree = NULL;
2282 t->atids_in_use = 0;
2283 atomic_set(&t->tids_in_use, 0);
2284
2285 /* Setup the free list for atid_tab and clear the stid bitmap. */
2286 if (natids) {
2287 while (--natids)
2288 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2289 t->afree = t->atid_tab;
2290 }
2291 bitmap_zero(t->stid_bmap, t->nstids);
2292 return 0;
2293 }
2294
2295 /**
2296 * cxgb4_create_server - create an IP server
2297 * @dev: the device
2298 * @stid: the server TID
2299 * @sip: local IP address to bind server to
2300 * @sport: the server's TCP port
2301 * @queue: queue to direct messages from this server to
2302 *
2303 * Create an IP server for the given port and address.
2304 * Returns <0 on error and one of the %NET_XMIT_* values on success.
2305 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,unsigned int queue)2306 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2307 __be32 sip, __be16 sport, unsigned int queue)
2308 {
2309 unsigned int chan;
2310 struct sk_buff *skb;
2311 struct adapter *adap;
2312 struct cpl_pass_open_req *req;
2313
2314 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2315 if (!skb)
2316 return -ENOMEM;
2317
2318 adap = netdev2adap(dev);
2319 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2320 INIT_TP_WR(req, 0);
2321 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2322 req->local_port = sport;
2323 req->peer_port = htons(0);
2324 req->local_ip = sip;
2325 req->peer_ip = htonl(0);
2326 chan = rxq_to_chan(&adap->sge, queue);
2327 req->opt0 = cpu_to_be64(TX_CHAN(chan));
2328 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2329 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2330 return t4_mgmt_tx(adap, skb);
2331 }
2332 EXPORT_SYMBOL(cxgb4_create_server);
2333
2334 /**
2335 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2336 * @mtus: the HW MTU table
2337 * @mtu: the target MTU
2338 * @idx: index of selected entry in the MTU table
2339 *
2340 * Returns the index and the value in the HW MTU table that is closest to
2341 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2342 * table, in which case that smallest available value is selected.
2343 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2344 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2345 unsigned int *idx)
2346 {
2347 unsigned int i = 0;
2348
2349 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2350 ++i;
2351 if (idx)
2352 *idx = i;
2353 return mtus[i];
2354 }
2355 EXPORT_SYMBOL(cxgb4_best_mtu);
2356
2357 /**
2358 * cxgb4_port_chan - get the HW channel of a port
2359 * @dev: the net device for the port
2360 *
2361 * Return the HW Tx channel of the given port.
2362 */
cxgb4_port_chan(const struct net_device * dev)2363 unsigned int cxgb4_port_chan(const struct net_device *dev)
2364 {
2365 return netdev2pinfo(dev)->tx_chan;
2366 }
2367 EXPORT_SYMBOL(cxgb4_port_chan);
2368
2369 /**
2370 * cxgb4_port_viid - get the VI id of a port
2371 * @dev: the net device for the port
2372 *
2373 * Return the VI id of the given port.
2374 */
cxgb4_port_viid(const struct net_device * dev)2375 unsigned int cxgb4_port_viid(const struct net_device *dev)
2376 {
2377 return netdev2pinfo(dev)->viid;
2378 }
2379 EXPORT_SYMBOL(cxgb4_port_viid);
2380
2381 /**
2382 * cxgb4_port_idx - get the index of a port
2383 * @dev: the net device for the port
2384 *
2385 * Return the index of the given port.
2386 */
cxgb4_port_idx(const struct net_device * dev)2387 unsigned int cxgb4_port_idx(const struct net_device *dev)
2388 {
2389 return netdev2pinfo(dev)->port_id;
2390 }
2391 EXPORT_SYMBOL(cxgb4_port_idx);
2392
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2393 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2394 struct tp_tcp_stats *v6)
2395 {
2396 struct adapter *adap = pci_get_drvdata(pdev);
2397
2398 spin_lock(&adap->stats_lock);
2399 t4_tp_get_tcp_stats(adap, v4, v6);
2400 spin_unlock(&adap->stats_lock);
2401 }
2402 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2403
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)2404 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2405 const unsigned int *pgsz_order)
2406 {
2407 struct adapter *adap = netdev2adap(dev);
2408
2409 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2410 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2411 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2412 HPZ3(pgsz_order[3]));
2413 }
2414 EXPORT_SYMBOL(cxgb4_iscsi_init);
2415
2416 static struct pci_driver cxgb4_driver;
2417
check_neigh_update(struct neighbour * neigh)2418 static void check_neigh_update(struct neighbour *neigh)
2419 {
2420 const struct device *parent;
2421 const struct net_device *netdev = neigh->dev;
2422
2423 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2424 netdev = vlan_dev_real_dev(netdev);
2425 parent = netdev->dev.parent;
2426 if (parent && parent->driver == &cxgb4_driver.driver)
2427 t4_l2t_update(dev_get_drvdata(parent), neigh);
2428 }
2429
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2430 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2431 void *data)
2432 {
2433 switch (event) {
2434 case NETEVENT_NEIGH_UPDATE:
2435 check_neigh_update(data);
2436 break;
2437 case NETEVENT_REDIRECT:
2438 default:
2439 break;
2440 }
2441 return 0;
2442 }
2443
2444 static bool netevent_registered;
2445 static struct notifier_block cxgb4_netevent_nb = {
2446 .notifier_call = netevent_cb
2447 };
2448
uld_attach(struct adapter * adap,unsigned int uld)2449 static void uld_attach(struct adapter *adap, unsigned int uld)
2450 {
2451 void *handle;
2452 struct cxgb4_lld_info lli;
2453
2454 lli.pdev = adap->pdev;
2455 lli.l2t = adap->l2t;
2456 lli.tids = &adap->tids;
2457 lli.ports = adap->port;
2458 lli.vr = &adap->vres;
2459 lli.mtus = adap->params.mtus;
2460 if (uld == CXGB4_ULD_RDMA) {
2461 lli.rxq_ids = adap->sge.rdma_rxq;
2462 lli.nrxq = adap->sge.rdmaqs;
2463 } else if (uld == CXGB4_ULD_ISCSI) {
2464 lli.rxq_ids = adap->sge.ofld_rxq;
2465 lli.nrxq = adap->sge.ofldqsets;
2466 }
2467 lli.ntxq = adap->sge.ofldqsets;
2468 lli.nchan = adap->params.nports;
2469 lli.nports = adap->params.nports;
2470 lli.wr_cred = adap->params.ofldq_wr_cred;
2471 lli.adapter_type = adap->params.rev;
2472 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2473 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2474 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
2475 (adap->fn * 4));
2476 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2477 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
2478 (adap->fn * 4));
2479 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2480 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2481 lli.fw_vers = adap->params.fw_vers;
2482
2483 handle = ulds[uld].add(&lli);
2484 if (IS_ERR(handle)) {
2485 dev_warn(adap->pdev_dev,
2486 "could not attach to the %s driver, error %ld\n",
2487 uld_str[uld], PTR_ERR(handle));
2488 return;
2489 }
2490
2491 adap->uld_handle[uld] = handle;
2492
2493 if (!netevent_registered) {
2494 register_netevent_notifier(&cxgb4_netevent_nb);
2495 netevent_registered = true;
2496 }
2497
2498 if (adap->flags & FULL_INIT_DONE)
2499 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2500 }
2501
attach_ulds(struct adapter * adap)2502 static void attach_ulds(struct adapter *adap)
2503 {
2504 unsigned int i;
2505
2506 mutex_lock(&uld_mutex);
2507 list_add_tail(&adap->list_node, &adapter_list);
2508 for (i = 0; i < CXGB4_ULD_MAX; i++)
2509 if (ulds[i].add)
2510 uld_attach(adap, i);
2511 mutex_unlock(&uld_mutex);
2512 }
2513
detach_ulds(struct adapter * adap)2514 static void detach_ulds(struct adapter *adap)
2515 {
2516 unsigned int i;
2517
2518 mutex_lock(&uld_mutex);
2519 list_del(&adap->list_node);
2520 for (i = 0; i < CXGB4_ULD_MAX; i++)
2521 if (adap->uld_handle[i]) {
2522 ulds[i].state_change(adap->uld_handle[i],
2523 CXGB4_STATE_DETACH);
2524 adap->uld_handle[i] = NULL;
2525 }
2526 if (netevent_registered && list_empty(&adapter_list)) {
2527 unregister_netevent_notifier(&cxgb4_netevent_nb);
2528 netevent_registered = false;
2529 }
2530 mutex_unlock(&uld_mutex);
2531 }
2532
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2533 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2534 {
2535 unsigned int i;
2536
2537 mutex_lock(&uld_mutex);
2538 for (i = 0; i < CXGB4_ULD_MAX; i++)
2539 if (adap->uld_handle[i])
2540 ulds[i].state_change(adap->uld_handle[i], new_state);
2541 mutex_unlock(&uld_mutex);
2542 }
2543
2544 /**
2545 * cxgb4_register_uld - register an upper-layer driver
2546 * @type: the ULD type
2547 * @p: the ULD methods
2548 *
2549 * Registers an upper-layer driver with this driver and notifies the ULD
2550 * about any presently available devices that support its type. Returns
2551 * %-EBUSY if a ULD of the same type is already registered.
2552 */
cxgb4_register_uld(enum cxgb4_uld type,const struct cxgb4_uld_info * p)2553 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2554 {
2555 int ret = 0;
2556 struct adapter *adap;
2557
2558 if (type >= CXGB4_ULD_MAX)
2559 return -EINVAL;
2560 mutex_lock(&uld_mutex);
2561 if (ulds[type].add) {
2562 ret = -EBUSY;
2563 goto out;
2564 }
2565 ulds[type] = *p;
2566 list_for_each_entry(adap, &adapter_list, list_node)
2567 uld_attach(adap, type);
2568 out: mutex_unlock(&uld_mutex);
2569 return ret;
2570 }
2571 EXPORT_SYMBOL(cxgb4_register_uld);
2572
2573 /**
2574 * cxgb4_unregister_uld - unregister an upper-layer driver
2575 * @type: the ULD type
2576 *
2577 * Unregisters an existing upper-layer driver.
2578 */
cxgb4_unregister_uld(enum cxgb4_uld type)2579 int cxgb4_unregister_uld(enum cxgb4_uld type)
2580 {
2581 struct adapter *adap;
2582
2583 if (type >= CXGB4_ULD_MAX)
2584 return -EINVAL;
2585 mutex_lock(&uld_mutex);
2586 list_for_each_entry(adap, &adapter_list, list_node)
2587 adap->uld_handle[type] = NULL;
2588 ulds[type].add = NULL;
2589 mutex_unlock(&uld_mutex);
2590 return 0;
2591 }
2592 EXPORT_SYMBOL(cxgb4_unregister_uld);
2593
2594 /**
2595 * cxgb_up - enable the adapter
2596 * @adap: adapter being enabled
2597 *
2598 * Called when the first port is enabled, this function performs the
2599 * actions necessary to make an adapter operational, such as completing
2600 * the initialization of HW modules, and enabling interrupts.
2601 *
2602 * Must be called with the rtnl lock held.
2603 */
cxgb_up(struct adapter * adap)2604 static int cxgb_up(struct adapter *adap)
2605 {
2606 int err;
2607
2608 err = setup_sge_queues(adap);
2609 if (err)
2610 goto out;
2611 err = setup_rss(adap);
2612 if (err)
2613 goto freeq;
2614
2615 if (adap->flags & USING_MSIX) {
2616 name_msix_vecs(adap);
2617 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2618 adap->msix_info[0].desc, adap);
2619 if (err)
2620 goto irq_err;
2621
2622 err = request_msix_queue_irqs(adap);
2623 if (err) {
2624 free_irq(adap->msix_info[0].vec, adap);
2625 goto irq_err;
2626 }
2627 } else {
2628 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2629 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2630 adap->port[0]->name, adap);
2631 if (err)
2632 goto irq_err;
2633 }
2634 enable_rx(adap);
2635 t4_sge_start(adap);
2636 t4_intr_enable(adap);
2637 adap->flags |= FULL_INIT_DONE;
2638 notify_ulds(adap, CXGB4_STATE_UP);
2639 out:
2640 return err;
2641 irq_err:
2642 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2643 freeq:
2644 t4_free_sge_resources(adap);
2645 goto out;
2646 }
2647
cxgb_down(struct adapter * adapter)2648 static void cxgb_down(struct adapter *adapter)
2649 {
2650 t4_intr_disable(adapter);
2651 cancel_work_sync(&adapter->tid_release_task);
2652 adapter->tid_release_task_busy = false;
2653 adapter->tid_release_head = NULL;
2654
2655 if (adapter->flags & USING_MSIX) {
2656 free_msix_queue_irqs(adapter);
2657 free_irq(adapter->msix_info[0].vec, adapter);
2658 } else
2659 free_irq(adapter->pdev->irq, adapter);
2660 quiesce_rx(adapter);
2661 t4_sge_stop(adapter);
2662 t4_free_sge_resources(adapter);
2663 adapter->flags &= ~FULL_INIT_DONE;
2664 }
2665
2666 /*
2667 * net_device operations
2668 */
cxgb_open(struct net_device * dev)2669 static int cxgb_open(struct net_device *dev)
2670 {
2671 int err;
2672 struct port_info *pi = netdev_priv(dev);
2673 struct adapter *adapter = pi->adapter;
2674
2675 netif_carrier_off(dev);
2676
2677 if (!(adapter->flags & FULL_INIT_DONE)) {
2678 err = cxgb_up(adapter);
2679 if (err < 0)
2680 return err;
2681 }
2682
2683 err = link_start(dev);
2684 if (!err)
2685 netif_tx_start_all_queues(dev);
2686 return err;
2687 }
2688
cxgb_close(struct net_device * dev)2689 static int cxgb_close(struct net_device *dev)
2690 {
2691 struct port_info *pi = netdev_priv(dev);
2692 struct adapter *adapter = pi->adapter;
2693
2694 netif_tx_stop_all_queues(dev);
2695 netif_carrier_off(dev);
2696 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2697 }
2698
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2699 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2700 struct rtnl_link_stats64 *ns)
2701 {
2702 struct port_stats stats;
2703 struct port_info *p = netdev_priv(dev);
2704 struct adapter *adapter = p->adapter;
2705
2706 spin_lock(&adapter->stats_lock);
2707 t4_get_port_stats(adapter, p->tx_chan, &stats);
2708 spin_unlock(&adapter->stats_lock);
2709
2710 ns->tx_bytes = stats.tx_octets;
2711 ns->tx_packets = stats.tx_frames;
2712 ns->rx_bytes = stats.rx_octets;
2713 ns->rx_packets = stats.rx_frames;
2714 ns->multicast = stats.rx_mcast_frames;
2715
2716 /* detailed rx_errors */
2717 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2718 stats.rx_runt;
2719 ns->rx_over_errors = 0;
2720 ns->rx_crc_errors = stats.rx_fcs_err;
2721 ns->rx_frame_errors = stats.rx_symbol_err;
2722 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2723 stats.rx_ovflow2 + stats.rx_ovflow3 +
2724 stats.rx_trunc0 + stats.rx_trunc1 +
2725 stats.rx_trunc2 + stats.rx_trunc3;
2726 ns->rx_missed_errors = 0;
2727
2728 /* detailed tx_errors */
2729 ns->tx_aborted_errors = 0;
2730 ns->tx_carrier_errors = 0;
2731 ns->tx_fifo_errors = 0;
2732 ns->tx_heartbeat_errors = 0;
2733 ns->tx_window_errors = 0;
2734
2735 ns->tx_errors = stats.tx_error_frames;
2736 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2737 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2738 return ns;
2739 }
2740
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2741 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2742 {
2743 unsigned int mbox;
2744 int ret = 0, prtad, devad;
2745 struct port_info *pi = netdev_priv(dev);
2746 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2747
2748 switch (cmd) {
2749 case SIOCGMIIPHY:
2750 if (pi->mdio_addr < 0)
2751 return -EOPNOTSUPP;
2752 data->phy_id = pi->mdio_addr;
2753 break;
2754 case SIOCGMIIREG:
2755 case SIOCSMIIREG:
2756 if (mdio_phy_id_is_c45(data->phy_id)) {
2757 prtad = mdio_phy_id_prtad(data->phy_id);
2758 devad = mdio_phy_id_devad(data->phy_id);
2759 } else if (data->phy_id < 32) {
2760 prtad = data->phy_id;
2761 devad = 0;
2762 data->reg_num &= 0x1f;
2763 } else
2764 return -EINVAL;
2765
2766 mbox = pi->adapter->fn;
2767 if (cmd == SIOCGMIIREG)
2768 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2769 data->reg_num, &data->val_out);
2770 else
2771 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2772 data->reg_num, data->val_in);
2773 break;
2774 default:
2775 return -EOPNOTSUPP;
2776 }
2777 return ret;
2778 }
2779
cxgb_set_rxmode(struct net_device * dev)2780 static void cxgb_set_rxmode(struct net_device *dev)
2781 {
2782 /* unfortunately we can't return errors to the stack */
2783 set_rxmode(dev, -1, false);
2784 }
2785
cxgb_change_mtu(struct net_device * dev,int new_mtu)2786 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2787 {
2788 int ret;
2789 struct port_info *pi = netdev_priv(dev);
2790
2791 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2792 return -EINVAL;
2793 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2794 -1, -1, -1, true);
2795 if (!ret)
2796 dev->mtu = new_mtu;
2797 return ret;
2798 }
2799
cxgb_set_mac_addr(struct net_device * dev,void * p)2800 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2801 {
2802 int ret;
2803 struct sockaddr *addr = p;
2804 struct port_info *pi = netdev_priv(dev);
2805
2806 if (!is_valid_ether_addr(addr->sa_data))
2807 return -EADDRNOTAVAIL;
2808
2809 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2810 pi->xact_addr_filt, addr->sa_data, true, true);
2811 if (ret < 0)
2812 return ret;
2813
2814 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2815 pi->xact_addr_filt = ret;
2816 return 0;
2817 }
2818
2819 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2820 static void cxgb_netpoll(struct net_device *dev)
2821 {
2822 struct port_info *pi = netdev_priv(dev);
2823 struct adapter *adap = pi->adapter;
2824
2825 if (adap->flags & USING_MSIX) {
2826 int i;
2827 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2828
2829 for (i = pi->nqsets; i; i--, rx++)
2830 t4_sge_intr_msix(0, &rx->rspq);
2831 } else
2832 t4_intr_handler(adap)(0, adap);
2833 }
2834 #endif
2835
2836 static const struct net_device_ops cxgb4_netdev_ops = {
2837 .ndo_open = cxgb_open,
2838 .ndo_stop = cxgb_close,
2839 .ndo_start_xmit = t4_eth_xmit,
2840 .ndo_get_stats64 = cxgb_get_stats,
2841 .ndo_set_rx_mode = cxgb_set_rxmode,
2842 .ndo_set_mac_address = cxgb_set_mac_addr,
2843 .ndo_set_features = cxgb_set_features,
2844 .ndo_validate_addr = eth_validate_addr,
2845 .ndo_do_ioctl = cxgb_ioctl,
2846 .ndo_change_mtu = cxgb_change_mtu,
2847 #ifdef CONFIG_NET_POLL_CONTROLLER
2848 .ndo_poll_controller = cxgb_netpoll,
2849 #endif
2850 };
2851
t4_fatal_err(struct adapter * adap)2852 void t4_fatal_err(struct adapter *adap)
2853 {
2854 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2855 t4_intr_disable(adap);
2856 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2857 }
2858
setup_memwin(struct adapter * adap)2859 static void setup_memwin(struct adapter *adap)
2860 {
2861 u32 bar0;
2862
2863 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
2864 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2865 (bar0 + MEMWIN0_BASE) | BIR(0) |
2866 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2867 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2868 (bar0 + MEMWIN1_BASE) | BIR(0) |
2869 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2870 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2871 (bar0 + MEMWIN2_BASE) | BIR(0) |
2872 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2873 if (adap->vres.ocq.size) {
2874 unsigned int start, sz_kb;
2875
2876 start = pci_resource_start(adap->pdev, 2) +
2877 OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2878 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2879 t4_write_reg(adap,
2880 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
2881 start | BIR(1) | WINDOW(ilog2(sz_kb)));
2882 t4_write_reg(adap,
2883 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
2884 adap->vres.ocq.start);
2885 t4_read_reg(adap,
2886 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
2887 }
2888 }
2889
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)2890 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2891 {
2892 u32 v;
2893 int ret;
2894
2895 /* get device capabilities */
2896 memset(c, 0, sizeof(*c));
2897 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2898 FW_CMD_REQUEST | FW_CMD_READ);
2899 c->retval_len16 = htonl(FW_LEN16(*c));
2900 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
2901 if (ret < 0)
2902 return ret;
2903
2904 /* select capabilities we'll be using */
2905 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2906 if (!vf_acls)
2907 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2908 else
2909 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2910 } else if (vf_acls) {
2911 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2912 return ret;
2913 }
2914 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2915 FW_CMD_REQUEST | FW_CMD_WRITE);
2916 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
2917 if (ret < 0)
2918 return ret;
2919
2920 ret = t4_config_glbl_rss(adap, adap->fn,
2921 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2922 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2923 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2924 if (ret < 0)
2925 return ret;
2926
2927 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
2928 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2929 if (ret < 0)
2930 return ret;
2931
2932 t4_sge_init(adap);
2933
2934 /* tweak some settings */
2935 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2936 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2937 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2938 v = t4_read_reg(adap, TP_PIO_DATA);
2939 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2940
2941 /* get basic stuff going */
2942 return t4_early_init(adap, adap->fn);
2943 }
2944
2945 /*
2946 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
2947 */
2948 #define MAX_ATIDS 8192U
2949
2950 /*
2951 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2952 */
adap_init0(struct adapter * adap)2953 static int adap_init0(struct adapter *adap)
2954 {
2955 int ret;
2956 u32 v, port_vec;
2957 enum dev_state state;
2958 u32 params[7], val[7];
2959 struct fw_caps_config_cmd c;
2960
2961 ret = t4_check_fw_version(adap);
2962 if (ret == -EINVAL || ret > 0) {
2963 if (upgrade_fw(adap) >= 0) /* recache FW version */
2964 ret = t4_check_fw_version(adap);
2965 }
2966 if (ret < 0)
2967 return ret;
2968
2969 /* contact FW, request master */
2970 ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state);
2971 if (ret < 0) {
2972 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
2973 ret);
2974 return ret;
2975 }
2976
2977 /* reset device */
2978 ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST);
2979 if (ret < 0)
2980 goto bye;
2981
2982 for (v = 0; v < SGE_NTIMERS - 1; v++)
2983 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
2984 adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
2985 adap->sge.counter_val[0] = 1;
2986 for (v = 1; v < SGE_NCOUNTERS; v++)
2987 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
2988 THRESHOLD_3_MASK);
2989 #define FW_PARAM_DEV(param) \
2990 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
2991 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
2992
2993 params[0] = FW_PARAM_DEV(CCLK);
2994 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val);
2995 if (ret < 0)
2996 goto bye;
2997 adap->params.vpd.cclk = val[0];
2998
2999 ret = adap_init1(adap, &c);
3000 if (ret < 0)
3001 goto bye;
3002
3003 #define FW_PARAM_PFVF(param) \
3004 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3005 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
3006 FW_PARAMS_PARAM_Y(adap->fn))
3007
3008 params[0] = FW_PARAM_DEV(PORTVEC);
3009 params[1] = FW_PARAM_PFVF(L2T_START);
3010 params[2] = FW_PARAM_PFVF(L2T_END);
3011 params[3] = FW_PARAM_PFVF(FILTER_START);
3012 params[4] = FW_PARAM_PFVF(FILTER_END);
3013 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3014 params[6] = FW_PARAM_PFVF(EQ_START);
3015 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val);
3016 if (ret < 0)
3017 goto bye;
3018 port_vec = val[0];
3019 adap->tids.ftid_base = val[3];
3020 adap->tids.nftids = val[4] - val[3] + 1;
3021 adap->sge.ingr_start = val[5];
3022 adap->sge.egr_start = val[6];
3023
3024 if (c.ofldcaps) {
3025 /* query offload-related parameters */
3026 params[0] = FW_PARAM_DEV(NTID);
3027 params[1] = FW_PARAM_PFVF(SERVER_START);
3028 params[2] = FW_PARAM_PFVF(SERVER_END);
3029 params[3] = FW_PARAM_PFVF(TDDP_START);
3030 params[4] = FW_PARAM_PFVF(TDDP_END);
3031 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3032 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3033 val);
3034 if (ret < 0)
3035 goto bye;
3036 adap->tids.ntids = val[0];
3037 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3038 adap->tids.stid_base = val[1];
3039 adap->tids.nstids = val[2] - val[1] + 1;
3040 adap->vres.ddp.start = val[3];
3041 adap->vres.ddp.size = val[4] - val[3] + 1;
3042 adap->params.ofldq_wr_cred = val[5];
3043 adap->params.offload = 1;
3044 }
3045 if (c.rdmacaps) {
3046 params[0] = FW_PARAM_PFVF(STAG_START);
3047 params[1] = FW_PARAM_PFVF(STAG_END);
3048 params[2] = FW_PARAM_PFVF(RQ_START);
3049 params[3] = FW_PARAM_PFVF(RQ_END);
3050 params[4] = FW_PARAM_PFVF(PBL_START);
3051 params[5] = FW_PARAM_PFVF(PBL_END);
3052 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3053 val);
3054 if (ret < 0)
3055 goto bye;
3056 adap->vres.stag.start = val[0];
3057 adap->vres.stag.size = val[1] - val[0] + 1;
3058 adap->vres.rq.start = val[2];
3059 adap->vres.rq.size = val[3] - val[2] + 1;
3060 adap->vres.pbl.start = val[4];
3061 adap->vres.pbl.size = val[5] - val[4] + 1;
3062
3063 params[0] = FW_PARAM_PFVF(SQRQ_START);
3064 params[1] = FW_PARAM_PFVF(SQRQ_END);
3065 params[2] = FW_PARAM_PFVF(CQ_START);
3066 params[3] = FW_PARAM_PFVF(CQ_END);
3067 params[4] = FW_PARAM_PFVF(OCQ_START);
3068 params[5] = FW_PARAM_PFVF(OCQ_END);
3069 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3070 val);
3071 if (ret < 0)
3072 goto bye;
3073 adap->vres.qp.start = val[0];
3074 adap->vres.qp.size = val[1] - val[0] + 1;
3075 adap->vres.cq.start = val[2];
3076 adap->vres.cq.size = val[3] - val[2] + 1;
3077 adap->vres.ocq.start = val[4];
3078 adap->vres.ocq.size = val[5] - val[4] + 1;
3079 }
3080 if (c.iscsicaps) {
3081 params[0] = FW_PARAM_PFVF(ISCSI_START);
3082 params[1] = FW_PARAM_PFVF(ISCSI_END);
3083 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params,
3084 val);
3085 if (ret < 0)
3086 goto bye;
3087 adap->vres.iscsi.start = val[0];
3088 adap->vres.iscsi.size = val[1] - val[0] + 1;
3089 }
3090 #undef FW_PARAM_PFVF
3091 #undef FW_PARAM_DEV
3092
3093 adap->params.nports = hweight32(port_vec);
3094 adap->params.portvec = port_vec;
3095 adap->flags |= FW_OK;
3096
3097 /* These are finalized by FW initialization, load their values now */
3098 v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
3099 adap->params.tp.tre = TIMERRESOLUTION_GET(v);
3100 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3101 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3102 adap->params.b_wnd);
3103
3104 #ifdef CONFIG_PCI_IOV
3105 /*
3106 * Provision resource limits for Virtual Functions. We currently
3107 * grant them all the same static resource limits except for the Port
3108 * Access Rights Mask which we're assigning based on the PF. All of
3109 * the static provisioning stuff for both the PF and VF really needs
3110 * to be managed in a persistent manner for each device which the
3111 * firmware controls.
3112 */
3113 {
3114 int pf, vf;
3115
3116 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
3117 if (num_vf[pf] <= 0)
3118 continue;
3119
3120 /* VF numbering starts at 1! */
3121 for (vf = 1; vf <= num_vf[pf]; vf++) {
3122 ret = t4_cfg_pfvf(adap, adap->fn, pf, vf,
3123 VFRES_NEQ, VFRES_NETHCTRL,
3124 VFRES_NIQFLINT, VFRES_NIQ,
3125 VFRES_TC, VFRES_NVI,
3126 FW_PFVF_CMD_CMASK_MASK,
3127 pfvfres_pmask(adap, pf, vf),
3128 VFRES_NEXACTF,
3129 VFRES_R_CAPS, VFRES_WX_CAPS);
3130 if (ret < 0)
3131 dev_warn(adap->pdev_dev, "failed to "
3132 "provision pf/vf=%d/%d; "
3133 "err=%d\n", pf, vf, ret);
3134 }
3135 }
3136 }
3137 #endif
3138
3139 setup_memwin(adap);
3140 return 0;
3141
3142 /*
3143 * If a command timed out or failed with EIO FW does not operate within
3144 * its spec or something catastrophic happened to HW/FW, stop issuing
3145 * commands.
3146 */
3147 bye: if (ret != -ETIMEDOUT && ret != -EIO)
3148 t4_fw_bye(adap, adap->fn);
3149 return ret;
3150 }
3151
3152 /* EEH callbacks */
3153
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)3154 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3155 pci_channel_state_t state)
3156 {
3157 int i;
3158 struct adapter *adap = pci_get_drvdata(pdev);
3159
3160 if (!adap)
3161 goto out;
3162
3163 rtnl_lock();
3164 adap->flags &= ~FW_OK;
3165 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3166 for_each_port(adap, i) {
3167 struct net_device *dev = adap->port[i];
3168
3169 netif_device_detach(dev);
3170 netif_carrier_off(dev);
3171 }
3172 if (adap->flags & FULL_INIT_DONE)
3173 cxgb_down(adap);
3174 rtnl_unlock();
3175 pci_disable_device(pdev);
3176 out: return state == pci_channel_io_perm_failure ?
3177 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3178 }
3179
eeh_slot_reset(struct pci_dev * pdev)3180 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3181 {
3182 int i, ret;
3183 struct fw_caps_config_cmd c;
3184 struct adapter *adap = pci_get_drvdata(pdev);
3185
3186 if (!adap) {
3187 pci_restore_state(pdev);
3188 pci_save_state(pdev);
3189 return PCI_ERS_RESULT_RECOVERED;
3190 }
3191
3192 if (pci_enable_device(pdev)) {
3193 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
3194 return PCI_ERS_RESULT_DISCONNECT;
3195 }
3196
3197 pci_set_master(pdev);
3198 pci_restore_state(pdev);
3199 pci_save_state(pdev);
3200 pci_cleanup_aer_uncorrect_error_status(pdev);
3201
3202 if (t4_wait_dev_ready(adap) < 0)
3203 return PCI_ERS_RESULT_DISCONNECT;
3204 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
3205 return PCI_ERS_RESULT_DISCONNECT;
3206 adap->flags |= FW_OK;
3207 if (adap_init1(adap, &c))
3208 return PCI_ERS_RESULT_DISCONNECT;
3209
3210 for_each_port(adap, i) {
3211 struct port_info *p = adap2pinfo(adap, i);
3212
3213 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
3214 NULL, NULL);
3215 if (ret < 0)
3216 return PCI_ERS_RESULT_DISCONNECT;
3217 p->viid = ret;
3218 p->xact_addr_filt = -1;
3219 }
3220
3221 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3222 adap->params.b_wnd);
3223 setup_memwin(adap);
3224 if (cxgb_up(adap))
3225 return PCI_ERS_RESULT_DISCONNECT;
3226 return PCI_ERS_RESULT_RECOVERED;
3227 }
3228
eeh_resume(struct pci_dev * pdev)3229 static void eeh_resume(struct pci_dev *pdev)
3230 {
3231 int i;
3232 struct adapter *adap = pci_get_drvdata(pdev);
3233
3234 if (!adap)
3235 return;
3236
3237 rtnl_lock();
3238 for_each_port(adap, i) {
3239 struct net_device *dev = adap->port[i];
3240
3241 if (netif_running(dev)) {
3242 link_start(dev);
3243 cxgb_set_rxmode(dev);
3244 }
3245 netif_device_attach(dev);
3246 }
3247 rtnl_unlock();
3248 }
3249
3250 static struct pci_error_handlers cxgb4_eeh = {
3251 .error_detected = eeh_err_detected,
3252 .slot_reset = eeh_slot_reset,
3253 .resume = eeh_resume,
3254 };
3255
is_10g_port(const struct link_config * lc)3256 static inline bool is_10g_port(const struct link_config *lc)
3257 {
3258 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
3259 }
3260
init_rspq(struct sge_rspq * q,u8 timer_idx,u8 pkt_cnt_idx,unsigned int size,unsigned int iqe_size)3261 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
3262 unsigned int size, unsigned int iqe_size)
3263 {
3264 q->intr_params = QINTR_TIMER_IDX(timer_idx) |
3265 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
3266 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
3267 q->iqe_len = iqe_size;
3268 q->size = size;
3269 }
3270
3271 /*
3272 * Perform default configuration of DMA queues depending on the number and type
3273 * of ports we found and the number of available CPUs. Most settings can be
3274 * modified by the admin prior to actual use.
3275 */
cfg_queues(struct adapter * adap)3276 static void __devinit cfg_queues(struct adapter *adap)
3277 {
3278 struct sge *s = &adap->sge;
3279 int i, q10g = 0, n10g = 0, qidx = 0;
3280
3281 for_each_port(adap, i)
3282 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
3283
3284 /*
3285 * We default to 1 queue per non-10G port and up to # of cores queues
3286 * per 10G port.
3287 */
3288 if (n10g)
3289 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
3290 if (q10g > num_online_cpus())
3291 q10g = num_online_cpus();
3292
3293 for_each_port(adap, i) {
3294 struct port_info *pi = adap2pinfo(adap, i);
3295
3296 pi->first_qset = qidx;
3297 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
3298 qidx += pi->nqsets;
3299 }
3300
3301 s->ethqsets = qidx;
3302 s->max_ethqsets = qidx; /* MSI-X may lower it later */
3303
3304 if (is_offload(adap)) {
3305 /*
3306 * For offload we use 1 queue/channel if all ports are up to 1G,
3307 * otherwise we divide all available queues amongst the channels
3308 * capped by the number of available cores.
3309 */
3310 if (n10g) {
3311 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
3312 num_online_cpus());
3313 s->ofldqsets = roundup(i, adap->params.nports);
3314 } else
3315 s->ofldqsets = adap->params.nports;
3316 /* For RDMA one Rx queue per channel suffices */
3317 s->rdmaqs = adap->params.nports;
3318 }
3319
3320 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
3321 struct sge_eth_rxq *r = &s->ethrxq[i];
3322
3323 init_rspq(&r->rspq, 0, 0, 1024, 64);
3324 r->fl.size = 72;
3325 }
3326
3327 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
3328 s->ethtxq[i].q.size = 1024;
3329
3330 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
3331 s->ctrlq[i].q.size = 512;
3332
3333 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
3334 s->ofldtxq[i].q.size = 1024;
3335
3336 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
3337 struct sge_ofld_rxq *r = &s->ofldrxq[i];
3338
3339 init_rspq(&r->rspq, 0, 0, 1024, 64);
3340 r->rspq.uld = CXGB4_ULD_ISCSI;
3341 r->fl.size = 72;
3342 }
3343
3344 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
3345 struct sge_ofld_rxq *r = &s->rdmarxq[i];
3346
3347 init_rspq(&r->rspq, 0, 0, 511, 64);
3348 r->rspq.uld = CXGB4_ULD_RDMA;
3349 r->fl.size = 72;
3350 }
3351
3352 init_rspq(&s->fw_evtq, 6, 0, 512, 64);
3353 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
3354 }
3355
3356 /*
3357 * Reduce the number of Ethernet queues across all ports to at most n.
3358 * n provides at least one queue per port.
3359 */
reduce_ethqs(struct adapter * adap,int n)3360 static void __devinit reduce_ethqs(struct adapter *adap, int n)
3361 {
3362 int i;
3363 struct port_info *pi;
3364
3365 while (n < adap->sge.ethqsets)
3366 for_each_port(adap, i) {
3367 pi = adap2pinfo(adap, i);
3368 if (pi->nqsets > 1) {
3369 pi->nqsets--;
3370 adap->sge.ethqsets--;
3371 if (adap->sge.ethqsets <= n)
3372 break;
3373 }
3374 }
3375
3376 n = 0;
3377 for_each_port(adap, i) {
3378 pi = adap2pinfo(adap, i);
3379 pi->first_qset = n;
3380 n += pi->nqsets;
3381 }
3382 }
3383
3384 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3385 #define EXTRA_VECS 2
3386
enable_msix(struct adapter * adap)3387 static int __devinit enable_msix(struct adapter *adap)
3388 {
3389 int ofld_need = 0;
3390 int i, err, want, need;
3391 struct sge *s = &adap->sge;
3392 unsigned int nchan = adap->params.nports;
3393 struct msix_entry entries[MAX_INGQ + 1];
3394
3395 for (i = 0; i < ARRAY_SIZE(entries); ++i)
3396 entries[i].entry = i;
3397
3398 want = s->max_ethqsets + EXTRA_VECS;
3399 if (is_offload(adap)) {
3400 want += s->rdmaqs + s->ofldqsets;
3401 /* need nchan for each possible ULD */
3402 ofld_need = 2 * nchan;
3403 }
3404 need = adap->params.nports + EXTRA_VECS + ofld_need;
3405
3406 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3407 want = err;
3408
3409 if (!err) {
3410 /*
3411 * Distribute available vectors to the various queue groups.
3412 * Every group gets its minimum requirement and NIC gets top
3413 * priority for leftovers.
3414 */
3415 i = want - EXTRA_VECS - ofld_need;
3416 if (i < s->max_ethqsets) {
3417 s->max_ethqsets = i;
3418 if (i < s->ethqsets)
3419 reduce_ethqs(adap, i);
3420 }
3421 if (is_offload(adap)) {
3422 i = want - EXTRA_VECS - s->max_ethqsets;
3423 i -= ofld_need - nchan;
3424 s->ofldqsets = (i / nchan) * nchan; /* round down */
3425 }
3426 for (i = 0; i < want; ++i)
3427 adap->msix_info[i].vec = entries[i].vector;
3428 } else if (err > 0)
3429 dev_info(adap->pdev_dev,
3430 "only %d MSI-X vectors left, not using MSI-X\n", err);
3431 return err;
3432 }
3433
3434 #undef EXTRA_VECS
3435
init_rss(struct adapter * adap)3436 static int __devinit init_rss(struct adapter *adap)
3437 {
3438 unsigned int i, j;
3439
3440 for_each_port(adap, i) {
3441 struct port_info *pi = adap2pinfo(adap, i);
3442
3443 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
3444 if (!pi->rss)
3445 return -ENOMEM;
3446 for (j = 0; j < pi->rss_size; j++)
3447 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
3448 }
3449 return 0;
3450 }
3451
print_port_info(const struct net_device * dev)3452 static void __devinit print_port_info(const struct net_device *dev)
3453 {
3454 static const char *base[] = {
3455 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
3456 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
3457 };
3458
3459 char buf[80];
3460 char *bufp = buf;
3461 const char *spd = "";
3462 const struct port_info *pi = netdev_priv(dev);
3463 const struct adapter *adap = pi->adapter;
3464
3465 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
3466 spd = " 2.5 GT/s";
3467 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
3468 spd = " 5 GT/s";
3469
3470 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3471 bufp += sprintf(bufp, "100/");
3472 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3473 bufp += sprintf(bufp, "1000/");
3474 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3475 bufp += sprintf(bufp, "10G/");
3476 if (bufp != buf)
3477 --bufp;
3478 sprintf(bufp, "BASE-%s", base[pi->port_type]);
3479
3480 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3481 adap->params.vpd.id, adap->params.rev, buf,
3482 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
3483 (adap->flags & USING_MSIX) ? " MSI-X" :
3484 (adap->flags & USING_MSI) ? " MSI" : "");
3485 netdev_info(dev, "S/N: %s, E/C: %s\n",
3486 adap->params.vpd.sn, adap->params.vpd.ec);
3487 }
3488
enable_pcie_relaxed_ordering(struct pci_dev * dev)3489 static void __devinit enable_pcie_relaxed_ordering(struct pci_dev *dev)
3490 {
3491 u16 v;
3492 int pos;
3493
3494 pos = pci_pcie_cap(dev);
3495 if (pos > 0) {
3496 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &v);
3497 v |= PCI_EXP_DEVCTL_RELAX_EN;
3498 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, v);
3499 }
3500 }
3501
3502 /*
3503 * Free the following resources:
3504 * - memory used for tables
3505 * - MSI/MSI-X
3506 * - net devices
3507 * - resources FW is holding for us
3508 */
free_some_resources(struct adapter * adapter)3509 static void free_some_resources(struct adapter *adapter)
3510 {
3511 unsigned int i;
3512
3513 t4_free_mem(adapter->l2t);
3514 t4_free_mem(adapter->tids.tid_tab);
3515 disable_msi(adapter);
3516
3517 for_each_port(adapter, i)
3518 if (adapter->port[i]) {
3519 kfree(adap2pinfo(adapter, i)->rss);
3520 free_netdev(adapter->port[i]);
3521 }
3522 if (adapter->flags & FW_OK)
3523 t4_fw_bye(adapter, adapter->fn);
3524 }
3525
3526 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3527 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3528 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3529
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)3530 static int __devinit init_one(struct pci_dev *pdev,
3531 const struct pci_device_id *ent)
3532 {
3533 int func, i, err;
3534 struct port_info *pi;
3535 bool highdma = false;
3536 struct adapter *adapter = NULL;
3537
3538 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3539
3540 err = pci_request_regions(pdev, KBUILD_MODNAME);
3541 if (err) {
3542 /* Just info, some other driver may have claimed the device. */
3543 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3544 return err;
3545 }
3546
3547 /* We control everything through one PF */
3548 func = PCI_FUNC(pdev->devfn);
3549 if (func != ent->driver_data) {
3550 pci_save_state(pdev); /* to restore SR-IOV later */
3551 goto sriov;
3552 }
3553
3554 err = pci_enable_device(pdev);
3555 if (err) {
3556 dev_err(&pdev->dev, "cannot enable PCI device\n");
3557 goto out_release_regions;
3558 }
3559
3560 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3561 highdma = true;
3562 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3563 if (err) {
3564 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3565 "coherent allocations\n");
3566 goto out_disable_device;
3567 }
3568 } else {
3569 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3570 if (err) {
3571 dev_err(&pdev->dev, "no usable DMA configuration\n");
3572 goto out_disable_device;
3573 }
3574 }
3575
3576 pci_enable_pcie_error_reporting(pdev);
3577 enable_pcie_relaxed_ordering(pdev);
3578 pci_set_master(pdev);
3579 pci_save_state(pdev);
3580
3581 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3582 if (!adapter) {
3583 err = -ENOMEM;
3584 goto out_disable_device;
3585 }
3586
3587 adapter->regs = pci_ioremap_bar(pdev, 0);
3588 if (!adapter->regs) {
3589 dev_err(&pdev->dev, "cannot map device registers\n");
3590 err = -ENOMEM;
3591 goto out_free_adapter;
3592 }
3593
3594 adapter->pdev = pdev;
3595 adapter->pdev_dev = &pdev->dev;
3596 adapter->fn = func;
3597 adapter->msg_enable = dflt_msg_enable;
3598 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3599
3600 spin_lock_init(&adapter->stats_lock);
3601 spin_lock_init(&adapter->tid_release_lock);
3602
3603 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3604
3605 err = t4_prep_adapter(adapter);
3606 if (err)
3607 goto out_unmap_bar;
3608 err = adap_init0(adapter);
3609 if (err)
3610 goto out_unmap_bar;
3611
3612 for_each_port(adapter, i) {
3613 struct net_device *netdev;
3614
3615 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3616 MAX_ETH_QSETS);
3617 if (!netdev) {
3618 err = -ENOMEM;
3619 goto out_free_dev;
3620 }
3621
3622 SET_NETDEV_DEV(netdev, &pdev->dev);
3623
3624 adapter->port[i] = netdev;
3625 pi = netdev_priv(netdev);
3626 pi->adapter = adapter;
3627 pi->xact_addr_filt = -1;
3628 pi->port_id = i;
3629 netdev->irq = pdev->irq;
3630
3631 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3632 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3633 NETIF_F_RXCSUM | NETIF_F_RXHASH |
3634 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3635 if (highdma)
3636 netdev->hw_features |= NETIF_F_HIGHDMA;
3637 netdev->features |= netdev->hw_features;
3638 netdev->vlan_features = netdev->features & VLAN_FEAT;
3639
3640 netdev->priv_flags |= IFF_UNICAST_FLT;
3641
3642 netdev->netdev_ops = &cxgb4_netdev_ops;
3643 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3644 }
3645
3646 pci_set_drvdata(pdev, adapter);
3647
3648 if (adapter->flags & FW_OK) {
3649 err = t4_port_init(adapter, func, func, 0);
3650 if (err)
3651 goto out_free_dev;
3652 }
3653
3654 /*
3655 * Configure queues and allocate tables now, they can be needed as
3656 * soon as the first register_netdev completes.
3657 */
3658 cfg_queues(adapter);
3659
3660 adapter->l2t = t4_init_l2t();
3661 if (!adapter->l2t) {
3662 /* We tolerate a lack of L2T, giving up some functionality */
3663 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3664 adapter->params.offload = 0;
3665 }
3666
3667 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3668 dev_warn(&pdev->dev, "could not allocate TID table, "
3669 "continuing\n");
3670 adapter->params.offload = 0;
3671 }
3672
3673 /* See what interrupts we'll be using */
3674 if (msi > 1 && enable_msix(adapter) == 0)
3675 adapter->flags |= USING_MSIX;
3676 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3677 adapter->flags |= USING_MSI;
3678
3679 err = init_rss(adapter);
3680 if (err)
3681 goto out_free_dev;
3682
3683 /*
3684 * The card is now ready to go. If any errors occur during device
3685 * registration we do not fail the whole card but rather proceed only
3686 * with the ports we manage to register successfully. However we must
3687 * register at least one net device.
3688 */
3689 for_each_port(adapter, i) {
3690 pi = adap2pinfo(adapter, i);
3691 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
3692 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
3693
3694 err = register_netdev(adapter->port[i]);
3695 if (err)
3696 break;
3697 adapter->chan_map[pi->tx_chan] = i;
3698 print_port_info(adapter->port[i]);
3699 }
3700 if (i == 0) {
3701 dev_err(&pdev->dev, "could not register any net devices\n");
3702 goto out_free_dev;
3703 }
3704 if (err) {
3705 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
3706 err = 0;
3707 }
3708
3709 if (cxgb4_debugfs_root) {
3710 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3711 cxgb4_debugfs_root);
3712 setup_debugfs(adapter);
3713 }
3714
3715 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
3716 pdev->needs_freset = 1;
3717
3718 if (is_offload(adapter))
3719 attach_ulds(adapter);
3720
3721 sriov:
3722 #ifdef CONFIG_PCI_IOV
3723 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3724 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3725 dev_info(&pdev->dev,
3726 "instantiated %u virtual functions\n",
3727 num_vf[func]);
3728 #endif
3729 return 0;
3730
3731 out_free_dev:
3732 free_some_resources(adapter);
3733 out_unmap_bar:
3734 iounmap(adapter->regs);
3735 out_free_adapter:
3736 kfree(adapter);
3737 out_disable_device:
3738 pci_disable_pcie_error_reporting(pdev);
3739 pci_disable_device(pdev);
3740 out_release_regions:
3741 pci_release_regions(pdev);
3742 pci_set_drvdata(pdev, NULL);
3743 return err;
3744 }
3745
remove_one(struct pci_dev * pdev)3746 static void __devexit remove_one(struct pci_dev *pdev)
3747 {
3748 struct adapter *adapter = pci_get_drvdata(pdev);
3749
3750 pci_disable_sriov(pdev);
3751
3752 if (adapter) {
3753 int i;
3754
3755 if (is_offload(adapter))
3756 detach_ulds(adapter);
3757
3758 for_each_port(adapter, i)
3759 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
3760 unregister_netdev(adapter->port[i]);
3761
3762 if (adapter->debugfs_root)
3763 debugfs_remove_recursive(adapter->debugfs_root);
3764
3765 if (adapter->flags & FULL_INIT_DONE)
3766 cxgb_down(adapter);
3767
3768 free_some_resources(adapter);
3769 iounmap(adapter->regs);
3770 kfree(adapter);
3771 pci_disable_pcie_error_reporting(pdev);
3772 pci_disable_device(pdev);
3773 pci_release_regions(pdev);
3774 pci_set_drvdata(pdev, NULL);
3775 } else
3776 pci_release_regions(pdev);
3777 }
3778
3779 static struct pci_driver cxgb4_driver = {
3780 .name = KBUILD_MODNAME,
3781 .id_table = cxgb4_pci_tbl,
3782 .probe = init_one,
3783 .remove = __devexit_p(remove_one),
3784 .err_handler = &cxgb4_eeh,
3785 };
3786
cxgb4_init_module(void)3787 static int __init cxgb4_init_module(void)
3788 {
3789 int ret;
3790
3791 /* Debugfs support is optional, just warn if this fails */
3792 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3793 if (!cxgb4_debugfs_root)
3794 pr_warning("could not create debugfs entry, continuing\n");
3795
3796 ret = pci_register_driver(&cxgb4_driver);
3797 if (ret < 0)
3798 debugfs_remove(cxgb4_debugfs_root);
3799 return ret;
3800 }
3801
cxgb4_cleanup_module(void)3802 static void __exit cxgb4_cleanup_module(void)
3803 {
3804 pci_unregister_driver(&cxgb4_driver);
3805 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3806 }
3807
3808 module_init(cxgb4_init_module);
3809 module_exit(cxgb4_cleanup_module);
3810