1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <net/neighbour.h>
41 #include "cxgb4.h"
42 #include "l2t.h"
43 #include "t4_msg.h"
44 #include "t4fw_api.h"
45 
46 #define VLAN_NONE 0xfff
47 
48 /* identifies sync vs async L2T_WRITE_REQs */
49 #define F_SYNC_WR    (1 << 12)
50 
51 enum {
52 	L2T_STATE_VALID,      /* entry is up to date */
53 	L2T_STATE_STALE,      /* entry may be used but needs revalidation */
54 	L2T_STATE_RESOLVING,  /* entry needs address resolution */
55 	L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */
56 
57 	/* when state is one of the below the entry is not hashed */
58 	L2T_STATE_SWITCHING,  /* entry is being used by a switching filter */
59 	L2T_STATE_UNUSED      /* entry not in use */
60 };
61 
62 struct l2t_data {
63 	rwlock_t lock;
64 	atomic_t nfree;             /* number of free entries */
65 	struct l2t_entry *rover;    /* starting point for next allocation */
66 	struct l2t_entry l2tab[L2T_SIZE];
67 };
68 
vlan_prio(const struct l2t_entry * e)69 static inline unsigned int vlan_prio(const struct l2t_entry *e)
70 {
71 	return e->vlan >> 13;
72 }
73 
l2t_hold(struct l2t_data * d,struct l2t_entry * e)74 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
75 {
76 	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
77 		atomic_dec(&d->nfree);
78 }
79 
80 /*
81  * To avoid having to check address families we do not allow v4 and v6
82  * neighbors to be on the same hash chain.  We keep v4 entries in the first
83  * half of available hash buckets and v6 in the second.
84  */
85 enum {
86 	L2T_SZ_HALF = L2T_SIZE / 2,
87 	L2T_HASH_MASK = L2T_SZ_HALF - 1
88 };
89 
arp_hash(const u32 * key,int ifindex)90 static inline unsigned int arp_hash(const u32 *key, int ifindex)
91 {
92 	return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
93 }
94 
ipv6_hash(const u32 * key,int ifindex)95 static inline unsigned int ipv6_hash(const u32 *key, int ifindex)
96 {
97 	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
98 
99 	return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
100 }
101 
addr_hash(const u32 * addr,int addr_len,int ifindex)102 static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex)
103 {
104 	return addr_len == 4 ? arp_hash(addr, ifindex) :
105 			       ipv6_hash(addr, ifindex);
106 }
107 
108 /*
109  * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
110  * whether the L2T entry and the address are of the same address family.
111  * Callers ensure an address is only checked against L2T entries of the same
112  * family, something made trivial by the separation of IP and IPv6 hash chains
113  * mentioned above.  Returns 0 if there's a match,
114  */
addreq(const struct l2t_entry * e,const u32 * addr)115 static int addreq(const struct l2t_entry *e, const u32 *addr)
116 {
117 	if (e->v6)
118 		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
119 		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
120 	return e->addr[0] ^ addr[0];
121 }
122 
neigh_replace(struct l2t_entry * e,struct neighbour * n)123 static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
124 {
125 	neigh_hold(n);
126 	if (e->neigh)
127 		neigh_release(e->neigh);
128 	e->neigh = n;
129 }
130 
131 /*
132  * Write an L2T entry.  Must be called with the entry locked.
133  * The write may be synchronous or asynchronous.
134  */
write_l2e(struct adapter * adap,struct l2t_entry * e,int sync)135 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
136 {
137 	struct sk_buff *skb;
138 	struct cpl_l2t_write_req *req;
139 
140 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
141 	if (!skb)
142 		return -ENOMEM;
143 
144 	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
145 	INIT_TP_WR(req, 0);
146 
147 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
148 					e->idx | (sync ? F_SYNC_WR : 0) |
149 					TID_QID(adap->sge.fw_evtq.abs_id)));
150 	req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync));
151 	req->l2t_idx = htons(e->idx);
152 	req->vlan = htons(e->vlan);
153 	if (e->neigh)
154 		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
155 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
156 
157 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
158 	t4_ofld_send(adap, skb);
159 
160 	if (sync && e->state != L2T_STATE_SWITCHING)
161 		e->state = L2T_STATE_SYNC_WRITE;
162 	return 0;
163 }
164 
165 /*
166  * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
167  * entry locked.
168  */
send_pending(struct adapter * adap,struct l2t_entry * e)169 static void send_pending(struct adapter *adap, struct l2t_entry *e)
170 {
171 	while (e->arpq_head) {
172 		struct sk_buff *skb = e->arpq_head;
173 
174 		e->arpq_head = skb->next;
175 		skb->next = NULL;
176 		t4_ofld_send(adap, skb);
177 	}
178 	e->arpq_tail = NULL;
179 }
180 
181 /*
182  * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
183  * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
184  * index it refers to.
185  */
do_l2t_write_rpl(struct adapter * adap,const struct cpl_l2t_write_rpl * rpl)186 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
187 {
188 	unsigned int tid = GET_TID(rpl);
189 	unsigned int idx = tid & (L2T_SIZE - 1);
190 
191 	if (unlikely(rpl->status != CPL_ERR_NONE)) {
192 		dev_err(adap->pdev_dev,
193 			"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
194 			rpl->status, idx);
195 		return;
196 	}
197 
198 	if (tid & F_SYNC_WR) {
199 		struct l2t_entry *e = &adap->l2t->l2tab[idx];
200 
201 		spin_lock(&e->lock);
202 		if (e->state != L2T_STATE_SWITCHING) {
203 			send_pending(adap, e);
204 			e->state = (e->neigh->nud_state & NUD_STALE) ?
205 					L2T_STATE_STALE : L2T_STATE_VALID;
206 		}
207 		spin_unlock(&e->lock);
208 	}
209 }
210 
211 /*
212  * Add a packet to an L2T entry's queue of packets awaiting resolution.
213  * Must be called with the entry's lock held.
214  */
arpq_enqueue(struct l2t_entry * e,struct sk_buff * skb)215 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
216 {
217 	skb->next = NULL;
218 	if (e->arpq_head)
219 		e->arpq_tail->next = skb;
220 	else
221 		e->arpq_head = skb;
222 	e->arpq_tail = skb;
223 }
224 
cxgb4_l2t_send(struct net_device * dev,struct sk_buff * skb,struct l2t_entry * e)225 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
226 		   struct l2t_entry *e)
227 {
228 	struct adapter *adap = netdev2adap(dev);
229 
230 again:
231 	switch (e->state) {
232 	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
233 		neigh_event_send(e->neigh, NULL);
234 		spin_lock_bh(&e->lock);
235 		if (e->state == L2T_STATE_STALE)
236 			e->state = L2T_STATE_VALID;
237 		spin_unlock_bh(&e->lock);
238 	case L2T_STATE_VALID:     /* fast-path, send the packet on */
239 		return t4_ofld_send(adap, skb);
240 	case L2T_STATE_RESOLVING:
241 	case L2T_STATE_SYNC_WRITE:
242 		spin_lock_bh(&e->lock);
243 		if (e->state != L2T_STATE_SYNC_WRITE &&
244 		    e->state != L2T_STATE_RESOLVING) {
245 			spin_unlock_bh(&e->lock);
246 			goto again;
247 		}
248 		arpq_enqueue(e, skb);
249 		spin_unlock_bh(&e->lock);
250 
251 		if (e->state == L2T_STATE_RESOLVING &&
252 		    !neigh_event_send(e->neigh, NULL)) {
253 			spin_lock_bh(&e->lock);
254 			if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
255 				write_l2e(adap, e, 1);
256 			spin_unlock_bh(&e->lock);
257 		}
258 	}
259 	return 0;
260 }
261 EXPORT_SYMBOL(cxgb4_l2t_send);
262 
263 /*
264  * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
265  */
alloc_l2e(struct l2t_data * d)266 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
267 {
268 	struct l2t_entry *end, *e, **p;
269 
270 	if (!atomic_read(&d->nfree))
271 		return NULL;
272 
273 	/* there's definitely a free entry */
274 	for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
275 		if (atomic_read(&e->refcnt) == 0)
276 			goto found;
277 
278 	for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
279 		;
280 found:
281 	d->rover = e + 1;
282 	atomic_dec(&d->nfree);
283 
284 	/*
285 	 * The entry we found may be an inactive entry that is
286 	 * presently in the hash table.  We need to remove it.
287 	 */
288 	if (e->state < L2T_STATE_SWITCHING)
289 		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
290 			if (*p == e) {
291 				*p = e->next;
292 				e->next = NULL;
293 				break;
294 			}
295 
296 	e->state = L2T_STATE_UNUSED;
297 	return e;
298 }
299 
300 /*
301  * Called when an L2T entry has no more users.
302  */
t4_l2e_free(struct l2t_entry * e)303 static void t4_l2e_free(struct l2t_entry *e)
304 {
305 	struct l2t_data *d;
306 
307 	spin_lock_bh(&e->lock);
308 	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
309 		if (e->neigh) {
310 			neigh_release(e->neigh);
311 			e->neigh = NULL;
312 		}
313 		while (e->arpq_head) {
314 			struct sk_buff *skb = e->arpq_head;
315 
316 			e->arpq_head = skb->next;
317 			kfree_skb(skb);
318 		}
319 		e->arpq_tail = NULL;
320 	}
321 	spin_unlock_bh(&e->lock);
322 
323 	d = container_of(e, struct l2t_data, l2tab[e->idx]);
324 	atomic_inc(&d->nfree);
325 }
326 
cxgb4_l2t_release(struct l2t_entry * e)327 void cxgb4_l2t_release(struct l2t_entry *e)
328 {
329 	if (atomic_dec_and_test(&e->refcnt))
330 		t4_l2e_free(e);
331 }
332 EXPORT_SYMBOL(cxgb4_l2t_release);
333 
334 /*
335  * Update an L2T entry that was previously used for the same next hop as neigh.
336  * Must be called with softirqs disabled.
337  */
reuse_entry(struct l2t_entry * e,struct neighbour * neigh)338 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
339 {
340 	unsigned int nud_state;
341 
342 	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
343 	if (neigh != e->neigh)
344 		neigh_replace(e, neigh);
345 	nud_state = neigh->nud_state;
346 	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
347 	    !(nud_state & NUD_VALID))
348 		e->state = L2T_STATE_RESOLVING;
349 	else if (nud_state & NUD_CONNECTED)
350 		e->state = L2T_STATE_VALID;
351 	else
352 		e->state = L2T_STATE_STALE;
353 	spin_unlock(&e->lock);
354 }
355 
cxgb4_l2t_get(struct l2t_data * d,struct neighbour * neigh,const struct net_device * physdev,unsigned int priority)356 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
357 				const struct net_device *physdev,
358 				unsigned int priority)
359 {
360 	u8 lport;
361 	u16 vlan;
362 	struct l2t_entry *e;
363 	int addr_len = neigh->tbl->key_len;
364 	u32 *addr = (u32 *)neigh->primary_key;
365 	int ifidx = neigh->dev->ifindex;
366 	int hash = addr_hash(addr, addr_len, ifidx);
367 
368 	if (neigh->dev->flags & IFF_LOOPBACK)
369 		lport = netdev2pinfo(physdev)->tx_chan + 4;
370 	else
371 		lport = netdev2pinfo(physdev)->lport;
372 
373 	if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
374 		vlan = vlan_dev_vlan_id(neigh->dev);
375 	else
376 		vlan = VLAN_NONE;
377 
378 	write_lock_bh(&d->lock);
379 	for (e = d->l2tab[hash].first; e; e = e->next)
380 		if (!addreq(e, addr) && e->ifindex == ifidx &&
381 		    e->vlan == vlan && e->lport == lport) {
382 			l2t_hold(d, e);
383 			if (atomic_read(&e->refcnt) == 1)
384 				reuse_entry(e, neigh);
385 			goto done;
386 		}
387 
388 	/* Need to allocate a new entry */
389 	e = alloc_l2e(d);
390 	if (e) {
391 		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
392 		e->state = L2T_STATE_RESOLVING;
393 		memcpy(e->addr, addr, addr_len);
394 		e->ifindex = ifidx;
395 		e->hash = hash;
396 		e->lport = lport;
397 		e->v6 = addr_len == 16;
398 		atomic_set(&e->refcnt, 1);
399 		neigh_replace(e, neigh);
400 		e->vlan = vlan;
401 		e->next = d->l2tab[hash].first;
402 		d->l2tab[hash].first = e;
403 		spin_unlock(&e->lock);
404 	}
405 done:
406 	write_unlock_bh(&d->lock);
407 	return e;
408 }
409 EXPORT_SYMBOL(cxgb4_l2t_get);
410 
411 /*
412  * Called when address resolution fails for an L2T entry to handle packets
413  * on the arpq head.  If a packet specifies a failure handler it is invoked,
414  * otherwise the packet is sent to the device.
415  */
handle_failed_resolution(struct adapter * adap,struct sk_buff * arpq)416 static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
417 {
418 	while (arpq) {
419 		struct sk_buff *skb = arpq;
420 		const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
421 
422 		arpq = skb->next;
423 		skb->next = NULL;
424 		if (cb->arp_err_handler)
425 			cb->arp_err_handler(cb->handle, skb);
426 		else
427 			t4_ofld_send(adap, skb);
428 	}
429 }
430 
431 /*
432  * Called when the host's neighbor layer makes a change to some entry that is
433  * loaded into the HW L2 table.
434  */
t4_l2t_update(struct adapter * adap,struct neighbour * neigh)435 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
436 {
437 	struct l2t_entry *e;
438 	struct sk_buff *arpq = NULL;
439 	struct l2t_data *d = adap->l2t;
440 	int addr_len = neigh->tbl->key_len;
441 	u32 *addr = (u32 *) neigh->primary_key;
442 	int ifidx = neigh->dev->ifindex;
443 	int hash = addr_hash(addr, addr_len, ifidx);
444 
445 	read_lock_bh(&d->lock);
446 	for (e = d->l2tab[hash].first; e; e = e->next)
447 		if (!addreq(e, addr) && e->ifindex == ifidx) {
448 			spin_lock(&e->lock);
449 			if (atomic_read(&e->refcnt))
450 				goto found;
451 			spin_unlock(&e->lock);
452 			break;
453 		}
454 	read_unlock_bh(&d->lock);
455 	return;
456 
457  found:
458 	read_unlock(&d->lock);
459 
460 	if (neigh != e->neigh)
461 		neigh_replace(e, neigh);
462 
463 	if (e->state == L2T_STATE_RESOLVING) {
464 		if (neigh->nud_state & NUD_FAILED) {
465 			arpq = e->arpq_head;
466 			e->arpq_head = e->arpq_tail = NULL;
467 		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
468 			   e->arpq_head) {
469 			write_l2e(adap, e, 1);
470 		}
471 	} else {
472 		e->state = neigh->nud_state & NUD_CONNECTED ?
473 			L2T_STATE_VALID : L2T_STATE_STALE;
474 		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
475 			write_l2e(adap, e, 0);
476 	}
477 
478 	spin_unlock_bh(&e->lock);
479 
480 	if (arpq)
481 		handle_failed_resolution(adap, arpq);
482 }
483 
t4_init_l2t(void)484 struct l2t_data *t4_init_l2t(void)
485 {
486 	int i;
487 	struct l2t_data *d;
488 
489 	d = t4_alloc_mem(sizeof(*d));
490 	if (!d)
491 		return NULL;
492 
493 	d->rover = d->l2tab;
494 	atomic_set(&d->nfree, L2T_SIZE);
495 	rwlock_init(&d->lock);
496 
497 	for (i = 0; i < L2T_SIZE; ++i) {
498 		d->l2tab[i].idx = i;
499 		d->l2tab[i].state = L2T_STATE_UNUSED;
500 		spin_lock_init(&d->l2tab[i].lock);
501 		atomic_set(&d->l2tab[i].refcnt, 0);
502 	}
503 	return d;
504 }
505 
506 #include <linux/module.h>
507 #include <linux/debugfs.h>
508 #include <linux/seq_file.h>
509 
l2t_get_idx(struct seq_file * seq,loff_t pos)510 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
511 {
512 	struct l2t_entry *l2tab = seq->private;
513 
514 	return pos >= L2T_SIZE ? NULL : &l2tab[pos];
515 }
516 
l2t_seq_start(struct seq_file * seq,loff_t * pos)517 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
518 {
519 	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
520 }
521 
l2t_seq_next(struct seq_file * seq,void * v,loff_t * pos)522 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
523 {
524 	v = l2t_get_idx(seq, *pos);
525 	if (v)
526 		++*pos;
527 	return v;
528 }
529 
l2t_seq_stop(struct seq_file * seq,void * v)530 static void l2t_seq_stop(struct seq_file *seq, void *v)
531 {
532 }
533 
l2e_state(const struct l2t_entry * e)534 static char l2e_state(const struct l2t_entry *e)
535 {
536 	switch (e->state) {
537 	case L2T_STATE_VALID: return 'V';
538 	case L2T_STATE_STALE: return 'S';
539 	case L2T_STATE_SYNC_WRITE: return 'W';
540 	case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
541 	case L2T_STATE_SWITCHING: return 'X';
542 	default:
543 		return 'U';
544 	}
545 }
546 
l2t_seq_show(struct seq_file * seq,void * v)547 static int l2t_seq_show(struct seq_file *seq, void *v)
548 {
549 	if (v == SEQ_START_TOKEN)
550 		seq_puts(seq, " Idx IP address                "
551 			 "Ethernet address  VLAN/P LP State Users Port\n");
552 	else {
553 		char ip[60];
554 		struct l2t_entry *e = v;
555 
556 		spin_lock_bh(&e->lock);
557 		if (e->state == L2T_STATE_SWITCHING)
558 			ip[0] = '\0';
559 		else
560 			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
561 		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
562 			   e->idx, ip, e->dmac,
563 			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
564 			   l2e_state(e), atomic_read(&e->refcnt),
565 			   e->neigh ? e->neigh->dev->name : "");
566 		spin_unlock_bh(&e->lock);
567 	}
568 	return 0;
569 }
570 
571 static const struct seq_operations l2t_seq_ops = {
572 	.start = l2t_seq_start,
573 	.next = l2t_seq_next,
574 	.stop = l2t_seq_stop,
575 	.show = l2t_seq_show
576 };
577 
l2t_seq_open(struct inode * inode,struct file * file)578 static int l2t_seq_open(struct inode *inode, struct file *file)
579 {
580 	int rc = seq_open(file, &l2t_seq_ops);
581 
582 	if (!rc) {
583 		struct adapter *adap = inode->i_private;
584 		struct seq_file *seq = file->private_data;
585 
586 		seq->private = adap->l2t->l2tab;
587 	}
588 	return rc;
589 }
590 
591 const struct file_operations t4_l2t_fops = {
592 	.owner = THIS_MODULE,
593 	.open = l2t_seq_open,
594 	.read = seq_read,
595 	.llseek = seq_lseek,
596 	.release = seq_release,
597 };
598