1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <linux/module.h>
41 #include <linux/debugfs.h>
42 #include <linux/seq_file.h>
43 #include <net/neighbour.h>
44 #include "cxgb4.h"
45 #include "l2t.h"
46 #include "t4_msg.h"
47 #include "t4fw_api.h"
48 #include "t4_regs.h"
49 #include "t4_values.h"
50
51 /* identifies sync vs async L2T_WRITE_REQs */
52 #define SYNC_WR_S 12
53 #define SYNC_WR_V(x) ((x) << SYNC_WR_S)
54 #define SYNC_WR_F SYNC_WR_V(1)
55
56 struct l2t_data {
57 unsigned int l2t_start; /* start index of our piece of the L2T */
58 unsigned int l2t_size; /* number of entries in l2tab */
59 rwlock_t lock;
60 atomic_t nfree; /* number of free entries */
61 struct l2t_entry *rover; /* starting point for next allocation */
62 struct l2t_entry l2tab[]; /* MUST BE LAST */
63 };
64
vlan_prio(const struct l2t_entry * e)65 static inline unsigned int vlan_prio(const struct l2t_entry *e)
66 {
67 return e->vlan >> VLAN_PRIO_SHIFT;
68 }
69
l2t_hold(struct l2t_data * d,struct l2t_entry * e)70 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
71 {
72 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
73 atomic_dec(&d->nfree);
74 }
75
76 /*
77 * To avoid having to check address families we do not allow v4 and v6
78 * neighbors to be on the same hash chain. We keep v4 entries in the first
79 * half of available hash buckets and v6 in the second. We need at least two
80 * entries in our L2T for this scheme to work.
81 */
82 enum {
83 L2T_MIN_HASH_BUCKETS = 2,
84 };
85
arp_hash(struct l2t_data * d,const u32 * key,int ifindex)86 static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
87 int ifindex)
88 {
89 unsigned int l2t_size_half = d->l2t_size / 2;
90
91 return jhash_2words(*key, ifindex, 0) % l2t_size_half;
92 }
93
ipv6_hash(struct l2t_data * d,const u32 * key,int ifindex)94 static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
95 int ifindex)
96 {
97 unsigned int l2t_size_half = d->l2t_size / 2;
98 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
99
100 return (l2t_size_half +
101 (jhash_2words(xor, ifindex, 0) % l2t_size_half));
102 }
103
addr_hash(struct l2t_data * d,const u32 * addr,int addr_len,int ifindex)104 static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
105 int addr_len, int ifindex)
106 {
107 return addr_len == 4 ? arp_hash(d, addr, ifindex) :
108 ipv6_hash(d, addr, ifindex);
109 }
110
111 /*
112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
113 * whether the L2T entry and the address are of the same address family.
114 * Callers ensure an address is only checked against L2T entries of the same
115 * family, something made trivial by the separation of IP and IPv6 hash chains
116 * mentioned above. Returns 0 if there's a match,
117 */
addreq(const struct l2t_entry * e,const u32 * addr)118 static int addreq(const struct l2t_entry *e, const u32 *addr)
119 {
120 if (e->v6)
121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
123 return e->addr[0] ^ addr[0];
124 }
125
neigh_replace(struct l2t_entry * e,struct neighbour * n)126 static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
127 {
128 neigh_hold(n);
129 if (e->neigh)
130 neigh_release(e->neigh);
131 e->neigh = n;
132 }
133
134 /*
135 * Write an L2T entry. Must be called with the entry locked.
136 * The write may be synchronous or asynchronous.
137 */
write_l2e(struct adapter * adap,struct l2t_entry * e,int sync)138 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
139 {
140 struct l2t_data *d = adap->l2t;
141 unsigned int l2t_idx = e->idx + d->l2t_start;
142 struct sk_buff *skb;
143 struct cpl_l2t_write_req *req;
144
145 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
146 if (!skb)
147 return -ENOMEM;
148
149 req = __skb_put(skb, sizeof(*req));
150 INIT_TP_WR(req, 0);
151
152 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
153 l2t_idx | (sync ? SYNC_WR_F : 0) |
154 TID_QID_V(adap->sge.fw_evtq.abs_id)));
155 req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
156 req->l2t_idx = htons(l2t_idx);
157 req->vlan = htons(e->vlan);
158 if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
159 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
160 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
161
162 t4_mgmt_tx(adap, skb);
163
164 if (sync && e->state != L2T_STATE_SWITCHING)
165 e->state = L2T_STATE_SYNC_WRITE;
166 return 0;
167 }
168
169 /*
170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the
171 * entry locked.
172 */
send_pending(struct adapter * adap,struct l2t_entry * e)173 static void send_pending(struct adapter *adap, struct l2t_entry *e)
174 {
175 struct sk_buff *skb;
176
177 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
178 t4_ofld_send(adap, skb);
179 }
180
181 /*
182 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
183 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
184 * index it refers to.
185 */
do_l2t_write_rpl(struct adapter * adap,const struct cpl_l2t_write_rpl * rpl)186 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
187 {
188 struct l2t_data *d = adap->l2t;
189 unsigned int tid = GET_TID(rpl);
190 unsigned int l2t_idx = tid % L2T_SIZE;
191
192 if (unlikely(rpl->status != CPL_ERR_NONE)) {
193 dev_err(adap->pdev_dev,
194 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
195 rpl->status, l2t_idx);
196 return;
197 }
198
199 if (tid & SYNC_WR_F) {
200 struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
201
202 spin_lock(&e->lock);
203 if (e->state != L2T_STATE_SWITCHING) {
204 send_pending(adap, e);
205 e->state = (e->neigh->nud_state & NUD_STALE) ?
206 L2T_STATE_STALE : L2T_STATE_VALID;
207 }
208 spin_unlock(&e->lock);
209 }
210 }
211
212 /*
213 * Add a packet to an L2T entry's queue of packets awaiting resolution.
214 * Must be called with the entry's lock held.
215 */
arpq_enqueue(struct l2t_entry * e,struct sk_buff * skb)216 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
217 {
218 __skb_queue_tail(&e->arpq, skb);
219 }
220
cxgb4_l2t_send(struct net_device * dev,struct sk_buff * skb,struct l2t_entry * e)221 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
222 struct l2t_entry *e)
223 {
224 struct adapter *adap = netdev2adap(dev);
225
226 again:
227 switch (e->state) {
228 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
229 neigh_event_send(e->neigh, NULL);
230 spin_lock_bh(&e->lock);
231 if (e->state == L2T_STATE_STALE)
232 e->state = L2T_STATE_VALID;
233 spin_unlock_bh(&e->lock);
234 fallthrough;
235 case L2T_STATE_VALID: /* fast-path, send the packet on */
236 return t4_ofld_send(adap, skb);
237 case L2T_STATE_RESOLVING:
238 case L2T_STATE_SYNC_WRITE:
239 spin_lock_bh(&e->lock);
240 if (e->state != L2T_STATE_SYNC_WRITE &&
241 e->state != L2T_STATE_RESOLVING) {
242 spin_unlock_bh(&e->lock);
243 goto again;
244 }
245 arpq_enqueue(e, skb);
246 spin_unlock_bh(&e->lock);
247
248 if (e->state == L2T_STATE_RESOLVING &&
249 !neigh_event_send(e->neigh, NULL)) {
250 spin_lock_bh(&e->lock);
251 if (e->state == L2T_STATE_RESOLVING &&
252 !skb_queue_empty(&e->arpq))
253 write_l2e(adap, e, 1);
254 spin_unlock_bh(&e->lock);
255 }
256 }
257 return 0;
258 }
259 EXPORT_SYMBOL(cxgb4_l2t_send);
260
261 /*
262 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
263 */
alloc_l2e(struct l2t_data * d)264 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
265 {
266 struct l2t_entry *end, *e, **p;
267
268 if (!atomic_read(&d->nfree))
269 return NULL;
270
271 /* there's definitely a free entry */
272 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
273 if (atomic_read(&e->refcnt) == 0)
274 goto found;
275
276 for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
277 ;
278 found:
279 d->rover = e + 1;
280 atomic_dec(&d->nfree);
281
282 /*
283 * The entry we found may be an inactive entry that is
284 * presently in the hash table. We need to remove it.
285 */
286 if (e->state < L2T_STATE_SWITCHING)
287 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
288 if (*p == e) {
289 *p = e->next;
290 e->next = NULL;
291 break;
292 }
293
294 e->state = L2T_STATE_UNUSED;
295 return e;
296 }
297
find_or_alloc_l2e(struct l2t_data * d,u16 vlan,u8 port,u8 * dmac)298 static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
299 u8 port, u8 *dmac)
300 {
301 struct l2t_entry *end, *e, **p;
302 struct l2t_entry *first_free = NULL;
303
304 for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
305 if (atomic_read(&e->refcnt) == 0) {
306 if (!first_free)
307 first_free = e;
308 } else {
309 if (e->state == L2T_STATE_SWITCHING) {
310 if (ether_addr_equal(e->dmac, dmac) &&
311 (e->vlan == vlan) && (e->lport == port))
312 goto exists;
313 }
314 }
315 }
316
317 if (first_free) {
318 e = first_free;
319 goto found;
320 }
321
322 return NULL;
323
324 found:
325 /* The entry we found may be an inactive entry that is
326 * presently in the hash table. We need to remove it.
327 */
328 if (e->state < L2T_STATE_SWITCHING)
329 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
330 if (*p == e) {
331 *p = e->next;
332 e->next = NULL;
333 break;
334 }
335 e->state = L2T_STATE_UNUSED;
336
337 exists:
338 return e;
339 }
340
341 /* Called when an L2T entry has no more users. The entry is left in the hash
342 * table since it is likely to be reused but we also bump nfree to indicate
343 * that the entry can be reallocated for a different neighbor. We also drop
344 * the existing neighbor reference in case the neighbor is going away and is
345 * waiting on our reference.
346 *
347 * Because entries can be reallocated to other neighbors once their ref count
348 * drops to 0 we need to take the entry's lock to avoid races with a new
349 * incarnation.
350 */
_t4_l2e_free(struct l2t_entry * e)351 static void _t4_l2e_free(struct l2t_entry *e)
352 {
353 struct l2t_data *d;
354
355 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
356 if (e->neigh) {
357 neigh_release(e->neigh);
358 e->neigh = NULL;
359 }
360 __skb_queue_purge(&e->arpq);
361 }
362
363 d = container_of(e, struct l2t_data, l2tab[e->idx]);
364 atomic_inc(&d->nfree);
365 }
366
367 /* Locked version of _t4_l2e_free */
t4_l2e_free(struct l2t_entry * e)368 static void t4_l2e_free(struct l2t_entry *e)
369 {
370 struct l2t_data *d;
371
372 spin_lock_bh(&e->lock);
373 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
374 if (e->neigh) {
375 neigh_release(e->neigh);
376 e->neigh = NULL;
377 }
378 __skb_queue_purge(&e->arpq);
379 }
380 spin_unlock_bh(&e->lock);
381
382 d = container_of(e, struct l2t_data, l2tab[e->idx]);
383 atomic_inc(&d->nfree);
384 }
385
cxgb4_l2t_release(struct l2t_entry * e)386 void cxgb4_l2t_release(struct l2t_entry *e)
387 {
388 if (atomic_dec_and_test(&e->refcnt))
389 t4_l2e_free(e);
390 }
391 EXPORT_SYMBOL(cxgb4_l2t_release);
392
393 /*
394 * Update an L2T entry that was previously used for the same next hop as neigh.
395 * Must be called with softirqs disabled.
396 */
reuse_entry(struct l2t_entry * e,struct neighbour * neigh)397 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
398 {
399 unsigned int nud_state;
400
401 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
402 if (neigh != e->neigh)
403 neigh_replace(e, neigh);
404 nud_state = neigh->nud_state;
405 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
406 !(nud_state & NUD_VALID))
407 e->state = L2T_STATE_RESOLVING;
408 else if (nud_state & NUD_CONNECTED)
409 e->state = L2T_STATE_VALID;
410 else
411 e->state = L2T_STATE_STALE;
412 spin_unlock(&e->lock);
413 }
414
cxgb4_l2t_get(struct l2t_data * d,struct neighbour * neigh,const struct net_device * physdev,unsigned int priority)415 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
416 const struct net_device *physdev,
417 unsigned int priority)
418 {
419 u8 lport;
420 u16 vlan;
421 struct l2t_entry *e;
422 unsigned int addr_len = neigh->tbl->key_len;
423 u32 *addr = (u32 *)neigh->primary_key;
424 int ifidx = neigh->dev->ifindex;
425 int hash = addr_hash(d, addr, addr_len, ifidx);
426
427 if (neigh->dev->flags & IFF_LOOPBACK)
428 lport = netdev2pinfo(physdev)->tx_chan + 4;
429 else
430 lport = netdev2pinfo(physdev)->lport;
431
432 if (is_vlan_dev(neigh->dev)) {
433 vlan = vlan_dev_vlan_id(neigh->dev);
434 vlan |= vlan_dev_get_egress_qos_mask(neigh->dev, priority);
435 } else {
436 vlan = VLAN_NONE;
437 }
438
439 write_lock_bh(&d->lock);
440 for (e = d->l2tab[hash].first; e; e = e->next)
441 if (!addreq(e, addr) && e->ifindex == ifidx &&
442 e->vlan == vlan && e->lport == lport) {
443 l2t_hold(d, e);
444 if (atomic_read(&e->refcnt) == 1)
445 reuse_entry(e, neigh);
446 goto done;
447 }
448
449 /* Need to allocate a new entry */
450 e = alloc_l2e(d);
451 if (e) {
452 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
453 e->state = L2T_STATE_RESOLVING;
454 if (neigh->dev->flags & IFF_LOOPBACK)
455 memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
456 memcpy(e->addr, addr, addr_len);
457 e->ifindex = ifidx;
458 e->hash = hash;
459 e->lport = lport;
460 e->v6 = addr_len == 16;
461 atomic_set(&e->refcnt, 1);
462 neigh_replace(e, neigh);
463 e->vlan = vlan;
464 e->next = d->l2tab[hash].first;
465 d->l2tab[hash].first = e;
466 spin_unlock(&e->lock);
467 }
468 done:
469 write_unlock_bh(&d->lock);
470 return e;
471 }
472 EXPORT_SYMBOL(cxgb4_l2t_get);
473
cxgb4_select_ntuple(struct net_device * dev,const struct l2t_entry * l2t)474 u64 cxgb4_select_ntuple(struct net_device *dev,
475 const struct l2t_entry *l2t)
476 {
477 struct adapter *adap = netdev2adap(dev);
478 struct tp_params *tp = &adap->params.tp;
479 u64 ntuple = 0;
480
481 /* Initialize each of the fields which we care about which are present
482 * in the Compressed Filter Tuple.
483 */
484 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
485 ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
486
487 if (tp->port_shift >= 0)
488 ntuple |= (u64)l2t->lport << tp->port_shift;
489
490 if (tp->protocol_shift >= 0)
491 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
492
493 if (tp->vnic_shift >= 0 && (tp->ingress_config & VNIC_F)) {
494 struct port_info *pi = (struct port_info *)netdev_priv(dev);
495
496 ntuple |= (u64)(FT_VNID_ID_VF_V(pi->vin) |
497 FT_VNID_ID_PF_V(adap->pf) |
498 FT_VNID_ID_VLD_V(pi->vivld)) << tp->vnic_shift;
499 }
500
501 return ntuple;
502 }
503 EXPORT_SYMBOL(cxgb4_select_ntuple);
504
505 /*
506 * Called when the host's neighbor layer makes a change to some entry that is
507 * loaded into the HW L2 table.
508 */
t4_l2t_update(struct adapter * adap,struct neighbour * neigh)509 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
510 {
511 unsigned int addr_len = neigh->tbl->key_len;
512 u32 *addr = (u32 *) neigh->primary_key;
513 int hash, ifidx = neigh->dev->ifindex;
514 struct sk_buff_head *arpq = NULL;
515 struct l2t_data *d = adap->l2t;
516 struct l2t_entry *e;
517
518 hash = addr_hash(d, addr, addr_len, ifidx);
519 read_lock_bh(&d->lock);
520 for (e = d->l2tab[hash].first; e; e = e->next)
521 if (!addreq(e, addr) && e->ifindex == ifidx) {
522 spin_lock(&e->lock);
523 if (atomic_read(&e->refcnt))
524 goto found;
525 spin_unlock(&e->lock);
526 break;
527 }
528 read_unlock_bh(&d->lock);
529 return;
530
531 found:
532 read_unlock(&d->lock);
533
534 if (neigh != e->neigh)
535 neigh_replace(e, neigh);
536
537 if (e->state == L2T_STATE_RESOLVING) {
538 if (neigh->nud_state & NUD_FAILED) {
539 arpq = &e->arpq;
540 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
541 !skb_queue_empty(&e->arpq)) {
542 write_l2e(adap, e, 1);
543 }
544 } else {
545 e->state = neigh->nud_state & NUD_CONNECTED ?
546 L2T_STATE_VALID : L2T_STATE_STALE;
547 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
548 write_l2e(adap, e, 0);
549 }
550
551 if (arpq) {
552 struct sk_buff *skb;
553
554 /* Called when address resolution fails for an L2T
555 * entry to handle packets on the arpq head. If a
556 * packet specifies a failure handler it is invoked,
557 * otherwise the packet is sent to the device.
558 */
559 while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
560 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
561
562 spin_unlock(&e->lock);
563 if (cb->arp_err_handler)
564 cb->arp_err_handler(cb->handle, skb);
565 else
566 t4_ofld_send(adap, skb);
567 spin_lock(&e->lock);
568 }
569 }
570 spin_unlock_bh(&e->lock);
571 }
572
573 /* Allocate an L2T entry for use by a switching rule. Such need to be
574 * explicitly freed and while busy they are not on any hash chain, so normal
575 * address resolution updates do not see them.
576 */
t4_l2t_alloc_switching(struct adapter * adap,u16 vlan,u8 port,u8 * eth_addr)577 struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
578 u8 port, u8 *eth_addr)
579 {
580 struct l2t_data *d = adap->l2t;
581 struct l2t_entry *e;
582 int ret;
583
584 write_lock_bh(&d->lock);
585 e = find_or_alloc_l2e(d, vlan, port, eth_addr);
586 if (e) {
587 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
588 if (!atomic_read(&e->refcnt)) {
589 e->state = L2T_STATE_SWITCHING;
590 e->vlan = vlan;
591 e->lport = port;
592 ether_addr_copy(e->dmac, eth_addr);
593 atomic_set(&e->refcnt, 1);
594 ret = write_l2e(adap, e, 0);
595 if (ret < 0) {
596 _t4_l2e_free(e);
597 spin_unlock(&e->lock);
598 write_unlock_bh(&d->lock);
599 return NULL;
600 }
601 } else {
602 atomic_inc(&e->refcnt);
603 }
604
605 spin_unlock(&e->lock);
606 }
607 write_unlock_bh(&d->lock);
608 return e;
609 }
610
611 /**
612 * cxgb4_l2t_alloc_switching - Allocates an L2T entry for switch filters
613 * @dev: net_device pointer
614 * @vlan: VLAN Id
615 * @port: Associated port
616 * @dmac: Destination MAC address to add to L2T
617 * Returns pointer to the allocated l2t entry
618 *
619 * Allocates an L2T entry for use by switching rule of a filter
620 */
cxgb4_l2t_alloc_switching(struct net_device * dev,u16 vlan,u8 port,u8 * dmac)621 struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
622 u8 port, u8 *dmac)
623 {
624 struct adapter *adap = netdev2adap(dev);
625
626 return t4_l2t_alloc_switching(adap, vlan, port, dmac);
627 }
628 EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
629
t4_init_l2t(unsigned int l2t_start,unsigned int l2t_end)630 struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
631 {
632 unsigned int l2t_size;
633 int i;
634 struct l2t_data *d;
635
636 if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
637 return NULL;
638 l2t_size = l2t_end - l2t_start + 1;
639 if (l2t_size < L2T_MIN_HASH_BUCKETS)
640 return NULL;
641
642 d = kvzalloc(struct_size(d, l2tab, l2t_size), GFP_KERNEL);
643 if (!d)
644 return NULL;
645
646 d->l2t_start = l2t_start;
647 d->l2t_size = l2t_size;
648
649 d->rover = d->l2tab;
650 atomic_set(&d->nfree, l2t_size);
651 rwlock_init(&d->lock);
652
653 for (i = 0; i < d->l2t_size; ++i) {
654 d->l2tab[i].idx = i;
655 d->l2tab[i].state = L2T_STATE_UNUSED;
656 spin_lock_init(&d->l2tab[i].lock);
657 atomic_set(&d->l2tab[i].refcnt, 0);
658 skb_queue_head_init(&d->l2tab[i].arpq);
659 }
660 return d;
661 }
662
l2t_get_idx(struct seq_file * seq,loff_t pos)663 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
664 {
665 struct l2t_data *d = seq->private;
666
667 return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
668 }
669
l2t_seq_start(struct seq_file * seq,loff_t * pos)670 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
671 {
672 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
673 }
674
l2t_seq_next(struct seq_file * seq,void * v,loff_t * pos)675 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
676 {
677 v = l2t_get_idx(seq, *pos);
678 ++(*pos);
679 return v;
680 }
681
l2t_seq_stop(struct seq_file * seq,void * v)682 static void l2t_seq_stop(struct seq_file *seq, void *v)
683 {
684 }
685
l2e_state(const struct l2t_entry * e)686 static char l2e_state(const struct l2t_entry *e)
687 {
688 switch (e->state) {
689 case L2T_STATE_VALID: return 'V';
690 case L2T_STATE_STALE: return 'S';
691 case L2T_STATE_SYNC_WRITE: return 'W';
692 case L2T_STATE_RESOLVING:
693 return skb_queue_empty(&e->arpq) ? 'R' : 'A';
694 case L2T_STATE_SWITCHING: return 'X';
695 default:
696 return 'U';
697 }
698 }
699
cxgb4_check_l2t_valid(struct l2t_entry * e)700 bool cxgb4_check_l2t_valid(struct l2t_entry *e)
701 {
702 bool valid;
703
704 spin_lock(&e->lock);
705 valid = (e->state == L2T_STATE_VALID);
706 spin_unlock(&e->lock);
707 return valid;
708 }
709 EXPORT_SYMBOL(cxgb4_check_l2t_valid);
710
l2t_seq_show(struct seq_file * seq,void * v)711 static int l2t_seq_show(struct seq_file *seq, void *v)
712 {
713 if (v == SEQ_START_TOKEN)
714 seq_puts(seq, " Idx IP address "
715 "Ethernet address VLAN/P LP State Users Port\n");
716 else {
717 char ip[60];
718 struct l2t_data *d = seq->private;
719 struct l2t_entry *e = v;
720
721 spin_lock_bh(&e->lock);
722 if (e->state == L2T_STATE_SWITCHING)
723 ip[0] = '\0';
724 else
725 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
726 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
727 e->idx + d->l2t_start, ip, e->dmac,
728 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
729 l2e_state(e), atomic_read(&e->refcnt),
730 e->neigh ? e->neigh->dev->name : "");
731 spin_unlock_bh(&e->lock);
732 }
733 return 0;
734 }
735
736 static const struct seq_operations l2t_seq_ops = {
737 .start = l2t_seq_start,
738 .next = l2t_seq_next,
739 .stop = l2t_seq_stop,
740 .show = l2t_seq_show
741 };
742
l2t_seq_open(struct inode * inode,struct file * file)743 static int l2t_seq_open(struct inode *inode, struct file *file)
744 {
745 int rc = seq_open(file, &l2t_seq_ops);
746
747 if (!rc) {
748 struct adapter *adap = inode->i_private;
749 struct seq_file *seq = file->private_data;
750
751 seq->private = adap->l2t;
752 }
753 return rc;
754 }
755
756 const struct file_operations t4_l2t_fops = {
757 .owner = THIS_MODULE,
758 .open = l2t_seq_open,
759 .read = seq_read,
760 .llseek = seq_lseek,
761 .release = seq_release,
762 };
763