1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include "common.h"
33 #include "regs.h"
34 #include "sge_defs.h"
35 #include "firmware_exports.h"
36
37 static void t3_port_intr_clear(struct adapter *adapter, int idx);
38
39 /**
40 * t3_wait_op_done_val - wait until an operation is completed
41 * @adapter: the adapter performing the operation
42 * @reg: the register to check for completion
43 * @mask: a single-bit field within @reg that indicates completion
44 * @polarity: the value of the field when the operation is completed
45 * @attempts: number of check iterations
46 * @delay: delay in usecs between iterations
47 * @valp: where to store the value of the register at completion time
48 *
49 * Wait until an operation is completed by checking a bit in a register
50 * up to @attempts times. If @valp is not NULL the value of the register
51 * at the time it indicated completion is stored there. Returns 0 if the
52 * operation completes and -EAGAIN otherwise.
53 */
54
t3_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)55 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
56 int polarity, int attempts, int delay, u32 *valp)
57 {
58 while (1) {
59 u32 val = t3_read_reg(adapter, reg);
60
61 if (!!(val & mask) == polarity) {
62 if (valp)
63 *valp = val;
64 return 0;
65 }
66 if (--attempts == 0)
67 return -EAGAIN;
68 if (delay)
69 udelay(delay);
70 }
71 }
72
73 /**
74 * t3_write_regs - write a bunch of registers
75 * @adapter: the adapter to program
76 * @p: an array of register address/register value pairs
77 * @n: the number of address/value pairs
78 * @offset: register address offset
79 *
80 * Takes an array of register address/register value pairs and writes each
81 * value to the corresponding register. Register addresses are adjusted
82 * by the supplied offset.
83 */
t3_write_regs(struct adapter * adapter,const struct addr_val_pair * p,int n,unsigned int offset)84 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
85 int n, unsigned int offset)
86 {
87 while (n--) {
88 t3_write_reg(adapter, p->reg_addr + offset, p->val);
89 p++;
90 }
91 }
92
93 /**
94 * t3_set_reg_field - set a register field to a value
95 * @adapter: the adapter to program
96 * @addr: the register address
97 * @mask: specifies the portion of the register to modify
98 * @val: the new value for the register field
99 *
100 * Sets a register field specified by the supplied mask to the
101 * given value.
102 */
t3_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)103 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
104 u32 val)
105 {
106 u32 v = t3_read_reg(adapter, addr) & ~mask;
107
108 t3_write_reg(adapter, addr, v | val);
109 t3_read_reg(adapter, addr); /* flush */
110 }
111
112 /**
113 * t3_read_indirect - read indirectly addressed registers
114 * @adap: the adapter
115 * @addr_reg: register holding the indirect address
116 * @data_reg: register holding the value of the indirect register
117 * @vals: where the read register values are stored
118 * @start_idx: index of first indirect register to read
119 * @nregs: how many indirect registers to read
120 *
121 * Reads registers that are accessed indirectly through an address/data
122 * register pair.
123 */
t3_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)124 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
125 unsigned int data_reg, u32 *vals,
126 unsigned int nregs, unsigned int start_idx)
127 {
128 while (nregs--) {
129 t3_write_reg(adap, addr_reg, start_idx);
130 *vals++ = t3_read_reg(adap, data_reg);
131 start_idx++;
132 }
133 }
134
135 /**
136 * t3_mc7_bd_read - read from MC7 through backdoor accesses
137 * @mc7: identifies MC7 to read from
138 * @start: index of first 64-bit word to read
139 * @n: number of 64-bit words to read
140 * @buf: where to store the read result
141 *
142 * Read n 64-bit words from MC7 starting at word start, using backdoor
143 * accesses.
144 */
t3_mc7_bd_read(struct mc7 * mc7,unsigned int start,unsigned int n,u64 * buf)145 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
146 u64 *buf)
147 {
148 static const int shift[] = { 0, 0, 16, 24 };
149 static const int step[] = { 0, 32, 16, 8 };
150
151 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
152 struct adapter *adap = mc7->adapter;
153
154 if (start >= size64 || start + n > size64)
155 return -EINVAL;
156
157 start *= (8 << mc7->width);
158 while (n--) {
159 int i;
160 u64 val64 = 0;
161
162 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
163 int attempts = 10;
164 u32 val;
165
166 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
167 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
168 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
169 while ((val & F_BUSY) && attempts--)
170 val = t3_read_reg(adap,
171 mc7->offset + A_MC7_BD_OP);
172 if (val & F_BUSY)
173 return -EIO;
174
175 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
176 if (mc7->width == 0) {
177 val64 = t3_read_reg(adap,
178 mc7->offset +
179 A_MC7_BD_DATA0);
180 val64 |= (u64) val << 32;
181 } else {
182 if (mc7->width > 1)
183 val >>= shift[mc7->width];
184 val64 |= (u64) val << (step[mc7->width] * i);
185 }
186 start += 8;
187 }
188 *buf++ = val64;
189 }
190 return 0;
191 }
192
193 /*
194 * Initialize MI1.
195 */
mi1_init(struct adapter * adap,const struct adapter_info * ai)196 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
197 {
198 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
199 u32 val = F_PREEN | V_CLKDIV(clkdiv);
200
201 t3_write_reg(adap, A_MI1_CFG, val);
202 }
203
204 #define MDIO_ATTEMPTS 20
205
206 /*
207 * MI1 read/write operations for clause 22 PHYs.
208 */
t3_mi1_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)209 static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
210 u16 reg_addr)
211 {
212 struct port_info *pi = netdev_priv(dev);
213 struct adapter *adapter = pi->adapter;
214 int ret;
215 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
216
217 mutex_lock(&adapter->mdio_lock);
218 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
219 t3_write_reg(adapter, A_MI1_ADDR, addr);
220 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
221 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
222 if (!ret)
223 ret = t3_read_reg(adapter, A_MI1_DATA);
224 mutex_unlock(&adapter->mdio_lock);
225 return ret;
226 }
227
t3_mi1_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)228 static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
229 u16 reg_addr, u16 val)
230 {
231 struct port_info *pi = netdev_priv(dev);
232 struct adapter *adapter = pi->adapter;
233 int ret;
234 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
235
236 mutex_lock(&adapter->mdio_lock);
237 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
238 t3_write_reg(adapter, A_MI1_ADDR, addr);
239 t3_write_reg(adapter, A_MI1_DATA, val);
240 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
241 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
242 mutex_unlock(&adapter->mdio_lock);
243 return ret;
244 }
245
246 static const struct mdio_ops mi1_mdio_ops = {
247 .read = t3_mi1_read,
248 .write = t3_mi1_write,
249 .mode_support = MDIO_SUPPORTS_C22
250 };
251
252 /*
253 * Performs the address cycle for clause 45 PHYs.
254 * Must be called with the MDIO_LOCK held.
255 */
mi1_wr_addr(struct adapter * adapter,int phy_addr,int mmd_addr,int reg_addr)256 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
257 int reg_addr)
258 {
259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260
261 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
262 t3_write_reg(adapter, A_MI1_ADDR, addr);
263 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
266 MDIO_ATTEMPTS, 10);
267 }
268
269 /*
270 * MI1 read/write operations for indirect-addressed PHYs.
271 */
mi1_ext_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)272 static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
273 u16 reg_addr)
274 {
275 struct port_info *pi = netdev_priv(dev);
276 struct adapter *adapter = pi->adapter;
277 int ret;
278
279 mutex_lock(&adapter->mdio_lock);
280 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
281 if (!ret) {
282 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
283 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
284 MDIO_ATTEMPTS, 10);
285 if (!ret)
286 ret = t3_read_reg(adapter, A_MI1_DATA);
287 }
288 mutex_unlock(&adapter->mdio_lock);
289 return ret;
290 }
291
mi1_ext_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)292 static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
293 u16 reg_addr, u16 val)
294 {
295 struct port_info *pi = netdev_priv(dev);
296 struct adapter *adapter = pi->adapter;
297 int ret;
298
299 mutex_lock(&adapter->mdio_lock);
300 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
301 if (!ret) {
302 t3_write_reg(adapter, A_MI1_DATA, val);
303 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
304 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
305 MDIO_ATTEMPTS, 10);
306 }
307 mutex_unlock(&adapter->mdio_lock);
308 return ret;
309 }
310
311 static const struct mdio_ops mi1_mdio_ext_ops = {
312 .read = mi1_ext_read,
313 .write = mi1_ext_write,
314 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
315 };
316
317 /**
318 * t3_mdio_change_bits - modify the value of a PHY register
319 * @phy: the PHY to operate on
320 * @mmd: the device address
321 * @reg: the register address
322 * @clear: what part of the register value to mask off
323 * @set: what part of the register value to set
324 *
325 * Changes the value of a PHY register by applying a mask to its current
326 * value and ORing the result with a new value.
327 */
t3_mdio_change_bits(struct cphy * phy,int mmd,int reg,unsigned int clear,unsigned int set)328 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
329 unsigned int set)
330 {
331 int ret;
332 unsigned int val;
333
334 ret = t3_mdio_read(phy, mmd, reg, &val);
335 if (!ret) {
336 val &= ~clear;
337 ret = t3_mdio_write(phy, mmd, reg, val | set);
338 }
339 return ret;
340 }
341
342 /**
343 * t3_phy_reset - reset a PHY block
344 * @phy: the PHY to operate on
345 * @mmd: the device address of the PHY block to reset
346 * @wait: how long to wait for the reset to complete in 1ms increments
347 *
348 * Resets a PHY block and optionally waits for the reset to complete.
349 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
350 * for 10G PHYs.
351 */
t3_phy_reset(struct cphy * phy,int mmd,int wait)352 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
353 {
354 int err;
355 unsigned int ctl;
356
357 err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
358 MDIO_CTRL1_RESET);
359 if (err || !wait)
360 return err;
361
362 do {
363 err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
364 if (err)
365 return err;
366 ctl &= MDIO_CTRL1_RESET;
367 if (ctl)
368 msleep(1);
369 } while (ctl && --wait);
370
371 return ctl ? -1 : 0;
372 }
373
374 /**
375 * t3_phy_advertise - set the PHY advertisement registers for autoneg
376 * @phy: the PHY to operate on
377 * @advert: bitmap of capabilities the PHY should advertise
378 *
379 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
380 * requested capabilities.
381 */
t3_phy_advertise(struct cphy * phy,unsigned int advert)382 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
383 {
384 int err;
385 unsigned int val = 0;
386
387 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
388 if (err)
389 return err;
390
391 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
392 if (advert & ADVERTISED_1000baseT_Half)
393 val |= ADVERTISE_1000HALF;
394 if (advert & ADVERTISED_1000baseT_Full)
395 val |= ADVERTISE_1000FULL;
396
397 err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
398 if (err)
399 return err;
400
401 val = 1;
402 if (advert & ADVERTISED_10baseT_Half)
403 val |= ADVERTISE_10HALF;
404 if (advert & ADVERTISED_10baseT_Full)
405 val |= ADVERTISE_10FULL;
406 if (advert & ADVERTISED_100baseT_Half)
407 val |= ADVERTISE_100HALF;
408 if (advert & ADVERTISED_100baseT_Full)
409 val |= ADVERTISE_100FULL;
410 if (advert & ADVERTISED_Pause)
411 val |= ADVERTISE_PAUSE_CAP;
412 if (advert & ADVERTISED_Asym_Pause)
413 val |= ADVERTISE_PAUSE_ASYM;
414 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
415 }
416
417 /**
418 * t3_phy_advertise_fiber - set fiber PHY advertisement register
419 * @phy: the PHY to operate on
420 * @advert: bitmap of capabilities the PHY should advertise
421 *
422 * Sets a fiber PHY's advertisement register to advertise the
423 * requested capabilities.
424 */
t3_phy_advertise_fiber(struct cphy * phy,unsigned int advert)425 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
426 {
427 unsigned int val = 0;
428
429 if (advert & ADVERTISED_1000baseT_Half)
430 val |= ADVERTISE_1000XHALF;
431 if (advert & ADVERTISED_1000baseT_Full)
432 val |= ADVERTISE_1000XFULL;
433 if (advert & ADVERTISED_Pause)
434 val |= ADVERTISE_1000XPAUSE;
435 if (advert & ADVERTISED_Asym_Pause)
436 val |= ADVERTISE_1000XPSE_ASYM;
437 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
438 }
439
440 /**
441 * t3_set_phy_speed_duplex - force PHY speed and duplex
442 * @phy: the PHY to operate on
443 * @speed: requested PHY speed
444 * @duplex: requested PHY duplex
445 *
446 * Force a 10/100/1000 PHY's speed and duplex. This also disables
447 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
448 */
t3_set_phy_speed_duplex(struct cphy * phy,int speed,int duplex)449 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
450 {
451 int err;
452 unsigned int ctl;
453
454 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
455 if (err)
456 return err;
457
458 if (speed >= 0) {
459 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
460 if (speed == SPEED_100)
461 ctl |= BMCR_SPEED100;
462 else if (speed == SPEED_1000)
463 ctl |= BMCR_SPEED1000;
464 }
465 if (duplex >= 0) {
466 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
467 if (duplex == DUPLEX_FULL)
468 ctl |= BMCR_FULLDPLX;
469 }
470 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
471 ctl |= BMCR_ANENABLE;
472 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
473 }
474
t3_phy_lasi_intr_enable(struct cphy * phy)475 int t3_phy_lasi_intr_enable(struct cphy *phy)
476 {
477 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
478 MDIO_PMA_LASI_LSALARM);
479 }
480
t3_phy_lasi_intr_disable(struct cphy * phy)481 int t3_phy_lasi_intr_disable(struct cphy *phy)
482 {
483 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
484 }
485
t3_phy_lasi_intr_clear(struct cphy * phy)486 int t3_phy_lasi_intr_clear(struct cphy *phy)
487 {
488 u32 val;
489
490 return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
491 }
492
t3_phy_lasi_intr_handler(struct cphy * phy)493 int t3_phy_lasi_intr_handler(struct cphy *phy)
494 {
495 unsigned int status;
496 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
497 &status);
498
499 if (err)
500 return err;
501 return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
502 }
503
504 static const struct adapter_info t3_adap_info[] = {
505 {1, 1, 0,
506 F_GPIO2_OEN | F_GPIO4_OEN |
507 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
508 &mi1_mdio_ops, "Chelsio PE9000"},
509 {1, 1, 0,
510 F_GPIO2_OEN | F_GPIO4_OEN |
511 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
512 &mi1_mdio_ops, "Chelsio T302"},
513 {1, 0, 0,
514 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
515 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
516 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
517 &mi1_mdio_ext_ops, "Chelsio T310"},
518 {1, 1, 0,
519 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
520 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
521 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
522 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
523 &mi1_mdio_ext_ops, "Chelsio T320"},
524 {},
525 {},
526 {1, 0, 0,
527 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
528 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
529 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
530 &mi1_mdio_ext_ops, "Chelsio T310" },
531 {1, 0, 0,
532 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
533 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
534 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
535 &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
536 };
537
538 /*
539 * Return the adapter_info structure with a given index. Out-of-range indices
540 * return NULL.
541 */
t3_get_adapter_info(unsigned int id)542 const struct adapter_info *t3_get_adapter_info(unsigned int id)
543 {
544 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
545 }
546
547 struct port_type_info {
548 int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
549 int phy_addr, const struct mdio_ops *ops);
550 };
551
552 static const struct port_type_info port_types[] = {
553 { NULL },
554 { t3_ael1002_phy_prep },
555 { t3_vsc8211_phy_prep },
556 { NULL},
557 { t3_xaui_direct_phy_prep },
558 { t3_ael2005_phy_prep },
559 { t3_qt2045_phy_prep },
560 { t3_ael1006_phy_prep },
561 { NULL },
562 { t3_aq100x_phy_prep },
563 { t3_ael2020_phy_prep },
564 };
565
566 #define VPD_ENTRY(name, len) \
567 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
568
569 /*
570 * Partial EEPROM Vital Product Data structure. Includes only the ID and
571 * VPD-R sections.
572 */
573 struct t3_vpd {
574 u8 id_tag;
575 u8 id_len[2];
576 u8 id_data[16];
577 u8 vpdr_tag;
578 u8 vpdr_len[2];
579 VPD_ENTRY(pn, 16); /* part number */
580 VPD_ENTRY(ec, 16); /* EC level */
581 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
582 VPD_ENTRY(na, 12); /* MAC address base */
583 VPD_ENTRY(cclk, 6); /* core clock */
584 VPD_ENTRY(mclk, 6); /* mem clock */
585 VPD_ENTRY(uclk, 6); /* uP clk */
586 VPD_ENTRY(mdc, 6); /* MDIO clk */
587 VPD_ENTRY(mt, 2); /* mem timing */
588 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
589 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
590 VPD_ENTRY(port0, 2); /* PHY0 complex */
591 VPD_ENTRY(port1, 2); /* PHY1 complex */
592 VPD_ENTRY(port2, 2); /* PHY2 complex */
593 VPD_ENTRY(port3, 2); /* PHY3 complex */
594 VPD_ENTRY(rv, 1); /* csum */
595 u32 pad; /* for multiple-of-4 sizing and alignment */
596 };
597
598 #define EEPROM_MAX_POLL 40
599 #define EEPROM_STAT_ADDR 0x4000
600 #define VPD_BASE 0xc00
601
602 /**
603 * t3_seeprom_read - read a VPD EEPROM location
604 * @adapter: adapter to read
605 * @addr: EEPROM address
606 * @data: where to store the read data
607 *
608 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
609 * VPD ROM capability. A zero is written to the flag bit when the
610 * address is written to the control register. The hardware device will
611 * set the flag to 1 when 4 bytes have been read into the data register.
612 */
t3_seeprom_read(struct adapter * adapter,u32 addr,__le32 * data)613 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
614 {
615 u16 val;
616 int attempts = EEPROM_MAX_POLL;
617 u32 v;
618 unsigned int base = adapter->params.pci.vpd_cap_addr;
619
620 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
621 return -EINVAL;
622
623 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
624 do {
625 udelay(10);
626 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
627 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
628
629 if (!(val & PCI_VPD_ADDR_F)) {
630 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
631 return -EIO;
632 }
633 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
634 *data = cpu_to_le32(v);
635 return 0;
636 }
637
638 /**
639 * t3_seeprom_write - write a VPD EEPROM location
640 * @adapter: adapter to write
641 * @addr: EEPROM address
642 * @data: value to write
643 *
644 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
645 * VPD ROM capability.
646 */
t3_seeprom_write(struct adapter * adapter,u32 addr,__le32 data)647 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
648 {
649 u16 val;
650 int attempts = EEPROM_MAX_POLL;
651 unsigned int base = adapter->params.pci.vpd_cap_addr;
652
653 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
654 return -EINVAL;
655
656 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
657 le32_to_cpu(data));
658 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
659 addr | PCI_VPD_ADDR_F);
660 do {
661 msleep(1);
662 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
663 } while ((val & PCI_VPD_ADDR_F) && --attempts);
664
665 if (val & PCI_VPD_ADDR_F) {
666 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
667 return -EIO;
668 }
669 return 0;
670 }
671
672 /**
673 * t3_seeprom_wp - enable/disable EEPROM write protection
674 * @adapter: the adapter
675 * @enable: 1 to enable write protection, 0 to disable it
676 *
677 * Enables or disables write protection on the serial EEPROM.
678 */
t3_seeprom_wp(struct adapter * adapter,int enable)679 int t3_seeprom_wp(struct adapter *adapter, int enable)
680 {
681 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
682 }
683
684 /**
685 * get_vpd_params - read VPD parameters from VPD EEPROM
686 * @adapter: adapter to read
687 * @p: where to store the parameters
688 *
689 * Reads card parameters stored in VPD EEPROM.
690 */
get_vpd_params(struct adapter * adapter,struct vpd_params * p)691 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
692 {
693 int i, addr, ret;
694 struct t3_vpd vpd;
695
696 /*
697 * Card information is normally at VPD_BASE but some early cards had
698 * it at 0.
699 */
700 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
701 if (ret)
702 return ret;
703 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
704
705 for (i = 0; i < sizeof(vpd); i += 4) {
706 ret = t3_seeprom_read(adapter, addr + i,
707 (__le32 *)((u8 *)&vpd + i));
708 if (ret)
709 return ret;
710 }
711
712 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
713 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
714 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
715 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
716 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
717 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
718
719 /* Old eeproms didn't have port information */
720 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
721 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
722 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
723 } else {
724 p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
725 p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
726 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
727 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
728 }
729
730 for (i = 0; i < 6; i++)
731 p->eth_base[i] = hex_to_bin(vpd.na_data[2 * i]) * 16 +
732 hex_to_bin(vpd.na_data[2 * i + 1]);
733 return 0;
734 }
735
736 /* serial flash and firmware constants */
737 enum {
738 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
739 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
740 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
741
742 /* flash command opcodes */
743 SF_PROG_PAGE = 2, /* program page */
744 SF_WR_DISABLE = 4, /* disable writes */
745 SF_RD_STATUS = 5, /* read status register */
746 SF_WR_ENABLE = 6, /* enable writes */
747 SF_RD_DATA_FAST = 0xb, /* read flash */
748 SF_ERASE_SECTOR = 0xd8, /* erase sector */
749
750 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
751 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
752 FW_MIN_SIZE = 8 /* at least version and csum */
753 };
754
755 /**
756 * sf1_read - read data from the serial flash
757 * @adapter: the adapter
758 * @byte_cnt: number of bytes to read
759 * @cont: whether another operation will be chained
760 * @valp: where to store the read data
761 *
762 * Reads up to 4 bytes of data from the serial flash. The location of
763 * the read needs to be specified prior to calling this by issuing the
764 * appropriate commands to the serial flash.
765 */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,u32 * valp)766 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
767 u32 *valp)
768 {
769 int ret;
770
771 if (!byte_cnt || byte_cnt > 4)
772 return -EINVAL;
773 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
774 return -EBUSY;
775 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
776 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
777 if (!ret)
778 *valp = t3_read_reg(adapter, A_SF_DATA);
779 return ret;
780 }
781
782 /**
783 * sf1_write - write data to the serial flash
784 * @adapter: the adapter
785 * @byte_cnt: number of bytes to write
786 * @cont: whether another operation will be chained
787 * @val: value to write
788 *
789 * Writes up to 4 bytes of data to the serial flash. The location of
790 * the write needs to be specified prior to calling this by issuing the
791 * appropriate commands to the serial flash.
792 */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,u32 val)793 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
794 u32 val)
795 {
796 if (!byte_cnt || byte_cnt > 4)
797 return -EINVAL;
798 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
799 return -EBUSY;
800 t3_write_reg(adapter, A_SF_DATA, val);
801 t3_write_reg(adapter, A_SF_OP,
802 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
803 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
804 }
805
806 /**
807 * flash_wait_op - wait for a flash operation to complete
808 * @adapter: the adapter
809 * @attempts: max number of polls of the status register
810 * @delay: delay between polls in ms
811 *
812 * Wait for a flash operation to complete by polling the status register.
813 */
flash_wait_op(struct adapter * adapter,int attempts,int delay)814 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
815 {
816 int ret;
817 u32 status;
818
819 while (1) {
820 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
821 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
822 return ret;
823 if (!(status & 1))
824 return 0;
825 if (--attempts == 0)
826 return -EAGAIN;
827 if (delay)
828 msleep(delay);
829 }
830 }
831
832 /**
833 * t3_read_flash - read words from serial flash
834 * @adapter: the adapter
835 * @addr: the start address for the read
836 * @nwords: how many 32-bit words to read
837 * @data: where to store the read data
838 * @byte_oriented: whether to store data as bytes or as words
839 *
840 * Read the specified number of 32-bit words from the serial flash.
841 * If @byte_oriented is set the read data is stored as a byte array
842 * (i.e., big-endian), otherwise as 32-bit words in the platform's
843 * natural endianess.
844 */
t3_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)845 static int t3_read_flash(struct adapter *adapter, unsigned int addr,
846 unsigned int nwords, u32 *data, int byte_oriented)
847 {
848 int ret;
849
850 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
851 return -EINVAL;
852
853 addr = swab32(addr) | SF_RD_DATA_FAST;
854
855 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
856 (ret = sf1_read(adapter, 1, 1, data)) != 0)
857 return ret;
858
859 for (; nwords; nwords--, data++) {
860 ret = sf1_read(adapter, 4, nwords > 1, data);
861 if (ret)
862 return ret;
863 if (byte_oriented)
864 *data = htonl(*data);
865 }
866 return 0;
867 }
868
869 /**
870 * t3_write_flash - write up to a page of data to the serial flash
871 * @adapter: the adapter
872 * @addr: the start address to write
873 * @n: length of data to write
874 * @data: the data to write
875 *
876 * Writes up to a page of data (256 bytes) to the serial flash starting
877 * at the given address.
878 */
t3_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data)879 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
880 unsigned int n, const u8 *data)
881 {
882 int ret;
883 u32 buf[64];
884 unsigned int i, c, left, val, offset = addr & 0xff;
885
886 if (addr + n > SF_SIZE || offset + n > 256)
887 return -EINVAL;
888
889 val = swab32(addr) | SF_PROG_PAGE;
890
891 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
892 (ret = sf1_write(adapter, 4, 1, val)) != 0)
893 return ret;
894
895 for (left = n; left; left -= c) {
896 c = min(left, 4U);
897 for (val = 0, i = 0; i < c; ++i)
898 val = (val << 8) + *data++;
899
900 ret = sf1_write(adapter, c, c != left, val);
901 if (ret)
902 return ret;
903 }
904 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
905 return ret;
906
907 /* Read the page to verify the write succeeded */
908 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
909 if (ret)
910 return ret;
911
912 if (memcmp(data - n, (u8 *) buf + offset, n))
913 return -EIO;
914 return 0;
915 }
916
917 /**
918 * t3_get_tp_version - read the tp sram version
919 * @adapter: the adapter
920 * @vers: where to place the version
921 *
922 * Reads the protocol sram version from sram.
923 */
t3_get_tp_version(struct adapter * adapter,u32 * vers)924 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
925 {
926 int ret;
927
928 /* Get version loaded in SRAM */
929 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
930 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
931 1, 1, 5, 1);
932 if (ret)
933 return ret;
934
935 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
936
937 return 0;
938 }
939
940 /**
941 * t3_check_tpsram_version - read the tp sram version
942 * @adapter: the adapter
943 *
944 * Reads the protocol sram version from flash.
945 */
t3_check_tpsram_version(struct adapter * adapter)946 int t3_check_tpsram_version(struct adapter *adapter)
947 {
948 int ret;
949 u32 vers;
950 unsigned int major, minor;
951
952 if (adapter->params.rev == T3_REV_A)
953 return 0;
954
955
956 ret = t3_get_tp_version(adapter, &vers);
957 if (ret)
958 return ret;
959
960 major = G_TP_VERSION_MAJOR(vers);
961 minor = G_TP_VERSION_MINOR(vers);
962
963 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
964 return 0;
965 else {
966 CH_ERR(adapter, "found wrong TP version (%u.%u), "
967 "driver compiled for version %d.%d\n", major, minor,
968 TP_VERSION_MAJOR, TP_VERSION_MINOR);
969 }
970 return -EINVAL;
971 }
972
973 /**
974 * t3_check_tpsram - check if provided protocol SRAM
975 * is compatible with this driver
976 * @adapter: the adapter
977 * @tp_sram: the firmware image to write
978 * @size: image size
979 *
980 * Checks if an adapter's tp sram is compatible with the driver.
981 * Returns 0 if the versions are compatible, a negative error otherwise.
982 */
t3_check_tpsram(struct adapter * adapter,const u8 * tp_sram,unsigned int size)983 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
984 unsigned int size)
985 {
986 u32 csum;
987 unsigned int i;
988 const __be32 *p = (const __be32 *)tp_sram;
989
990 /* Verify checksum */
991 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
992 csum += ntohl(p[i]);
993 if (csum != 0xffffffff) {
994 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
995 csum);
996 return -EINVAL;
997 }
998
999 return 0;
1000 }
1001
1002 enum fw_version_type {
1003 FW_VERSION_N3,
1004 FW_VERSION_T3
1005 };
1006
1007 /**
1008 * t3_get_fw_version - read the firmware version
1009 * @adapter: the adapter
1010 * @vers: where to place the version
1011 *
1012 * Reads the FW version from flash.
1013 */
t3_get_fw_version(struct adapter * adapter,u32 * vers)1014 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
1015 {
1016 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
1017 }
1018
1019 /**
1020 * t3_check_fw_version - check if the FW is compatible with this driver
1021 * @adapter: the adapter
1022 *
1023 * Checks if an adapter's FW is compatible with the driver. Returns 0
1024 * if the versions are compatible, a negative error otherwise.
1025 */
t3_check_fw_version(struct adapter * adapter)1026 int t3_check_fw_version(struct adapter *adapter)
1027 {
1028 int ret;
1029 u32 vers;
1030 unsigned int type, major, minor;
1031
1032 ret = t3_get_fw_version(adapter, &vers);
1033 if (ret)
1034 return ret;
1035
1036 type = G_FW_VERSION_TYPE(vers);
1037 major = G_FW_VERSION_MAJOR(vers);
1038 minor = G_FW_VERSION_MINOR(vers);
1039
1040 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
1041 minor == FW_VERSION_MINOR)
1042 return 0;
1043 else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
1044 CH_WARN(adapter, "found old FW minor version(%u.%u), "
1045 "driver compiled for version %u.%u\n", major, minor,
1046 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1047 else {
1048 CH_WARN(adapter, "found newer FW version(%u.%u), "
1049 "driver compiled for version %u.%u\n", major, minor,
1050 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1051 return 0;
1052 }
1053 return -EINVAL;
1054 }
1055
1056 /**
1057 * t3_flash_erase_sectors - erase a range of flash sectors
1058 * @adapter: the adapter
1059 * @start: the first sector to erase
1060 * @end: the last sector to erase
1061 *
1062 * Erases the sectors in the given range.
1063 */
t3_flash_erase_sectors(struct adapter * adapter,int start,int end)1064 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1065 {
1066 while (start <= end) {
1067 int ret;
1068
1069 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1070 (ret = sf1_write(adapter, 4, 0,
1071 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1072 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1073 return ret;
1074 start++;
1075 }
1076 return 0;
1077 }
1078
1079 /*
1080 * t3_load_fw - download firmware
1081 * @adapter: the adapter
1082 * @fw_data: the firmware image to write
1083 * @size: image size
1084 *
1085 * Write the supplied firmware image to the card's serial flash.
1086 * The FW image has the following sections: @size - 8 bytes of code and
1087 * data, followed by 4 bytes of FW version, followed by the 32-bit
1088 * 1's complement checksum of the whole image.
1089 */
t3_load_fw(struct adapter * adapter,const u8 * fw_data,unsigned int size)1090 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1091 {
1092 u32 csum;
1093 unsigned int i;
1094 const __be32 *p = (const __be32 *)fw_data;
1095 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1096
1097 if ((size & 3) || size < FW_MIN_SIZE)
1098 return -EINVAL;
1099 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1100 return -EFBIG;
1101
1102 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1103 csum += ntohl(p[i]);
1104 if (csum != 0xffffffff) {
1105 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1106 csum);
1107 return -EINVAL;
1108 }
1109
1110 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1111 if (ret)
1112 goto out;
1113
1114 size -= 8; /* trim off version and checksum */
1115 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1116 unsigned int chunk_size = min(size, 256U);
1117
1118 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1119 if (ret)
1120 goto out;
1121
1122 addr += chunk_size;
1123 fw_data += chunk_size;
1124 size -= chunk_size;
1125 }
1126
1127 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1128 out:
1129 if (ret)
1130 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1131 return ret;
1132 }
1133
1134 #define CIM_CTL_BASE 0x2000
1135
1136 /**
1137 * t3_cim_ctl_blk_read - read a block from CIM control region
1138 *
1139 * @adap: the adapter
1140 * @addr: the start address within the CIM control region
1141 * @n: number of words to read
1142 * @valp: where to store the result
1143 *
1144 * Reads a block of 4-byte words from the CIM control region.
1145 */
t3_cim_ctl_blk_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)1146 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1147 unsigned int n, unsigned int *valp)
1148 {
1149 int ret = 0;
1150
1151 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1152 return -EBUSY;
1153
1154 for ( ; !ret && n--; addr += 4) {
1155 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1156 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1157 0, 5, 2);
1158 if (!ret)
1159 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1160 }
1161 return ret;
1162 }
1163
t3_gate_rx_traffic(struct cmac * mac,u32 * rx_cfg,u32 * rx_hash_high,u32 * rx_hash_low)1164 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
1165 u32 *rx_hash_high, u32 *rx_hash_low)
1166 {
1167 /* stop Rx unicast traffic */
1168 t3_mac_disable_exact_filters(mac);
1169
1170 /* stop broadcast, multicast, promiscuous mode traffic */
1171 *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
1172 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1173 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1174 F_DISBCAST);
1175
1176 *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
1177 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
1178
1179 *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
1180 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
1181
1182 /* Leave time to drain max RX fifo */
1183 msleep(1);
1184 }
1185
t3_open_rx_traffic(struct cmac * mac,u32 rx_cfg,u32 rx_hash_high,u32 rx_hash_low)1186 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
1187 u32 rx_hash_high, u32 rx_hash_low)
1188 {
1189 t3_mac_enable_exact_filters(mac);
1190 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1191 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1192 rx_cfg);
1193 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
1194 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
1195 }
1196
1197 /**
1198 * t3_link_changed - handle interface link changes
1199 * @adapter: the adapter
1200 * @port_id: the port index that changed link state
1201 *
1202 * Called when a port's link settings change to propagate the new values
1203 * to the associated PHY and MAC. After performing the common tasks it
1204 * invokes an OS-specific handler.
1205 */
t3_link_changed(struct adapter * adapter,int port_id)1206 void t3_link_changed(struct adapter *adapter, int port_id)
1207 {
1208 int link_ok, speed, duplex, fc;
1209 struct port_info *pi = adap2pinfo(adapter, port_id);
1210 struct cphy *phy = &pi->phy;
1211 struct cmac *mac = &pi->mac;
1212 struct link_config *lc = &pi->link_config;
1213
1214 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1215
1216 if (!lc->link_ok && link_ok) {
1217 u32 rx_cfg, rx_hash_high, rx_hash_low;
1218 u32 status;
1219
1220 t3_xgm_intr_enable(adapter, port_id);
1221 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1222 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1223 t3_mac_enable(mac, MAC_DIRECTION_RX);
1224
1225 status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
1226 if (status & F_LINKFAULTCHANGE) {
1227 mac->stats.link_faults++;
1228 pi->link_fault = 1;
1229 }
1230 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1231 }
1232
1233 if (lc->requested_fc & PAUSE_AUTONEG)
1234 fc &= lc->requested_fc;
1235 else
1236 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1237
1238 if (link_ok == lc->link_ok && speed == lc->speed &&
1239 duplex == lc->duplex && fc == lc->fc)
1240 return; /* nothing changed */
1241
1242 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1243 uses_xaui(adapter)) {
1244 if (link_ok)
1245 t3b_pcs_reset(mac);
1246 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1247 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1248 }
1249 lc->link_ok = link_ok;
1250 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1251 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1252
1253 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1254 /* Set MAC speed, duplex, and flow control to match PHY. */
1255 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1256 lc->fc = fc;
1257 }
1258
1259 t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
1260 speed, duplex, fc);
1261 }
1262
t3_link_fault(struct adapter * adapter,int port_id)1263 void t3_link_fault(struct adapter *adapter, int port_id)
1264 {
1265 struct port_info *pi = adap2pinfo(adapter, port_id);
1266 struct cmac *mac = &pi->mac;
1267 struct cphy *phy = &pi->phy;
1268 struct link_config *lc = &pi->link_config;
1269 int link_ok, speed, duplex, fc, link_fault;
1270 u32 rx_cfg, rx_hash_high, rx_hash_low;
1271
1272 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1273
1274 if (adapter->params.rev > 0 && uses_xaui(adapter))
1275 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
1276
1277 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1278 t3_mac_enable(mac, MAC_DIRECTION_RX);
1279
1280 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1281
1282 link_fault = t3_read_reg(adapter,
1283 A_XGM_INT_STATUS + mac->offset);
1284 link_fault &= F_LINKFAULTCHANGE;
1285
1286 link_ok = lc->link_ok;
1287 speed = lc->speed;
1288 duplex = lc->duplex;
1289 fc = lc->fc;
1290
1291 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1292
1293 if (link_fault) {
1294 lc->link_ok = 0;
1295 lc->speed = SPEED_INVALID;
1296 lc->duplex = DUPLEX_INVALID;
1297
1298 t3_os_link_fault(adapter, port_id, 0);
1299
1300 /* Account link faults only when the phy reports a link up */
1301 if (link_ok)
1302 mac->stats.link_faults++;
1303 } else {
1304 if (link_ok)
1305 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1306 F_TXACTENABLE | F_RXEN);
1307
1308 pi->link_fault = 0;
1309 lc->link_ok = (unsigned char)link_ok;
1310 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1311 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1312 t3_os_link_fault(adapter, port_id, link_ok);
1313 }
1314 }
1315
1316 /**
1317 * t3_link_start - apply link configuration to MAC/PHY
1318 * @phy: the PHY to setup
1319 * @mac: the MAC to setup
1320 * @lc: the requested link configuration
1321 *
1322 * Set up a port's MAC and PHY according to a desired link configuration.
1323 * - If the PHY can auto-negotiate first decide what to advertise, then
1324 * enable/disable auto-negotiation as desired, and reset.
1325 * - If the PHY does not auto-negotiate just reset it.
1326 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1327 * otherwise do it later based on the outcome of auto-negotiation.
1328 */
t3_link_start(struct cphy * phy,struct cmac * mac,struct link_config * lc)1329 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1330 {
1331 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1332
1333 lc->link_ok = 0;
1334 if (lc->supported & SUPPORTED_Autoneg) {
1335 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1336 if (fc) {
1337 lc->advertising |= ADVERTISED_Asym_Pause;
1338 if (fc & PAUSE_RX)
1339 lc->advertising |= ADVERTISED_Pause;
1340 }
1341 phy->ops->advertise(phy, lc->advertising);
1342
1343 if (lc->autoneg == AUTONEG_DISABLE) {
1344 lc->speed = lc->requested_speed;
1345 lc->duplex = lc->requested_duplex;
1346 lc->fc = (unsigned char)fc;
1347 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1348 fc);
1349 /* Also disables autoneg */
1350 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1351 } else
1352 phy->ops->autoneg_enable(phy);
1353 } else {
1354 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1355 lc->fc = (unsigned char)fc;
1356 phy->ops->reset(phy, 0);
1357 }
1358 return 0;
1359 }
1360
1361 /**
1362 * t3_set_vlan_accel - control HW VLAN extraction
1363 * @adapter: the adapter
1364 * @ports: bitmap of adapter ports to operate on
1365 * @on: enable (1) or disable (0) HW VLAN extraction
1366 *
1367 * Enables or disables HW extraction of VLAN tags for the given port.
1368 */
t3_set_vlan_accel(struct adapter * adapter,unsigned int ports,int on)1369 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1370 {
1371 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1372 ports << S_VLANEXTRACTIONENABLE,
1373 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1374 }
1375
1376 struct intr_info {
1377 unsigned int mask; /* bits to check in interrupt status */
1378 const char *msg; /* message to print or NULL */
1379 short stat_idx; /* stat counter to increment or -1 */
1380 unsigned short fatal; /* whether the condition reported is fatal */
1381 };
1382
1383 /**
1384 * t3_handle_intr_status - table driven interrupt handler
1385 * @adapter: the adapter that generated the interrupt
1386 * @reg: the interrupt status register to process
1387 * @mask: a mask to apply to the interrupt status
1388 * @acts: table of interrupt actions
1389 * @stats: statistics counters tracking interrupt occurrences
1390 *
1391 * A table driven interrupt handler that applies a set of masks to an
1392 * interrupt status word and performs the corresponding actions if the
1393 * interrupts described by the mask have occurred. The actions include
1394 * optionally printing a warning or alert message, and optionally
1395 * incrementing a stat counter. The table is terminated by an entry
1396 * specifying mask 0. Returns the number of fatal interrupt conditions.
1397 */
t3_handle_intr_status(struct adapter * adapter,unsigned int reg,unsigned int mask,const struct intr_info * acts,unsigned long * stats)1398 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1399 unsigned int mask,
1400 const struct intr_info *acts,
1401 unsigned long *stats)
1402 {
1403 int fatal = 0;
1404 unsigned int status = t3_read_reg(adapter, reg) & mask;
1405
1406 for (; acts->mask; ++acts) {
1407 if (!(status & acts->mask))
1408 continue;
1409 if (acts->fatal) {
1410 fatal++;
1411 CH_ALERT(adapter, "%s (0x%x)\n",
1412 acts->msg, status & acts->mask);
1413 status &= ~acts->mask;
1414 } else if (acts->msg)
1415 CH_WARN(adapter, "%s (0x%x)\n",
1416 acts->msg, status & acts->mask);
1417 if (acts->stat_idx >= 0)
1418 stats[acts->stat_idx]++;
1419 }
1420 if (status) /* clear processed interrupts */
1421 t3_write_reg(adapter, reg, status);
1422 return fatal;
1423 }
1424
1425 #define SGE_INTR_MASK (F_RSPQDISABLED | \
1426 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
1427 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
1428 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
1429 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
1430 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
1431 F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
1432 F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
1433 F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
1434 F_LOPIODRBDROPERR)
1435 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1436 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1437 F_NFASRCHFAIL)
1438 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1439 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1440 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1441 F_TXFIFO_UNDERRUN)
1442 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1443 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1444 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1445 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1446 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1447 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1448 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1449 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1450 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1451 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
1452 F_TXPARERR | V_BISTERR(M_BISTERR))
1453 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
1454 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
1455 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
1456 #define ULPTX_INTR_MASK 0xfc
1457 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
1458 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1459 F_ZERO_SWITCH_ERROR)
1460 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1461 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1462 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1463 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
1464 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
1465 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
1466 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
1467 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
1468 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1469 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1470 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1471 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1472 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1473 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1474 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1475 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1476 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1477 V_MCAPARERRENB(M_MCAPARERRENB))
1478 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
1479 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1480 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1481 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1482 F_MPS0 | F_CPL_SWITCH)
1483 /*
1484 * Interrupt handler for the PCIX1 module.
1485 */
pci_intr_handler(struct adapter * adapter)1486 static void pci_intr_handler(struct adapter *adapter)
1487 {
1488 static const struct intr_info pcix1_intr_info[] = {
1489 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1490 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1491 {F_RCVTARABT, "PCI received target abort", -1, 1},
1492 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1493 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1494 {F_DETPARERR, "PCI detected parity error", -1, 1},
1495 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1496 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1497 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1498 1},
1499 {F_DETCORECCERR, "PCI correctable ECC error",
1500 STAT_PCI_CORR_ECC, 0},
1501 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1502 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1503 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1504 1},
1505 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1506 1},
1507 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1508 1},
1509 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1510 "error", -1, 1},
1511 {0}
1512 };
1513
1514 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1515 pcix1_intr_info, adapter->irq_stats))
1516 t3_fatal_err(adapter);
1517 }
1518
1519 /*
1520 * Interrupt handler for the PCIE module.
1521 */
pcie_intr_handler(struct adapter * adapter)1522 static void pcie_intr_handler(struct adapter *adapter)
1523 {
1524 static const struct intr_info pcie_intr_info[] = {
1525 {F_PEXERR, "PCI PEX error", -1, 1},
1526 {F_UNXSPLCPLERRR,
1527 "PCI unexpected split completion DMA read error", -1, 1},
1528 {F_UNXSPLCPLERRC,
1529 "PCI unexpected split completion DMA command error", -1, 1},
1530 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1531 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1532 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1533 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1534 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1535 "PCI MSI-X table/PBA parity error", -1, 1},
1536 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
1537 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
1538 {F_RXPARERR, "PCI Rx parity error", -1, 1},
1539 {F_TXPARERR, "PCI Tx parity error", -1, 1},
1540 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1541 {0}
1542 };
1543
1544 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1545 CH_ALERT(adapter, "PEX error code 0x%x\n",
1546 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1547
1548 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1549 pcie_intr_info, adapter->irq_stats))
1550 t3_fatal_err(adapter);
1551 }
1552
1553 /*
1554 * TP interrupt handler.
1555 */
tp_intr_handler(struct adapter * adapter)1556 static void tp_intr_handler(struct adapter *adapter)
1557 {
1558 static const struct intr_info tp_intr_info[] = {
1559 {0xffffff, "TP parity error", -1, 1},
1560 {0x1000000, "TP out of Rx pages", -1, 1},
1561 {0x2000000, "TP out of Tx pages", -1, 1},
1562 {0}
1563 };
1564
1565 static const struct intr_info tp_intr_info_t3c[] = {
1566 {0x1fffffff, "TP parity error", -1, 1},
1567 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
1568 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
1569 {0}
1570 };
1571
1572 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1573 adapter->params.rev < T3_REV_C ?
1574 tp_intr_info : tp_intr_info_t3c, NULL))
1575 t3_fatal_err(adapter);
1576 }
1577
1578 /*
1579 * CIM interrupt handler.
1580 */
cim_intr_handler(struct adapter * adapter)1581 static void cim_intr_handler(struct adapter *adapter)
1582 {
1583 static const struct intr_info cim_intr_info[] = {
1584 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1585 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1586 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1587 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1588 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1589 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1590 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1591 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1592 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1593 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1594 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1595 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1596 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
1597 {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
1598 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
1599 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
1600 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
1601 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
1602 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
1603 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
1604 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
1605 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
1606 {F_ITAGPARERR, "CIM itag parity error", -1, 1},
1607 {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
1608 {0}
1609 };
1610
1611 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1612 cim_intr_info, NULL))
1613 t3_fatal_err(adapter);
1614 }
1615
1616 /*
1617 * ULP RX interrupt handler.
1618 */
ulprx_intr_handler(struct adapter * adapter)1619 static void ulprx_intr_handler(struct adapter *adapter)
1620 {
1621 static const struct intr_info ulprx_intr_info[] = {
1622 {F_PARERRDATA, "ULP RX data parity error", -1, 1},
1623 {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
1624 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
1625 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
1626 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
1627 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
1628 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
1629 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
1630 {0}
1631 };
1632
1633 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1634 ulprx_intr_info, NULL))
1635 t3_fatal_err(adapter);
1636 }
1637
1638 /*
1639 * ULP TX interrupt handler.
1640 */
ulptx_intr_handler(struct adapter * adapter)1641 static void ulptx_intr_handler(struct adapter *adapter)
1642 {
1643 static const struct intr_info ulptx_intr_info[] = {
1644 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1645 STAT_ULP_CH0_PBL_OOB, 0},
1646 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1647 STAT_ULP_CH1_PBL_OOB, 0},
1648 {0xfc, "ULP TX parity error", -1, 1},
1649 {0}
1650 };
1651
1652 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1653 ulptx_intr_info, adapter->irq_stats))
1654 t3_fatal_err(adapter);
1655 }
1656
1657 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1658 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1659 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1660 F_ICSPI1_TX_FRAMING_ERROR)
1661 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1662 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1663 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1664 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1665
1666 /*
1667 * PM TX interrupt handler.
1668 */
pmtx_intr_handler(struct adapter * adapter)1669 static void pmtx_intr_handler(struct adapter *adapter)
1670 {
1671 static const struct intr_info pmtx_intr_info[] = {
1672 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1673 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1674 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1675 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1676 "PMTX ispi parity error", -1, 1},
1677 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1678 "PMTX ospi parity error", -1, 1},
1679 {0}
1680 };
1681
1682 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1683 pmtx_intr_info, NULL))
1684 t3_fatal_err(adapter);
1685 }
1686
1687 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1688 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1689 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1690 F_IESPI1_TX_FRAMING_ERROR)
1691 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1692 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1693 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1694 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1695
1696 /*
1697 * PM RX interrupt handler.
1698 */
pmrx_intr_handler(struct adapter * adapter)1699 static void pmrx_intr_handler(struct adapter *adapter)
1700 {
1701 static const struct intr_info pmrx_intr_info[] = {
1702 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1703 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1704 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1705 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1706 "PMRX ispi parity error", -1, 1},
1707 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1708 "PMRX ospi parity error", -1, 1},
1709 {0}
1710 };
1711
1712 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1713 pmrx_intr_info, NULL))
1714 t3_fatal_err(adapter);
1715 }
1716
1717 /*
1718 * CPL switch interrupt handler.
1719 */
cplsw_intr_handler(struct adapter * adapter)1720 static void cplsw_intr_handler(struct adapter *adapter)
1721 {
1722 static const struct intr_info cplsw_intr_info[] = {
1723 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
1724 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
1725 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1726 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1727 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1728 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1729 {0}
1730 };
1731
1732 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1733 cplsw_intr_info, NULL))
1734 t3_fatal_err(adapter);
1735 }
1736
1737 /*
1738 * MPS interrupt handler.
1739 */
mps_intr_handler(struct adapter * adapter)1740 static void mps_intr_handler(struct adapter *adapter)
1741 {
1742 static const struct intr_info mps_intr_info[] = {
1743 {0x1ff, "MPS parity error", -1, 1},
1744 {0}
1745 };
1746
1747 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1748 mps_intr_info, NULL))
1749 t3_fatal_err(adapter);
1750 }
1751
1752 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1753
1754 /*
1755 * MC7 interrupt handler.
1756 */
mc7_intr_handler(struct mc7 * mc7)1757 static void mc7_intr_handler(struct mc7 *mc7)
1758 {
1759 struct adapter *adapter = mc7->adapter;
1760 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1761
1762 if (cause & F_CE) {
1763 mc7->stats.corr_err++;
1764 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1765 "data 0x%x 0x%x 0x%x\n", mc7->name,
1766 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1767 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1768 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1769 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1770 }
1771
1772 if (cause & F_UE) {
1773 mc7->stats.uncorr_err++;
1774 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1775 "data 0x%x 0x%x 0x%x\n", mc7->name,
1776 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1777 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1778 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1779 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1780 }
1781
1782 if (G_PE(cause)) {
1783 mc7->stats.parity_err++;
1784 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1785 mc7->name, G_PE(cause));
1786 }
1787
1788 if (cause & F_AE) {
1789 u32 addr = 0;
1790
1791 if (adapter->params.rev > 0)
1792 addr = t3_read_reg(adapter,
1793 mc7->offset + A_MC7_ERR_ADDR);
1794 mc7->stats.addr_err++;
1795 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1796 mc7->name, addr);
1797 }
1798
1799 if (cause & MC7_INTR_FATAL)
1800 t3_fatal_err(adapter);
1801
1802 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1803 }
1804
1805 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1806 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1807 /*
1808 * XGMAC interrupt handler.
1809 */
mac_intr_handler(struct adapter * adap,unsigned int idx)1810 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1811 {
1812 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1813 /*
1814 * We mask out interrupt causes for which we're not taking interrupts.
1815 * This allows us to use polling logic to monitor some of the other
1816 * conditions when taking interrupts would impose too much load on the
1817 * system.
1818 */
1819 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
1820 ~F_RXFIFO_OVERFLOW;
1821
1822 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1823 mac->stats.tx_fifo_parity_err++;
1824 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1825 }
1826 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1827 mac->stats.rx_fifo_parity_err++;
1828 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1829 }
1830 if (cause & F_TXFIFO_UNDERRUN)
1831 mac->stats.tx_fifo_urun++;
1832 if (cause & F_RXFIFO_OVERFLOW)
1833 mac->stats.rx_fifo_ovfl++;
1834 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1835 mac->stats.serdes_signal_loss++;
1836 if (cause & F_XAUIPCSCTCERR)
1837 mac->stats.xaui_pcs_ctc_err++;
1838 if (cause & F_XAUIPCSALIGNCHANGE)
1839 mac->stats.xaui_pcs_align_change++;
1840 if (cause & F_XGM_INT) {
1841 t3_set_reg_field(adap,
1842 A_XGM_INT_ENABLE + mac->offset,
1843 F_XGM_INT, 0);
1844 mac->stats.link_faults++;
1845
1846 t3_os_link_fault_handler(adap, idx);
1847 }
1848
1849 if (cause & XGM_INTR_FATAL)
1850 t3_fatal_err(adap);
1851
1852 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1853 return cause != 0;
1854 }
1855
1856 /*
1857 * Interrupt handler for PHY events.
1858 */
t3_phy_intr_handler(struct adapter * adapter)1859 int t3_phy_intr_handler(struct adapter *adapter)
1860 {
1861 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1862
1863 for_each_port(adapter, i) {
1864 struct port_info *p = adap2pinfo(adapter, i);
1865
1866 if (!(p->phy.caps & SUPPORTED_IRQ))
1867 continue;
1868
1869 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
1870 int phy_cause = p->phy.ops->intr_handler(&p->phy);
1871
1872 if (phy_cause & cphy_cause_link_change)
1873 t3_link_changed(adapter, i);
1874 if (phy_cause & cphy_cause_fifo_error)
1875 p->phy.fifo_errors++;
1876 if (phy_cause & cphy_cause_module_change)
1877 t3_os_phymod_changed(adapter, i);
1878 }
1879 }
1880
1881 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1882 return 0;
1883 }
1884
1885 /*
1886 * T3 slow path (non-data) interrupt handler.
1887 */
t3_slow_intr_handler(struct adapter * adapter)1888 int t3_slow_intr_handler(struct adapter *adapter)
1889 {
1890 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1891
1892 cause &= adapter->slow_intr_mask;
1893 if (!cause)
1894 return 0;
1895 if (cause & F_PCIM0) {
1896 if (is_pcie(adapter))
1897 pcie_intr_handler(adapter);
1898 else
1899 pci_intr_handler(adapter);
1900 }
1901 if (cause & F_SGE3)
1902 t3_sge_err_intr_handler(adapter);
1903 if (cause & F_MC7_PMRX)
1904 mc7_intr_handler(&adapter->pmrx);
1905 if (cause & F_MC7_PMTX)
1906 mc7_intr_handler(&adapter->pmtx);
1907 if (cause & F_MC7_CM)
1908 mc7_intr_handler(&adapter->cm);
1909 if (cause & F_CIM)
1910 cim_intr_handler(adapter);
1911 if (cause & F_TP1)
1912 tp_intr_handler(adapter);
1913 if (cause & F_ULP2_RX)
1914 ulprx_intr_handler(adapter);
1915 if (cause & F_ULP2_TX)
1916 ulptx_intr_handler(adapter);
1917 if (cause & F_PM1_RX)
1918 pmrx_intr_handler(adapter);
1919 if (cause & F_PM1_TX)
1920 pmtx_intr_handler(adapter);
1921 if (cause & F_CPL_SWITCH)
1922 cplsw_intr_handler(adapter);
1923 if (cause & F_MPS0)
1924 mps_intr_handler(adapter);
1925 if (cause & F_MC5A)
1926 t3_mc5_intr_handler(&adapter->mc5);
1927 if (cause & F_XGMAC0_0)
1928 mac_intr_handler(adapter, 0);
1929 if (cause & F_XGMAC0_1)
1930 mac_intr_handler(adapter, 1);
1931 if (cause & F_T3DBG)
1932 t3_os_ext_intr_handler(adapter);
1933
1934 /* Clear the interrupts just processed. */
1935 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1936 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1937 return 1;
1938 }
1939
calc_gpio_intr(struct adapter * adap)1940 static unsigned int calc_gpio_intr(struct adapter *adap)
1941 {
1942 unsigned int i, gpi_intr = 0;
1943
1944 for_each_port(adap, i)
1945 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
1946 adapter_info(adap)->gpio_intr[i])
1947 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
1948 return gpi_intr;
1949 }
1950
1951 /**
1952 * t3_intr_enable - enable interrupts
1953 * @adapter: the adapter whose interrupts should be enabled
1954 *
1955 * Enable interrupts by setting the interrupt enable registers of the
1956 * various HW modules and then enabling the top-level interrupt
1957 * concentrator.
1958 */
t3_intr_enable(struct adapter * adapter)1959 void t3_intr_enable(struct adapter *adapter)
1960 {
1961 static const struct addr_val_pair intr_en_avp[] = {
1962 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1963 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1964 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1965 MC7_INTR_MASK},
1966 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1967 MC7_INTR_MASK},
1968 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1969 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1970 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1971 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1972 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1973 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1974 };
1975
1976 adapter->slow_intr_mask = PL_INTR_MASK;
1977
1978 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1979 t3_write_reg(adapter, A_TP_INT_ENABLE,
1980 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
1981
1982 if (adapter->params.rev > 0) {
1983 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1984 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1985 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1986 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1987 F_PBL_BOUND_ERR_CH1);
1988 } else {
1989 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1990 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1991 }
1992
1993 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
1994
1995 if (is_pcie(adapter))
1996 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1997 else
1998 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1999 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
2000 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
2001 }
2002
2003 /**
2004 * t3_intr_disable - disable a card's interrupts
2005 * @adapter: the adapter whose interrupts should be disabled
2006 *
2007 * Disable interrupts. We only disable the top-level interrupt
2008 * concentrator and the SGE data interrupts.
2009 */
t3_intr_disable(struct adapter * adapter)2010 void t3_intr_disable(struct adapter *adapter)
2011 {
2012 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
2013 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
2014 adapter->slow_intr_mask = 0;
2015 }
2016
2017 /**
2018 * t3_intr_clear - clear all interrupts
2019 * @adapter: the adapter whose interrupts should be cleared
2020 *
2021 * Clears all interrupts.
2022 */
t3_intr_clear(struct adapter * adapter)2023 void t3_intr_clear(struct adapter *adapter)
2024 {
2025 static const unsigned int cause_reg_addr[] = {
2026 A_SG_INT_CAUSE,
2027 A_SG_RSPQ_FL_STATUS,
2028 A_PCIX_INT_CAUSE,
2029 A_MC7_INT_CAUSE,
2030 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
2031 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
2032 A_CIM_HOST_INT_CAUSE,
2033 A_TP_INT_CAUSE,
2034 A_MC5_DB_INT_CAUSE,
2035 A_ULPRX_INT_CAUSE,
2036 A_ULPTX_INT_CAUSE,
2037 A_CPL_INTR_CAUSE,
2038 A_PM1_TX_INT_CAUSE,
2039 A_PM1_RX_INT_CAUSE,
2040 A_MPS_INT_CAUSE,
2041 A_T3DBG_INT_CAUSE,
2042 };
2043 unsigned int i;
2044
2045 /* Clear PHY and MAC interrupts for each port. */
2046 for_each_port(adapter, i)
2047 t3_port_intr_clear(adapter, i);
2048
2049 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
2050 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
2051
2052 if (is_pcie(adapter))
2053 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
2054 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
2055 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
2056 }
2057
t3_xgm_intr_enable(struct adapter * adapter,int idx)2058 void t3_xgm_intr_enable(struct adapter *adapter, int idx)
2059 {
2060 struct port_info *pi = adap2pinfo(adapter, idx);
2061
2062 t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
2063 XGM_EXTRA_INTR_MASK);
2064 }
2065
t3_xgm_intr_disable(struct adapter * adapter,int idx)2066 void t3_xgm_intr_disable(struct adapter *adapter, int idx)
2067 {
2068 struct port_info *pi = adap2pinfo(adapter, idx);
2069
2070 t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
2071 0x7ff);
2072 }
2073
2074 /**
2075 * t3_port_intr_enable - enable port-specific interrupts
2076 * @adapter: associated adapter
2077 * @idx: index of port whose interrupts should be enabled
2078 *
2079 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
2080 * adapter port.
2081 */
t3_port_intr_enable(struct adapter * adapter,int idx)2082 void t3_port_intr_enable(struct adapter *adapter, int idx)
2083 {
2084 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2085
2086 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
2087 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2088 phy->ops->intr_enable(phy);
2089 }
2090
2091 /**
2092 * t3_port_intr_disable - disable port-specific interrupts
2093 * @adapter: associated adapter
2094 * @idx: index of port whose interrupts should be disabled
2095 *
2096 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
2097 * adapter port.
2098 */
t3_port_intr_disable(struct adapter * adapter,int idx)2099 void t3_port_intr_disable(struct adapter *adapter, int idx)
2100 {
2101 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2102
2103 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
2104 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2105 phy->ops->intr_disable(phy);
2106 }
2107
2108 /**
2109 * t3_port_intr_clear - clear port-specific interrupts
2110 * @adapter: associated adapter
2111 * @idx: index of port whose interrupts to clear
2112 *
2113 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
2114 * adapter port.
2115 */
t3_port_intr_clear(struct adapter * adapter,int idx)2116 static void t3_port_intr_clear(struct adapter *adapter, int idx)
2117 {
2118 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2119
2120 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
2121 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
2122 phy->ops->intr_clear(phy);
2123 }
2124
2125 #define SG_CONTEXT_CMD_ATTEMPTS 100
2126
2127 /**
2128 * t3_sge_write_context - write an SGE context
2129 * @adapter: the adapter
2130 * @id: the context id
2131 * @type: the context type
2132 *
2133 * Program an SGE context with the values already loaded in the
2134 * CONTEXT_DATA? registers.
2135 */
t3_sge_write_context(struct adapter * adapter,unsigned int id,unsigned int type)2136 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
2137 unsigned int type)
2138 {
2139 if (type == F_RESPONSEQ) {
2140 /*
2141 * Can't write the Response Queue Context bits for
2142 * Interrupt Armed or the Reserve bits after the chip
2143 * has been initialized out of reset. Writing to these
2144 * bits can confuse the hardware.
2145 */
2146 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2147 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2148 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
2149 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2150 } else {
2151 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2152 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2153 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
2154 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2155 }
2156 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2157 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2158 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2159 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2160 }
2161
2162 /**
2163 * clear_sge_ctxt - completely clear an SGE context
2164 * @adapter: the adapter
2165 * @id: the context id
2166 * @type: the context type
2167 *
2168 * Completely clear an SGE context. Used predominantly at post-reset
2169 * initialization. Note in particular that we don't skip writing to any
2170 * "sensitive bits" in the contexts the way that t3_sge_write_context()
2171 * does ...
2172 */
clear_sge_ctxt(struct adapter * adap,unsigned int id,unsigned int type)2173 static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
2174 unsigned int type)
2175 {
2176 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
2177 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
2178 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
2179 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
2180 t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
2181 t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
2182 t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
2183 t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
2184 t3_write_reg(adap, A_SG_CONTEXT_CMD,
2185 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2186 return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2187 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2188 }
2189
2190 /**
2191 * t3_sge_init_ecntxt - initialize an SGE egress context
2192 * @adapter: the adapter to configure
2193 * @id: the context id
2194 * @gts_enable: whether to enable GTS for the context
2195 * @type: the egress context type
2196 * @respq: associated response queue
2197 * @base_addr: base address of queue
2198 * @size: number of queue entries
2199 * @token: uP token
2200 * @gen: initial generation value for the context
2201 * @cidx: consumer pointer
2202 *
2203 * Initialize an SGE egress context and make it ready for use. If the
2204 * platform allows concurrent context operations, the caller is
2205 * responsible for appropriate locking.
2206 */
t3_sge_init_ecntxt(struct adapter * adapter,unsigned int id,int gts_enable,enum sge_context_type type,int respq,u64 base_addr,unsigned int size,unsigned int token,int gen,unsigned int cidx)2207 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
2208 enum sge_context_type type, int respq, u64 base_addr,
2209 unsigned int size, unsigned int token, int gen,
2210 unsigned int cidx)
2211 {
2212 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
2213
2214 if (base_addr & 0xfff) /* must be 4K aligned */
2215 return -EINVAL;
2216 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2217 return -EBUSY;
2218
2219 base_addr >>= 12;
2220 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
2221 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
2222 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
2223 V_EC_BASE_LO(base_addr & 0xffff));
2224 base_addr >>= 16;
2225 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
2226 base_addr >>= 32;
2227 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2228 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
2229 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
2230 F_EC_VALID);
2231 return t3_sge_write_context(adapter, id, F_EGRESS);
2232 }
2233
2234 /**
2235 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
2236 * @adapter: the adapter to configure
2237 * @id: the context id
2238 * @gts_enable: whether to enable GTS for the context
2239 * @base_addr: base address of queue
2240 * @size: number of queue entries
2241 * @bsize: size of each buffer for this queue
2242 * @cong_thres: threshold to signal congestion to upstream producers
2243 * @gen: initial generation value for the context
2244 * @cidx: consumer pointer
2245 *
2246 * Initialize an SGE free list context and make it ready for use. The
2247 * caller is responsible for ensuring only one context operation occurs
2248 * at a time.
2249 */
t3_sge_init_flcntxt(struct adapter * adapter,unsigned int id,int gts_enable,u64 base_addr,unsigned int size,unsigned int bsize,unsigned int cong_thres,int gen,unsigned int cidx)2250 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
2251 int gts_enable, u64 base_addr, unsigned int size,
2252 unsigned int bsize, unsigned int cong_thres, int gen,
2253 unsigned int cidx)
2254 {
2255 if (base_addr & 0xfff) /* must be 4K aligned */
2256 return -EINVAL;
2257 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2258 return -EBUSY;
2259
2260 base_addr >>= 12;
2261 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
2262 base_addr >>= 32;
2263 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
2264 V_FL_BASE_HI((u32) base_addr) |
2265 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
2266 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
2267 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
2268 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
2269 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2270 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
2271 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
2272 return t3_sge_write_context(adapter, id, F_FREELIST);
2273 }
2274
2275 /**
2276 * t3_sge_init_rspcntxt - initialize an SGE response queue context
2277 * @adapter: the adapter to configure
2278 * @id: the context id
2279 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
2280 * @base_addr: base address of queue
2281 * @size: number of queue entries
2282 * @fl_thres: threshold for selecting the normal or jumbo free list
2283 * @gen: initial generation value for the context
2284 * @cidx: consumer pointer
2285 *
2286 * Initialize an SGE response queue context and make it ready for use.
2287 * The caller is responsible for ensuring only one context operation
2288 * occurs at a time.
2289 */
t3_sge_init_rspcntxt(struct adapter * adapter,unsigned int id,int irq_vec_idx,u64 base_addr,unsigned int size,unsigned int fl_thres,int gen,unsigned int cidx)2290 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
2291 int irq_vec_idx, u64 base_addr, unsigned int size,
2292 unsigned int fl_thres, int gen, unsigned int cidx)
2293 {
2294 unsigned int intr = 0;
2295
2296 if (base_addr & 0xfff) /* must be 4K aligned */
2297 return -EINVAL;
2298 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2299 return -EBUSY;
2300
2301 base_addr >>= 12;
2302 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2303 V_CQ_INDEX(cidx));
2304 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2305 base_addr >>= 32;
2306 if (irq_vec_idx >= 0)
2307 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2308 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2309 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2310 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2311 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2312 }
2313
2314 /**
2315 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2316 * @adapter: the adapter to configure
2317 * @id: the context id
2318 * @base_addr: base address of queue
2319 * @size: number of queue entries
2320 * @rspq: response queue for async notifications
2321 * @ovfl_mode: CQ overflow mode
2322 * @credits: completion queue credits
2323 * @credit_thres: the credit threshold
2324 *
2325 * Initialize an SGE completion queue context and make it ready for use.
2326 * The caller is responsible for ensuring only one context operation
2327 * occurs at a time.
2328 */
t3_sge_init_cqcntxt(struct adapter * adapter,unsigned int id,u64 base_addr,unsigned int size,int rspq,int ovfl_mode,unsigned int credits,unsigned int credit_thres)2329 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2330 unsigned int size, int rspq, int ovfl_mode,
2331 unsigned int credits, unsigned int credit_thres)
2332 {
2333 if (base_addr & 0xfff) /* must be 4K aligned */
2334 return -EINVAL;
2335 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2336 return -EBUSY;
2337
2338 base_addr >>= 12;
2339 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2340 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2341 base_addr >>= 32;
2342 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2343 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2344 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2345 V_CQ_ERR(ovfl_mode));
2346 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2347 V_CQ_CREDIT_THRES(credit_thres));
2348 return t3_sge_write_context(adapter, id, F_CQ);
2349 }
2350
2351 /**
2352 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2353 * @adapter: the adapter
2354 * @id: the egress context id
2355 * @enable: enable (1) or disable (0) the context
2356 *
2357 * Enable or disable an SGE egress context. The caller is responsible for
2358 * ensuring only one context operation occurs at a time.
2359 */
t3_sge_enable_ecntxt(struct adapter * adapter,unsigned int id,int enable)2360 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2361 {
2362 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2363 return -EBUSY;
2364
2365 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2366 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2367 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2368 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2369 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2370 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2371 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2372 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2373 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2374 }
2375
2376 /**
2377 * t3_sge_disable_fl - disable an SGE free-buffer list
2378 * @adapter: the adapter
2379 * @id: the free list context id
2380 *
2381 * Disable an SGE free-buffer list. The caller is responsible for
2382 * ensuring only one context operation occurs at a time.
2383 */
t3_sge_disable_fl(struct adapter * adapter,unsigned int id)2384 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2385 {
2386 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2387 return -EBUSY;
2388
2389 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2390 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2391 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2392 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2393 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2394 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2395 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2396 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2397 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2398 }
2399
2400 /**
2401 * t3_sge_disable_rspcntxt - disable an SGE response queue
2402 * @adapter: the adapter
2403 * @id: the response queue context id
2404 *
2405 * Disable an SGE response queue. The caller is responsible for
2406 * ensuring only one context operation occurs at a time.
2407 */
t3_sge_disable_rspcntxt(struct adapter * adapter,unsigned int id)2408 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2409 {
2410 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2411 return -EBUSY;
2412
2413 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2414 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2415 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2416 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2417 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2418 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2419 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2420 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2421 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2422 }
2423
2424 /**
2425 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2426 * @adapter: the adapter
2427 * @id: the completion queue context id
2428 *
2429 * Disable an SGE completion queue. The caller is responsible for
2430 * ensuring only one context operation occurs at a time.
2431 */
t3_sge_disable_cqcntxt(struct adapter * adapter,unsigned int id)2432 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2433 {
2434 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2435 return -EBUSY;
2436
2437 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2438 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2439 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2440 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2441 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2442 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2443 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2444 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2445 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2446 }
2447
2448 /**
2449 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2450 * @adapter: the adapter
2451 * @id: the context id
2452 * @op: the operation to perform
2453 *
2454 * Perform the selected operation on an SGE completion queue context.
2455 * The caller is responsible for ensuring only one context operation
2456 * occurs at a time.
2457 */
t3_sge_cqcntxt_op(struct adapter * adapter,unsigned int id,unsigned int op,unsigned int credits)2458 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2459 unsigned int credits)
2460 {
2461 u32 val;
2462
2463 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2464 return -EBUSY;
2465
2466 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2467 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2468 V_CONTEXT(id) | F_CQ);
2469 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2470 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
2471 return -EIO;
2472
2473 if (op >= 2 && op < 7) {
2474 if (adapter->params.rev > 0)
2475 return G_CQ_INDEX(val);
2476
2477 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2478 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2479 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2480 F_CONTEXT_CMD_BUSY, 0,
2481 SG_CONTEXT_CMD_ATTEMPTS, 1))
2482 return -EIO;
2483 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2484 }
2485 return 0;
2486 }
2487
2488 /**
2489 * t3_config_rss - configure Rx packet steering
2490 * @adapter: the adapter
2491 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2492 * @cpus: values for the CPU lookup table (0xff terminated)
2493 * @rspq: values for the response queue lookup table (0xffff terminated)
2494 *
2495 * Programs the receive packet steering logic. @cpus and @rspq provide
2496 * the values for the CPU and response queue lookup tables. If they
2497 * provide fewer values than the size of the tables the supplied values
2498 * are used repeatedly until the tables are fully populated.
2499 */
t3_config_rss(struct adapter * adapter,unsigned int rss_config,const u8 * cpus,const u16 * rspq)2500 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2501 const u8 * cpus, const u16 *rspq)
2502 {
2503 int i, j, cpu_idx = 0, q_idx = 0;
2504
2505 if (cpus)
2506 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2507 u32 val = i << 16;
2508
2509 for (j = 0; j < 2; ++j) {
2510 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2511 if (cpus[cpu_idx] == 0xff)
2512 cpu_idx = 0;
2513 }
2514 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2515 }
2516
2517 if (rspq)
2518 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2519 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2520 (i << 16) | rspq[q_idx++]);
2521 if (rspq[q_idx] == 0xffff)
2522 q_idx = 0;
2523 }
2524
2525 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2526 }
2527
2528 /**
2529 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2530 * @adap: the adapter
2531 * @enable: 1 to select offload mode, 0 for regular NIC
2532 *
2533 * Switches TP to NIC/offload mode.
2534 */
t3_tp_set_offload_mode(struct adapter * adap,int enable)2535 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2536 {
2537 if (is_offload(adap) || !enable)
2538 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2539 V_NICMODE(!enable));
2540 }
2541
2542 /**
2543 * pm_num_pages - calculate the number of pages of the payload memory
2544 * @mem_size: the size of the payload memory
2545 * @pg_size: the size of each payload memory page
2546 *
2547 * Calculate the number of pages, each of the given size, that fit in a
2548 * memory of the specified size, respecting the HW requirement that the
2549 * number of pages must be a multiple of 24.
2550 */
pm_num_pages(unsigned int mem_size,unsigned int pg_size)2551 static inline unsigned int pm_num_pages(unsigned int mem_size,
2552 unsigned int pg_size)
2553 {
2554 unsigned int n = mem_size / pg_size;
2555
2556 return n - n % 24;
2557 }
2558
2559 #define mem_region(adap, start, size, reg) \
2560 t3_write_reg((adap), A_ ## reg, (start)); \
2561 start += size
2562
2563 /**
2564 * partition_mem - partition memory and configure TP memory settings
2565 * @adap: the adapter
2566 * @p: the TP parameters
2567 *
2568 * Partitions context and payload memory and configures TP's memory
2569 * registers.
2570 */
partition_mem(struct adapter * adap,const struct tp_params * p)2571 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2572 {
2573 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2574 unsigned int timers = 0, timers_shift = 22;
2575
2576 if (adap->params.rev > 0) {
2577 if (tids <= 16 * 1024) {
2578 timers = 1;
2579 timers_shift = 16;
2580 } else if (tids <= 64 * 1024) {
2581 timers = 2;
2582 timers_shift = 18;
2583 } else if (tids <= 256 * 1024) {
2584 timers = 3;
2585 timers_shift = 20;
2586 }
2587 }
2588
2589 t3_write_reg(adap, A_TP_PMM_SIZE,
2590 p->chan_rx_size | (p->chan_tx_size >> 16));
2591
2592 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2593 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2594 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2595 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2596 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2597
2598 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2599 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2600 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2601
2602 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2603 /* Add a bit of headroom and make multiple of 24 */
2604 pstructs += 48;
2605 pstructs -= pstructs % 24;
2606 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2607
2608 m = tids * TCB_SIZE;
2609 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2610 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2611 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2612 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2613 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2614 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2615 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2616 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2617
2618 m = (m + 4095) & ~0xfff;
2619 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2620 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2621
2622 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2623 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2624 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2625 if (tids < m)
2626 adap->params.mc5.nservers += m - tids;
2627 }
2628
tp_wr_indirect(struct adapter * adap,unsigned int addr,u32 val)2629 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2630 u32 val)
2631 {
2632 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2633 t3_write_reg(adap, A_TP_PIO_DATA, val);
2634 }
2635
tp_config(struct adapter * adap,const struct tp_params * p)2636 static void tp_config(struct adapter *adap, const struct tp_params *p)
2637 {
2638 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2639 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2640 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2641 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2642 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2643 V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
2644 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2645 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2646 V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
2647 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2648 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
2649 F_IPV6ENABLE | F_NICMODE);
2650 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2651 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2652 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2653 adap->params.rev > 0 ? F_ENABLEESND :
2654 F_T3A_ENABLEESND);
2655
2656 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2657 F_ENABLEEPCMDAFULL,
2658 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2659 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2660 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
2661 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
2662 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
2663 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2664 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2665
2666 if (adap->params.rev > 0) {
2667 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2668 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2669 F_TXPACEAUTO);
2670 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2671 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2672 } else
2673 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2674
2675 if (adap->params.rev == T3_REV_C)
2676 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2677 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
2678 V_TABLELATENCYDELTA(4));
2679
2680 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2681 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2682 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2683 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2684 }
2685
2686 /* Desired TP timer resolution in usec */
2687 #define TP_TMR_RES 50
2688
2689 /* TCP timer values in ms */
2690 #define TP_DACK_TIMER 50
2691 #define TP_RTO_MIN 250
2692
2693 /**
2694 * tp_set_timers - set TP timing parameters
2695 * @adap: the adapter to set
2696 * @core_clk: the core clock frequency in Hz
2697 *
2698 * Set TP's timing parameters, such as the various timer resolutions and
2699 * the TCP timer values.
2700 */
tp_set_timers(struct adapter * adap,unsigned int core_clk)2701 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2702 {
2703 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2704 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2705 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2706 unsigned int tps = core_clk >> tre;
2707
2708 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2709 V_DELAYEDACKRESOLUTION(dack_re) |
2710 V_TIMESTAMPRESOLUTION(tstamp_re));
2711 t3_write_reg(adap, A_TP_DACK_TIMER,
2712 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2713 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2714 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2715 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2716 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2717 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2718 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2719 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2720 V_KEEPALIVEMAX(9));
2721
2722 #define SECONDS * tps
2723
2724 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2725 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2726 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2727 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2728 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2729 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2730 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2731 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2732 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2733
2734 #undef SECONDS
2735 }
2736
2737 /**
2738 * t3_tp_set_coalescing_size - set receive coalescing size
2739 * @adap: the adapter
2740 * @size: the receive coalescing size
2741 * @psh: whether a set PSH bit should deliver coalesced data
2742 *
2743 * Set the receive coalescing size and PSH bit handling.
2744 */
t3_tp_set_coalescing_size(struct adapter * adap,unsigned int size,int psh)2745 static int t3_tp_set_coalescing_size(struct adapter *adap,
2746 unsigned int size, int psh)
2747 {
2748 u32 val;
2749
2750 if (size > MAX_RX_COALESCING_LEN)
2751 return -EINVAL;
2752
2753 val = t3_read_reg(adap, A_TP_PARA_REG3);
2754 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2755
2756 if (size) {
2757 val |= F_RXCOALESCEENABLE;
2758 if (psh)
2759 val |= F_RXCOALESCEPSHEN;
2760 size = min(MAX_RX_COALESCING_LEN, size);
2761 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2762 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2763 }
2764 t3_write_reg(adap, A_TP_PARA_REG3, val);
2765 return 0;
2766 }
2767
2768 /**
2769 * t3_tp_set_max_rxsize - set the max receive size
2770 * @adap: the adapter
2771 * @size: the max receive size
2772 *
2773 * Set TP's max receive size. This is the limit that applies when
2774 * receive coalescing is disabled.
2775 */
t3_tp_set_max_rxsize(struct adapter * adap,unsigned int size)2776 static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2777 {
2778 t3_write_reg(adap, A_TP_PARA_REG7,
2779 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2780 }
2781
init_mtus(unsigned short mtus[])2782 static void init_mtus(unsigned short mtus[])
2783 {
2784 /*
2785 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2786 * it can accommodate max size TCP/IP headers when SACK and timestamps
2787 * are enabled and still have at least 8 bytes of payload.
2788 */
2789 mtus[0] = 88;
2790 mtus[1] = 88;
2791 mtus[2] = 256;
2792 mtus[3] = 512;
2793 mtus[4] = 576;
2794 mtus[5] = 1024;
2795 mtus[6] = 1280;
2796 mtus[7] = 1492;
2797 mtus[8] = 1500;
2798 mtus[9] = 2002;
2799 mtus[10] = 2048;
2800 mtus[11] = 4096;
2801 mtus[12] = 4352;
2802 mtus[13] = 8192;
2803 mtus[14] = 9000;
2804 mtus[15] = 9600;
2805 }
2806
2807 /*
2808 * Initial congestion control parameters.
2809 */
init_cong_ctrl(unsigned short * a,unsigned short * b)2810 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2811 {
2812 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2813 a[9] = 2;
2814 a[10] = 3;
2815 a[11] = 4;
2816 a[12] = 5;
2817 a[13] = 6;
2818 a[14] = 7;
2819 a[15] = 8;
2820 a[16] = 9;
2821 a[17] = 10;
2822 a[18] = 14;
2823 a[19] = 17;
2824 a[20] = 21;
2825 a[21] = 25;
2826 a[22] = 30;
2827 a[23] = 35;
2828 a[24] = 45;
2829 a[25] = 60;
2830 a[26] = 80;
2831 a[27] = 100;
2832 a[28] = 200;
2833 a[29] = 300;
2834 a[30] = 400;
2835 a[31] = 500;
2836
2837 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2838 b[9] = b[10] = 1;
2839 b[11] = b[12] = 2;
2840 b[13] = b[14] = b[15] = b[16] = 3;
2841 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2842 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2843 b[28] = b[29] = 6;
2844 b[30] = b[31] = 7;
2845 }
2846
2847 /* The minimum additive increment value for the congestion control table */
2848 #define CC_MIN_INCR 2U
2849
2850 /**
2851 * t3_load_mtus - write the MTU and congestion control HW tables
2852 * @adap: the adapter
2853 * @mtus: the unrestricted values for the MTU table
2854 * @alphs: the values for the congestion control alpha parameter
2855 * @beta: the values for the congestion control beta parameter
2856 * @mtu_cap: the maximum permitted effective MTU
2857 *
2858 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2859 * Update the high-speed congestion control table with the supplied alpha,
2860 * beta, and MTUs.
2861 */
t3_load_mtus(struct adapter * adap,unsigned short mtus[NMTUS],unsigned short alpha[NCCTRL_WIN],unsigned short beta[NCCTRL_WIN],unsigned short mtu_cap)2862 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2863 unsigned short alpha[NCCTRL_WIN],
2864 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2865 {
2866 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2867 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2868 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2869 28672, 40960, 57344, 81920, 114688, 163840, 229376
2870 };
2871
2872 unsigned int i, w;
2873
2874 for (i = 0; i < NMTUS; ++i) {
2875 unsigned int mtu = min(mtus[i], mtu_cap);
2876 unsigned int log2 = fls(mtu);
2877
2878 if (!(mtu & ((1 << log2) >> 2))) /* round */
2879 log2--;
2880 t3_write_reg(adap, A_TP_MTU_TABLE,
2881 (i << 24) | (log2 << 16) | mtu);
2882
2883 for (w = 0; w < NCCTRL_WIN; ++w) {
2884 unsigned int inc;
2885
2886 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2887 CC_MIN_INCR);
2888
2889 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2890 (w << 16) | (beta[w] << 13) | inc);
2891 }
2892 }
2893 }
2894
2895 /**
2896 * t3_tp_get_mib_stats - read TP's MIB counters
2897 * @adap: the adapter
2898 * @tps: holds the returned counter values
2899 *
2900 * Returns the values of TP's MIB counters.
2901 */
t3_tp_get_mib_stats(struct adapter * adap,struct tp_mib_stats * tps)2902 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2903 {
2904 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2905 sizeof(*tps) / sizeof(u32), 0);
2906 }
2907
2908 #define ulp_region(adap, name, start, len) \
2909 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2910 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2911 (start) + (len) - 1); \
2912 start += len
2913
2914 #define ulptx_region(adap, name, start, len) \
2915 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2916 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2917 (start) + (len) - 1)
2918
ulp_config(struct adapter * adap,const struct tp_params * p)2919 static void ulp_config(struct adapter *adap, const struct tp_params *p)
2920 {
2921 unsigned int m = p->chan_rx_size;
2922
2923 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2924 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2925 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2926 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2927 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2928 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2929 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2930 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2931 }
2932
2933 /**
2934 * t3_set_proto_sram - set the contents of the protocol sram
2935 * @adapter: the adapter
2936 * @data: the protocol image
2937 *
2938 * Write the contents of the protocol SRAM.
2939 */
t3_set_proto_sram(struct adapter * adap,const u8 * data)2940 int t3_set_proto_sram(struct adapter *adap, const u8 *data)
2941 {
2942 int i;
2943 const __be32 *buf = (const __be32 *)data;
2944
2945 for (i = 0; i < PROTO_SRAM_LINES; i++) {
2946 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
2947 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
2948 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
2949 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
2950 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
2951
2952 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2953 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2954 return -EIO;
2955 }
2956 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2957
2958 return 0;
2959 }
2960
t3_config_trace_filter(struct adapter * adapter,const struct trace_params * tp,int filter_index,int invert,int enable)2961 void t3_config_trace_filter(struct adapter *adapter,
2962 const struct trace_params *tp, int filter_index,
2963 int invert, int enable)
2964 {
2965 u32 addr, key[4], mask[4];
2966
2967 key[0] = tp->sport | (tp->sip << 16);
2968 key[1] = (tp->sip >> 16) | (tp->dport << 16);
2969 key[2] = tp->dip;
2970 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2971
2972 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2973 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2974 mask[2] = tp->dip_mask;
2975 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2976
2977 if (invert)
2978 key[3] |= (1 << 29);
2979 if (enable)
2980 key[3] |= (1 << 28);
2981
2982 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2983 tp_wr_indirect(adapter, addr++, key[0]);
2984 tp_wr_indirect(adapter, addr++, mask[0]);
2985 tp_wr_indirect(adapter, addr++, key[1]);
2986 tp_wr_indirect(adapter, addr++, mask[1]);
2987 tp_wr_indirect(adapter, addr++, key[2]);
2988 tp_wr_indirect(adapter, addr++, mask[2]);
2989 tp_wr_indirect(adapter, addr++, key[3]);
2990 tp_wr_indirect(adapter, addr, mask[3]);
2991 t3_read_reg(adapter, A_TP_PIO_DATA);
2992 }
2993
2994 /**
2995 * t3_config_sched - configure a HW traffic scheduler
2996 * @adap: the adapter
2997 * @kbps: target rate in Kbps
2998 * @sched: the scheduler index
2999 *
3000 * Configure a HW scheduler for the target rate
3001 */
t3_config_sched(struct adapter * adap,unsigned int kbps,int sched)3002 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
3003 {
3004 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3005 unsigned int clk = adap->params.vpd.cclk * 1000;
3006 unsigned int selected_cpt = 0, selected_bpt = 0;
3007
3008 if (kbps > 0) {
3009 kbps *= 125; /* -> bytes */
3010 for (cpt = 1; cpt <= 255; cpt++) {
3011 tps = clk / cpt;
3012 bpt = (kbps + tps / 2) / tps;
3013 if (bpt > 0 && bpt <= 255) {
3014 v = bpt * tps;
3015 delta = v >= kbps ? v - kbps : kbps - v;
3016 if (delta <= mindelta) {
3017 mindelta = delta;
3018 selected_cpt = cpt;
3019 selected_bpt = bpt;
3020 }
3021 } else if (selected_cpt)
3022 break;
3023 }
3024 if (!selected_cpt)
3025 return -EINVAL;
3026 }
3027 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
3028 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3029 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
3030 if (sched & 1)
3031 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3032 else
3033 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3034 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
3035 return 0;
3036 }
3037
tp_init(struct adapter * adap,const struct tp_params * p)3038 static int tp_init(struct adapter *adap, const struct tp_params *p)
3039 {
3040 int busy = 0;
3041
3042 tp_config(adap, p);
3043 t3_set_vlan_accel(adap, 3, 0);
3044
3045 if (is_offload(adap)) {
3046 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
3047 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
3048 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
3049 0, 1000, 5);
3050 if (busy)
3051 CH_ERR(adap, "TP initialization timed out\n");
3052 }
3053
3054 if (!busy)
3055 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
3056 return busy;
3057 }
3058
3059 /*
3060 * Perform the bits of HW initialization that are dependent on the Tx
3061 * channels being used.
3062 */
chan_init_hw(struct adapter * adap,unsigned int chan_map)3063 static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
3064 {
3065 int i;
3066
3067 if (chan_map != 3) { /* one channel */
3068 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
3069 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
3070 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
3071 (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
3072 F_TPTXPORT1EN | F_PORT1ACTIVE));
3073 t3_write_reg(adap, A_PM1_TX_CFG,
3074 chan_map == 1 ? 0xffffffff : 0);
3075 } else { /* two channels */
3076 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
3077 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
3078 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
3079 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
3080 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
3081 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
3082 F_ENFORCEPKT);
3083 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
3084 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
3085 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3086 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
3087 for (i = 0; i < 16; i++)
3088 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
3089 (i << 16) | 0x1010);
3090 }
3091 }
3092
calibrate_xgm(struct adapter * adapter)3093 static int calibrate_xgm(struct adapter *adapter)
3094 {
3095 if (uses_xaui(adapter)) {
3096 unsigned int v, i;
3097
3098 for (i = 0; i < 5; ++i) {
3099 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
3100 t3_read_reg(adapter, A_XGM_XAUI_IMP);
3101 msleep(1);
3102 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
3103 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
3104 t3_write_reg(adapter, A_XGM_XAUI_IMP,
3105 V_XAUIIMP(G_CALIMP(v) >> 2));
3106 return 0;
3107 }
3108 }
3109 CH_ERR(adapter, "MAC calibration failed\n");
3110 return -1;
3111 } else {
3112 t3_write_reg(adapter, A_XGM_RGMII_IMP,
3113 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3114 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3115 F_XGM_IMPSETUPDATE);
3116 }
3117 return 0;
3118 }
3119
calibrate_xgm_t3b(struct adapter * adapter)3120 static void calibrate_xgm_t3b(struct adapter *adapter)
3121 {
3122 if (!uses_xaui(adapter)) {
3123 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
3124 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3125 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
3126 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3127 F_XGM_IMPSETUPDATE);
3128 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3129 0);
3130 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3131 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3132 }
3133 }
3134
3135 struct mc7_timing_params {
3136 unsigned char ActToPreDly;
3137 unsigned char ActToRdWrDly;
3138 unsigned char PreCyc;
3139 unsigned char RefCyc[5];
3140 unsigned char BkCyc;
3141 unsigned char WrToRdDly;
3142 unsigned char RdToWrDly;
3143 };
3144
3145 /*
3146 * Write a value to a register and check that the write completed. These
3147 * writes normally complete in a cycle or two, so one read should suffice.
3148 * The very first read exists to flush the posted write to the device.
3149 */
wrreg_wait(struct adapter * adapter,unsigned int addr,u32 val)3150 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3151 {
3152 t3_write_reg(adapter, addr, val);
3153 t3_read_reg(adapter, addr); /* flush */
3154 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3155 return 0;
3156 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3157 return -EIO;
3158 }
3159
mc7_init(struct mc7 * mc7,unsigned int mc7_clock,int mem_type)3160 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3161 {
3162 static const unsigned int mc7_mode[] = {
3163 0x632, 0x642, 0x652, 0x432, 0x442
3164 };
3165 static const struct mc7_timing_params mc7_timings[] = {
3166 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3167 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3168 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3169 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3170 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3171 };
3172
3173 u32 val;
3174 unsigned int width, density, slow, attempts;
3175 struct adapter *adapter = mc7->adapter;
3176 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3177
3178 if (!mc7->size)
3179 return 0;
3180
3181 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3182 slow = val & F_SLOW;
3183 width = G_WIDTH(val);
3184 density = G_DEN(val);
3185
3186 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3187 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3188 msleep(1);
3189
3190 if (!slow) {
3191 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3192 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3193 msleep(1);
3194 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3195 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3196 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3197 mc7->name);
3198 goto out_fail;
3199 }
3200 }
3201
3202 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3203 V_ACTTOPREDLY(p->ActToPreDly) |
3204 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3205 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3206 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3207
3208 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3209 val | F_CLKEN | F_TERM150);
3210 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3211
3212 if (!slow)
3213 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3214 F_DLLENB);
3215 udelay(1);
3216
3217 val = slow ? 3 : 6;
3218 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3219 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3220 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3221 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3222 goto out_fail;
3223
3224 if (!slow) {
3225 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3226 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3227 udelay(5);
3228 }
3229
3230 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3231 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3232 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3233 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3234 mc7_mode[mem_type]) ||
3235 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3236 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3237 goto out_fail;
3238
3239 /* clock value is in KHz */
3240 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3241 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3242
3243 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3244 F_PERREFEN | V_PREREFDIV(mc7_clock));
3245 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3246
3247 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3248 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3249 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3250 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3251 (mc7->size << width) - 1);
3252 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3253 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3254
3255 attempts = 50;
3256 do {
3257 msleep(250);
3258 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3259 } while ((val & F_BUSY) && --attempts);
3260 if (val & F_BUSY) {
3261 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3262 goto out_fail;
3263 }
3264
3265 /* Enable normal memory accesses. */
3266 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3267 return 0;
3268
3269 out_fail:
3270 return -1;
3271 }
3272
config_pcie(struct adapter * adap)3273 static void config_pcie(struct adapter *adap)
3274 {
3275 static const u16 ack_lat[4][6] = {
3276 {237, 416, 559, 1071, 2095, 4143},
3277 {128, 217, 289, 545, 1057, 2081},
3278 {73, 118, 154, 282, 538, 1050},
3279 {67, 107, 86, 150, 278, 534}
3280 };
3281 static const u16 rpl_tmr[4][6] = {
3282 {711, 1248, 1677, 3213, 6285, 12429},
3283 {384, 651, 867, 1635, 3171, 6243},
3284 {219, 354, 462, 846, 1614, 3150},
3285 {201, 321, 258, 450, 834, 1602}
3286 };
3287
3288 u16 val, devid;
3289 unsigned int log2_width, pldsize;
3290 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3291
3292 pci_read_config_word(adap->pdev,
3293 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3294 &val);
3295 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3296
3297 pci_read_config_word(adap->pdev, 0x2, &devid);
3298 if (devid == 0x37) {
3299 pci_write_config_word(adap->pdev,
3300 adap->params.pci.pcie_cap_addr +
3301 PCI_EXP_DEVCTL,
3302 val & ~PCI_EXP_DEVCTL_READRQ &
3303 ~PCI_EXP_DEVCTL_PAYLOAD);
3304 pldsize = 0;
3305 }
3306
3307 pci_read_config_word(adap->pdev,
3308 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3309 &val);
3310
3311 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3312 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3313 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3314 log2_width = fls(adap->params.pci.width) - 1;
3315 acklat = ack_lat[log2_width][pldsize];
3316 if (val & 1) /* check LOsEnable */
3317 acklat += fst_trn_tx * 4;
3318 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3319
3320 if (adap->params.rev == 0)
3321 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3322 V_T3A_ACKLAT(M_T3A_ACKLAT),
3323 V_T3A_ACKLAT(acklat));
3324 else
3325 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3326 V_ACKLAT(acklat));
3327
3328 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3329 V_REPLAYLMT(rpllmt));
3330
3331 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3332 t3_set_reg_field(adap, A_PCIE_CFG, 0,
3333 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
3334 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
3335 }
3336
3337 /*
3338 * Initialize and configure T3 HW modules. This performs the
3339 * initialization steps that need to be done once after a card is reset.
3340 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3341 *
3342 * fw_params are passed to FW and their value is platform dependent. Only the
3343 * top 8 bits are available for use, the rest must be 0.
3344 */
t3_init_hw(struct adapter * adapter,u32 fw_params)3345 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3346 {
3347 int err = -EIO, attempts, i;
3348 const struct vpd_params *vpd = &adapter->params.vpd;
3349
3350 if (adapter->params.rev > 0)
3351 calibrate_xgm_t3b(adapter);
3352 else if (calibrate_xgm(adapter))
3353 goto out_err;
3354
3355 if (vpd->mclk) {
3356 partition_mem(adapter, &adapter->params.tp);
3357
3358 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3359 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3360 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3361 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3362 adapter->params.mc5.nfilters,
3363 adapter->params.mc5.nroutes))
3364 goto out_err;
3365
3366 for (i = 0; i < 32; i++)
3367 if (clear_sge_ctxt(adapter, i, F_CQ))
3368 goto out_err;
3369 }
3370
3371 if (tp_init(adapter, &adapter->params.tp))
3372 goto out_err;
3373
3374 t3_tp_set_coalescing_size(adapter,
3375 min(adapter->params.sge.max_pkt_size,
3376 MAX_RX_COALESCING_LEN), 1);
3377 t3_tp_set_max_rxsize(adapter,
3378 min(adapter->params.sge.max_pkt_size, 16384U));
3379 ulp_config(adapter, &adapter->params.tp);
3380
3381 if (is_pcie(adapter))
3382 config_pcie(adapter);
3383 else
3384 t3_set_reg_field(adapter, A_PCIX_CFG, 0,
3385 F_DMASTOPEN | F_CLIDECEN);
3386
3387 if (adapter->params.rev == T3_REV_C)
3388 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
3389 F_CFG_CQE_SOP_MASK);
3390
3391 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3392 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3393 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3394 chan_init_hw(adapter, adapter->params.chan_map);
3395 t3_sge_init(adapter, &adapter->params.sge);
3396 t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN);
3397
3398 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
3399
3400 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3401 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3402 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3403 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3404
3405 attempts = 100;
3406 do { /* wait for uP to initialize */
3407 msleep(20);
3408 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3409 if (!attempts) {
3410 CH_ERR(adapter, "uP initialization timed out\n");
3411 goto out_err;
3412 }
3413
3414 err = 0;
3415 out_err:
3416 return err;
3417 }
3418
3419 /**
3420 * get_pci_mode - determine a card's PCI mode
3421 * @adapter: the adapter
3422 * @p: where to store the PCI settings
3423 *
3424 * Determines a card's PCI mode and associated parameters, such as speed
3425 * and width.
3426 */
get_pci_mode(struct adapter * adapter,struct pci_params * p)3427 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3428 {
3429 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3430 u32 pci_mode, pcie_cap;
3431
3432 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3433 if (pcie_cap) {
3434 u16 val;
3435
3436 p->variant = PCI_VARIANT_PCIE;
3437 p->pcie_cap_addr = pcie_cap;
3438 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3439 &val);
3440 p->width = (val >> 4) & 0x3f;
3441 return;
3442 }
3443
3444 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3445 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3446 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3447 pci_mode = G_PCIXINITPAT(pci_mode);
3448 if (pci_mode == 0)
3449 p->variant = PCI_VARIANT_PCI;
3450 else if (pci_mode < 4)
3451 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3452 else if (pci_mode < 8)
3453 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3454 else
3455 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3456 }
3457
3458 /**
3459 * init_link_config - initialize a link's SW state
3460 * @lc: structure holding the link state
3461 * @ai: information about the current card
3462 *
3463 * Initializes the SW state maintained for each link, including the link's
3464 * capabilities and default speed/duplex/flow-control/autonegotiation
3465 * settings.
3466 */
init_link_config(struct link_config * lc,unsigned int caps)3467 static void init_link_config(struct link_config *lc, unsigned int caps)
3468 {
3469 lc->supported = caps;
3470 lc->requested_speed = lc->speed = SPEED_INVALID;
3471 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3472 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3473 if (lc->supported & SUPPORTED_Autoneg) {
3474 lc->advertising = lc->supported;
3475 lc->autoneg = AUTONEG_ENABLE;
3476 lc->requested_fc |= PAUSE_AUTONEG;
3477 } else {
3478 lc->advertising = 0;
3479 lc->autoneg = AUTONEG_DISABLE;
3480 }
3481 }
3482
3483 /**
3484 * mc7_calc_size - calculate MC7 memory size
3485 * @cfg: the MC7 configuration
3486 *
3487 * Calculates the size of an MC7 memory in bytes from the value of its
3488 * configuration register.
3489 */
mc7_calc_size(u32 cfg)3490 static unsigned int mc7_calc_size(u32 cfg)
3491 {
3492 unsigned int width = G_WIDTH(cfg);
3493 unsigned int banks = !!(cfg & F_BKS) + 1;
3494 unsigned int org = !!(cfg & F_ORG) + 1;
3495 unsigned int density = G_DEN(cfg);
3496 unsigned int MBs = ((256 << density) * banks) / (org << width);
3497
3498 return MBs << 20;
3499 }
3500
mc7_prep(struct adapter * adapter,struct mc7 * mc7,unsigned int base_addr,const char * name)3501 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3502 unsigned int base_addr, const char *name)
3503 {
3504 u32 cfg;
3505
3506 mc7->adapter = adapter;
3507 mc7->name = name;
3508 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3509 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3510 mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3511 mc7->width = G_WIDTH(cfg);
3512 }
3513
mac_prep(struct cmac * mac,struct adapter * adapter,int index)3514 static void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3515 {
3516 u16 devid;
3517
3518 mac->adapter = adapter;
3519 pci_read_config_word(adapter->pdev, 0x2, &devid);
3520
3521 if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
3522 index = 0;
3523 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3524 mac->nucast = 1;
3525
3526 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3527 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3528 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3529 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3530 F_ENRGMII, 0);
3531 }
3532 }
3533
early_hw_init(struct adapter * adapter,const struct adapter_info * ai)3534 static void early_hw_init(struct adapter *adapter,
3535 const struct adapter_info *ai)
3536 {
3537 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3538
3539 mi1_init(adapter, ai);
3540 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3541 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3542 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3543 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3544 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3545 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
3546
3547 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3548 val |= F_ENRGMII;
3549
3550 /* Enable MAC clocks so we can access the registers */
3551 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3552 t3_read_reg(adapter, A_XGM_PORT_CFG);
3553
3554 val |= F_CLKDIVRESET_;
3555 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3556 t3_read_reg(adapter, A_XGM_PORT_CFG);
3557 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3558 t3_read_reg(adapter, A_XGM_PORT_CFG);
3559 }
3560
3561 /*
3562 * Reset the adapter.
3563 * Older PCIe cards lose their config space during reset, PCI-X
3564 * ones don't.
3565 */
t3_reset_adapter(struct adapter * adapter)3566 int t3_reset_adapter(struct adapter *adapter)
3567 {
3568 int i, save_and_restore_pcie =
3569 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3570 uint16_t devid = 0;
3571
3572 if (save_and_restore_pcie)
3573 pci_save_state(adapter->pdev);
3574 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3575
3576 /*
3577 * Delay. Give Some time to device to reset fully.
3578 * XXX The delay time should be modified.
3579 */
3580 for (i = 0; i < 10; i++) {
3581 msleep(50);
3582 pci_read_config_word(adapter->pdev, 0x00, &devid);
3583 if (devid == 0x1425)
3584 break;
3585 }
3586
3587 if (devid != 0x1425)
3588 return -1;
3589
3590 if (save_and_restore_pcie)
3591 pci_restore_state(adapter->pdev);
3592 return 0;
3593 }
3594
init_parity(struct adapter * adap)3595 static int init_parity(struct adapter *adap)
3596 {
3597 int i, err, addr;
3598
3599 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
3600 return -EBUSY;
3601
3602 for (err = i = 0; !err && i < 16; i++)
3603 err = clear_sge_ctxt(adap, i, F_EGRESS);
3604 for (i = 0xfff0; !err && i <= 0xffff; i++)
3605 err = clear_sge_ctxt(adap, i, F_EGRESS);
3606 for (i = 0; !err && i < SGE_QSETS; i++)
3607 err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
3608 if (err)
3609 return err;
3610
3611 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
3612 for (i = 0; i < 4; i++)
3613 for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
3614 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
3615 F_IBQDBGWR | V_IBQDBGQID(i) |
3616 V_IBQDBGADDR(addr));
3617 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
3618 F_IBQDBGBUSY, 0, 2, 1);
3619 if (err)
3620 return err;
3621 }
3622 return 0;
3623 }
3624
3625 /*
3626 * Initialize adapter SW state for the various HW modules, set initial values
3627 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3628 * interface.
3629 */
t3_prep_adapter(struct adapter * adapter,const struct adapter_info * ai,int reset)3630 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
3631 int reset)
3632 {
3633 int ret;
3634 unsigned int i, j = -1;
3635
3636 get_pci_mode(adapter, &adapter->params.pci);
3637
3638 adapter->params.info = ai;
3639 adapter->params.nports = ai->nports0 + ai->nports1;
3640 adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
3641 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3642 /*
3643 * We used to only run the "adapter check task" once a second if
3644 * we had PHYs which didn't support interrupts (we would check
3645 * their link status once a second). Now we check other conditions
3646 * in that routine which could potentially impose a very high
3647 * interrupt load on the system. As such, we now always scan the
3648 * adapter state once a second ...
3649 */
3650 adapter->params.linkpoll_period = 10;
3651 adapter->params.stats_update_period = is_10G(adapter) ?
3652 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3653 adapter->params.pci.vpd_cap_addr =
3654 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3655 ret = get_vpd_params(adapter, &adapter->params.vpd);
3656 if (ret < 0)
3657 return ret;
3658
3659 if (reset && t3_reset_adapter(adapter))
3660 return -1;
3661
3662 t3_sge_prep(adapter, &adapter->params.sge);
3663
3664 if (adapter->params.vpd.mclk) {
3665 struct tp_params *p = &adapter->params.tp;
3666
3667 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3668 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3669 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3670
3671 p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
3672 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3673 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3674 p->cm_size = t3_mc7_size(&adapter->cm);
3675 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3676 p->chan_tx_size = p->pmtx_size / p->nchan;
3677 p->rx_pg_size = 64 * 1024;
3678 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3679 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3680 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3681 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3682 adapter->params.rev > 0 ? 12 : 6;
3683 }
3684
3685 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3686 t3_mc7_size(&adapter->pmtx) &&
3687 t3_mc7_size(&adapter->cm);
3688
3689 if (is_offload(adapter)) {
3690 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3691 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3692 DEFAULT_NFILTERS : 0;
3693 adapter->params.mc5.nroutes = 0;
3694 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3695
3696 init_mtus(adapter->params.mtus);
3697 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3698 }
3699
3700 early_hw_init(adapter, ai);
3701 ret = init_parity(adapter);
3702 if (ret)
3703 return ret;
3704
3705 for_each_port(adapter, i) {
3706 u8 hw_addr[6];
3707 const struct port_type_info *pti;
3708 struct port_info *p = adap2pinfo(adapter, i);
3709
3710 while (!adapter->params.vpd.port_type[++j])
3711 ;
3712
3713 pti = &port_types[adapter->params.vpd.port_type[j]];
3714 if (!pti->phy_prep) {
3715 CH_ALERT(adapter, "Invalid port type index %d\n",
3716 adapter->params.vpd.port_type[j]);
3717 return -EINVAL;
3718 }
3719
3720 p->phy.mdio.dev = adapter->port[i];
3721 ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3722 ai->mdio_ops);
3723 if (ret)
3724 return ret;
3725 mac_prep(&p->mac, adapter, j);
3726
3727 /*
3728 * The VPD EEPROM stores the base Ethernet address for the
3729 * card. A port's address is derived from the base by adding
3730 * the port's index to the base's low octet.
3731 */
3732 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3733 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3734
3735 memcpy(adapter->port[i]->dev_addr, hw_addr,
3736 ETH_ALEN);
3737 memcpy(adapter->port[i]->perm_addr, hw_addr,
3738 ETH_ALEN);
3739 init_link_config(&p->link_config, p->phy.caps);
3740 p->phy.ops->power_down(&p->phy, 1);
3741
3742 /*
3743 * If the PHY doesn't support interrupts for link status
3744 * changes, schedule a scan of the adapter links at least
3745 * once a second.
3746 */
3747 if (!(p->phy.caps & SUPPORTED_IRQ) &&
3748 adapter->params.linkpoll_period > 10)
3749 adapter->params.linkpoll_period = 10;
3750 }
3751
3752 return 0;
3753 }
3754
t3_led_ready(struct adapter * adapter)3755 void t3_led_ready(struct adapter *adapter)
3756 {
3757 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3758 F_GPIO0_OUT_VAL);
3759 }
3760
t3_replay_prep_adapter(struct adapter * adapter)3761 int t3_replay_prep_adapter(struct adapter *adapter)
3762 {
3763 const struct adapter_info *ai = adapter->params.info;
3764 unsigned int i, j = -1;
3765 int ret;
3766
3767 early_hw_init(adapter, ai);
3768 ret = init_parity(adapter);
3769 if (ret)
3770 return ret;
3771
3772 for_each_port(adapter, i) {
3773 const struct port_type_info *pti;
3774 struct port_info *p = adap2pinfo(adapter, i);
3775
3776 while (!adapter->params.vpd.port_type[++j])
3777 ;
3778
3779 pti = &port_types[adapter->params.vpd.port_type[j]];
3780 ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
3781 if (ret)
3782 return ret;
3783 p->phy.ops->power_down(&p->phy, 1);
3784 }
3785
3786 return 0;
3787 }
3788
3789