1 /*
2  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <net/arp.h>
41 #include "common.h"
42 #include "regs.h"
43 #include "sge_defs.h"
44 #include "t3_cpl.h"
45 #include "firmware_exports.h"
46 #include "cxgb3_offload.h"
47 
48 #define USE_GTS 0
49 
50 #define SGE_RX_SM_BUF_SIZE 1536
51 
52 #define SGE_RX_COPY_THRES  256
53 #define SGE_RX_PULL_LEN    128
54 
55 #define SGE_PG_RSVD SMP_CACHE_BYTES
56 /*
57  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
58  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
59  * directly.
60  */
61 #define FL0_PG_CHUNK_SIZE  2048
62 #define FL0_PG_ORDER 0
63 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
64 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
65 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
66 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
67 
68 #define SGE_RX_DROP_THRES 16
69 #define RX_RECLAIM_PERIOD (HZ/4)
70 
71 /*
72  * Max number of Rx buffers we replenish at a time.
73  */
74 #define MAX_RX_REFILL 16U
75 /*
76  * Period of the Tx buffer reclaim timer.  This timer does not need to run
77  * frequently as Tx buffers are usually reclaimed by new Tx packets.
78  */
79 #define TX_RECLAIM_PERIOD (HZ / 4)
80 #define TX_RECLAIM_TIMER_CHUNK 64U
81 #define TX_RECLAIM_CHUNK 16U
82 
83 /* WR size in bytes */
84 #define WR_LEN (WR_FLITS * 8)
85 
86 /*
87  * Types of Tx queues in each queue set.  Order here matters, do not change.
88  */
89 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
90 
91 /* Values for sge_txq.flags */
92 enum {
93 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
94 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
95 };
96 
97 struct tx_desc {
98 	__be64 flit[TX_DESC_FLITS];
99 };
100 
101 struct rx_desc {
102 	__be32 addr_lo;
103 	__be32 len_gen;
104 	__be32 gen2;
105 	__be32 addr_hi;
106 };
107 
108 struct tx_sw_desc {		/* SW state per Tx descriptor */
109 	struct sk_buff *skb;
110 	u8 eop;       /* set if last descriptor for packet */
111 	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
112 	u8 fragidx;   /* first page fragment associated with descriptor */
113 	s8 sflit;     /* start flit of first SGL entry in descriptor */
114 };
115 
116 struct rx_sw_desc {                /* SW state per Rx descriptor */
117 	union {
118 		struct sk_buff *skb;
119 		struct fl_pg_chunk pg_chunk;
120 	};
121 	DEFINE_DMA_UNMAP_ADDR(dma_addr);
122 };
123 
124 struct rsp_desc {		/* response queue descriptor */
125 	struct rss_header rss_hdr;
126 	__be32 flags;
127 	__be32 len_cq;
128 	u8 imm_data[47];
129 	u8 intr_gen;
130 };
131 
132 /*
133  * Holds unmapping information for Tx packets that need deferred unmapping.
134  * This structure lives at skb->head and must be allocated by callers.
135  */
136 struct deferred_unmap_info {
137 	struct pci_dev *pdev;
138 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
139 };
140 
141 /*
142  * Maps a number of flits to the number of Tx descriptors that can hold them.
143  * The formula is
144  *
145  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
146  *
147  * HW allows up to 4 descriptors to be combined into a WR.
148  */
149 static u8 flit_desc_map[] = {
150 	0,
151 #if SGE_NUM_GENBITS == 1
152 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
153 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
154 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
155 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
156 #elif SGE_NUM_GENBITS == 2
157 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
158 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
159 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
160 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
161 #else
162 # error "SGE_NUM_GENBITS must be 1 or 2"
163 #endif
164 };
165 
fl_to_qset(const struct sge_fl * q,int qidx)166 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
167 {
168 	return container_of(q, struct sge_qset, fl[qidx]);
169 }
170 
rspq_to_qset(const struct sge_rspq * q)171 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
172 {
173 	return container_of(q, struct sge_qset, rspq);
174 }
175 
txq_to_qset(const struct sge_txq * q,int qidx)176 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
177 {
178 	return container_of(q, struct sge_qset, txq[qidx]);
179 }
180 
181 /**
182  *	refill_rspq - replenish an SGE response queue
183  *	@adapter: the adapter
184  *	@q: the response queue to replenish
185  *	@credits: how many new responses to make available
186  *
187  *	Replenishes a response queue by making the supplied number of responses
188  *	available to HW.
189  */
refill_rspq(struct adapter * adapter,const struct sge_rspq * q,unsigned int credits)190 static inline void refill_rspq(struct adapter *adapter,
191 			       const struct sge_rspq *q, unsigned int credits)
192 {
193 	rmb();
194 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
195 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
196 }
197 
198 /**
199  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
200  *
201  *	Returns true if the platform needs sk_buff unmapping.  The compiler
202  *	optimizes away unnecessary code if this returns true.
203  */
need_skb_unmap(void)204 static inline int need_skb_unmap(void)
205 {
206 #ifdef CONFIG_NEED_DMA_MAP_STATE
207 	return 1;
208 #else
209 	return 0;
210 #endif
211 }
212 
213 /**
214  *	unmap_skb - unmap a packet main body and its page fragments
215  *	@skb: the packet
216  *	@q: the Tx queue containing Tx descriptors for the packet
217  *	@cidx: index of Tx descriptor
218  *	@pdev: the PCI device
219  *
220  *	Unmap the main body of an sk_buff and its page fragments, if any.
221  *	Because of the fairly complicated structure of our SGLs and the desire
222  *	to conserve space for metadata, the information necessary to unmap an
223  *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
224  *	descriptors (the physical addresses of the various data buffers), and
225  *	the SW descriptor state (assorted indices).  The send functions
226  *	initialize the indices for the first packet descriptor so we can unmap
227  *	the buffers held in the first Tx descriptor here, and we have enough
228  *	information at this point to set the state for the next Tx descriptor.
229  *
230  *	Note that it is possible to clean up the first descriptor of a packet
231  *	before the send routines have written the next descriptors, but this
232  *	race does not cause any problem.  We just end up writing the unmapping
233  *	info for the descriptor first.
234  */
unmap_skb(struct sk_buff * skb,struct sge_txq * q,unsigned int cidx,struct pci_dev * pdev)235 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
236 			     unsigned int cidx, struct pci_dev *pdev)
237 {
238 	const struct sg_ent *sgp;
239 	struct tx_sw_desc *d = &q->sdesc[cidx];
240 	int nfrags, frag_idx, curflit, j = d->addr_idx;
241 
242 	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
243 	frag_idx = d->fragidx;
244 
245 	if (frag_idx == 0 && skb_headlen(skb)) {
246 		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
247 				 skb_headlen(skb), PCI_DMA_TODEVICE);
248 		j = 1;
249 	}
250 
251 	curflit = d->sflit + 1 + j;
252 	nfrags = skb_shinfo(skb)->nr_frags;
253 
254 	while (frag_idx < nfrags && curflit < WR_FLITS) {
255 		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
256 			       skb_shinfo(skb)->frags[frag_idx].size,
257 			       PCI_DMA_TODEVICE);
258 		j ^= 1;
259 		if (j == 0) {
260 			sgp++;
261 			curflit++;
262 		}
263 		curflit++;
264 		frag_idx++;
265 	}
266 
267 	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
268 		d = cidx + 1 == q->size ? q->sdesc : d + 1;
269 		d->fragidx = frag_idx;
270 		d->addr_idx = j;
271 		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
272 	}
273 }
274 
275 /**
276  *	free_tx_desc - reclaims Tx descriptors and their buffers
277  *	@adapter: the adapter
278  *	@q: the Tx queue to reclaim descriptors from
279  *	@n: the number of descriptors to reclaim
280  *
281  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
282  *	Tx buffers.  Called with the Tx queue lock held.
283  */
free_tx_desc(struct adapter * adapter,struct sge_txq * q,unsigned int n)284 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
285 			 unsigned int n)
286 {
287 	struct tx_sw_desc *d;
288 	struct pci_dev *pdev = adapter->pdev;
289 	unsigned int cidx = q->cidx;
290 
291 	const int need_unmap = need_skb_unmap() &&
292 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
293 
294 	d = &q->sdesc[cidx];
295 	while (n--) {
296 		if (d->skb) {	/* an SGL is present */
297 			if (need_unmap)
298 				unmap_skb(d->skb, q, cidx, pdev);
299 			if (d->eop) {
300 				kfree_skb(d->skb);
301 				d->skb = NULL;
302 			}
303 		}
304 		++d;
305 		if (++cidx == q->size) {
306 			cidx = 0;
307 			d = q->sdesc;
308 		}
309 	}
310 	q->cidx = cidx;
311 }
312 
313 /**
314  *	reclaim_completed_tx - reclaims completed Tx descriptors
315  *	@adapter: the adapter
316  *	@q: the Tx queue to reclaim completed descriptors from
317  *	@chunk: maximum number of descriptors to reclaim
318  *
319  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
320  *	and frees the associated buffers if possible.  Called with the Tx
321  *	queue's lock held.
322  */
reclaim_completed_tx(struct adapter * adapter,struct sge_txq * q,unsigned int chunk)323 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
324 						struct sge_txq *q,
325 						unsigned int chunk)
326 {
327 	unsigned int reclaim = q->processed - q->cleaned;
328 
329 	reclaim = min(chunk, reclaim);
330 	if (reclaim) {
331 		free_tx_desc(adapter, q, reclaim);
332 		q->cleaned += reclaim;
333 		q->in_use -= reclaim;
334 	}
335 	return q->processed - q->cleaned;
336 }
337 
338 /**
339  *	should_restart_tx - are there enough resources to restart a Tx queue?
340  *	@q: the Tx queue
341  *
342  *	Checks if there are enough descriptors to restart a suspended Tx queue.
343  */
should_restart_tx(const struct sge_txq * q)344 static inline int should_restart_tx(const struct sge_txq *q)
345 {
346 	unsigned int r = q->processed - q->cleaned;
347 
348 	return q->in_use - r < (q->size >> 1);
349 }
350 
clear_rx_desc(struct pci_dev * pdev,const struct sge_fl * q,struct rx_sw_desc * d)351 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 			  struct rx_sw_desc *d)
353 {
354 	if (q->use_pages && d->pg_chunk.page) {
355 		(*d->pg_chunk.p_cnt)--;
356 		if (!*d->pg_chunk.p_cnt)
357 			pci_unmap_page(pdev,
358 				       d->pg_chunk.mapping,
359 				       q->alloc_size, PCI_DMA_FROMDEVICE);
360 
361 		put_page(d->pg_chunk.page);
362 		d->pg_chunk.page = NULL;
363 	} else {
364 		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
365 				 q->buf_size, PCI_DMA_FROMDEVICE);
366 		kfree_skb(d->skb);
367 		d->skb = NULL;
368 	}
369 }
370 
371 /**
372  *	free_rx_bufs - free the Rx buffers on an SGE free list
373  *	@pdev: the PCI device associated with the adapter
374  *	@rxq: the SGE free list to clean up
375  *
376  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
377  *	this queue should be stopped before calling this function.
378  */
free_rx_bufs(struct pci_dev * pdev,struct sge_fl * q)379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
380 {
381 	unsigned int cidx = q->cidx;
382 
383 	while (q->credits--) {
384 		struct rx_sw_desc *d = &q->sdesc[cidx];
385 
386 
387 		clear_rx_desc(pdev, q, d);
388 		if (++cidx == q->size)
389 			cidx = 0;
390 	}
391 
392 	if (q->pg_chunk.page) {
393 		__free_pages(q->pg_chunk.page, q->order);
394 		q->pg_chunk.page = NULL;
395 	}
396 }
397 
398 /**
399  *	add_one_rx_buf - add a packet buffer to a free-buffer list
400  *	@va:  buffer start VA
401  *	@len: the buffer length
402  *	@d: the HW Rx descriptor to write
403  *	@sd: the SW Rx descriptor to write
404  *	@gen: the generation bit value
405  *	@pdev: the PCI device associated with the adapter
406  *
407  *	Add a buffer of the given length to the supplied HW and SW Rx
408  *	descriptors.
409  */
add_one_rx_buf(void * va,unsigned int len,struct rx_desc * d,struct rx_sw_desc * sd,unsigned int gen,struct pci_dev * pdev)410 static inline int add_one_rx_buf(void *va, unsigned int len,
411 				 struct rx_desc *d, struct rx_sw_desc *sd,
412 				 unsigned int gen, struct pci_dev *pdev)
413 {
414 	dma_addr_t mapping;
415 
416 	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
417 	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
418 		return -ENOMEM;
419 
420 	dma_unmap_addr_set(sd, dma_addr, mapping);
421 
422 	d->addr_lo = cpu_to_be32(mapping);
423 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
424 	wmb();
425 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
427 	return 0;
428 }
429 
add_one_rx_chunk(dma_addr_t mapping,struct rx_desc * d,unsigned int gen)430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
431 				   unsigned int gen)
432 {
433 	d->addr_lo = cpu_to_be32(mapping);
434 	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
435 	wmb();
436 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
438 	return 0;
439 }
440 
alloc_pg_chunk(struct adapter * adapter,struct sge_fl * q,struct rx_sw_desc * sd,gfp_t gfp,unsigned int order)441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 			  struct rx_sw_desc *sd, gfp_t gfp,
443 			  unsigned int order)
444 {
445 	if (!q->pg_chunk.page) {
446 		dma_addr_t mapping;
447 
448 		q->pg_chunk.page = alloc_pages(gfp, order);
449 		if (unlikely(!q->pg_chunk.page))
450 			return -ENOMEM;
451 		q->pg_chunk.va = page_address(q->pg_chunk.page);
452 		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
453 				    SGE_PG_RSVD;
454 		q->pg_chunk.offset = 0;
455 		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 		q->pg_chunk.mapping = mapping;
458 	}
459 	sd->pg_chunk = q->pg_chunk;
460 
461 	prefetch(sd->pg_chunk.p_cnt);
462 
463 	q->pg_chunk.offset += q->buf_size;
464 	if (q->pg_chunk.offset == (PAGE_SIZE << order))
465 		q->pg_chunk.page = NULL;
466 	else {
467 		q->pg_chunk.va += q->buf_size;
468 		get_page(q->pg_chunk.page);
469 	}
470 
471 	if (sd->pg_chunk.offset == 0)
472 		*sd->pg_chunk.p_cnt = 1;
473 	else
474 		*sd->pg_chunk.p_cnt += 1;
475 
476 	return 0;
477 }
478 
ring_fl_db(struct adapter * adap,struct sge_fl * q)479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 	if (q->pend_cred >= q->credits / 4) {
482 		q->pend_cred = 0;
483 		wmb();
484 		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
485 	}
486 }
487 
488 /**
489  *	refill_fl - refill an SGE free-buffer list
490  *	@adapter: the adapter
491  *	@q: the free-list to refill
492  *	@n: the number of new buffers to allocate
493  *	@gfp: the gfp flags for allocating new buffers
494  *
495  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
496  *	allocated with the supplied gfp flags.  The caller must assure that
497  *	@n does not exceed the queue's capacity.
498  */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)499 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
500 {
501 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
502 	struct rx_desc *d = &q->desc[q->pidx];
503 	unsigned int count = 0;
504 
505 	while (n--) {
506 		dma_addr_t mapping;
507 		int err;
508 
509 		if (q->use_pages) {
510 			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
511 						    q->order))) {
512 nomem:				q->alloc_failed++;
513 				break;
514 			}
515 			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
516 			dma_unmap_addr_set(sd, dma_addr, mapping);
517 
518 			add_one_rx_chunk(mapping, d, q->gen);
519 			pci_dma_sync_single_for_device(adap->pdev, mapping,
520 						q->buf_size - SGE_PG_RSVD,
521 						PCI_DMA_FROMDEVICE);
522 		} else {
523 			void *buf_start;
524 
525 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
526 			if (!skb)
527 				goto nomem;
528 
529 			sd->skb = skb;
530 			buf_start = skb->data;
531 			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
532 					     q->gen, adap->pdev);
533 			if (unlikely(err)) {
534 				clear_rx_desc(adap->pdev, q, sd);
535 				break;
536 			}
537 		}
538 
539 		d++;
540 		sd++;
541 		if (++q->pidx == q->size) {
542 			q->pidx = 0;
543 			q->gen ^= 1;
544 			sd = q->sdesc;
545 			d = q->desc;
546 		}
547 		count++;
548 	}
549 
550 	q->credits += count;
551 	q->pend_cred += count;
552 	ring_fl_db(adap, q);
553 
554 	return count;
555 }
556 
__refill_fl(struct adapter * adap,struct sge_fl * fl)557 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
558 {
559 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
560 		  GFP_ATOMIC | __GFP_COMP);
561 }
562 
563 /**
564  *	recycle_rx_buf - recycle a receive buffer
565  *	@adapter: the adapter
566  *	@q: the SGE free list
567  *	@idx: index of buffer to recycle
568  *
569  *	Recycles the specified buffer on the given free list by adding it at
570  *	the next available slot on the list.
571  */
recycle_rx_buf(struct adapter * adap,struct sge_fl * q,unsigned int idx)572 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
573 			   unsigned int idx)
574 {
575 	struct rx_desc *from = &q->desc[idx];
576 	struct rx_desc *to = &q->desc[q->pidx];
577 
578 	q->sdesc[q->pidx] = q->sdesc[idx];
579 	to->addr_lo = from->addr_lo;	/* already big endian */
580 	to->addr_hi = from->addr_hi;	/* likewise */
581 	wmb();
582 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
583 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
584 
585 	if (++q->pidx == q->size) {
586 		q->pidx = 0;
587 		q->gen ^= 1;
588 	}
589 
590 	q->credits++;
591 	q->pend_cred++;
592 	ring_fl_db(adap, q);
593 }
594 
595 /**
596  *	alloc_ring - allocate resources for an SGE descriptor ring
597  *	@pdev: the PCI device
598  *	@nelem: the number of descriptors
599  *	@elem_size: the size of each descriptor
600  *	@sw_size: the size of the SW state associated with each ring element
601  *	@phys: the physical address of the allocated ring
602  *	@metadata: address of the array holding the SW state for the ring
603  *
604  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
605  *	free buffer lists, or response queues.  Each SGE ring requires
606  *	space for its HW descriptors plus, optionally, space for the SW state
607  *	associated with each HW entry (the metadata).  The function returns
608  *	three values: the virtual address for the HW ring (the return value
609  *	of the function), the physical address of the HW ring, and the address
610  *	of the SW ring.
611  */
alloc_ring(struct pci_dev * pdev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata)612 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
613 			size_t sw_size, dma_addr_t * phys, void *metadata)
614 {
615 	size_t len = nelem * elem_size;
616 	void *s = NULL;
617 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
618 
619 	if (!p)
620 		return NULL;
621 	if (sw_size && metadata) {
622 		s = kcalloc(nelem, sw_size, GFP_KERNEL);
623 
624 		if (!s) {
625 			dma_free_coherent(&pdev->dev, len, p, *phys);
626 			return NULL;
627 		}
628 		*(void **)metadata = s;
629 	}
630 	memset(p, 0, len);
631 	return p;
632 }
633 
634 /**
635  *	t3_reset_qset - reset a sge qset
636  *	@q: the queue set
637  *
638  *	Reset the qset structure.
639  *	the NAPI structure is preserved in the event of
640  *	the qset's reincarnation, for example during EEH recovery.
641  */
t3_reset_qset(struct sge_qset * q)642 static void t3_reset_qset(struct sge_qset *q)
643 {
644 	if (q->adap &&
645 	    !(q->adap->flags & NAPI_INIT)) {
646 		memset(q, 0, sizeof(*q));
647 		return;
648 	}
649 
650 	q->adap = NULL;
651 	memset(&q->rspq, 0, sizeof(q->rspq));
652 	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
653 	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
654 	q->txq_stopped = 0;
655 	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
656 	q->rx_reclaim_timer.function = NULL;
657 	q->nomem = 0;
658 	napi_free_frags(&q->napi);
659 }
660 
661 
662 /**
663  *	free_qset - free the resources of an SGE queue set
664  *	@adapter: the adapter owning the queue set
665  *	@q: the queue set
666  *
667  *	Release the HW and SW resources associated with an SGE queue set, such
668  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
669  *	queue set must be quiesced prior to calling this.
670  */
t3_free_qset(struct adapter * adapter,struct sge_qset * q)671 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
672 {
673 	int i;
674 	struct pci_dev *pdev = adapter->pdev;
675 
676 	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
677 		if (q->fl[i].desc) {
678 			spin_lock_irq(&adapter->sge.reg_lock);
679 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
680 			spin_unlock_irq(&adapter->sge.reg_lock);
681 			free_rx_bufs(pdev, &q->fl[i]);
682 			kfree(q->fl[i].sdesc);
683 			dma_free_coherent(&pdev->dev,
684 					  q->fl[i].size *
685 					  sizeof(struct rx_desc), q->fl[i].desc,
686 					  q->fl[i].phys_addr);
687 		}
688 
689 	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
690 		if (q->txq[i].desc) {
691 			spin_lock_irq(&adapter->sge.reg_lock);
692 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
693 			spin_unlock_irq(&adapter->sge.reg_lock);
694 			if (q->txq[i].sdesc) {
695 				free_tx_desc(adapter, &q->txq[i],
696 					     q->txq[i].in_use);
697 				kfree(q->txq[i].sdesc);
698 			}
699 			dma_free_coherent(&pdev->dev,
700 					  q->txq[i].size *
701 					  sizeof(struct tx_desc),
702 					  q->txq[i].desc, q->txq[i].phys_addr);
703 			__skb_queue_purge(&q->txq[i].sendq);
704 		}
705 
706 	if (q->rspq.desc) {
707 		spin_lock_irq(&adapter->sge.reg_lock);
708 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
709 		spin_unlock_irq(&adapter->sge.reg_lock);
710 		dma_free_coherent(&pdev->dev,
711 				  q->rspq.size * sizeof(struct rsp_desc),
712 				  q->rspq.desc, q->rspq.phys_addr);
713 	}
714 
715 	t3_reset_qset(q);
716 }
717 
718 /**
719  *	init_qset_cntxt - initialize an SGE queue set context info
720  *	@qs: the queue set
721  *	@id: the queue set id
722  *
723  *	Initializes the TIDs and context ids for the queues of a queue set.
724  */
init_qset_cntxt(struct sge_qset * qs,unsigned int id)725 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
726 {
727 	qs->rspq.cntxt_id = id;
728 	qs->fl[0].cntxt_id = 2 * id;
729 	qs->fl[1].cntxt_id = 2 * id + 1;
730 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
731 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
732 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
733 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
734 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
735 }
736 
737 /**
738  *	sgl_len - calculates the size of an SGL of the given capacity
739  *	@n: the number of SGL entries
740  *
741  *	Calculates the number of flits needed for a scatter/gather list that
742  *	can hold the given number of entries.
743  */
sgl_len(unsigned int n)744 static inline unsigned int sgl_len(unsigned int n)
745 {
746 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
747 	return (3 * n) / 2 + (n & 1);
748 }
749 
750 /**
751  *	flits_to_desc - returns the num of Tx descriptors for the given flits
752  *	@n: the number of flits
753  *
754  *	Calculates the number of Tx descriptors needed for the supplied number
755  *	of flits.
756  */
flits_to_desc(unsigned int n)757 static inline unsigned int flits_to_desc(unsigned int n)
758 {
759 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
760 	return flit_desc_map[n];
761 }
762 
763 /**
764  *	get_packet - return the next ingress packet buffer from a free list
765  *	@adap: the adapter that received the packet
766  *	@fl: the SGE free list holding the packet
767  *	@len: the packet length including any SGE padding
768  *	@drop_thres: # of remaining buffers before we start dropping packets
769  *
770  *	Get the next packet from a free list and complete setup of the
771  *	sk_buff.  If the packet is small we make a copy and recycle the
772  *	original buffer, otherwise we use the original buffer itself.  If a
773  *	positive drop threshold is supplied packets are dropped and their
774  *	buffers recycled if (a) the number of remaining buffers is under the
775  *	threshold and the packet is too big to copy, or (b) the packet should
776  *	be copied but there is no memory for the copy.
777  */
get_packet(struct adapter * adap,struct sge_fl * fl,unsigned int len,unsigned int drop_thres)778 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
779 				  unsigned int len, unsigned int drop_thres)
780 {
781 	struct sk_buff *skb = NULL;
782 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
783 
784 	prefetch(sd->skb->data);
785 	fl->credits--;
786 
787 	if (len <= SGE_RX_COPY_THRES) {
788 		skb = alloc_skb(len, GFP_ATOMIC);
789 		if (likely(skb != NULL)) {
790 			__skb_put(skb, len);
791 			pci_dma_sync_single_for_cpu(adap->pdev,
792 					    dma_unmap_addr(sd, dma_addr), len,
793 					    PCI_DMA_FROMDEVICE);
794 			memcpy(skb->data, sd->skb->data, len);
795 			pci_dma_sync_single_for_device(adap->pdev,
796 					    dma_unmap_addr(sd, dma_addr), len,
797 					    PCI_DMA_FROMDEVICE);
798 		} else if (!drop_thres)
799 			goto use_orig_buf;
800 recycle:
801 		recycle_rx_buf(adap, fl, fl->cidx);
802 		return skb;
803 	}
804 
805 	if (unlikely(fl->credits < drop_thres) &&
806 	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
807 		      GFP_ATOMIC | __GFP_COMP) == 0)
808 		goto recycle;
809 
810 use_orig_buf:
811 	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
812 			 fl->buf_size, PCI_DMA_FROMDEVICE);
813 	skb = sd->skb;
814 	skb_put(skb, len);
815 	__refill_fl(adap, fl);
816 	return skb;
817 }
818 
819 /**
820  *	get_packet_pg - return the next ingress packet buffer from a free list
821  *	@adap: the adapter that received the packet
822  *	@fl: the SGE free list holding the packet
823  *	@len: the packet length including any SGE padding
824  *	@drop_thres: # of remaining buffers before we start dropping packets
825  *
826  *	Get the next packet from a free list populated with page chunks.
827  *	If the packet is small we make a copy and recycle the original buffer,
828  *	otherwise we attach the original buffer as a page fragment to a fresh
829  *	sk_buff.  If a positive drop threshold is supplied packets are dropped
830  *	and their buffers recycled if (a) the number of remaining buffers is
831  *	under the threshold and the packet is too big to copy, or (b) there's
832  *	no system memory.
833  *
834  * 	Note: this function is similar to @get_packet but deals with Rx buffers
835  * 	that are page chunks rather than sk_buffs.
836  */
get_packet_pg(struct adapter * adap,struct sge_fl * fl,struct sge_rspq * q,unsigned int len,unsigned int drop_thres)837 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
838 				     struct sge_rspq *q, unsigned int len,
839 				     unsigned int drop_thres)
840 {
841 	struct sk_buff *newskb, *skb;
842 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
843 
844 	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
845 
846 	newskb = skb = q->pg_skb;
847 	if (!skb && (len <= SGE_RX_COPY_THRES)) {
848 		newskb = alloc_skb(len, GFP_ATOMIC);
849 		if (likely(newskb != NULL)) {
850 			__skb_put(newskb, len);
851 			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
852 					    PCI_DMA_FROMDEVICE);
853 			memcpy(newskb->data, sd->pg_chunk.va, len);
854 			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
855 						       len,
856 						       PCI_DMA_FROMDEVICE);
857 		} else if (!drop_thres)
858 			return NULL;
859 recycle:
860 		fl->credits--;
861 		recycle_rx_buf(adap, fl, fl->cidx);
862 		q->rx_recycle_buf++;
863 		return newskb;
864 	}
865 
866 	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
867 		goto recycle;
868 
869 	prefetch(sd->pg_chunk.p_cnt);
870 
871 	if (!skb)
872 		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
873 
874 	if (unlikely(!newskb)) {
875 		if (!drop_thres)
876 			return NULL;
877 		goto recycle;
878 	}
879 
880 	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
881 				    PCI_DMA_FROMDEVICE);
882 	(*sd->pg_chunk.p_cnt)--;
883 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
884 		pci_unmap_page(adap->pdev,
885 			       sd->pg_chunk.mapping,
886 			       fl->alloc_size,
887 			       PCI_DMA_FROMDEVICE);
888 	if (!skb) {
889 		__skb_put(newskb, SGE_RX_PULL_LEN);
890 		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
891 		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
892 				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
893 				   len - SGE_RX_PULL_LEN);
894 		newskb->len = len;
895 		newskb->data_len = len - SGE_RX_PULL_LEN;
896 		newskb->truesize += newskb->data_len;
897 	} else {
898 		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
899 				   sd->pg_chunk.page,
900 				   sd->pg_chunk.offset, len);
901 		newskb->len += len;
902 		newskb->data_len += len;
903 		newskb->truesize += len;
904 	}
905 
906 	fl->credits--;
907 	/*
908 	 * We do not refill FLs here, we let the caller do it to overlap a
909 	 * prefetch.
910 	 */
911 	return newskb;
912 }
913 
914 /**
915  *	get_imm_packet - return the next ingress packet buffer from a response
916  *	@resp: the response descriptor containing the packet data
917  *
918  *	Return a packet containing the immediate data of the given response.
919  */
get_imm_packet(const struct rsp_desc * resp)920 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
921 {
922 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
923 
924 	if (skb) {
925 		__skb_put(skb, IMMED_PKT_SIZE);
926 		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
927 	}
928 	return skb;
929 }
930 
931 /**
932  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
933  *	@skb: the packet
934  *
935  * 	Returns the number of Tx descriptors needed for the given Ethernet
936  * 	packet.  Ethernet packets require addition of WR and CPL headers.
937  */
calc_tx_descs(const struct sk_buff * skb)938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
939 {
940 	unsigned int flits;
941 
942 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
943 		return 1;
944 
945 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
946 	if (skb_shinfo(skb)->gso_size)
947 		flits++;
948 	return flits_to_desc(flits);
949 }
950 
951 /**
952  *	make_sgl - populate a scatter/gather list for a packet
953  *	@skb: the packet
954  *	@sgp: the SGL to populate
955  *	@start: start address of skb main body data to include in the SGL
956  *	@len: length of skb main body data to include in the SGL
957  *	@pdev: the PCI device
958  *
959  *	Generates a scatter/gather list for the buffers that make up a packet
960  *	and returns the SGL size in 8-byte words.  The caller must size the SGL
961  *	appropriately.
962  */
make_sgl(const struct sk_buff * skb,struct sg_ent * sgp,unsigned char * start,unsigned int len,struct pci_dev * pdev)963 static inline unsigned int make_sgl(const struct sk_buff *skb,
964 				    struct sg_ent *sgp, unsigned char *start,
965 				    unsigned int len, struct pci_dev *pdev)
966 {
967 	dma_addr_t mapping;
968 	unsigned int i, j = 0, nfrags;
969 
970 	if (len) {
971 		mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
972 		sgp->len[0] = cpu_to_be32(len);
973 		sgp->addr[0] = cpu_to_be64(mapping);
974 		j = 1;
975 	}
976 
977 	nfrags = skb_shinfo(skb)->nr_frags;
978 	for (i = 0; i < nfrags; i++) {
979 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
980 
981 		mapping = pci_map_page(pdev, frag->page, frag->page_offset,
982 				       frag->size, PCI_DMA_TODEVICE);
983 		sgp->len[j] = cpu_to_be32(frag->size);
984 		sgp->addr[j] = cpu_to_be64(mapping);
985 		j ^= 1;
986 		if (j == 0)
987 			++sgp;
988 	}
989 	if (j)
990 		sgp->len[j] = 0;
991 	return ((nfrags + (len != 0)) * 3) / 2 + j;
992 }
993 
994 /**
995  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
996  *	@adap: the adapter
997  *	@q: the Tx queue
998  *
999  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1000  *	where the HW is going to sleep just after we checked, however,
1001  *	then the interrupt handler will detect the outstanding TX packet
1002  *	and ring the doorbell for us.
1003  *
1004  *	When GTS is disabled we unconditionally ring the doorbell.
1005  */
check_ring_tx_db(struct adapter * adap,struct sge_txq * q)1006 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1007 {
1008 #if USE_GTS
1009 	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1010 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1011 		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1012 		t3_write_reg(adap, A_SG_KDOORBELL,
1013 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1014 	}
1015 #else
1016 	wmb();			/* write descriptors before telling HW */
1017 	t3_write_reg(adap, A_SG_KDOORBELL,
1018 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1019 #endif
1020 }
1021 
wr_gen2(struct tx_desc * d,unsigned int gen)1022 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1023 {
1024 #if SGE_NUM_GENBITS == 2
1025 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1026 #endif
1027 }
1028 
1029 /**
1030  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1031  *	@ndesc: number of Tx descriptors spanned by the SGL
1032  *	@skb: the packet corresponding to the WR
1033  *	@d: first Tx descriptor to be written
1034  *	@pidx: index of above descriptors
1035  *	@q: the SGE Tx queue
1036  *	@sgl: the SGL
1037  *	@flits: number of flits to the start of the SGL in the first descriptor
1038  *	@sgl_flits: the SGL size in flits
1039  *	@gen: the Tx descriptor generation
1040  *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1041  *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1042  *
1043  *	Write a work request header and an associated SGL.  If the SGL is
1044  *	small enough to fit into one Tx descriptor it has already been written
1045  *	and we just need to write the WR header.  Otherwise we distribute the
1046  *	SGL across the number of descriptors it spans.
1047  */
write_wr_hdr_sgl(unsigned int ndesc,struct sk_buff * skb,struct tx_desc * d,unsigned int pidx,const struct sge_txq * q,const struct sg_ent * sgl,unsigned int flits,unsigned int sgl_flits,unsigned int gen,__be32 wr_hi,__be32 wr_lo)1048 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1049 			     struct tx_desc *d, unsigned int pidx,
1050 			     const struct sge_txq *q,
1051 			     const struct sg_ent *sgl,
1052 			     unsigned int flits, unsigned int sgl_flits,
1053 			     unsigned int gen, __be32 wr_hi,
1054 			     __be32 wr_lo)
1055 {
1056 	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1057 	struct tx_sw_desc *sd = &q->sdesc[pidx];
1058 
1059 	sd->skb = skb;
1060 	if (need_skb_unmap()) {
1061 		sd->fragidx = 0;
1062 		sd->addr_idx = 0;
1063 		sd->sflit = flits;
1064 	}
1065 
1066 	if (likely(ndesc == 1)) {
1067 		sd->eop = 1;
1068 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1069 				   V_WR_SGLSFLT(flits)) | wr_hi;
1070 		wmb();
1071 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1072 				   V_WR_GEN(gen)) | wr_lo;
1073 		wr_gen2(d, gen);
1074 	} else {
1075 		unsigned int ogen = gen;
1076 		const u64 *fp = (const u64 *)sgl;
1077 		struct work_request_hdr *wp = wrp;
1078 
1079 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1080 				   V_WR_SGLSFLT(flits)) | wr_hi;
1081 
1082 		while (sgl_flits) {
1083 			unsigned int avail = WR_FLITS - flits;
1084 
1085 			if (avail > sgl_flits)
1086 				avail = sgl_flits;
1087 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1088 			sgl_flits -= avail;
1089 			ndesc--;
1090 			if (!sgl_flits)
1091 				break;
1092 
1093 			fp += avail;
1094 			d++;
1095 			sd->eop = 0;
1096 			sd++;
1097 			if (++pidx == q->size) {
1098 				pidx = 0;
1099 				gen ^= 1;
1100 				d = q->desc;
1101 				sd = q->sdesc;
1102 			}
1103 
1104 			sd->skb = skb;
1105 			wrp = (struct work_request_hdr *)d;
1106 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1107 					   V_WR_SGLSFLT(1)) | wr_hi;
1108 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1109 							sgl_flits + 1)) |
1110 					   V_WR_GEN(gen)) | wr_lo;
1111 			wr_gen2(d, gen);
1112 			flits = 1;
1113 		}
1114 		sd->eop = 1;
1115 		wrp->wr_hi |= htonl(F_WR_EOP);
1116 		wmb();
1117 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1118 		wr_gen2((struct tx_desc *)wp, ogen);
1119 		WARN_ON(ndesc != 0);
1120 	}
1121 }
1122 
1123 /**
1124  *	write_tx_pkt_wr - write a TX_PKT work request
1125  *	@adap: the adapter
1126  *	@skb: the packet to send
1127  *	@pi: the egress interface
1128  *	@pidx: index of the first Tx descriptor to write
1129  *	@gen: the generation value to use
1130  *	@q: the Tx queue
1131  *	@ndesc: number of descriptors the packet will occupy
1132  *	@compl: the value of the COMPL bit to use
1133  *
1134  *	Generate a TX_PKT work request to send the supplied packet.
1135  */
write_tx_pkt_wr(struct adapter * adap,struct sk_buff * skb,const struct port_info * pi,unsigned int pidx,unsigned int gen,struct sge_txq * q,unsigned int ndesc,unsigned int compl)1136 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1137 			    const struct port_info *pi,
1138 			    unsigned int pidx, unsigned int gen,
1139 			    struct sge_txq *q, unsigned int ndesc,
1140 			    unsigned int compl)
1141 {
1142 	unsigned int flits, sgl_flits, cntrl, tso_info;
1143 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1144 	struct tx_desc *d = &q->desc[pidx];
1145 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1146 
1147 	cpl->len = htonl(skb->len);
1148 	cntrl = V_TXPKT_INTF(pi->port_id);
1149 
1150 	if (vlan_tx_tag_present(skb))
1151 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1152 
1153 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1154 	if (tso_info) {
1155 		int eth_type;
1156 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1157 
1158 		d->flit[2] = 0;
1159 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1160 		hdr->cntrl = htonl(cntrl);
1161 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1162 		    CPL_ETH_II : CPL_ETH_II_VLAN;
1163 		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1164 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1165 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1166 		hdr->lso_info = htonl(tso_info);
1167 		flits = 3;
1168 	} else {
1169 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1170 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1171 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1172 		cpl->cntrl = htonl(cntrl);
1173 
1174 		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1175 			q->sdesc[pidx].skb = NULL;
1176 			if (!skb->data_len)
1177 				skb_copy_from_linear_data(skb, &d->flit[2],
1178 							  skb->len);
1179 			else
1180 				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1181 
1182 			flits = (skb->len + 7) / 8 + 2;
1183 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1184 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1185 					      | F_WR_SOP | F_WR_EOP | compl);
1186 			wmb();
1187 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1188 					      V_WR_TID(q->token));
1189 			wr_gen2(d, gen);
1190 			kfree_skb(skb);
1191 			return;
1192 		}
1193 
1194 		flits = 2;
1195 	}
1196 
1197 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1198 	sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1199 
1200 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1201 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1202 			 htonl(V_WR_TID(q->token)));
1203 }
1204 
t3_stop_tx_queue(struct netdev_queue * txq,struct sge_qset * qs,struct sge_txq * q)1205 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1206 				    struct sge_qset *qs, struct sge_txq *q)
1207 {
1208 	netif_tx_stop_queue(txq);
1209 	set_bit(TXQ_ETH, &qs->txq_stopped);
1210 	q->stops++;
1211 }
1212 
1213 /**
1214  *	eth_xmit - add a packet to the Ethernet Tx queue
1215  *	@skb: the packet
1216  *	@dev: the egress net device
1217  *
1218  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1219  */
t3_eth_xmit(struct sk_buff * skb,struct net_device * dev)1220 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1221 {
1222 	int qidx;
1223 	unsigned int ndesc, pidx, credits, gen, compl;
1224 	const struct port_info *pi = netdev_priv(dev);
1225 	struct adapter *adap = pi->adapter;
1226 	struct netdev_queue *txq;
1227 	struct sge_qset *qs;
1228 	struct sge_txq *q;
1229 
1230 	/*
1231 	 * The chip min packet length is 9 octets but play safe and reject
1232 	 * anything shorter than an Ethernet header.
1233 	 */
1234 	if (unlikely(skb->len < ETH_HLEN)) {
1235 		dev_kfree_skb(skb);
1236 		return NETDEV_TX_OK;
1237 	}
1238 
1239 	qidx = skb_get_queue_mapping(skb);
1240 	qs = &pi->qs[qidx];
1241 	q = &qs->txq[TXQ_ETH];
1242 	txq = netdev_get_tx_queue(dev, qidx);
1243 
1244 	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1245 
1246 	credits = q->size - q->in_use;
1247 	ndesc = calc_tx_descs(skb);
1248 
1249 	if (unlikely(credits < ndesc)) {
1250 		t3_stop_tx_queue(txq, qs, q);
1251 		dev_err(&adap->pdev->dev,
1252 			"%s: Tx ring %u full while queue awake!\n",
1253 			dev->name, q->cntxt_id & 7);
1254 		return NETDEV_TX_BUSY;
1255 	}
1256 
1257 	q->in_use += ndesc;
1258 	if (unlikely(credits - ndesc < q->stop_thres)) {
1259 		t3_stop_tx_queue(txq, qs, q);
1260 
1261 		if (should_restart_tx(q) &&
1262 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1263 			q->restarts++;
1264 			netif_tx_start_queue(txq);
1265 		}
1266 	}
1267 
1268 	gen = q->gen;
1269 	q->unacked += ndesc;
1270 	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1271 	q->unacked &= 7;
1272 	pidx = q->pidx;
1273 	q->pidx += ndesc;
1274 	if (q->pidx >= q->size) {
1275 		q->pidx -= q->size;
1276 		q->gen ^= 1;
1277 	}
1278 
1279 	/* update port statistics */
1280 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1281 		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1282 	if (skb_shinfo(skb)->gso_size)
1283 		qs->port_stats[SGE_PSTAT_TSO]++;
1284 	if (vlan_tx_tag_present(skb))
1285 		qs->port_stats[SGE_PSTAT_VLANINS]++;
1286 
1287 	/*
1288 	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1289 	 * This is good for performance but means that we rely on new Tx
1290 	 * packets arriving to run the destructors of completed packets,
1291 	 * which open up space in their sockets' send queues.  Sometimes
1292 	 * we do not get such new packets causing Tx to stall.  A single
1293 	 * UDP transmitter is a good example of this situation.  We have
1294 	 * a clean up timer that periodically reclaims completed packets
1295 	 * but it doesn't run often enough (nor do we want it to) to prevent
1296 	 * lengthy stalls.  A solution to this problem is to run the
1297 	 * destructor early, after the packet is queued but before it's DMAd.
1298 	 * A cons is that we lie to socket memory accounting, but the amount
1299 	 * of extra memory is reasonable (limited by the number of Tx
1300 	 * descriptors), the packets do actually get freed quickly by new
1301 	 * packets almost always, and for protocols like TCP that wait for
1302 	 * acks to really free up the data the extra memory is even less.
1303 	 * On the positive side we run the destructors on the sending CPU
1304 	 * rather than on a potentially different completing CPU, usually a
1305 	 * good thing.  We also run them without holding our Tx queue lock,
1306 	 * unlike what reclaim_completed_tx() would otherwise do.
1307 	 *
1308 	 * Run the destructor before telling the DMA engine about the packet
1309 	 * to make sure it doesn't complete and get freed prematurely.
1310 	 */
1311 	if (likely(!skb_shared(skb)))
1312 		skb_orphan(skb);
1313 
1314 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1315 	check_ring_tx_db(adap, q);
1316 	return NETDEV_TX_OK;
1317 }
1318 
1319 /**
1320  *	write_imm - write a packet into a Tx descriptor as immediate data
1321  *	@d: the Tx descriptor to write
1322  *	@skb: the packet
1323  *	@len: the length of packet data to write as immediate data
1324  *	@gen: the generation bit value to write
1325  *
1326  *	Writes a packet as immediate data into a Tx descriptor.  The packet
1327  *	contains a work request at its beginning.  We must write the packet
1328  *	carefully so the SGE doesn't read it accidentally before it's written
1329  *	in its entirety.
1330  */
write_imm(struct tx_desc * d,struct sk_buff * skb,unsigned int len,unsigned int gen)1331 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1332 			     unsigned int len, unsigned int gen)
1333 {
1334 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1335 	struct work_request_hdr *to = (struct work_request_hdr *)d;
1336 
1337 	if (likely(!skb->data_len))
1338 		memcpy(&to[1], &from[1], len - sizeof(*from));
1339 	else
1340 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1341 
1342 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1343 					V_WR_BCNTLFLT(len & 7));
1344 	wmb();
1345 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1346 					V_WR_LEN((len + 7) / 8));
1347 	wr_gen2(d, gen);
1348 	kfree_skb(skb);
1349 }
1350 
1351 /**
1352  *	check_desc_avail - check descriptor availability on a send queue
1353  *	@adap: the adapter
1354  *	@q: the send queue
1355  *	@skb: the packet needing the descriptors
1356  *	@ndesc: the number of Tx descriptors needed
1357  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1358  *
1359  *	Checks if the requested number of Tx descriptors is available on an
1360  *	SGE send queue.  If the queue is already suspended or not enough
1361  *	descriptors are available the packet is queued for later transmission.
1362  *	Must be called with the Tx queue locked.
1363  *
1364  *	Returns 0 if enough descriptors are available, 1 if there aren't
1365  *	enough descriptors and the packet has been queued, and 2 if the caller
1366  *	needs to retry because there weren't enough descriptors at the
1367  *	beginning of the call but some freed up in the mean time.
1368  */
check_desc_avail(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb,unsigned int ndesc,unsigned int qid)1369 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1370 				   struct sk_buff *skb, unsigned int ndesc,
1371 				   unsigned int qid)
1372 {
1373 	if (unlikely(!skb_queue_empty(&q->sendq))) {
1374 	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1375 		return 1;
1376 	}
1377 	if (unlikely(q->size - q->in_use < ndesc)) {
1378 		struct sge_qset *qs = txq_to_qset(q, qid);
1379 
1380 		set_bit(qid, &qs->txq_stopped);
1381 		smp_mb__after_clear_bit();
1382 
1383 		if (should_restart_tx(q) &&
1384 		    test_and_clear_bit(qid, &qs->txq_stopped))
1385 			return 2;
1386 
1387 		q->stops++;
1388 		goto addq_exit;
1389 	}
1390 	return 0;
1391 }
1392 
1393 /**
1394  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1395  *	@q: the SGE control Tx queue
1396  *
1397  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1398  *	that send only immediate data (presently just the control queues) and
1399  *	thus do not have any sk_buffs to release.
1400  */
reclaim_completed_tx_imm(struct sge_txq * q)1401 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1402 {
1403 	unsigned int reclaim = q->processed - q->cleaned;
1404 
1405 	q->in_use -= reclaim;
1406 	q->cleaned += reclaim;
1407 }
1408 
immediate(const struct sk_buff * skb)1409 static inline int immediate(const struct sk_buff *skb)
1410 {
1411 	return skb->len <= WR_LEN;
1412 }
1413 
1414 /**
1415  *	ctrl_xmit - send a packet through an SGE control Tx queue
1416  *	@adap: the adapter
1417  *	@q: the control queue
1418  *	@skb: the packet
1419  *
1420  *	Send a packet through an SGE control Tx queue.  Packets sent through
1421  *	a control queue must fit entirely as immediate data in a single Tx
1422  *	descriptor and have no page fragments.
1423  */
ctrl_xmit(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb)1424 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1425 		     struct sk_buff *skb)
1426 {
1427 	int ret;
1428 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1429 
1430 	if (unlikely(!immediate(skb))) {
1431 		WARN_ON(1);
1432 		dev_kfree_skb(skb);
1433 		return NET_XMIT_SUCCESS;
1434 	}
1435 
1436 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1437 	wrp->wr_lo = htonl(V_WR_TID(q->token));
1438 
1439 	spin_lock(&q->lock);
1440       again:reclaim_completed_tx_imm(q);
1441 
1442 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1443 	if (unlikely(ret)) {
1444 		if (ret == 1) {
1445 			spin_unlock(&q->lock);
1446 			return NET_XMIT_CN;
1447 		}
1448 		goto again;
1449 	}
1450 
1451 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1452 
1453 	q->in_use++;
1454 	if (++q->pidx >= q->size) {
1455 		q->pidx = 0;
1456 		q->gen ^= 1;
1457 	}
1458 	spin_unlock(&q->lock);
1459 	wmb();
1460 	t3_write_reg(adap, A_SG_KDOORBELL,
1461 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1462 	return NET_XMIT_SUCCESS;
1463 }
1464 
1465 /**
1466  *	restart_ctrlq - restart a suspended control queue
1467  *	@qs: the queue set cotaining the control queue
1468  *
1469  *	Resumes transmission on a suspended Tx control queue.
1470  */
restart_ctrlq(unsigned long data)1471 static void restart_ctrlq(unsigned long data)
1472 {
1473 	struct sk_buff *skb;
1474 	struct sge_qset *qs = (struct sge_qset *)data;
1475 	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1476 
1477 	spin_lock(&q->lock);
1478       again:reclaim_completed_tx_imm(q);
1479 
1480 	while (q->in_use < q->size &&
1481 	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1482 
1483 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1484 
1485 		if (++q->pidx >= q->size) {
1486 			q->pidx = 0;
1487 			q->gen ^= 1;
1488 		}
1489 		q->in_use++;
1490 	}
1491 
1492 	if (!skb_queue_empty(&q->sendq)) {
1493 		set_bit(TXQ_CTRL, &qs->txq_stopped);
1494 		smp_mb__after_clear_bit();
1495 
1496 		if (should_restart_tx(q) &&
1497 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1498 			goto again;
1499 		q->stops++;
1500 	}
1501 
1502 	spin_unlock(&q->lock);
1503 	wmb();
1504 	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1505 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1506 }
1507 
1508 /*
1509  * Send a management message through control queue 0
1510  */
t3_mgmt_tx(struct adapter * adap,struct sk_buff * skb)1511 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1512 {
1513 	int ret;
1514 	local_bh_disable();
1515 	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1516 	local_bh_enable();
1517 
1518 	return ret;
1519 }
1520 
1521 /**
1522  *	deferred_unmap_destructor - unmap a packet when it is freed
1523  *	@skb: the packet
1524  *
1525  *	This is the packet destructor used for Tx packets that need to remain
1526  *	mapped until they are freed rather than until their Tx descriptors are
1527  *	freed.
1528  */
deferred_unmap_destructor(struct sk_buff * skb)1529 static void deferred_unmap_destructor(struct sk_buff *skb)
1530 {
1531 	int i;
1532 	const dma_addr_t *p;
1533 	const struct skb_shared_info *si;
1534 	const struct deferred_unmap_info *dui;
1535 
1536 	dui = (struct deferred_unmap_info *)skb->head;
1537 	p = dui->addr;
1538 
1539 	if (skb->tail - skb->transport_header)
1540 		pci_unmap_single(dui->pdev, *p++,
1541 				 skb->tail - skb->transport_header,
1542 				 PCI_DMA_TODEVICE);
1543 
1544 	si = skb_shinfo(skb);
1545 	for (i = 0; i < si->nr_frags; i++)
1546 		pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1547 			       PCI_DMA_TODEVICE);
1548 }
1549 
setup_deferred_unmapping(struct sk_buff * skb,struct pci_dev * pdev,const struct sg_ent * sgl,int sgl_flits)1550 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1551 				     const struct sg_ent *sgl, int sgl_flits)
1552 {
1553 	dma_addr_t *p;
1554 	struct deferred_unmap_info *dui;
1555 
1556 	dui = (struct deferred_unmap_info *)skb->head;
1557 	dui->pdev = pdev;
1558 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1559 		*p++ = be64_to_cpu(sgl->addr[0]);
1560 		*p++ = be64_to_cpu(sgl->addr[1]);
1561 	}
1562 	if (sgl_flits)
1563 		*p = be64_to_cpu(sgl->addr[0]);
1564 }
1565 
1566 /**
1567  *	write_ofld_wr - write an offload work request
1568  *	@adap: the adapter
1569  *	@skb: the packet to send
1570  *	@q: the Tx queue
1571  *	@pidx: index of the first Tx descriptor to write
1572  *	@gen: the generation value to use
1573  *	@ndesc: number of descriptors the packet will occupy
1574  *
1575  *	Write an offload work request to send the supplied packet.  The packet
1576  *	data already carry the work request with most fields populated.
1577  */
write_ofld_wr(struct adapter * adap,struct sk_buff * skb,struct sge_txq * q,unsigned int pidx,unsigned int gen,unsigned int ndesc)1578 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1579 			  struct sge_txq *q, unsigned int pidx,
1580 			  unsigned int gen, unsigned int ndesc)
1581 {
1582 	unsigned int sgl_flits, flits;
1583 	struct work_request_hdr *from;
1584 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1585 	struct tx_desc *d = &q->desc[pidx];
1586 
1587 	if (immediate(skb)) {
1588 		q->sdesc[pidx].skb = NULL;
1589 		write_imm(d, skb, skb->len, gen);
1590 		return;
1591 	}
1592 
1593 	/* Only TX_DATA builds SGLs */
1594 
1595 	from = (struct work_request_hdr *)skb->data;
1596 	memcpy(&d->flit[1], &from[1],
1597 	       skb_transport_offset(skb) - sizeof(*from));
1598 
1599 	flits = skb_transport_offset(skb) / 8;
1600 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1601 	sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1602 			     skb->tail - skb->transport_header,
1603 			     adap->pdev);
1604 	if (need_skb_unmap()) {
1605 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1606 		skb->destructor = deferred_unmap_destructor;
1607 	}
1608 
1609 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1610 			 gen, from->wr_hi, from->wr_lo);
1611 }
1612 
1613 /**
1614  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1615  *	@skb: the packet
1616  *
1617  * 	Returns the number of Tx descriptors needed for the given offload
1618  * 	packet.  These packets are already fully constructed.
1619  */
calc_tx_descs_ofld(const struct sk_buff * skb)1620 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1621 {
1622 	unsigned int flits, cnt;
1623 
1624 	if (skb->len <= WR_LEN)
1625 		return 1;	/* packet fits as immediate data */
1626 
1627 	flits = skb_transport_offset(skb) / 8;	/* headers */
1628 	cnt = skb_shinfo(skb)->nr_frags;
1629 	if (skb->tail != skb->transport_header)
1630 		cnt++;
1631 	return flits_to_desc(flits + sgl_len(cnt));
1632 }
1633 
1634 /**
1635  *	ofld_xmit - send a packet through an offload queue
1636  *	@adap: the adapter
1637  *	@q: the Tx offload queue
1638  *	@skb: the packet
1639  *
1640  *	Send an offload packet through an SGE offload queue.
1641  */
ofld_xmit(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb)1642 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1643 		     struct sk_buff *skb)
1644 {
1645 	int ret;
1646 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1647 
1648 	spin_lock(&q->lock);
1649 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1650 
1651 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1652 	if (unlikely(ret)) {
1653 		if (ret == 1) {
1654 			skb->priority = ndesc;	/* save for restart */
1655 			spin_unlock(&q->lock);
1656 			return NET_XMIT_CN;
1657 		}
1658 		goto again;
1659 	}
1660 
1661 	gen = q->gen;
1662 	q->in_use += ndesc;
1663 	pidx = q->pidx;
1664 	q->pidx += ndesc;
1665 	if (q->pidx >= q->size) {
1666 		q->pidx -= q->size;
1667 		q->gen ^= 1;
1668 	}
1669 	spin_unlock(&q->lock);
1670 
1671 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1672 	check_ring_tx_db(adap, q);
1673 	return NET_XMIT_SUCCESS;
1674 }
1675 
1676 /**
1677  *	restart_offloadq - restart a suspended offload queue
1678  *	@qs: the queue set cotaining the offload queue
1679  *
1680  *	Resumes transmission on a suspended Tx offload queue.
1681  */
restart_offloadq(unsigned long data)1682 static void restart_offloadq(unsigned long data)
1683 {
1684 	struct sk_buff *skb;
1685 	struct sge_qset *qs = (struct sge_qset *)data;
1686 	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1687 	const struct port_info *pi = netdev_priv(qs->netdev);
1688 	struct adapter *adap = pi->adapter;
1689 
1690 	spin_lock(&q->lock);
1691 again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1692 
1693 	while ((skb = skb_peek(&q->sendq)) != NULL) {
1694 		unsigned int gen, pidx;
1695 		unsigned int ndesc = skb->priority;
1696 
1697 		if (unlikely(q->size - q->in_use < ndesc)) {
1698 			set_bit(TXQ_OFLD, &qs->txq_stopped);
1699 			smp_mb__after_clear_bit();
1700 
1701 			if (should_restart_tx(q) &&
1702 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1703 				goto again;
1704 			q->stops++;
1705 			break;
1706 		}
1707 
1708 		gen = q->gen;
1709 		q->in_use += ndesc;
1710 		pidx = q->pidx;
1711 		q->pidx += ndesc;
1712 		if (q->pidx >= q->size) {
1713 			q->pidx -= q->size;
1714 			q->gen ^= 1;
1715 		}
1716 		__skb_unlink(skb, &q->sendq);
1717 		spin_unlock(&q->lock);
1718 
1719 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1720 		spin_lock(&q->lock);
1721 	}
1722 	spin_unlock(&q->lock);
1723 
1724 #if USE_GTS
1725 	set_bit(TXQ_RUNNING, &q->flags);
1726 	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1727 #endif
1728 	wmb();
1729 	t3_write_reg(adap, A_SG_KDOORBELL,
1730 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1731 }
1732 
1733 /**
1734  *	queue_set - return the queue set a packet should use
1735  *	@skb: the packet
1736  *
1737  *	Maps a packet to the SGE queue set it should use.  The desired queue
1738  *	set is carried in bits 1-3 in the packet's priority.
1739  */
queue_set(const struct sk_buff * skb)1740 static inline int queue_set(const struct sk_buff *skb)
1741 {
1742 	return skb->priority >> 1;
1743 }
1744 
1745 /**
1746  *	is_ctrl_pkt - return whether an offload packet is a control packet
1747  *	@skb: the packet
1748  *
1749  *	Determines whether an offload packet should use an OFLD or a CTRL
1750  *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1751  */
is_ctrl_pkt(const struct sk_buff * skb)1752 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1753 {
1754 	return skb->priority & 1;
1755 }
1756 
1757 /**
1758  *	t3_offload_tx - send an offload packet
1759  *	@tdev: the offload device to send to
1760  *	@skb: the packet
1761  *
1762  *	Sends an offload packet.  We use the packet priority to select the
1763  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1764  *	should be sent as regular or control, bits 1-3 select the queue set.
1765  */
t3_offload_tx(struct t3cdev * tdev,struct sk_buff * skb)1766 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1767 {
1768 	struct adapter *adap = tdev2adap(tdev);
1769 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1770 
1771 	if (unlikely(is_ctrl_pkt(skb)))
1772 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1773 
1774 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1775 }
1776 
1777 /**
1778  *	offload_enqueue - add an offload packet to an SGE offload receive queue
1779  *	@q: the SGE response queue
1780  *	@skb: the packet
1781  *
1782  *	Add a new offload packet to an SGE response queue's offload packet
1783  *	queue.  If the packet is the first on the queue it schedules the RX
1784  *	softirq to process the queue.
1785  */
offload_enqueue(struct sge_rspq * q,struct sk_buff * skb)1786 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1787 {
1788 	int was_empty = skb_queue_empty(&q->rx_queue);
1789 
1790 	__skb_queue_tail(&q->rx_queue, skb);
1791 
1792 	if (was_empty) {
1793 		struct sge_qset *qs = rspq_to_qset(q);
1794 
1795 		napi_schedule(&qs->napi);
1796 	}
1797 }
1798 
1799 /**
1800  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1801  *	@tdev: the offload device that will be receiving the packets
1802  *	@q: the SGE response queue that assembled the bundle
1803  *	@skbs: the partial bundle
1804  *	@n: the number of packets in the bundle
1805  *
1806  *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1807  */
deliver_partial_bundle(struct t3cdev * tdev,struct sge_rspq * q,struct sk_buff * skbs[],int n)1808 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1809 					  struct sge_rspq *q,
1810 					  struct sk_buff *skbs[], int n)
1811 {
1812 	if (n) {
1813 		q->offload_bundles++;
1814 		tdev->recv(tdev, skbs, n);
1815 	}
1816 }
1817 
1818 /**
1819  *	ofld_poll - NAPI handler for offload packets in interrupt mode
1820  *	@dev: the network device doing the polling
1821  *	@budget: polling budget
1822  *
1823  *	The NAPI handler for offload packets when a response queue is serviced
1824  *	by the hard interrupt handler, i.e., when it's operating in non-polling
1825  *	mode.  Creates small packet batches and sends them through the offload
1826  *	receive handler.  Batches need to be of modest size as we do prefetches
1827  *	on the packets in each.
1828  */
ofld_poll(struct napi_struct * napi,int budget)1829 static int ofld_poll(struct napi_struct *napi, int budget)
1830 {
1831 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1832 	struct sge_rspq *q = &qs->rspq;
1833 	struct adapter *adapter = qs->adap;
1834 	int work_done = 0;
1835 
1836 	while (work_done < budget) {
1837 		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1838 		struct sk_buff_head queue;
1839 		int ngathered;
1840 
1841 		spin_lock_irq(&q->lock);
1842 		__skb_queue_head_init(&queue);
1843 		skb_queue_splice_init(&q->rx_queue, &queue);
1844 		if (skb_queue_empty(&queue)) {
1845 			napi_complete(napi);
1846 			spin_unlock_irq(&q->lock);
1847 			return work_done;
1848 		}
1849 		spin_unlock_irq(&q->lock);
1850 
1851 		ngathered = 0;
1852 		skb_queue_walk_safe(&queue, skb, tmp) {
1853 			if (work_done >= budget)
1854 				break;
1855 			work_done++;
1856 
1857 			__skb_unlink(skb, &queue);
1858 			prefetch(skb->data);
1859 			skbs[ngathered] = skb;
1860 			if (++ngathered == RX_BUNDLE_SIZE) {
1861 				q->offload_bundles++;
1862 				adapter->tdev.recv(&adapter->tdev, skbs,
1863 						   ngathered);
1864 				ngathered = 0;
1865 			}
1866 		}
1867 		if (!skb_queue_empty(&queue)) {
1868 			/* splice remaining packets back onto Rx queue */
1869 			spin_lock_irq(&q->lock);
1870 			skb_queue_splice(&queue, &q->rx_queue);
1871 			spin_unlock_irq(&q->lock);
1872 		}
1873 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1874 	}
1875 
1876 	return work_done;
1877 }
1878 
1879 /**
1880  *	rx_offload - process a received offload packet
1881  *	@tdev: the offload device receiving the packet
1882  *	@rq: the response queue that received the packet
1883  *	@skb: the packet
1884  *	@rx_gather: a gather list of packets if we are building a bundle
1885  *	@gather_idx: index of the next available slot in the bundle
1886  *
1887  *	Process an ingress offload pakcet and add it to the offload ingress
1888  *	queue. 	Returns the index of the next available slot in the bundle.
1889  */
rx_offload(struct t3cdev * tdev,struct sge_rspq * rq,struct sk_buff * skb,struct sk_buff * rx_gather[],unsigned int gather_idx)1890 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1891 			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1892 			     unsigned int gather_idx)
1893 {
1894 	skb_reset_mac_header(skb);
1895 	skb_reset_network_header(skb);
1896 	skb_reset_transport_header(skb);
1897 
1898 	if (rq->polling) {
1899 		rx_gather[gather_idx++] = skb;
1900 		if (gather_idx == RX_BUNDLE_SIZE) {
1901 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1902 			gather_idx = 0;
1903 			rq->offload_bundles++;
1904 		}
1905 	} else
1906 		offload_enqueue(rq, skb);
1907 
1908 	return gather_idx;
1909 }
1910 
1911 /**
1912  *	restart_tx - check whether to restart suspended Tx queues
1913  *	@qs: the queue set to resume
1914  *
1915  *	Restarts suspended Tx queues of an SGE queue set if they have enough
1916  *	free resources to resume operation.
1917  */
restart_tx(struct sge_qset * qs)1918 static void restart_tx(struct sge_qset *qs)
1919 {
1920 	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1921 	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1922 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1923 		qs->txq[TXQ_ETH].restarts++;
1924 		if (netif_running(qs->netdev))
1925 			netif_tx_wake_queue(qs->tx_q);
1926 	}
1927 
1928 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1929 	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1930 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1931 		qs->txq[TXQ_OFLD].restarts++;
1932 		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1933 	}
1934 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1935 	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1936 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1937 		qs->txq[TXQ_CTRL].restarts++;
1938 		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1939 	}
1940 }
1941 
1942 /**
1943  *	cxgb3_arp_process - process an ARP request probing a private IP address
1944  *	@adapter: the adapter
1945  *	@skb: the skbuff containing the ARP request
1946  *
1947  *	Check if the ARP request is probing the private IP address
1948  *	dedicated to iSCSI, generate an ARP reply if so.
1949  */
cxgb3_arp_process(struct port_info * pi,struct sk_buff * skb)1950 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1951 {
1952 	struct net_device *dev = skb->dev;
1953 	struct arphdr *arp;
1954 	unsigned char *arp_ptr;
1955 	unsigned char *sha;
1956 	__be32 sip, tip;
1957 
1958 	if (!dev)
1959 		return;
1960 
1961 	skb_reset_network_header(skb);
1962 	arp = arp_hdr(skb);
1963 
1964 	if (arp->ar_op != htons(ARPOP_REQUEST))
1965 		return;
1966 
1967 	arp_ptr = (unsigned char *)(arp + 1);
1968 	sha = arp_ptr;
1969 	arp_ptr += dev->addr_len;
1970 	memcpy(&sip, arp_ptr, sizeof(sip));
1971 	arp_ptr += sizeof(sip);
1972 	arp_ptr += dev->addr_len;
1973 	memcpy(&tip, arp_ptr, sizeof(tip));
1974 
1975 	if (tip != pi->iscsi_ipv4addr)
1976 		return;
1977 
1978 	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1979 		 pi->iscsic.mac_addr, sha);
1980 
1981 }
1982 
is_arp(struct sk_buff * skb)1983 static inline int is_arp(struct sk_buff *skb)
1984 {
1985 	return skb->protocol == htons(ETH_P_ARP);
1986 }
1987 
cxgb3_process_iscsi_prov_pack(struct port_info * pi,struct sk_buff * skb)1988 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1989 					struct sk_buff *skb)
1990 {
1991 	if (is_arp(skb)) {
1992 		cxgb3_arp_process(pi, skb);
1993 		return;
1994 	}
1995 
1996 	if (pi->iscsic.recv)
1997 		pi->iscsic.recv(pi, skb);
1998 
1999 }
2000 
2001 /**
2002  *	rx_eth - process an ingress ethernet packet
2003  *	@adap: the adapter
2004  *	@rq: the response queue that received the packet
2005  *	@skb: the packet
2006  *	@pad: amount of padding at the start of the buffer
2007  *
2008  *	Process an ingress ethernet pakcet and deliver it to the stack.
2009  *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2010  *	if it was immediate data in a response.
2011  */
rx_eth(struct adapter * adap,struct sge_rspq * rq,struct sk_buff * skb,int pad,int lro)2012 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2013 		   struct sk_buff *skb, int pad, int lro)
2014 {
2015 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2016 	struct sge_qset *qs = rspq_to_qset(rq);
2017 	struct port_info *pi;
2018 
2019 	skb_pull(skb, sizeof(*p) + pad);
2020 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2021 	pi = netdev_priv(skb->dev);
2022 	if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2023 	    p->csum == htons(0xffff) && !p->fragment) {
2024 		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2025 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2026 	} else
2027 		skb_checksum_none_assert(skb);
2028 	skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2029 
2030 	if (unlikely(p->vlan_valid)) {
2031 		struct vlan_group *grp = pi->vlan_grp;
2032 
2033 		qs->port_stats[SGE_PSTAT_VLANEX]++;
2034 		if (likely(grp))
2035 			if (lro)
2036 				vlan_gro_receive(&qs->napi, grp,
2037 						 ntohs(p->vlan), skb);
2038 			else {
2039 				if (unlikely(pi->iscsic.flags)) {
2040 					unsigned short vtag = ntohs(p->vlan) &
2041 								VLAN_VID_MASK;
2042 					skb->dev = vlan_group_get_device(grp,
2043 									 vtag);
2044 					cxgb3_process_iscsi_prov_pack(pi, skb);
2045 				}
2046 				__vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2047 					  	  rq->polling);
2048 			}
2049 		else
2050 			dev_kfree_skb_any(skb);
2051 	} else if (rq->polling) {
2052 		if (lro)
2053 			napi_gro_receive(&qs->napi, skb);
2054 		else {
2055 			if (unlikely(pi->iscsic.flags))
2056 				cxgb3_process_iscsi_prov_pack(pi, skb);
2057 			netif_receive_skb(skb);
2058 		}
2059 	} else
2060 		netif_rx(skb);
2061 }
2062 
is_eth_tcp(u32 rss)2063 static inline int is_eth_tcp(u32 rss)
2064 {
2065 	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2066 }
2067 
2068 /**
2069  *	lro_add_page - add a page chunk to an LRO session
2070  *	@adap: the adapter
2071  *	@qs: the associated queue set
2072  *	@fl: the free list containing the page chunk to add
2073  *	@len: packet length
2074  *	@complete: Indicates the last fragment of a frame
2075  *
2076  *	Add a received packet contained in a page chunk to an existing LRO
2077  *	session.
2078  */
lro_add_page(struct adapter * adap,struct sge_qset * qs,struct sge_fl * fl,int len,int complete)2079 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2080 			 struct sge_fl *fl, int len, int complete)
2081 {
2082 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2083 	struct port_info *pi = netdev_priv(qs->netdev);
2084 	struct sk_buff *skb = NULL;
2085 	struct cpl_rx_pkt *cpl;
2086 	struct skb_frag_struct *rx_frag;
2087 	int nr_frags;
2088 	int offset = 0;
2089 
2090 	if (!qs->nomem) {
2091 		skb = napi_get_frags(&qs->napi);
2092 		qs->nomem = !skb;
2093 	}
2094 
2095 	fl->credits--;
2096 
2097 	pci_dma_sync_single_for_cpu(adap->pdev,
2098 				    dma_unmap_addr(sd, dma_addr),
2099 				    fl->buf_size - SGE_PG_RSVD,
2100 				    PCI_DMA_FROMDEVICE);
2101 
2102 	(*sd->pg_chunk.p_cnt)--;
2103 	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2104 		pci_unmap_page(adap->pdev,
2105 			       sd->pg_chunk.mapping,
2106 			       fl->alloc_size,
2107 			       PCI_DMA_FROMDEVICE);
2108 
2109 	if (!skb) {
2110 		put_page(sd->pg_chunk.page);
2111 		if (complete)
2112 			qs->nomem = 0;
2113 		return;
2114 	}
2115 
2116 	rx_frag = skb_shinfo(skb)->frags;
2117 	nr_frags = skb_shinfo(skb)->nr_frags;
2118 
2119 	if (!nr_frags) {
2120 		offset = 2 + sizeof(struct cpl_rx_pkt);
2121 		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2122 
2123 		if ((pi->rx_offload & T3_RX_CSUM) &&
2124 		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2125 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2126 			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2127 		} else
2128 			skb->ip_summed = CHECKSUM_NONE;
2129 	} else
2130 		cpl = qs->lro_va;
2131 
2132 	len -= offset;
2133 
2134 	rx_frag += nr_frags;
2135 	rx_frag->page = sd->pg_chunk.page;
2136 	rx_frag->page_offset = sd->pg_chunk.offset + offset;
2137 	rx_frag->size = len;
2138 
2139 	skb->len += len;
2140 	skb->data_len += len;
2141 	skb->truesize += len;
2142 	skb_shinfo(skb)->nr_frags++;
2143 
2144 	if (!complete)
2145 		return;
2146 
2147 	skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2148 
2149 	if (unlikely(cpl->vlan_valid)) {
2150 		struct vlan_group *grp = pi->vlan_grp;
2151 
2152 		if (likely(grp != NULL)) {
2153 			vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2154 			return;
2155 		}
2156 	}
2157 	napi_gro_frags(&qs->napi);
2158 }
2159 
2160 /**
2161  *	handle_rsp_cntrl_info - handles control information in a response
2162  *	@qs: the queue set corresponding to the response
2163  *	@flags: the response control flags
2164  *
2165  *	Handles the control information of an SGE response, such as GTS
2166  *	indications and completion credits for the queue set's Tx queues.
2167  *	HW coalesces credits, we don't do any extra SW coalescing.
2168  */
handle_rsp_cntrl_info(struct sge_qset * qs,u32 flags)2169 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2170 {
2171 	unsigned int credits;
2172 
2173 #if USE_GTS
2174 	if (flags & F_RSPD_TXQ0_GTS)
2175 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2176 #endif
2177 
2178 	credits = G_RSPD_TXQ0_CR(flags);
2179 	if (credits)
2180 		qs->txq[TXQ_ETH].processed += credits;
2181 
2182 	credits = G_RSPD_TXQ2_CR(flags);
2183 	if (credits)
2184 		qs->txq[TXQ_CTRL].processed += credits;
2185 
2186 # if USE_GTS
2187 	if (flags & F_RSPD_TXQ1_GTS)
2188 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2189 # endif
2190 	credits = G_RSPD_TXQ1_CR(flags);
2191 	if (credits)
2192 		qs->txq[TXQ_OFLD].processed += credits;
2193 }
2194 
2195 /**
2196  *	check_ring_db - check if we need to ring any doorbells
2197  *	@adapter: the adapter
2198  *	@qs: the queue set whose Tx queues are to be examined
2199  *	@sleeping: indicates which Tx queue sent GTS
2200  *
2201  *	Checks if some of a queue set's Tx queues need to ring their doorbells
2202  *	to resume transmission after idling while they still have unprocessed
2203  *	descriptors.
2204  */
check_ring_db(struct adapter * adap,struct sge_qset * qs,unsigned int sleeping)2205 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2206 			  unsigned int sleeping)
2207 {
2208 	if (sleeping & F_RSPD_TXQ0_GTS) {
2209 		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2210 
2211 		if (txq->cleaned + txq->in_use != txq->processed &&
2212 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2213 			set_bit(TXQ_RUNNING, &txq->flags);
2214 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2215 				     V_EGRCNTX(txq->cntxt_id));
2216 		}
2217 	}
2218 
2219 	if (sleeping & F_RSPD_TXQ1_GTS) {
2220 		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2221 
2222 		if (txq->cleaned + txq->in_use != txq->processed &&
2223 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2224 			set_bit(TXQ_RUNNING, &txq->flags);
2225 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2226 				     V_EGRCNTX(txq->cntxt_id));
2227 		}
2228 	}
2229 }
2230 
2231 /**
2232  *	is_new_response - check if a response is newly written
2233  *	@r: the response descriptor
2234  *	@q: the response queue
2235  *
2236  *	Returns true if a response descriptor contains a yet unprocessed
2237  *	response.
2238  */
is_new_response(const struct rsp_desc * r,const struct sge_rspq * q)2239 static inline int is_new_response(const struct rsp_desc *r,
2240 				  const struct sge_rspq *q)
2241 {
2242 	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2243 }
2244 
clear_rspq_bufstate(struct sge_rspq * const q)2245 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2246 {
2247 	q->pg_skb = NULL;
2248 	q->rx_recycle_buf = 0;
2249 }
2250 
2251 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2252 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2253 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2254 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2255 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2256 
2257 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2258 #define NOMEM_INTR_DELAY 2500
2259 
2260 /**
2261  *	process_responses - process responses from an SGE response queue
2262  *	@adap: the adapter
2263  *	@qs: the queue set to which the response queue belongs
2264  *	@budget: how many responses can be processed in this round
2265  *
2266  *	Process responses from an SGE response queue up to the supplied budget.
2267  *	Responses include received packets as well as credits and other events
2268  *	for the queues that belong to the response queue's queue set.
2269  *	A negative budget is effectively unlimited.
2270  *
2271  *	Additionally choose the interrupt holdoff time for the next interrupt
2272  *	on this queue.  If the system is under memory shortage use a fairly
2273  *	long delay to help recovery.
2274  */
process_responses(struct adapter * adap,struct sge_qset * qs,int budget)2275 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2276 			     int budget)
2277 {
2278 	struct sge_rspq *q = &qs->rspq;
2279 	struct rsp_desc *r = &q->desc[q->cidx];
2280 	int budget_left = budget;
2281 	unsigned int sleeping = 0;
2282 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2283 	int ngathered = 0;
2284 
2285 	q->next_holdoff = q->holdoff_tmr;
2286 
2287 	while (likely(budget_left && is_new_response(r, q))) {
2288 		int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2289 		struct sk_buff *skb = NULL;
2290 		u32 len, flags;
2291 		__be32 rss_hi, rss_lo;
2292 
2293 		rmb();
2294 		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2295 		rss_hi = *(const __be32 *)r;
2296 		rss_lo = r->rss_hdr.rss_hash_val;
2297 		flags = ntohl(r->flags);
2298 
2299 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2300 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2301 			if (!skb)
2302 				goto no_mem;
2303 
2304 			memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2305 			skb->data[0] = CPL_ASYNC_NOTIF;
2306 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2307 			q->async_notif++;
2308 		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2309 			skb = get_imm_packet(r);
2310 			if (unlikely(!skb)) {
2311 no_mem:
2312 				q->next_holdoff = NOMEM_INTR_DELAY;
2313 				q->nomem++;
2314 				/* consume one credit since we tried */
2315 				budget_left--;
2316 				break;
2317 			}
2318 			q->imm_data++;
2319 			ethpad = 0;
2320 		} else if ((len = ntohl(r->len_cq)) != 0) {
2321 			struct sge_fl *fl;
2322 
2323 			lro &= eth && is_eth_tcp(rss_hi);
2324 
2325 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2326 			if (fl->use_pages) {
2327 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2328 
2329 				prefetch(addr);
2330 #if L1_CACHE_BYTES < 128
2331 				prefetch(addr + L1_CACHE_BYTES);
2332 #endif
2333 				__refill_fl(adap, fl);
2334 				if (lro > 0) {
2335 					lro_add_page(adap, qs, fl,
2336 						     G_RSPD_LEN(len),
2337 						     flags & F_RSPD_EOP);
2338 					 goto next_fl;
2339 				}
2340 
2341 				skb = get_packet_pg(adap, fl, q,
2342 						    G_RSPD_LEN(len),
2343 						    eth ?
2344 						    SGE_RX_DROP_THRES : 0);
2345 				q->pg_skb = skb;
2346 			} else
2347 				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2348 						 eth ? SGE_RX_DROP_THRES : 0);
2349 			if (unlikely(!skb)) {
2350 				if (!eth)
2351 					goto no_mem;
2352 				q->rx_drops++;
2353 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2354 				__skb_pull(skb, 2);
2355 next_fl:
2356 			if (++fl->cidx == fl->size)
2357 				fl->cidx = 0;
2358 		} else
2359 			q->pure_rsps++;
2360 
2361 		if (flags & RSPD_CTRL_MASK) {
2362 			sleeping |= flags & RSPD_GTS_MASK;
2363 			handle_rsp_cntrl_info(qs, flags);
2364 		}
2365 
2366 		r++;
2367 		if (unlikely(++q->cidx == q->size)) {
2368 			q->cidx = 0;
2369 			q->gen ^= 1;
2370 			r = q->desc;
2371 		}
2372 		prefetch(r);
2373 
2374 		if (++q->credits >= (q->size / 4)) {
2375 			refill_rspq(adap, q, q->credits);
2376 			q->credits = 0;
2377 		}
2378 
2379 		packet_complete = flags &
2380 				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2381 				   F_RSPD_ASYNC_NOTIF);
2382 
2383 		if (skb != NULL && packet_complete) {
2384 			if (eth)
2385 				rx_eth(adap, q, skb, ethpad, lro);
2386 			else {
2387 				q->offload_pkts++;
2388 				/* Preserve the RSS info in csum & priority */
2389 				skb->csum = rss_hi;
2390 				skb->priority = rss_lo;
2391 				ngathered = rx_offload(&adap->tdev, q, skb,
2392 						       offload_skbs,
2393 						       ngathered);
2394 			}
2395 
2396 			if (flags & F_RSPD_EOP)
2397 				clear_rspq_bufstate(q);
2398 		}
2399 		--budget_left;
2400 	}
2401 
2402 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2403 
2404 	if (sleeping)
2405 		check_ring_db(adap, qs, sleeping);
2406 
2407 	smp_mb();		/* commit Tx queue .processed updates */
2408 	if (unlikely(qs->txq_stopped != 0))
2409 		restart_tx(qs);
2410 
2411 	budget -= budget_left;
2412 	return budget;
2413 }
2414 
is_pure_response(const struct rsp_desc * r)2415 static inline int is_pure_response(const struct rsp_desc *r)
2416 {
2417 	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2418 
2419 	return (n | r->len_cq) == 0;
2420 }
2421 
2422 /**
2423  *	napi_rx_handler - the NAPI handler for Rx processing
2424  *	@napi: the napi instance
2425  *	@budget: how many packets we can process in this round
2426  *
2427  *	Handler for new data events when using NAPI.
2428  */
napi_rx_handler(struct napi_struct * napi,int budget)2429 static int napi_rx_handler(struct napi_struct *napi, int budget)
2430 {
2431 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2432 	struct adapter *adap = qs->adap;
2433 	int work_done = process_responses(adap, qs, budget);
2434 
2435 	if (likely(work_done < budget)) {
2436 		napi_complete(napi);
2437 
2438 		/*
2439 		 * Because we don't atomically flush the following
2440 		 * write it is possible that in very rare cases it can
2441 		 * reach the device in a way that races with a new
2442 		 * response being written plus an error interrupt
2443 		 * causing the NAPI interrupt handler below to return
2444 		 * unhandled status to the OS.  To protect against
2445 		 * this would require flushing the write and doing
2446 		 * both the write and the flush with interrupts off.
2447 		 * Way too expensive and unjustifiable given the
2448 		 * rarity of the race.
2449 		 *
2450 		 * The race cannot happen at all with MSI-X.
2451 		 */
2452 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2453 			     V_NEWTIMER(qs->rspq.next_holdoff) |
2454 			     V_NEWINDEX(qs->rspq.cidx));
2455 	}
2456 	return work_done;
2457 }
2458 
2459 /*
2460  * Returns true if the device is already scheduled for polling.
2461  */
napi_is_scheduled(struct napi_struct * napi)2462 static inline int napi_is_scheduled(struct napi_struct *napi)
2463 {
2464 	return test_bit(NAPI_STATE_SCHED, &napi->state);
2465 }
2466 
2467 /**
2468  *	process_pure_responses - process pure responses from a response queue
2469  *	@adap: the adapter
2470  *	@qs: the queue set owning the response queue
2471  *	@r: the first pure response to process
2472  *
2473  *	A simpler version of process_responses() that handles only pure (i.e.,
2474  *	non data-carrying) responses.  Such respones are too light-weight to
2475  *	justify calling a softirq under NAPI, so we handle them specially in
2476  *	the interrupt handler.  The function is called with a pointer to a
2477  *	response, which the caller must ensure is a valid pure response.
2478  *
2479  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2480  */
process_pure_responses(struct adapter * adap,struct sge_qset * qs,struct rsp_desc * r)2481 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2482 				  struct rsp_desc *r)
2483 {
2484 	struct sge_rspq *q = &qs->rspq;
2485 	unsigned int sleeping = 0;
2486 
2487 	do {
2488 		u32 flags = ntohl(r->flags);
2489 
2490 		r++;
2491 		if (unlikely(++q->cidx == q->size)) {
2492 			q->cidx = 0;
2493 			q->gen ^= 1;
2494 			r = q->desc;
2495 		}
2496 		prefetch(r);
2497 
2498 		if (flags & RSPD_CTRL_MASK) {
2499 			sleeping |= flags & RSPD_GTS_MASK;
2500 			handle_rsp_cntrl_info(qs, flags);
2501 		}
2502 
2503 		q->pure_rsps++;
2504 		if (++q->credits >= (q->size / 4)) {
2505 			refill_rspq(adap, q, q->credits);
2506 			q->credits = 0;
2507 		}
2508 		if (!is_new_response(r, q))
2509 			break;
2510 		rmb();
2511 	} while (is_pure_response(r));
2512 
2513 	if (sleeping)
2514 		check_ring_db(adap, qs, sleeping);
2515 
2516 	smp_mb();		/* commit Tx queue .processed updates */
2517 	if (unlikely(qs->txq_stopped != 0))
2518 		restart_tx(qs);
2519 
2520 	return is_new_response(r, q);
2521 }
2522 
2523 /**
2524  *	handle_responses - decide what to do with new responses in NAPI mode
2525  *	@adap: the adapter
2526  *	@q: the response queue
2527  *
2528  *	This is used by the NAPI interrupt handlers to decide what to do with
2529  *	new SGE responses.  If there are no new responses it returns -1.  If
2530  *	there are new responses and they are pure (i.e., non-data carrying)
2531  *	it handles them straight in hard interrupt context as they are very
2532  *	cheap and don't deliver any packets.  Finally, if there are any data
2533  *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2534  *	schedules NAPI, 0 if all new responses were pure.
2535  *
2536  *	The caller must ascertain NAPI is not already running.
2537  */
handle_responses(struct adapter * adap,struct sge_rspq * q)2538 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2539 {
2540 	struct sge_qset *qs = rspq_to_qset(q);
2541 	struct rsp_desc *r = &q->desc[q->cidx];
2542 
2543 	if (!is_new_response(r, q))
2544 		return -1;
2545 	rmb();
2546 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2547 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2548 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2549 		return 0;
2550 	}
2551 	napi_schedule(&qs->napi);
2552 	return 1;
2553 }
2554 
2555 /*
2556  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2557  * (i.e., response queue serviced in hard interrupt).
2558  */
t3_sge_intr_msix(int irq,void * cookie)2559 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2560 {
2561 	struct sge_qset *qs = cookie;
2562 	struct adapter *adap = qs->adap;
2563 	struct sge_rspq *q = &qs->rspq;
2564 
2565 	spin_lock(&q->lock);
2566 	if (process_responses(adap, qs, -1) == 0)
2567 		q->unhandled_irqs++;
2568 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2569 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2570 	spin_unlock(&q->lock);
2571 	return IRQ_HANDLED;
2572 }
2573 
2574 /*
2575  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2576  * (i.e., response queue serviced by NAPI polling).
2577  */
t3_sge_intr_msix_napi(int irq,void * cookie)2578 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2579 {
2580 	struct sge_qset *qs = cookie;
2581 	struct sge_rspq *q = &qs->rspq;
2582 
2583 	spin_lock(&q->lock);
2584 
2585 	if (handle_responses(qs->adap, q) < 0)
2586 		q->unhandled_irqs++;
2587 	spin_unlock(&q->lock);
2588 	return IRQ_HANDLED;
2589 }
2590 
2591 /*
2592  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2593  * SGE response queues as well as error and other async events as they all use
2594  * the same MSI vector.  We use one SGE response queue per port in this mode
2595  * and protect all response queues with queue 0's lock.
2596  */
t3_intr_msi(int irq,void * cookie)2597 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2598 {
2599 	int new_packets = 0;
2600 	struct adapter *adap = cookie;
2601 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2602 
2603 	spin_lock(&q->lock);
2604 
2605 	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2606 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2607 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2608 		new_packets = 1;
2609 	}
2610 
2611 	if (adap->params.nports == 2 &&
2612 	    process_responses(adap, &adap->sge.qs[1], -1)) {
2613 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2614 
2615 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2616 			     V_NEWTIMER(q1->next_holdoff) |
2617 			     V_NEWINDEX(q1->cidx));
2618 		new_packets = 1;
2619 	}
2620 
2621 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2622 		q->unhandled_irqs++;
2623 
2624 	spin_unlock(&q->lock);
2625 	return IRQ_HANDLED;
2626 }
2627 
rspq_check_napi(struct sge_qset * qs)2628 static int rspq_check_napi(struct sge_qset *qs)
2629 {
2630 	struct sge_rspq *q = &qs->rspq;
2631 
2632 	if (!napi_is_scheduled(&qs->napi) &&
2633 	    is_new_response(&q->desc[q->cidx], q)) {
2634 		napi_schedule(&qs->napi);
2635 		return 1;
2636 	}
2637 	return 0;
2638 }
2639 
2640 /*
2641  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2642  * by NAPI polling).  Handles data events from SGE response queues as well as
2643  * error and other async events as they all use the same MSI vector.  We use
2644  * one SGE response queue per port in this mode and protect all response
2645  * queues with queue 0's lock.
2646  */
t3_intr_msi_napi(int irq,void * cookie)2647 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2648 {
2649 	int new_packets;
2650 	struct adapter *adap = cookie;
2651 	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2652 
2653 	spin_lock(&q->lock);
2654 
2655 	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2656 	if (adap->params.nports == 2)
2657 		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2658 	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2659 		q->unhandled_irqs++;
2660 
2661 	spin_unlock(&q->lock);
2662 	return IRQ_HANDLED;
2663 }
2664 
2665 /*
2666  * A helper function that processes responses and issues GTS.
2667  */
process_responses_gts(struct adapter * adap,struct sge_rspq * rq)2668 static inline int process_responses_gts(struct adapter *adap,
2669 					struct sge_rspq *rq)
2670 {
2671 	int work;
2672 
2673 	work = process_responses(adap, rspq_to_qset(rq), -1);
2674 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2675 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2676 	return work;
2677 }
2678 
2679 /*
2680  * The legacy INTx interrupt handler.  This needs to handle data events from
2681  * SGE response queues as well as error and other async events as they all use
2682  * the same interrupt pin.  We use one SGE response queue per port in this mode
2683  * and protect all response queues with queue 0's lock.
2684  */
t3_intr(int irq,void * cookie)2685 static irqreturn_t t3_intr(int irq, void *cookie)
2686 {
2687 	int work_done, w0, w1;
2688 	struct adapter *adap = cookie;
2689 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2690 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2691 
2692 	spin_lock(&q0->lock);
2693 
2694 	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2695 	w1 = adap->params.nports == 2 &&
2696 	    is_new_response(&q1->desc[q1->cidx], q1);
2697 
2698 	if (likely(w0 | w1)) {
2699 		t3_write_reg(adap, A_PL_CLI, 0);
2700 		t3_read_reg(adap, A_PL_CLI);	/* flush */
2701 
2702 		if (likely(w0))
2703 			process_responses_gts(adap, q0);
2704 
2705 		if (w1)
2706 			process_responses_gts(adap, q1);
2707 
2708 		work_done = w0 | w1;
2709 	} else
2710 		work_done = t3_slow_intr_handler(adap);
2711 
2712 	spin_unlock(&q0->lock);
2713 	return IRQ_RETVAL(work_done != 0);
2714 }
2715 
2716 /*
2717  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2718  * Handles data events from SGE response queues as well as error and other
2719  * async events as they all use the same interrupt pin.  We use one SGE
2720  * response queue per port in this mode and protect all response queues with
2721  * queue 0's lock.
2722  */
t3b_intr(int irq,void * cookie)2723 static irqreturn_t t3b_intr(int irq, void *cookie)
2724 {
2725 	u32 map;
2726 	struct adapter *adap = cookie;
2727 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2728 
2729 	t3_write_reg(adap, A_PL_CLI, 0);
2730 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2731 
2732 	if (unlikely(!map))	/* shared interrupt, most likely */
2733 		return IRQ_NONE;
2734 
2735 	spin_lock(&q0->lock);
2736 
2737 	if (unlikely(map & F_ERRINTR))
2738 		t3_slow_intr_handler(adap);
2739 
2740 	if (likely(map & 1))
2741 		process_responses_gts(adap, q0);
2742 
2743 	if (map & 2)
2744 		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2745 
2746 	spin_unlock(&q0->lock);
2747 	return IRQ_HANDLED;
2748 }
2749 
2750 /*
2751  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2752  * Handles data events from SGE response queues as well as error and other
2753  * async events as they all use the same interrupt pin.  We use one SGE
2754  * response queue per port in this mode and protect all response queues with
2755  * queue 0's lock.
2756  */
t3b_intr_napi(int irq,void * cookie)2757 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2758 {
2759 	u32 map;
2760 	struct adapter *adap = cookie;
2761 	struct sge_qset *qs0 = &adap->sge.qs[0];
2762 	struct sge_rspq *q0 = &qs0->rspq;
2763 
2764 	t3_write_reg(adap, A_PL_CLI, 0);
2765 	map = t3_read_reg(adap, A_SG_DATA_INTR);
2766 
2767 	if (unlikely(!map))	/* shared interrupt, most likely */
2768 		return IRQ_NONE;
2769 
2770 	spin_lock(&q0->lock);
2771 
2772 	if (unlikely(map & F_ERRINTR))
2773 		t3_slow_intr_handler(adap);
2774 
2775 	if (likely(map & 1))
2776 		napi_schedule(&qs0->napi);
2777 
2778 	if (map & 2)
2779 		napi_schedule(&adap->sge.qs[1].napi);
2780 
2781 	spin_unlock(&q0->lock);
2782 	return IRQ_HANDLED;
2783 }
2784 
2785 /**
2786  *	t3_intr_handler - select the top-level interrupt handler
2787  *	@adap: the adapter
2788  *	@polling: whether using NAPI to service response queues
2789  *
2790  *	Selects the top-level interrupt handler based on the type of interrupts
2791  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2792  *	response queues.
2793  */
t3_intr_handler(struct adapter * adap,int polling)2794 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2795 {
2796 	if (adap->flags & USING_MSIX)
2797 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2798 	if (adap->flags & USING_MSI)
2799 		return polling ? t3_intr_msi_napi : t3_intr_msi;
2800 	if (adap->params.rev > 0)
2801 		return polling ? t3b_intr_napi : t3b_intr;
2802 	return t3_intr;
2803 }
2804 
2805 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2806 		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2807 		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2808 		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2809 		    F_HIRCQPARITYERROR)
2810 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2811 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2812 		      F_RSPQDISABLED)
2813 
2814 /**
2815  *	t3_sge_err_intr_handler - SGE async event interrupt handler
2816  *	@adapter: the adapter
2817  *
2818  *	Interrupt handler for SGE asynchronous (non-data) events.
2819  */
t3_sge_err_intr_handler(struct adapter * adapter)2820 void t3_sge_err_intr_handler(struct adapter *adapter)
2821 {
2822 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2823 				 ~F_FLEMPTY;
2824 
2825 	if (status & SGE_PARERR)
2826 		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2827 			 status & SGE_PARERR);
2828 	if (status & SGE_FRAMINGERR)
2829 		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2830 			 status & SGE_FRAMINGERR);
2831 
2832 	if (status & F_RSPQCREDITOVERFOW)
2833 		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2834 
2835 	if (status & F_RSPQDISABLED) {
2836 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2837 
2838 		CH_ALERT(adapter,
2839 			 "packet delivered to disabled response queue "
2840 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2841 	}
2842 
2843 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2844 		queue_work(cxgb3_wq, &adapter->db_drop_task);
2845 
2846 	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2847 		queue_work(cxgb3_wq, &adapter->db_full_task);
2848 
2849 	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2850 		queue_work(cxgb3_wq, &adapter->db_empty_task);
2851 
2852 	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2853 	if (status &  SGE_FATALERR)
2854 		t3_fatal_err(adapter);
2855 }
2856 
2857 /**
2858  *	sge_timer_tx - perform periodic maintenance of an SGE qset
2859  *	@data: the SGE queue set to maintain
2860  *
2861  *	Runs periodically from a timer to perform maintenance of an SGE queue
2862  *	set.  It performs two tasks:
2863  *
2864  *	Cleans up any completed Tx descriptors that may still be pending.
2865  *	Normal descriptor cleanup happens when new packets are added to a Tx
2866  *	queue so this timer is relatively infrequent and does any cleanup only
2867  *	if the Tx queue has not seen any new packets in a while.  We make a
2868  *	best effort attempt to reclaim descriptors, in that we don't wait
2869  *	around if we cannot get a queue's lock (which most likely is because
2870  *	someone else is queueing new packets and so will also handle the clean
2871  *	up).  Since control queues use immediate data exclusively we don't
2872  *	bother cleaning them up here.
2873  *
2874  */
sge_timer_tx(unsigned long data)2875 static void sge_timer_tx(unsigned long data)
2876 {
2877 	struct sge_qset *qs = (struct sge_qset *)data;
2878 	struct port_info *pi = netdev_priv(qs->netdev);
2879 	struct adapter *adap = pi->adapter;
2880 	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2881 	unsigned long next_period;
2882 
2883 	if (__netif_tx_trylock(qs->tx_q)) {
2884                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2885                                                      TX_RECLAIM_TIMER_CHUNK);
2886 		__netif_tx_unlock(qs->tx_q);
2887 	}
2888 
2889 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2890 		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2891 						     TX_RECLAIM_TIMER_CHUNK);
2892 		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2893 	}
2894 
2895 	next_period = TX_RECLAIM_PERIOD >>
2896                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2897                       TX_RECLAIM_TIMER_CHUNK);
2898 	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2899 }
2900 
2901 /*
2902  *	sge_timer_rx - perform periodic maintenance of an SGE qset
2903  *	@data: the SGE queue set to maintain
2904  *
2905  *	a) Replenishes Rx queues that have run out due to memory shortage.
2906  *	Normally new Rx buffers are added when existing ones are consumed but
2907  *	when out of memory a queue can become empty.  We try to add only a few
2908  *	buffers here, the queue will be replenished fully as these new buffers
2909  *	are used up if memory shortage has subsided.
2910  *
2911  *	b) Return coalesced response queue credits in case a response queue is
2912  *	starved.
2913  *
2914  */
sge_timer_rx(unsigned long data)2915 static void sge_timer_rx(unsigned long data)
2916 {
2917 	spinlock_t *lock;
2918 	struct sge_qset *qs = (struct sge_qset *)data;
2919 	struct port_info *pi = netdev_priv(qs->netdev);
2920 	struct adapter *adap = pi->adapter;
2921 	u32 status;
2922 
2923 	lock = adap->params.rev > 0 ?
2924 	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2925 
2926 	if (!spin_trylock_irq(lock))
2927 		goto out;
2928 
2929 	if (napi_is_scheduled(&qs->napi))
2930 		goto unlock;
2931 
2932 	if (adap->params.rev < 4) {
2933 		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2934 
2935 		if (status & (1 << qs->rspq.cntxt_id)) {
2936 			qs->rspq.starved++;
2937 			if (qs->rspq.credits) {
2938 				qs->rspq.credits--;
2939 				refill_rspq(adap, &qs->rspq, 1);
2940 				qs->rspq.restarted++;
2941 				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2942 					     1 << qs->rspq.cntxt_id);
2943 			}
2944 		}
2945 	}
2946 
2947 	if (qs->fl[0].credits < qs->fl[0].size)
2948 		__refill_fl(adap, &qs->fl[0]);
2949 	if (qs->fl[1].credits < qs->fl[1].size)
2950 		__refill_fl(adap, &qs->fl[1]);
2951 
2952 unlock:
2953 	spin_unlock_irq(lock);
2954 out:
2955 	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2956 }
2957 
2958 /**
2959  *	t3_update_qset_coalesce - update coalescing settings for a queue set
2960  *	@qs: the SGE queue set
2961  *	@p: new queue set parameters
2962  *
2963  *	Update the coalescing settings for an SGE queue set.  Nothing is done
2964  *	if the queue set is not initialized yet.
2965  */
t3_update_qset_coalesce(struct sge_qset * qs,const struct qset_params * p)2966 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2967 {
2968 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2969 	qs->rspq.polling = p->polling;
2970 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2971 }
2972 
2973 /**
2974  *	t3_sge_alloc_qset - initialize an SGE queue set
2975  *	@adapter: the adapter
2976  *	@id: the queue set id
2977  *	@nports: how many Ethernet ports will be using this queue set
2978  *	@irq_vec_idx: the IRQ vector index for response queue interrupts
2979  *	@p: configuration parameters for this queue set
2980  *	@ntxq: number of Tx queues for the queue set
2981  *	@netdev: net device associated with this queue set
2982  *	@netdevq: net device TX queue associated with this queue set
2983  *
2984  *	Allocate resources and initialize an SGE queue set.  A queue set
2985  *	comprises a response queue, two Rx free-buffer queues, and up to 3
2986  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
2987  *	queue, offload queue, and control queue.
2988  */
t3_sge_alloc_qset(struct adapter * adapter,unsigned int id,int nports,int irq_vec_idx,const struct qset_params * p,int ntxq,struct net_device * dev,struct netdev_queue * netdevq)2989 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2990 		      int irq_vec_idx, const struct qset_params *p,
2991 		      int ntxq, struct net_device *dev,
2992 		      struct netdev_queue *netdevq)
2993 {
2994 	int i, avail, ret = -ENOMEM;
2995 	struct sge_qset *q = &adapter->sge.qs[id];
2996 
2997 	init_qset_cntxt(q, id);
2998 	setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2999 	setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
3000 
3001 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3002 				   sizeof(struct rx_desc),
3003 				   sizeof(struct rx_sw_desc),
3004 				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3005 	if (!q->fl[0].desc)
3006 		goto err;
3007 
3008 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3009 				   sizeof(struct rx_desc),
3010 				   sizeof(struct rx_sw_desc),
3011 				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3012 	if (!q->fl[1].desc)
3013 		goto err;
3014 
3015 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3016 				  sizeof(struct rsp_desc), 0,
3017 				  &q->rspq.phys_addr, NULL);
3018 	if (!q->rspq.desc)
3019 		goto err;
3020 
3021 	for (i = 0; i < ntxq; ++i) {
3022 		/*
3023 		 * The control queue always uses immediate data so does not
3024 		 * need to keep track of any sk_buffs.
3025 		 */
3026 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3027 
3028 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3029 					    sizeof(struct tx_desc), sz,
3030 					    &q->txq[i].phys_addr,
3031 					    &q->txq[i].sdesc);
3032 		if (!q->txq[i].desc)
3033 			goto err;
3034 
3035 		q->txq[i].gen = 1;
3036 		q->txq[i].size = p->txq_size[i];
3037 		spin_lock_init(&q->txq[i].lock);
3038 		skb_queue_head_init(&q->txq[i].sendq);
3039 	}
3040 
3041 	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3042 		     (unsigned long)q);
3043 	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3044 		     (unsigned long)q);
3045 
3046 	q->fl[0].gen = q->fl[1].gen = 1;
3047 	q->fl[0].size = p->fl_size;
3048 	q->fl[1].size = p->jumbo_size;
3049 
3050 	q->rspq.gen = 1;
3051 	q->rspq.size = p->rspq_size;
3052 	spin_lock_init(&q->rspq.lock);
3053 	skb_queue_head_init(&q->rspq.rx_queue);
3054 
3055 	q->txq[TXQ_ETH].stop_thres = nports *
3056 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3057 
3058 #if FL0_PG_CHUNK_SIZE > 0
3059 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3060 #else
3061 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3062 #endif
3063 #if FL1_PG_CHUNK_SIZE > 0
3064 	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3065 #else
3066 	q->fl[1].buf_size = is_offload(adapter) ?
3067 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3068 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3069 #endif
3070 
3071 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3072 	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3073 	q->fl[0].order = FL0_PG_ORDER;
3074 	q->fl[1].order = FL1_PG_ORDER;
3075 	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3076 	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3077 
3078 	spin_lock_irq(&adapter->sge.reg_lock);
3079 
3080 	/* FL threshold comparison uses < */
3081 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3082 				   q->rspq.phys_addr, q->rspq.size,
3083 				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3084 	if (ret)
3085 		goto err_unlock;
3086 
3087 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3088 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3089 					  q->fl[i].phys_addr, q->fl[i].size,
3090 					  q->fl[i].buf_size - SGE_PG_RSVD,
3091 					  p->cong_thres, 1, 0);
3092 		if (ret)
3093 			goto err_unlock;
3094 	}
3095 
3096 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3097 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3098 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3099 				 1, 0);
3100 	if (ret)
3101 		goto err_unlock;
3102 
3103 	if (ntxq > 1) {
3104 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3105 					 USE_GTS, SGE_CNTXT_OFLD, id,
3106 					 q->txq[TXQ_OFLD].phys_addr,
3107 					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3108 		if (ret)
3109 			goto err_unlock;
3110 	}
3111 
3112 	if (ntxq > 2) {
3113 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3114 					 SGE_CNTXT_CTRL, id,
3115 					 q->txq[TXQ_CTRL].phys_addr,
3116 					 q->txq[TXQ_CTRL].size,
3117 					 q->txq[TXQ_CTRL].token, 1, 0);
3118 		if (ret)
3119 			goto err_unlock;
3120 	}
3121 
3122 	spin_unlock_irq(&adapter->sge.reg_lock);
3123 
3124 	q->adap = adapter;
3125 	q->netdev = dev;
3126 	q->tx_q = netdevq;
3127 	t3_update_qset_coalesce(q, p);
3128 
3129 	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3130 			  GFP_KERNEL | __GFP_COMP);
3131 	if (!avail) {
3132 		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3133 		goto err;
3134 	}
3135 	if (avail < q->fl[0].size)
3136 		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3137 			avail);
3138 
3139 	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3140 			  GFP_KERNEL | __GFP_COMP);
3141 	if (avail < q->fl[1].size)
3142 		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3143 			avail);
3144 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3145 
3146 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3147 		     V_NEWTIMER(q->rspq.holdoff_tmr));
3148 
3149 	return 0;
3150 
3151 err_unlock:
3152 	spin_unlock_irq(&adapter->sge.reg_lock);
3153 err:
3154 	t3_free_qset(adapter, q);
3155 	return ret;
3156 }
3157 
3158 /**
3159  *      t3_start_sge_timers - start SGE timer call backs
3160  *      @adap: the adapter
3161  *
3162  *      Starts each SGE queue set's timer call back
3163  */
t3_start_sge_timers(struct adapter * adap)3164 void t3_start_sge_timers(struct adapter *adap)
3165 {
3166 	int i;
3167 
3168 	for (i = 0; i < SGE_QSETS; ++i) {
3169 		struct sge_qset *q = &adap->sge.qs[i];
3170 
3171 	if (q->tx_reclaim_timer.function)
3172 		mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3173 
3174 	if (q->rx_reclaim_timer.function)
3175 		mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3176 	}
3177 }
3178 
3179 /**
3180  *	t3_stop_sge_timers - stop SGE timer call backs
3181  *	@adap: the adapter
3182  *
3183  *	Stops each SGE queue set's timer call back
3184  */
t3_stop_sge_timers(struct adapter * adap)3185 void t3_stop_sge_timers(struct adapter *adap)
3186 {
3187 	int i;
3188 
3189 	for (i = 0; i < SGE_QSETS; ++i) {
3190 		struct sge_qset *q = &adap->sge.qs[i];
3191 
3192 		if (q->tx_reclaim_timer.function)
3193 			del_timer_sync(&q->tx_reclaim_timer);
3194 		if (q->rx_reclaim_timer.function)
3195 			del_timer_sync(&q->rx_reclaim_timer);
3196 	}
3197 }
3198 
3199 /**
3200  *	t3_free_sge_resources - free SGE resources
3201  *	@adap: the adapter
3202  *
3203  *	Frees resources used by the SGE queue sets.
3204  */
t3_free_sge_resources(struct adapter * adap)3205 void t3_free_sge_resources(struct adapter *adap)
3206 {
3207 	int i;
3208 
3209 	for (i = 0; i < SGE_QSETS; ++i)
3210 		t3_free_qset(adap, &adap->sge.qs[i]);
3211 }
3212 
3213 /**
3214  *	t3_sge_start - enable SGE
3215  *	@adap: the adapter
3216  *
3217  *	Enables the SGE for DMAs.  This is the last step in starting packet
3218  *	transfers.
3219  */
t3_sge_start(struct adapter * adap)3220 void t3_sge_start(struct adapter *adap)
3221 {
3222 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3223 }
3224 
3225 /**
3226  *	t3_sge_stop - disable SGE operation
3227  *	@adap: the adapter
3228  *
3229  *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
3230  *	from error interrupts) or from normal process context.  In the latter
3231  *	case it also disables any pending queue restart tasklets.  Note that
3232  *	if it is called in interrupt context it cannot disable the restart
3233  *	tasklets as it cannot wait, however the tasklets will have no effect
3234  *	since the doorbells are disabled and the driver will call this again
3235  *	later from process context, at which time the tasklets will be stopped
3236  *	if they are still running.
3237  */
t3_sge_stop(struct adapter * adap)3238 void t3_sge_stop(struct adapter *adap)
3239 {
3240 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3241 	if (!in_interrupt()) {
3242 		int i;
3243 
3244 		for (i = 0; i < SGE_QSETS; ++i) {
3245 			struct sge_qset *qs = &adap->sge.qs[i];
3246 
3247 			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3248 			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3249 		}
3250 	}
3251 }
3252 
3253 /**
3254  *	t3_sge_init - initialize SGE
3255  *	@adap: the adapter
3256  *	@p: the SGE parameters
3257  *
3258  *	Performs SGE initialization needed every time after a chip reset.
3259  *	We do not initialize any of the queue sets here, instead the driver
3260  *	top-level must request those individually.  We also do not enable DMA
3261  *	here, that should be done after the queues have been set up.
3262  */
t3_sge_init(struct adapter * adap,struct sge_params * p)3263 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3264 {
3265 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3266 
3267 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3268 	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3269 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3270 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3271 #if SGE_NUM_GENBITS == 1
3272 	ctrl |= F_EGRGENCTRL;
3273 #endif
3274 	if (adap->params.rev > 0) {
3275 		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3276 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3277 	}
3278 	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3279 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3280 		     V_LORCQDRBTHRSH(512));
3281 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3282 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3283 		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3284 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3285 		     adap->params.rev < T3_REV_C ? 1000 : 500);
3286 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3287 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3288 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3289 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3290 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3291 }
3292 
3293 /**
3294  *	t3_sge_prep - one-time SGE initialization
3295  *	@adap: the associated adapter
3296  *	@p: SGE parameters
3297  *
3298  *	Performs one-time initialization of SGE SW state.  Includes determining
3299  *	defaults for the assorted SGE parameters, which admins can change until
3300  *	they are used to initialize the SGE.
3301  */
t3_sge_prep(struct adapter * adap,struct sge_params * p)3302 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3303 {
3304 	int i;
3305 
3306 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3307 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3308 
3309 	for (i = 0; i < SGE_QSETS; ++i) {
3310 		struct qset_params *q = p->qset + i;
3311 
3312 		q->polling = adap->params.rev > 0;
3313 		q->coalesce_usecs = 5;
3314 		q->rspq_size = 1024;
3315 		q->fl_size = 1024;
3316  		q->jumbo_size = 512;
3317 		q->txq_size[TXQ_ETH] = 1024;
3318 		q->txq_size[TXQ_OFLD] = 1024;
3319 		q->txq_size[TXQ_CTRL] = 256;
3320 		q->cong_thres = 0;
3321 	}
3322 
3323 	spin_lock_init(&adap->sge.reg_lock);
3324 }
3325