1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
117 *
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
121 */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
130 */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
144 */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
150 *
151 * Shows the link status, speed, and duplex of a port.
152 */
link_report(struct net_device * dev)153 static void link_report(struct net_device *dev)
154 {
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
160
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
171 }
172
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175 }
176 }
177
enable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
180 {
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
disable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
190 {
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
193 }
194
t3_os_link_fault(struct adapter * adap,int port_id,int state)195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
199
200 if (state == netif_carrier_ok(dev))
201 return;
202
203 if (state) {
204 struct cmac *mac = &pi->mac;
205
206 netif_carrier_on(dev);
207
208 disable_tx_fifo_drain(adap, pi);
209
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
217
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
223
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
227
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
230 }
231 link_report(dev);
232 }
233
234 /**
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
242 *
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
246 */
t3_os_link_changed(struct adapter * adapter,int port_id,int link_stat,int speed,int duplex,int pause)247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
249 {
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
253
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
257
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
261
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
271
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
276
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
280
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
286
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
289
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
293
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
296 }
297
298 link_report(dev);
299 }
300 }
301
302 /**
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
306 *
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
310 */
t3_os_phymod_changed(struct adapter * adap,int port_id)311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315 };
316
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
319
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
325 }
326
cxgb_set_rxmode(struct net_device * dev)327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329 struct port_info *pi = netdev_priv(dev);
330
331 t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335 * link_start - enable a port
336 * @dev: the device to enable
337 *
338 * Performs the MAC and PHY actions needed to enable a port.
339 */
link_start(struct net_device * dev)340 static void link_start(struct net_device *dev)
341 {
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
344
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
cxgb_disable_msi(struct adapter * adapter)355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
363 }
364 }
365
366 /*
367 * Interrupt handler for asynchronous events used with MSI-X.
368 */
t3_async_intr_handler(int irq,void * cookie)369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
373 }
374
375 /*
376 * Name the MSI-X interrupts.
377 */
name_msix_vecs(struct adapter * adap)378 static void name_msix_vecs(struct adapter *adap)
379 {
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
384
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
388
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
393 }
394 }
395 }
396
request_msix_data_irqs(struct adapter * adap)397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399 int i, j, err, qidx = 0;
400
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
416 }
417 qidx++;
418 }
419 }
420 return 0;
421 }
422
free_irq_resources(struct adapter * adapter)423 static void free_irq_resources(struct adapter *adapter)
424 {
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
427
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
431
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
437 }
438
await_mgmt_replies(struct adapter * adap,unsigned long init_cnt,unsigned long n)439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
441 {
442 int attempts = 10;
443
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
448 }
449 return 0;
450 }
451
init_tp_parity(struct adapter * adap)452 static int init_tp_parity(struct adapter *adap)
453 {
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459 t3_tp_set_offload_mode(adap, 1);
460
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
463
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
469
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
482 }
483 }
484
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
487
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
493
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
505 }
506 }
507
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
510
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
516
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
528 }
529 }
530
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
536
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
543
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548 }
549
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
552
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
556 }
557
558 /**
559 * setup_rss - configure RSS
560 * @adap: the adapter
561 *
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
568 */
setup_rss(struct adapter * adap)569 static void setup_rss(struct adapter *adap)
570 {
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
576
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
580
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584 }
585
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
ring_dbs(struct adapter * adap)591 static void ring_dbs(struct adapter *adap)
592 {
593 int i, j;
594
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
597
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 }
602 }
603
init_napi(struct adapter * adap)604 static void init_napi(struct adapter *adap)
605 {
606 int i;
607
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
610
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
614 }
615
616 /*
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
620 */
621 adap->flags |= NAPI_INIT;
622 }
623
624 /*
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
628 */
quiesce_rx(struct adapter * adap)629 static void quiesce_rx(struct adapter *adap)
630 {
631 int i;
632
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
636 }
637
enable_all_napi(struct adapter * adap)638 static void enable_all_napi(struct adapter *adap)
639 {
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647 * set_qset_lro - Turn a queue set's LRO capability on and off
648 * @dev: the device the qset is attached to
649 * @qset_idx: the queue set index
650 * @val: the LRO switch
651 *
652 * Sets LRO on or off for a particular queue set.
653 * the device's features flag is updated to reflect the LRO
654 * capability when all queues belonging to the device are
655 * in the same state.
656 */
set_qset_lro(struct net_device * dev,int qset_idx,int val)657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
658 {
659 struct port_info *pi = netdev_priv(dev);
660 struct adapter *adapter = pi->adapter;
661
662 adapter->params.sge.qset[qset_idx].lro = !!val;
663 adapter->sge.qs[qset_idx].lro_enabled = !!val;
664 }
665
666 /**
667 * setup_sge_qsets - configure SGE Tx/Rx/response queues
668 * @adap: the adapter
669 *
670 * Determines how many sets of SGE queues to use and initializes them.
671 * We support multiple queue sets per port if we have MSI-X, otherwise
672 * just one queue set per port.
673 */
setup_sge_qsets(struct adapter * adap)674 static int setup_sge_qsets(struct adapter *adap)
675 {
676 int i, j, err, irq_idx = 0, qset_idx = 0;
677 unsigned int ntxq = SGE_TXQ_PER_SET;
678
679 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680 irq_idx = -1;
681
682 for_each_port(adap, i) {
683 struct net_device *dev = adap->port[i];
684 struct port_info *pi = netdev_priv(dev);
685
686 pi->qs = &adap->sge.qs[pi->first_qset];
687 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689 err = t3_sge_alloc_qset(adap, qset_idx, 1,
690 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691 irq_idx,
692 &adap->params.sge.qset[qset_idx], ntxq, dev,
693 netdev_get_tx_queue(dev, j));
694 if (err) {
695 t3_free_sge_resources(adap);
696 return err;
697 }
698 }
699 }
700
701 return 0;
702 }
703
attr_show(struct device * d,char * buf,ssize_t (* format)(struct net_device *,char *))704 static ssize_t attr_show(struct device *d, char *buf,
705 ssize_t(*format) (struct net_device *, char *))
706 {
707 ssize_t len;
708
709 /* Synchronize with ioctls that may shut down the device */
710 rtnl_lock();
711 len = (*format) (to_net_dev(d), buf);
712 rtnl_unlock();
713 return len;
714 }
715
attr_store(struct device * d,const char * buf,size_t len,ssize_t (* set)(struct net_device *,unsigned int),unsigned int min_val,unsigned int max_val)716 static ssize_t attr_store(struct device *d,
717 const char *buf, size_t len,
718 ssize_t(*set) (struct net_device *, unsigned int),
719 unsigned int min_val, unsigned int max_val)
720 {
721 char *endp;
722 ssize_t ret;
723 unsigned int val;
724
725 if (!capable(CAP_NET_ADMIN))
726 return -EPERM;
727
728 val = simple_strtoul(buf, &endp, 0);
729 if (endp == buf || val < min_val || val > max_val)
730 return -EINVAL;
731
732 rtnl_lock();
733 ret = (*set) (to_net_dev(d), val);
734 if (!ret)
735 ret = len;
736 rtnl_unlock();
737 return ret;
738 }
739
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
742 { \
743 struct port_info *pi = netdev_priv(dev); \
744 struct adapter *adap = pi->adapter; \
745 return sprintf(buf, "%u\n", val_expr); \
746 } \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748 char *buf) \
749 { \
750 return attr_show(d, buf, format_##name); \
751 }
752
set_nfilters(struct net_device * dev,unsigned int val)753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
754 {
755 struct port_info *pi = netdev_priv(dev);
756 struct adapter *adap = pi->adapter;
757 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
758
759 if (adap->flags & FULL_INIT_DONE)
760 return -EBUSY;
761 if (val && adap->params.rev == 0)
762 return -EINVAL;
763 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764 min_tids)
765 return -EINVAL;
766 adap->params.mc5.nfilters = val;
767 return 0;
768 }
769
store_nfilters(struct device * d,struct device_attribute * attr,const char * buf,size_t len)770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771 const char *buf, size_t len)
772 {
773 return attr_store(d, buf, len, set_nfilters, 0, ~0);
774 }
775
set_nservers(struct net_device * dev,unsigned int val)776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
777 {
778 struct port_info *pi = netdev_priv(dev);
779 struct adapter *adap = pi->adapter;
780
781 if (adap->flags & FULL_INIT_DONE)
782 return -EBUSY;
783 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784 MC5_MIN_TIDS)
785 return -EINVAL;
786 adap->params.mc5.nservers = val;
787 return 0;
788 }
789
store_nservers(struct device * d,struct device_attribute * attr,const char * buf,size_t len)790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791 const char *buf, size_t len)
792 {
793 return attr_store(d, buf, len, set_nservers, 0, ~0);
794 }
795
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
799
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
803
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
807
808 static struct attribute *cxgb3_attrs[] = {
809 &dev_attr_cam_size.attr,
810 &dev_attr_nfilters.attr,
811 &dev_attr_nservers.attr,
812 NULL
813 };
814
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
816
tm_attr_show(struct device * d,char * buf,int sched)817 static ssize_t tm_attr_show(struct device *d,
818 char *buf, int sched)
819 {
820 struct port_info *pi = netdev_priv(to_net_dev(d));
821 struct adapter *adap = pi->adapter;
822 unsigned int v, addr, bpt, cpt;
823 ssize_t len;
824
825 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826 rtnl_lock();
827 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829 if (sched & 1)
830 v >>= 16;
831 bpt = (v >> 8) & 0xff;
832 cpt = v & 0xff;
833 if (!cpt)
834 len = sprintf(buf, "disabled\n");
835 else {
836 v = (adap->params.vpd.cclk * 1000) / cpt;
837 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
838 }
839 rtnl_unlock();
840 return len;
841 }
842
tm_attr_store(struct device * d,const char * buf,size_t len,int sched)843 static ssize_t tm_attr_store(struct device *d,
844 const char *buf, size_t len, int sched)
845 {
846 struct port_info *pi = netdev_priv(to_net_dev(d));
847 struct adapter *adap = pi->adapter;
848 unsigned int val;
849 char *endp;
850 ssize_t ret;
851
852 if (!capable(CAP_NET_ADMIN))
853 return -EPERM;
854
855 val = simple_strtoul(buf, &endp, 0);
856 if (endp == buf || val > 10000000)
857 return -EINVAL;
858
859 rtnl_lock();
860 ret = t3_config_sched(adap, val, sched);
861 if (!ret)
862 ret = len;
863 rtnl_unlock();
864 return ret;
865 }
866
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869 char *buf) \
870 { \
871 return tm_attr_show(d, buf, sched); \
872 } \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874 const char *buf, size_t len) \
875 { \
876 return tm_attr_store(d, buf, len, sched); \
877 } \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
879
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
888
889 static struct attribute *offload_attrs[] = {
890 &dev_attr_sched0.attr,
891 &dev_attr_sched1.attr,
892 &dev_attr_sched2.attr,
893 &dev_attr_sched3.attr,
894 &dev_attr_sched4.attr,
895 &dev_attr_sched5.attr,
896 &dev_attr_sched6.attr,
897 &dev_attr_sched7.attr,
898 NULL
899 };
900
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
902
903 /*
904 * Sends an sk_buff to an offload queue driver
905 * after dealing with any active network taps.
906 */
offload_tx(struct t3cdev * tdev,struct sk_buff * skb)907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
908 {
909 int ret;
910
911 local_bh_disable();
912 ret = t3_offload_tx(tdev, skb);
913 local_bh_enable();
914 return ret;
915 }
916
write_smt_entry(struct adapter * adapter,int idx)917 static int write_smt_entry(struct adapter *adapter, int idx)
918 {
919 struct cpl_smt_write_req *req;
920 struct port_info *pi = netdev_priv(adapter->port[idx]);
921 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
922
923 if (!skb)
924 return -ENOMEM;
925
926 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
930 req->iff = idx;
931 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933 skb->priority = 1;
934 offload_tx(&adapter->tdev, skb);
935 return 0;
936 }
937
init_smt(struct adapter * adapter)938 static int init_smt(struct adapter *adapter)
939 {
940 int i;
941
942 for_each_port(adapter, i)
943 write_smt_entry(adapter, i);
944 return 0;
945 }
946
init_port_mtus(struct adapter * adapter)947 static void init_port_mtus(struct adapter *adapter)
948 {
949 unsigned int mtus = adapter->port[0]->mtu;
950
951 if (adapter->port[1])
952 mtus |= adapter->port[1]->mtu << 16;
953 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
954 }
955
send_pktsched_cmd(struct adapter * adap,int sched,int qidx,int lo,int hi,int port)956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957 int hi, int port)
958 {
959 struct sk_buff *skb;
960 struct mngt_pktsched_wr *req;
961 int ret;
962
963 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964 if (!skb)
965 skb = adap->nofail_skb;
966 if (!skb)
967 return -ENOMEM;
968
969 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972 req->sched = sched;
973 req->idx = qidx;
974 req->min = lo;
975 req->max = hi;
976 req->binding = port;
977 ret = t3_mgmt_tx(adap, skb);
978 if (skb == adap->nofail_skb) {
979 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980 GFP_KERNEL);
981 if (!adap->nofail_skb)
982 ret = -ENOMEM;
983 }
984
985 return ret;
986 }
987
bind_qsets(struct adapter * adap)988 static int bind_qsets(struct adapter *adap)
989 {
990 int i, j, err = 0;
991
992 for_each_port(adap, i) {
993 const struct port_info *pi = adap2pinfo(adap, i);
994
995 for (j = 0; j < pi->nqsets; ++j) {
996 int ret = send_pktsched_cmd(adap, 1,
997 pi->first_qset + j, -1,
998 -1, i);
999 if (ret)
1000 err = ret;
1001 }
1002 }
1003
1004 return err;
1005 }
1006
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
1008 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
1011 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1022
get_edc_fw_name(int edc_idx)1023 static inline const char *get_edc_fw_name(int edc_idx)
1024 {
1025 const char *fw_name = NULL;
1026
1027 switch (edc_idx) {
1028 case EDC_OPT_AEL2005:
1029 fw_name = AEL2005_OPT_EDC_NAME;
1030 break;
1031 case EDC_TWX_AEL2005:
1032 fw_name = AEL2005_TWX_EDC_NAME;
1033 break;
1034 case EDC_TWX_AEL2020:
1035 fw_name = AEL2020_TWX_EDC_NAME;
1036 break;
1037 }
1038 return fw_name;
1039 }
1040
t3_get_edc_fw(struct cphy * phy,int edc_idx,int size)1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1042 {
1043 struct adapter *adapter = phy->adapter;
1044 const struct firmware *fw;
1045 char buf[64];
1046 u32 csum;
1047 const __be32 *p;
1048 u16 *cache = phy->phy_cache;
1049 int i, ret;
1050
1051 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1052
1053 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054 if (ret < 0) {
1055 dev_err(&adapter->pdev->dev,
1056 "could not upgrade firmware: unable to load %s\n",
1057 buf);
1058 return ret;
1059 }
1060
1061 /* check size, take checksum in account */
1062 if (fw->size > size + 4) {
1063 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064 (unsigned int)fw->size, size + 4);
1065 ret = -EINVAL;
1066 }
1067
1068 /* compute checksum */
1069 p = (const __be32 *)fw->data;
1070 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071 csum += ntohl(p[i]);
1072
1073 if (csum != 0xffffffff) {
1074 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075 csum);
1076 ret = -EINVAL;
1077 }
1078
1079 for (i = 0; i < size / 4 ; i++) {
1080 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1082 }
1083
1084 release_firmware(fw);
1085
1086 return ret;
1087 }
1088
upgrade_fw(struct adapter * adap)1089 static int upgrade_fw(struct adapter *adap)
1090 {
1091 int ret;
1092 const struct firmware *fw;
1093 struct device *dev = &adap->pdev->dev;
1094
1095 ret = request_firmware(&fw, FW_FNAME, dev);
1096 if (ret < 0) {
1097 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098 FW_FNAME);
1099 return ret;
1100 }
1101 ret = t3_load_fw(adap, fw->data, fw->size);
1102 release_firmware(fw);
1103
1104 if (ret == 0)
1105 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107 else
1108 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1110
1111 return ret;
1112 }
1113
t3rev2char(struct adapter * adapter)1114 static inline char t3rev2char(struct adapter *adapter)
1115 {
1116 char rev = 0;
1117
1118 switch(adapter->params.rev) {
1119 case T3_REV_B:
1120 case T3_REV_B2:
1121 rev = 'b';
1122 break;
1123 case T3_REV_C:
1124 rev = 'c';
1125 break;
1126 }
1127 return rev;
1128 }
1129
update_tpsram(struct adapter * adap)1130 static int update_tpsram(struct adapter *adap)
1131 {
1132 const struct firmware *tpsram;
1133 char buf[64];
1134 struct device *dev = &adap->pdev->dev;
1135 int ret;
1136 char rev;
1137
1138 rev = t3rev2char(adap);
1139 if (!rev)
1140 return 0;
1141
1142 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1143
1144 ret = request_firmware(&tpsram, buf, dev);
1145 if (ret < 0) {
1146 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147 buf);
1148 return ret;
1149 }
1150
1151 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152 if (ret)
1153 goto release_tpsram;
1154
1155 ret = t3_set_proto_sram(adap, tpsram->data);
1156 if (ret == 0)
1157 dev_info(dev,
1158 "successful update of protocol engine "
1159 "to %d.%d.%d\n",
1160 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161 else
1162 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164 if (ret)
1165 dev_err(dev, "loading protocol SRAM failed\n");
1166
1167 release_tpsram:
1168 release_firmware(tpsram);
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * cxgb_up - enable the adapter
1175 * @adapter: adapter being enabled
1176 *
1177 * Called when the first port is enabled, this function performs the
1178 * actions necessary to make an adapter operational, such as completing
1179 * the initialization of HW modules, and enabling interrupts.
1180 *
1181 * Must be called with the rtnl lock held.
1182 */
cxgb_up(struct adapter * adap)1183 static int cxgb_up(struct adapter *adap)
1184 {
1185 int err;
1186
1187 if (!(adap->flags & FULL_INIT_DONE)) {
1188 err = t3_check_fw_version(adap);
1189 if (err == -EINVAL) {
1190 err = upgrade_fw(adap);
1191 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1194 }
1195
1196 err = t3_check_tpsram_version(adap);
1197 if (err == -EINVAL) {
1198 err = update_tpsram(adap);
1199 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1202 }
1203
1204 /*
1205 * Clear interrupts now to catch errors if t3_init_hw fails.
1206 * We clear them again later as initialization may trigger
1207 * conditions that can interrupt.
1208 */
1209 t3_intr_clear(adap);
1210
1211 err = t3_init_hw(adap, 0);
1212 if (err)
1213 goto out;
1214
1215 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1217
1218 err = setup_sge_qsets(adap);
1219 if (err)
1220 goto out;
1221
1222 setup_rss(adap);
1223 if (!(adap->flags & NAPI_INIT))
1224 init_napi(adap);
1225
1226 t3_start_sge_timers(adap);
1227 adap->flags |= FULL_INIT_DONE;
1228 }
1229
1230 t3_intr_clear(adap);
1231
1232 if (adap->flags & USING_MSIX) {
1233 name_msix_vecs(adap);
1234 err = request_irq(adap->msix_info[0].vec,
1235 t3_async_intr_handler, 0,
1236 adap->msix_info[0].desc, adap);
1237 if (err)
1238 goto irq_err;
1239
1240 err = request_msix_data_irqs(adap);
1241 if (err) {
1242 free_irq(adap->msix_info[0].vec, adap);
1243 goto irq_err;
1244 }
1245 } else if ((err = request_irq(adap->pdev->irq,
1246 t3_intr_handler(adap,
1247 adap->sge.qs[0].rspq.
1248 polling),
1249 (adap->flags & USING_MSI) ?
1250 0 : IRQF_SHARED,
1251 adap->name, adap)))
1252 goto irq_err;
1253
1254 enable_all_napi(adap);
1255 t3_sge_start(adap);
1256 t3_intr_enable(adap);
1257
1258 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259 is_offload(adap) && init_tp_parity(adap) == 0)
1260 adap->flags |= TP_PARITY_INIT;
1261
1262 if (adap->flags & TP_PARITY_INIT) {
1263 t3_write_reg(adap, A_TP_INT_CAUSE,
1264 F_CMCACHEPERR | F_ARPLUTPERR);
1265 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1266 }
1267
1268 if (!(adap->flags & QUEUES_BOUND)) {
1269 int ret = bind_qsets(adap);
1270
1271 if (ret < 0) {
1272 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1273 t3_intr_disable(adap);
1274 free_irq_resources(adap);
1275 err = ret;
1276 goto out;
1277 }
1278 adap->flags |= QUEUES_BOUND;
1279 }
1280
1281 out:
1282 return err;
1283 irq_err:
1284 CH_ERR(adap, "request_irq failed, err %d\n", err);
1285 goto out;
1286 }
1287
1288 /*
1289 * Release resources when all the ports and offloading have been stopped.
1290 */
cxgb_down(struct adapter * adapter,int on_wq)1291 static void cxgb_down(struct adapter *adapter, int on_wq)
1292 {
1293 t3_sge_stop(adapter);
1294 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1295 t3_intr_disable(adapter);
1296 spin_unlock_irq(&adapter->work_lock);
1297
1298 free_irq_resources(adapter);
1299 quiesce_rx(adapter);
1300 t3_sge_stop(adapter);
1301 if (!on_wq)
1302 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1303 }
1304
schedule_chk_task(struct adapter * adap)1305 static void schedule_chk_task(struct adapter *adap)
1306 {
1307 unsigned int timeo;
1308
1309 timeo = adap->params.linkpoll_period ?
1310 (HZ * adap->params.linkpoll_period) / 10 :
1311 adap->params.stats_update_period * HZ;
1312 if (timeo)
1313 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1314 }
1315
offload_open(struct net_device * dev)1316 static int offload_open(struct net_device *dev)
1317 {
1318 struct port_info *pi = netdev_priv(dev);
1319 struct adapter *adapter = pi->adapter;
1320 struct t3cdev *tdev = dev2t3cdev(dev);
1321 int adap_up = adapter->open_device_map & PORT_MASK;
1322 int err;
1323
1324 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1325 return 0;
1326
1327 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1328 goto out;
1329
1330 t3_tp_set_offload_mode(adapter, 1);
1331 tdev->lldev = adapter->port[0];
1332 err = cxgb3_offload_activate(adapter);
1333 if (err)
1334 goto out;
1335
1336 init_port_mtus(adapter);
1337 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1338 adapter->params.b_wnd,
1339 adapter->params.rev == 0 ?
1340 adapter->port[0]->mtu : 0xffff);
1341 init_smt(adapter);
1342
1343 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1344 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1345
1346 /* Call back all registered clients */
1347 cxgb3_add_clients(tdev);
1348
1349 out:
1350 /* restore them in case the offload module has changed them */
1351 if (err) {
1352 t3_tp_set_offload_mode(adapter, 0);
1353 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1354 cxgb3_set_dummy_ops(tdev);
1355 }
1356 return err;
1357 }
1358
offload_close(struct t3cdev * tdev)1359 static int offload_close(struct t3cdev *tdev)
1360 {
1361 struct adapter *adapter = tdev2adap(tdev);
1362 struct t3c_data *td = T3C_DATA(tdev);
1363
1364 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1365 return 0;
1366
1367 /* Call back all registered clients */
1368 cxgb3_remove_clients(tdev);
1369
1370 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1371
1372 /* Flush work scheduled while releasing TIDs */
1373 flush_work_sync(&td->tid_release_task);
1374
1375 tdev->lldev = NULL;
1376 cxgb3_set_dummy_ops(tdev);
1377 t3_tp_set_offload_mode(adapter, 0);
1378 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1379
1380 if (!adapter->open_device_map)
1381 cxgb_down(adapter, 0);
1382
1383 cxgb3_offload_deactivate(adapter);
1384 return 0;
1385 }
1386
cxgb_open(struct net_device * dev)1387 static int cxgb_open(struct net_device *dev)
1388 {
1389 struct port_info *pi = netdev_priv(dev);
1390 struct adapter *adapter = pi->adapter;
1391 int other_ports = adapter->open_device_map & PORT_MASK;
1392 int err;
1393
1394 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1395 return err;
1396
1397 set_bit(pi->port_id, &adapter->open_device_map);
1398 if (is_offload(adapter) && !ofld_disable) {
1399 err = offload_open(dev);
1400 if (err)
1401 printk(KERN_WARNING
1402 "Could not initialize offload capabilities\n");
1403 }
1404
1405 netif_set_real_num_tx_queues(dev, pi->nqsets);
1406 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1407 if (err)
1408 return err;
1409 link_start(dev);
1410 t3_port_intr_enable(adapter, pi->port_id);
1411 netif_tx_start_all_queues(dev);
1412 if (!other_ports)
1413 schedule_chk_task(adapter);
1414
1415 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1416 return 0;
1417 }
1418
__cxgb_close(struct net_device * dev,int on_wq)1419 static int __cxgb_close(struct net_device *dev, int on_wq)
1420 {
1421 struct port_info *pi = netdev_priv(dev);
1422 struct adapter *adapter = pi->adapter;
1423
1424
1425 if (!adapter->open_device_map)
1426 return 0;
1427
1428 /* Stop link fault interrupts */
1429 t3_xgm_intr_disable(adapter, pi->port_id);
1430 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1431
1432 t3_port_intr_disable(adapter, pi->port_id);
1433 netif_tx_stop_all_queues(dev);
1434 pi->phy.ops->power_down(&pi->phy, 1);
1435 netif_carrier_off(dev);
1436 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1437
1438 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1439 clear_bit(pi->port_id, &adapter->open_device_map);
1440 spin_unlock_irq(&adapter->work_lock);
1441
1442 if (!(adapter->open_device_map & PORT_MASK))
1443 cancel_delayed_work_sync(&adapter->adap_check_task);
1444
1445 if (!adapter->open_device_map)
1446 cxgb_down(adapter, on_wq);
1447
1448 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1449 return 0;
1450 }
1451
cxgb_close(struct net_device * dev)1452 static int cxgb_close(struct net_device *dev)
1453 {
1454 return __cxgb_close(dev, 0);
1455 }
1456
cxgb_get_stats(struct net_device * dev)1457 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1458 {
1459 struct port_info *pi = netdev_priv(dev);
1460 struct adapter *adapter = pi->adapter;
1461 struct net_device_stats *ns = &pi->netstats;
1462 const struct mac_stats *pstats;
1463
1464 spin_lock(&adapter->stats_lock);
1465 pstats = t3_mac_update_stats(&pi->mac);
1466 spin_unlock(&adapter->stats_lock);
1467
1468 ns->tx_bytes = pstats->tx_octets;
1469 ns->tx_packets = pstats->tx_frames;
1470 ns->rx_bytes = pstats->rx_octets;
1471 ns->rx_packets = pstats->rx_frames;
1472 ns->multicast = pstats->rx_mcast_frames;
1473
1474 ns->tx_errors = pstats->tx_underrun;
1475 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1476 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1477 pstats->rx_fifo_ovfl;
1478
1479 /* detailed rx_errors */
1480 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1481 ns->rx_over_errors = 0;
1482 ns->rx_crc_errors = pstats->rx_fcs_errs;
1483 ns->rx_frame_errors = pstats->rx_symbol_errs;
1484 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1485 ns->rx_missed_errors = pstats->rx_cong_drops;
1486
1487 /* detailed tx_errors */
1488 ns->tx_aborted_errors = 0;
1489 ns->tx_carrier_errors = 0;
1490 ns->tx_fifo_errors = pstats->tx_underrun;
1491 ns->tx_heartbeat_errors = 0;
1492 ns->tx_window_errors = 0;
1493 return ns;
1494 }
1495
get_msglevel(struct net_device * dev)1496 static u32 get_msglevel(struct net_device *dev)
1497 {
1498 struct port_info *pi = netdev_priv(dev);
1499 struct adapter *adapter = pi->adapter;
1500
1501 return adapter->msg_enable;
1502 }
1503
set_msglevel(struct net_device * dev,u32 val)1504 static void set_msglevel(struct net_device *dev, u32 val)
1505 {
1506 struct port_info *pi = netdev_priv(dev);
1507 struct adapter *adapter = pi->adapter;
1508
1509 adapter->msg_enable = val;
1510 }
1511
1512 static char stats_strings[][ETH_GSTRING_LEN] = {
1513 "TxOctetsOK ",
1514 "TxFramesOK ",
1515 "TxMulticastFramesOK",
1516 "TxBroadcastFramesOK",
1517 "TxPauseFrames ",
1518 "TxUnderrun ",
1519 "TxExtUnderrun ",
1520
1521 "TxFrames64 ",
1522 "TxFrames65To127 ",
1523 "TxFrames128To255 ",
1524 "TxFrames256To511 ",
1525 "TxFrames512To1023 ",
1526 "TxFrames1024To1518 ",
1527 "TxFrames1519ToMax ",
1528
1529 "RxOctetsOK ",
1530 "RxFramesOK ",
1531 "RxMulticastFramesOK",
1532 "RxBroadcastFramesOK",
1533 "RxPauseFrames ",
1534 "RxFCSErrors ",
1535 "RxSymbolErrors ",
1536 "RxShortErrors ",
1537 "RxJabberErrors ",
1538 "RxLengthErrors ",
1539 "RxFIFOoverflow ",
1540
1541 "RxFrames64 ",
1542 "RxFrames65To127 ",
1543 "RxFrames128To255 ",
1544 "RxFrames256To511 ",
1545 "RxFrames512To1023 ",
1546 "RxFrames1024To1518 ",
1547 "RxFrames1519ToMax ",
1548
1549 "PhyFIFOErrors ",
1550 "TSO ",
1551 "VLANextractions ",
1552 "VLANinsertions ",
1553 "TxCsumOffload ",
1554 "RxCsumGood ",
1555 "LroAggregated ",
1556 "LroFlushed ",
1557 "LroNoDesc ",
1558 "RxDrops ",
1559
1560 "CheckTXEnToggled ",
1561 "CheckResets ",
1562
1563 "LinkFaults ",
1564 };
1565
get_sset_count(struct net_device * dev,int sset)1566 static int get_sset_count(struct net_device *dev, int sset)
1567 {
1568 switch (sset) {
1569 case ETH_SS_STATS:
1570 return ARRAY_SIZE(stats_strings);
1571 default:
1572 return -EOPNOTSUPP;
1573 }
1574 }
1575
1576 #define T3_REGMAP_SIZE (3 * 1024)
1577
get_regs_len(struct net_device * dev)1578 static int get_regs_len(struct net_device *dev)
1579 {
1580 return T3_REGMAP_SIZE;
1581 }
1582
get_eeprom_len(struct net_device * dev)1583 static int get_eeprom_len(struct net_device *dev)
1584 {
1585 return EEPROMSIZE;
1586 }
1587
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1588 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1589 {
1590 struct port_info *pi = netdev_priv(dev);
1591 struct adapter *adapter = pi->adapter;
1592 u32 fw_vers = 0;
1593 u32 tp_vers = 0;
1594
1595 spin_lock(&adapter->stats_lock);
1596 t3_get_fw_version(adapter, &fw_vers);
1597 t3_get_tp_version(adapter, &tp_vers);
1598 spin_unlock(&adapter->stats_lock);
1599
1600 strcpy(info->driver, DRV_NAME);
1601 strcpy(info->version, DRV_VERSION);
1602 strcpy(info->bus_info, pci_name(adapter->pdev));
1603 if (!fw_vers)
1604 strcpy(info->fw_version, "N/A");
1605 else {
1606 snprintf(info->fw_version, sizeof(info->fw_version),
1607 "%s %u.%u.%u TP %u.%u.%u",
1608 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1609 G_FW_VERSION_MAJOR(fw_vers),
1610 G_FW_VERSION_MINOR(fw_vers),
1611 G_FW_VERSION_MICRO(fw_vers),
1612 G_TP_VERSION_MAJOR(tp_vers),
1613 G_TP_VERSION_MINOR(tp_vers),
1614 G_TP_VERSION_MICRO(tp_vers));
1615 }
1616 }
1617
get_strings(struct net_device * dev,u32 stringset,u8 * data)1618 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1619 {
1620 if (stringset == ETH_SS_STATS)
1621 memcpy(data, stats_strings, sizeof(stats_strings));
1622 }
1623
collect_sge_port_stats(struct adapter * adapter,struct port_info * p,int idx)1624 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1625 struct port_info *p, int idx)
1626 {
1627 int i;
1628 unsigned long tot = 0;
1629
1630 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1631 tot += adapter->sge.qs[i].port_stats[idx];
1632 return tot;
1633 }
1634
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1635 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1636 u64 *data)
1637 {
1638 struct port_info *pi = netdev_priv(dev);
1639 struct adapter *adapter = pi->adapter;
1640 const struct mac_stats *s;
1641
1642 spin_lock(&adapter->stats_lock);
1643 s = t3_mac_update_stats(&pi->mac);
1644 spin_unlock(&adapter->stats_lock);
1645
1646 *data++ = s->tx_octets;
1647 *data++ = s->tx_frames;
1648 *data++ = s->tx_mcast_frames;
1649 *data++ = s->tx_bcast_frames;
1650 *data++ = s->tx_pause;
1651 *data++ = s->tx_underrun;
1652 *data++ = s->tx_fifo_urun;
1653
1654 *data++ = s->tx_frames_64;
1655 *data++ = s->tx_frames_65_127;
1656 *data++ = s->tx_frames_128_255;
1657 *data++ = s->tx_frames_256_511;
1658 *data++ = s->tx_frames_512_1023;
1659 *data++ = s->tx_frames_1024_1518;
1660 *data++ = s->tx_frames_1519_max;
1661
1662 *data++ = s->rx_octets;
1663 *data++ = s->rx_frames;
1664 *data++ = s->rx_mcast_frames;
1665 *data++ = s->rx_bcast_frames;
1666 *data++ = s->rx_pause;
1667 *data++ = s->rx_fcs_errs;
1668 *data++ = s->rx_symbol_errs;
1669 *data++ = s->rx_short;
1670 *data++ = s->rx_jabber;
1671 *data++ = s->rx_too_long;
1672 *data++ = s->rx_fifo_ovfl;
1673
1674 *data++ = s->rx_frames_64;
1675 *data++ = s->rx_frames_65_127;
1676 *data++ = s->rx_frames_128_255;
1677 *data++ = s->rx_frames_256_511;
1678 *data++ = s->rx_frames_512_1023;
1679 *data++ = s->rx_frames_1024_1518;
1680 *data++ = s->rx_frames_1519_max;
1681
1682 *data++ = pi->phy.fifo_errors;
1683
1684 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1685 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1686 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1687 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1688 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1689 *data++ = 0;
1690 *data++ = 0;
1691 *data++ = 0;
1692 *data++ = s->rx_cong_drops;
1693
1694 *data++ = s->num_toggled;
1695 *data++ = s->num_resets;
1696
1697 *data++ = s->link_faults;
1698 }
1699
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1700 static inline void reg_block_dump(struct adapter *ap, void *buf,
1701 unsigned int start, unsigned int end)
1702 {
1703 u32 *p = buf + start;
1704
1705 for (; start <= end; start += sizeof(u32))
1706 *p++ = t3_read_reg(ap, start);
1707 }
1708
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1709 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1710 void *buf)
1711 {
1712 struct port_info *pi = netdev_priv(dev);
1713 struct adapter *ap = pi->adapter;
1714
1715 /*
1716 * Version scheme:
1717 * bits 0..9: chip version
1718 * bits 10..15: chip revision
1719 * bit 31: set for PCIe cards
1720 */
1721 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1722
1723 /*
1724 * We skip the MAC statistics registers because they are clear-on-read.
1725 * Also reading multi-register stats would need to synchronize with the
1726 * periodic mac stats accumulation. Hard to justify the complexity.
1727 */
1728 memset(buf, 0, T3_REGMAP_SIZE);
1729 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1730 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1731 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1732 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1733 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1734 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1735 XGM_REG(A_XGM_SERDES_STAT3, 1));
1736 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1737 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1738 }
1739
restart_autoneg(struct net_device * dev)1740 static int restart_autoneg(struct net_device *dev)
1741 {
1742 struct port_info *p = netdev_priv(dev);
1743
1744 if (!netif_running(dev))
1745 return -EAGAIN;
1746 if (p->link_config.autoneg != AUTONEG_ENABLE)
1747 return -EINVAL;
1748 p->phy.ops->autoneg_restart(&p->phy);
1749 return 0;
1750 }
1751
cxgb3_phys_id(struct net_device * dev,u32 data)1752 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1753 {
1754 struct port_info *pi = netdev_priv(dev);
1755 struct adapter *adapter = pi->adapter;
1756 int i;
1757
1758 if (data == 0)
1759 data = 2;
1760
1761 for (i = 0; i < data * 2; i++) {
1762 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1763 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1764 if (msleep_interruptible(500))
1765 break;
1766 }
1767 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1768 F_GPIO0_OUT_VAL);
1769 return 0;
1770 }
1771
get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1772 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1773 {
1774 struct port_info *p = netdev_priv(dev);
1775
1776 cmd->supported = p->link_config.supported;
1777 cmd->advertising = p->link_config.advertising;
1778
1779 if (netif_carrier_ok(dev)) {
1780 cmd->speed = p->link_config.speed;
1781 cmd->duplex = p->link_config.duplex;
1782 } else {
1783 cmd->speed = -1;
1784 cmd->duplex = -1;
1785 }
1786
1787 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1788 cmd->phy_address = p->phy.mdio.prtad;
1789 cmd->transceiver = XCVR_EXTERNAL;
1790 cmd->autoneg = p->link_config.autoneg;
1791 cmd->maxtxpkt = 0;
1792 cmd->maxrxpkt = 0;
1793 return 0;
1794 }
1795
speed_duplex_to_caps(int speed,int duplex)1796 static int speed_duplex_to_caps(int speed, int duplex)
1797 {
1798 int cap = 0;
1799
1800 switch (speed) {
1801 case SPEED_10:
1802 if (duplex == DUPLEX_FULL)
1803 cap = SUPPORTED_10baseT_Full;
1804 else
1805 cap = SUPPORTED_10baseT_Half;
1806 break;
1807 case SPEED_100:
1808 if (duplex == DUPLEX_FULL)
1809 cap = SUPPORTED_100baseT_Full;
1810 else
1811 cap = SUPPORTED_100baseT_Half;
1812 break;
1813 case SPEED_1000:
1814 if (duplex == DUPLEX_FULL)
1815 cap = SUPPORTED_1000baseT_Full;
1816 else
1817 cap = SUPPORTED_1000baseT_Half;
1818 break;
1819 case SPEED_10000:
1820 if (duplex == DUPLEX_FULL)
1821 cap = SUPPORTED_10000baseT_Full;
1822 }
1823 return cap;
1824 }
1825
1826 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1827 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1828 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1829 ADVERTISED_10000baseT_Full)
1830
set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1831 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1832 {
1833 struct port_info *p = netdev_priv(dev);
1834 struct link_config *lc = &p->link_config;
1835
1836 if (!(lc->supported & SUPPORTED_Autoneg)) {
1837 /*
1838 * PHY offers a single speed/duplex. See if that's what's
1839 * being requested.
1840 */
1841 if (cmd->autoneg == AUTONEG_DISABLE) {
1842 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1843 if (lc->supported & cap)
1844 return 0;
1845 }
1846 return -EINVAL;
1847 }
1848
1849 if (cmd->autoneg == AUTONEG_DISABLE) {
1850 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1851
1852 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1853 return -EINVAL;
1854 lc->requested_speed = cmd->speed;
1855 lc->requested_duplex = cmd->duplex;
1856 lc->advertising = 0;
1857 } else {
1858 cmd->advertising &= ADVERTISED_MASK;
1859 cmd->advertising &= lc->supported;
1860 if (!cmd->advertising)
1861 return -EINVAL;
1862 lc->requested_speed = SPEED_INVALID;
1863 lc->requested_duplex = DUPLEX_INVALID;
1864 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1865 }
1866 lc->autoneg = cmd->autoneg;
1867 if (netif_running(dev))
1868 t3_link_start(&p->phy, &p->mac, lc);
1869 return 0;
1870 }
1871
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1872 static void get_pauseparam(struct net_device *dev,
1873 struct ethtool_pauseparam *epause)
1874 {
1875 struct port_info *p = netdev_priv(dev);
1876
1877 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1878 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1879 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1880 }
1881
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1882 static int set_pauseparam(struct net_device *dev,
1883 struct ethtool_pauseparam *epause)
1884 {
1885 struct port_info *p = netdev_priv(dev);
1886 struct link_config *lc = &p->link_config;
1887
1888 if (epause->autoneg == AUTONEG_DISABLE)
1889 lc->requested_fc = 0;
1890 else if (lc->supported & SUPPORTED_Autoneg)
1891 lc->requested_fc = PAUSE_AUTONEG;
1892 else
1893 return -EINVAL;
1894
1895 if (epause->rx_pause)
1896 lc->requested_fc |= PAUSE_RX;
1897 if (epause->tx_pause)
1898 lc->requested_fc |= PAUSE_TX;
1899 if (lc->autoneg == AUTONEG_ENABLE) {
1900 if (netif_running(dev))
1901 t3_link_start(&p->phy, &p->mac, lc);
1902 } else {
1903 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1904 if (netif_running(dev))
1905 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1906 }
1907 return 0;
1908 }
1909
get_rx_csum(struct net_device * dev)1910 static u32 get_rx_csum(struct net_device *dev)
1911 {
1912 struct port_info *p = netdev_priv(dev);
1913
1914 return p->rx_offload & T3_RX_CSUM;
1915 }
1916
set_rx_csum(struct net_device * dev,u32 data)1917 static int set_rx_csum(struct net_device *dev, u32 data)
1918 {
1919 struct port_info *p = netdev_priv(dev);
1920
1921 if (data) {
1922 p->rx_offload |= T3_RX_CSUM;
1923 } else {
1924 int i;
1925
1926 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1927 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1928 set_qset_lro(dev, i, 0);
1929 }
1930 return 0;
1931 }
1932
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1933 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1934 {
1935 struct port_info *pi = netdev_priv(dev);
1936 struct adapter *adapter = pi->adapter;
1937 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1938
1939 e->rx_max_pending = MAX_RX_BUFFERS;
1940 e->rx_mini_max_pending = 0;
1941 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1942 e->tx_max_pending = MAX_TXQ_ENTRIES;
1943
1944 e->rx_pending = q->fl_size;
1945 e->rx_mini_pending = q->rspq_size;
1946 e->rx_jumbo_pending = q->jumbo_size;
1947 e->tx_pending = q->txq_size[0];
1948 }
1949
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1950 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1951 {
1952 struct port_info *pi = netdev_priv(dev);
1953 struct adapter *adapter = pi->adapter;
1954 struct qset_params *q;
1955 int i;
1956
1957 if (e->rx_pending > MAX_RX_BUFFERS ||
1958 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1959 e->tx_pending > MAX_TXQ_ENTRIES ||
1960 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1961 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1962 e->rx_pending < MIN_FL_ENTRIES ||
1963 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1964 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1965 return -EINVAL;
1966
1967 if (adapter->flags & FULL_INIT_DONE)
1968 return -EBUSY;
1969
1970 q = &adapter->params.sge.qset[pi->first_qset];
1971 for (i = 0; i < pi->nqsets; ++i, ++q) {
1972 q->rspq_size = e->rx_mini_pending;
1973 q->fl_size = e->rx_pending;
1974 q->jumbo_size = e->rx_jumbo_pending;
1975 q->txq_size[0] = e->tx_pending;
1976 q->txq_size[1] = e->tx_pending;
1977 q->txq_size[2] = e->tx_pending;
1978 }
1979 return 0;
1980 }
1981
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)1982 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1983 {
1984 struct port_info *pi = netdev_priv(dev);
1985 struct adapter *adapter = pi->adapter;
1986 struct qset_params *qsp;
1987 struct sge_qset *qs;
1988 int i;
1989
1990 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1991 return -EINVAL;
1992
1993 for (i = 0; i < pi->nqsets; i++) {
1994 qsp = &adapter->params.sge.qset[i];
1995 qs = &adapter->sge.qs[i];
1996 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1997 t3_update_qset_coalesce(qs, qsp);
1998 }
1999
2000 return 0;
2001 }
2002
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2003 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2004 {
2005 struct port_info *pi = netdev_priv(dev);
2006 struct adapter *adapter = pi->adapter;
2007 struct qset_params *q = adapter->params.sge.qset;
2008
2009 c->rx_coalesce_usecs = q->coalesce_usecs;
2010 return 0;
2011 }
2012
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)2013 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2014 u8 * data)
2015 {
2016 struct port_info *pi = netdev_priv(dev);
2017 struct adapter *adapter = pi->adapter;
2018 int i, err = 0;
2019
2020 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2021 if (!buf)
2022 return -ENOMEM;
2023
2024 e->magic = EEPROM_MAGIC;
2025 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2026 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2027
2028 if (!err)
2029 memcpy(data, buf + e->offset, e->len);
2030 kfree(buf);
2031 return err;
2032 }
2033
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2034 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2035 u8 * data)
2036 {
2037 struct port_info *pi = netdev_priv(dev);
2038 struct adapter *adapter = pi->adapter;
2039 u32 aligned_offset, aligned_len;
2040 __le32 *p;
2041 u8 *buf;
2042 int err;
2043
2044 if (eeprom->magic != EEPROM_MAGIC)
2045 return -EINVAL;
2046
2047 aligned_offset = eeprom->offset & ~3;
2048 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2049
2050 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2051 buf = kmalloc(aligned_len, GFP_KERNEL);
2052 if (!buf)
2053 return -ENOMEM;
2054 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2055 if (!err && aligned_len > 4)
2056 err = t3_seeprom_read(adapter,
2057 aligned_offset + aligned_len - 4,
2058 (__le32 *) & buf[aligned_len - 4]);
2059 if (err)
2060 goto out;
2061 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2062 } else
2063 buf = data;
2064
2065 err = t3_seeprom_wp(adapter, 0);
2066 if (err)
2067 goto out;
2068
2069 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2070 err = t3_seeprom_write(adapter, aligned_offset, *p);
2071 aligned_offset += 4;
2072 }
2073
2074 if (!err)
2075 err = t3_seeprom_wp(adapter, 1);
2076 out:
2077 if (buf != data)
2078 kfree(buf);
2079 return err;
2080 }
2081
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2082 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2083 {
2084 wol->supported = 0;
2085 wol->wolopts = 0;
2086 memset(&wol->sopass, 0, sizeof(wol->sopass));
2087 }
2088
2089 static const struct ethtool_ops cxgb_ethtool_ops = {
2090 .get_settings = get_settings,
2091 .set_settings = set_settings,
2092 .get_drvinfo = get_drvinfo,
2093 .get_msglevel = get_msglevel,
2094 .set_msglevel = set_msglevel,
2095 .get_ringparam = get_sge_param,
2096 .set_ringparam = set_sge_param,
2097 .get_coalesce = get_coalesce,
2098 .set_coalesce = set_coalesce,
2099 .get_eeprom_len = get_eeprom_len,
2100 .get_eeprom = get_eeprom,
2101 .set_eeprom = set_eeprom,
2102 .get_pauseparam = get_pauseparam,
2103 .set_pauseparam = set_pauseparam,
2104 .get_rx_csum = get_rx_csum,
2105 .set_rx_csum = set_rx_csum,
2106 .set_tx_csum = ethtool_op_set_tx_csum,
2107 .set_sg = ethtool_op_set_sg,
2108 .get_link = ethtool_op_get_link,
2109 .get_strings = get_strings,
2110 .phys_id = cxgb3_phys_id,
2111 .nway_reset = restart_autoneg,
2112 .get_sset_count = get_sset_count,
2113 .get_ethtool_stats = get_stats,
2114 .get_regs_len = get_regs_len,
2115 .get_regs = get_regs,
2116 .get_wol = get_wol,
2117 .set_tso = ethtool_op_set_tso,
2118 };
2119
in_range(int val,int lo,int hi)2120 static int in_range(int val, int lo, int hi)
2121 {
2122 return val < 0 || (val <= hi && val >= lo);
2123 }
2124
cxgb_extension_ioctl(struct net_device * dev,void __user * useraddr)2125 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2126 {
2127 struct port_info *pi = netdev_priv(dev);
2128 struct adapter *adapter = pi->adapter;
2129 u32 cmd;
2130 int ret;
2131
2132 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2133 return -EFAULT;
2134
2135 switch (cmd) {
2136 case CHELSIO_SET_QSET_PARAMS:{
2137 int i;
2138 struct qset_params *q;
2139 struct ch_qset_params t;
2140 int q1 = pi->first_qset;
2141 int nqsets = pi->nqsets;
2142
2143 if (!capable(CAP_NET_ADMIN))
2144 return -EPERM;
2145 if (copy_from_user(&t, useraddr, sizeof(t)))
2146 return -EFAULT;
2147 if (t.qset_idx >= SGE_QSETS)
2148 return -EINVAL;
2149 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2150 !in_range(t.cong_thres, 0, 255) ||
2151 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2152 MAX_TXQ_ENTRIES) ||
2153 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2154 MAX_TXQ_ENTRIES) ||
2155 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2156 MAX_CTRL_TXQ_ENTRIES) ||
2157 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2158 MAX_RX_BUFFERS) ||
2159 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2160 MAX_RX_JUMBO_BUFFERS) ||
2161 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2162 MAX_RSPQ_ENTRIES))
2163 return -EINVAL;
2164
2165 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2166 for_each_port(adapter, i) {
2167 pi = adap2pinfo(adapter, i);
2168 if (t.qset_idx >= pi->first_qset &&
2169 t.qset_idx < pi->first_qset + pi->nqsets &&
2170 !(pi->rx_offload & T3_RX_CSUM))
2171 return -EINVAL;
2172 }
2173
2174 if ((adapter->flags & FULL_INIT_DONE) &&
2175 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2176 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2177 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2178 t.polling >= 0 || t.cong_thres >= 0))
2179 return -EBUSY;
2180
2181 /* Allow setting of any available qset when offload enabled */
2182 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2183 q1 = 0;
2184 for_each_port(adapter, i) {
2185 pi = adap2pinfo(adapter, i);
2186 nqsets += pi->first_qset + pi->nqsets;
2187 }
2188 }
2189
2190 if (t.qset_idx < q1)
2191 return -EINVAL;
2192 if (t.qset_idx > q1 + nqsets - 1)
2193 return -EINVAL;
2194
2195 q = &adapter->params.sge.qset[t.qset_idx];
2196
2197 if (t.rspq_size >= 0)
2198 q->rspq_size = t.rspq_size;
2199 if (t.fl_size[0] >= 0)
2200 q->fl_size = t.fl_size[0];
2201 if (t.fl_size[1] >= 0)
2202 q->jumbo_size = t.fl_size[1];
2203 if (t.txq_size[0] >= 0)
2204 q->txq_size[0] = t.txq_size[0];
2205 if (t.txq_size[1] >= 0)
2206 q->txq_size[1] = t.txq_size[1];
2207 if (t.txq_size[2] >= 0)
2208 q->txq_size[2] = t.txq_size[2];
2209 if (t.cong_thres >= 0)
2210 q->cong_thres = t.cong_thres;
2211 if (t.intr_lat >= 0) {
2212 struct sge_qset *qs =
2213 &adapter->sge.qs[t.qset_idx];
2214
2215 q->coalesce_usecs = t.intr_lat;
2216 t3_update_qset_coalesce(qs, q);
2217 }
2218 if (t.polling >= 0) {
2219 if (adapter->flags & USING_MSIX)
2220 q->polling = t.polling;
2221 else {
2222 /* No polling with INTx for T3A */
2223 if (adapter->params.rev == 0 &&
2224 !(adapter->flags & USING_MSI))
2225 t.polling = 0;
2226
2227 for (i = 0; i < SGE_QSETS; i++) {
2228 q = &adapter->params.sge.
2229 qset[i];
2230 q->polling = t.polling;
2231 }
2232 }
2233 }
2234 if (t.lro >= 0)
2235 set_qset_lro(dev, t.qset_idx, t.lro);
2236
2237 break;
2238 }
2239 case CHELSIO_GET_QSET_PARAMS:{
2240 struct qset_params *q;
2241 struct ch_qset_params t;
2242 int q1 = pi->first_qset;
2243 int nqsets = pi->nqsets;
2244 int i;
2245
2246 if (copy_from_user(&t, useraddr, sizeof(t)))
2247 return -EFAULT;
2248
2249 /* Display qsets for all ports when offload enabled */
2250 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2251 q1 = 0;
2252 for_each_port(adapter, i) {
2253 pi = adap2pinfo(adapter, i);
2254 nqsets = pi->first_qset + pi->nqsets;
2255 }
2256 }
2257
2258 if (t.qset_idx >= nqsets)
2259 return -EINVAL;
2260
2261 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2262 t.rspq_size = q->rspq_size;
2263 t.txq_size[0] = q->txq_size[0];
2264 t.txq_size[1] = q->txq_size[1];
2265 t.txq_size[2] = q->txq_size[2];
2266 t.fl_size[0] = q->fl_size;
2267 t.fl_size[1] = q->jumbo_size;
2268 t.polling = q->polling;
2269 t.lro = q->lro;
2270 t.intr_lat = q->coalesce_usecs;
2271 t.cong_thres = q->cong_thres;
2272 t.qnum = q1;
2273
2274 if (adapter->flags & USING_MSIX)
2275 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2276 else
2277 t.vector = adapter->pdev->irq;
2278
2279 if (copy_to_user(useraddr, &t, sizeof(t)))
2280 return -EFAULT;
2281 break;
2282 }
2283 case CHELSIO_SET_QSET_NUM:{
2284 struct ch_reg edata;
2285 unsigned int i, first_qset = 0, other_qsets = 0;
2286
2287 if (!capable(CAP_NET_ADMIN))
2288 return -EPERM;
2289 if (adapter->flags & FULL_INIT_DONE)
2290 return -EBUSY;
2291 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2292 return -EFAULT;
2293 if (edata.val < 1 ||
2294 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2295 return -EINVAL;
2296
2297 for_each_port(adapter, i)
2298 if (adapter->port[i] && adapter->port[i] != dev)
2299 other_qsets += adap2pinfo(adapter, i)->nqsets;
2300
2301 if (edata.val + other_qsets > SGE_QSETS)
2302 return -EINVAL;
2303
2304 pi->nqsets = edata.val;
2305
2306 for_each_port(adapter, i)
2307 if (adapter->port[i]) {
2308 pi = adap2pinfo(adapter, i);
2309 pi->first_qset = first_qset;
2310 first_qset += pi->nqsets;
2311 }
2312 break;
2313 }
2314 case CHELSIO_GET_QSET_NUM:{
2315 struct ch_reg edata;
2316
2317 memset(&edata, 0, sizeof(struct ch_reg));
2318
2319 edata.cmd = CHELSIO_GET_QSET_NUM;
2320 edata.val = pi->nqsets;
2321 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2322 return -EFAULT;
2323 break;
2324 }
2325 case CHELSIO_LOAD_FW:{
2326 u8 *fw_data;
2327 struct ch_mem_range t;
2328
2329 if (!capable(CAP_SYS_RAWIO))
2330 return -EPERM;
2331 if (copy_from_user(&t, useraddr, sizeof(t)))
2332 return -EFAULT;
2333 /* Check t.len sanity ? */
2334 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2335 if (IS_ERR(fw_data))
2336 return PTR_ERR(fw_data);
2337
2338 ret = t3_load_fw(adapter, fw_data, t.len);
2339 kfree(fw_data);
2340 if (ret)
2341 return ret;
2342 break;
2343 }
2344 case CHELSIO_SETMTUTAB:{
2345 struct ch_mtus m;
2346 int i;
2347
2348 if (!is_offload(adapter))
2349 return -EOPNOTSUPP;
2350 if (!capable(CAP_NET_ADMIN))
2351 return -EPERM;
2352 if (offload_running(adapter))
2353 return -EBUSY;
2354 if (copy_from_user(&m, useraddr, sizeof(m)))
2355 return -EFAULT;
2356 if (m.nmtus != NMTUS)
2357 return -EINVAL;
2358 if (m.mtus[0] < 81) /* accommodate SACK */
2359 return -EINVAL;
2360
2361 /* MTUs must be in ascending order */
2362 for (i = 1; i < NMTUS; ++i)
2363 if (m.mtus[i] < m.mtus[i - 1])
2364 return -EINVAL;
2365
2366 memcpy(adapter->params.mtus, m.mtus,
2367 sizeof(adapter->params.mtus));
2368 break;
2369 }
2370 case CHELSIO_GET_PM:{
2371 struct tp_params *p = &adapter->params.tp;
2372 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2373
2374 if (!is_offload(adapter))
2375 return -EOPNOTSUPP;
2376 m.tx_pg_sz = p->tx_pg_size;
2377 m.tx_num_pg = p->tx_num_pgs;
2378 m.rx_pg_sz = p->rx_pg_size;
2379 m.rx_num_pg = p->rx_num_pgs;
2380 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2381 if (copy_to_user(useraddr, &m, sizeof(m)))
2382 return -EFAULT;
2383 break;
2384 }
2385 case CHELSIO_SET_PM:{
2386 struct ch_pm m;
2387 struct tp_params *p = &adapter->params.tp;
2388
2389 if (!is_offload(adapter))
2390 return -EOPNOTSUPP;
2391 if (!capable(CAP_NET_ADMIN))
2392 return -EPERM;
2393 if (adapter->flags & FULL_INIT_DONE)
2394 return -EBUSY;
2395 if (copy_from_user(&m, useraddr, sizeof(m)))
2396 return -EFAULT;
2397 if (!is_power_of_2(m.rx_pg_sz) ||
2398 !is_power_of_2(m.tx_pg_sz))
2399 return -EINVAL; /* not power of 2 */
2400 if (!(m.rx_pg_sz & 0x14000))
2401 return -EINVAL; /* not 16KB or 64KB */
2402 if (!(m.tx_pg_sz & 0x1554000))
2403 return -EINVAL;
2404 if (m.tx_num_pg == -1)
2405 m.tx_num_pg = p->tx_num_pgs;
2406 if (m.rx_num_pg == -1)
2407 m.rx_num_pg = p->rx_num_pgs;
2408 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2409 return -EINVAL;
2410 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2411 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2412 return -EINVAL;
2413 p->rx_pg_size = m.rx_pg_sz;
2414 p->tx_pg_size = m.tx_pg_sz;
2415 p->rx_num_pgs = m.rx_num_pg;
2416 p->tx_num_pgs = m.tx_num_pg;
2417 break;
2418 }
2419 case CHELSIO_GET_MEM:{
2420 struct ch_mem_range t;
2421 struct mc7 *mem;
2422 u64 buf[32];
2423
2424 if (!is_offload(adapter))
2425 return -EOPNOTSUPP;
2426 if (!(adapter->flags & FULL_INIT_DONE))
2427 return -EIO; /* need the memory controllers */
2428 if (copy_from_user(&t, useraddr, sizeof(t)))
2429 return -EFAULT;
2430 if ((t.addr & 7) || (t.len & 7))
2431 return -EINVAL;
2432 if (t.mem_id == MEM_CM)
2433 mem = &adapter->cm;
2434 else if (t.mem_id == MEM_PMRX)
2435 mem = &adapter->pmrx;
2436 else if (t.mem_id == MEM_PMTX)
2437 mem = &adapter->pmtx;
2438 else
2439 return -EINVAL;
2440
2441 /*
2442 * Version scheme:
2443 * bits 0..9: chip version
2444 * bits 10..15: chip revision
2445 */
2446 t.version = 3 | (adapter->params.rev << 10);
2447 if (copy_to_user(useraddr, &t, sizeof(t)))
2448 return -EFAULT;
2449
2450 /*
2451 * Read 256 bytes at a time as len can be large and we don't
2452 * want to use huge intermediate buffers.
2453 */
2454 useraddr += sizeof(t); /* advance to start of buffer */
2455 while (t.len) {
2456 unsigned int chunk =
2457 min_t(unsigned int, t.len, sizeof(buf));
2458
2459 ret =
2460 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2461 buf);
2462 if (ret)
2463 return ret;
2464 if (copy_to_user(useraddr, buf, chunk))
2465 return -EFAULT;
2466 useraddr += chunk;
2467 t.addr += chunk;
2468 t.len -= chunk;
2469 }
2470 break;
2471 }
2472 case CHELSIO_SET_TRACE_FILTER:{
2473 struct ch_trace t;
2474 const struct trace_params *tp;
2475
2476 if (!capable(CAP_NET_ADMIN))
2477 return -EPERM;
2478 if (!offload_running(adapter))
2479 return -EAGAIN;
2480 if (copy_from_user(&t, useraddr, sizeof(t)))
2481 return -EFAULT;
2482
2483 tp = (const struct trace_params *)&t.sip;
2484 if (t.config_tx)
2485 t3_config_trace_filter(adapter, tp, 0,
2486 t.invert_match,
2487 t.trace_tx);
2488 if (t.config_rx)
2489 t3_config_trace_filter(adapter, tp, 1,
2490 t.invert_match,
2491 t.trace_rx);
2492 break;
2493 }
2494 default:
2495 return -EOPNOTSUPP;
2496 }
2497 return 0;
2498 }
2499
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2500 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2501 {
2502 struct mii_ioctl_data *data = if_mii(req);
2503 struct port_info *pi = netdev_priv(dev);
2504 struct adapter *adapter = pi->adapter;
2505
2506 switch (cmd) {
2507 case SIOCGMIIREG:
2508 case SIOCSMIIREG:
2509 /* Convert phy_id from older PRTAD/DEVAD format */
2510 if (is_10G(adapter) &&
2511 !mdio_phy_id_is_c45(data->phy_id) &&
2512 (data->phy_id & 0x1f00) &&
2513 !(data->phy_id & 0xe0e0))
2514 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2515 data->phy_id & 0x1f);
2516 /* FALLTHRU */
2517 case SIOCGMIIPHY:
2518 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2519 case SIOCCHIOCTL:
2520 return cxgb_extension_ioctl(dev, req->ifr_data);
2521 default:
2522 return -EOPNOTSUPP;
2523 }
2524 }
2525
cxgb_change_mtu(struct net_device * dev,int new_mtu)2526 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2527 {
2528 struct port_info *pi = netdev_priv(dev);
2529 struct adapter *adapter = pi->adapter;
2530 int ret;
2531
2532 if (new_mtu < 81) /* accommodate SACK */
2533 return -EINVAL;
2534 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2535 return ret;
2536 dev->mtu = new_mtu;
2537 init_port_mtus(adapter);
2538 if (adapter->params.rev == 0 && offload_running(adapter))
2539 t3_load_mtus(adapter, adapter->params.mtus,
2540 adapter->params.a_wnd, adapter->params.b_wnd,
2541 adapter->port[0]->mtu);
2542 return 0;
2543 }
2544
cxgb_set_mac_addr(struct net_device * dev,void * p)2545 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2546 {
2547 struct port_info *pi = netdev_priv(dev);
2548 struct adapter *adapter = pi->adapter;
2549 struct sockaddr *addr = p;
2550
2551 if (!is_valid_ether_addr(addr->sa_data))
2552 return -EINVAL;
2553
2554 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2555 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2556 if (offload_running(adapter))
2557 write_smt_entry(adapter, pi->port_id);
2558 return 0;
2559 }
2560
2561 /**
2562 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2563 * @adap: the adapter
2564 * @p: the port
2565 *
2566 * Ensures that current Rx processing on any of the queues associated with
2567 * the given port completes before returning. We do this by acquiring and
2568 * releasing the locks of the response queues associated with the port.
2569 */
t3_synchronize_rx(struct adapter * adap,const struct port_info * p)2570 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2571 {
2572 int i;
2573
2574 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2575 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2576
2577 spin_lock_irq(&q->lock);
2578 spin_unlock_irq(&q->lock);
2579 }
2580 }
2581
vlan_rx_register(struct net_device * dev,struct vlan_group * grp)2582 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2583 {
2584 struct port_info *pi = netdev_priv(dev);
2585 struct adapter *adapter = pi->adapter;
2586
2587 pi->vlan_grp = grp;
2588 if (adapter->params.rev > 0)
2589 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2590 else {
2591 /* single control for all ports */
2592 unsigned int i, have_vlans = 0;
2593 for_each_port(adapter, i)
2594 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2595
2596 t3_set_vlan_accel(adapter, 1, have_vlans);
2597 }
2598 t3_synchronize_rx(adapter, pi);
2599 }
2600
2601 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2602 static void cxgb_netpoll(struct net_device *dev)
2603 {
2604 struct port_info *pi = netdev_priv(dev);
2605 struct adapter *adapter = pi->adapter;
2606 int qidx;
2607
2608 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2609 struct sge_qset *qs = &adapter->sge.qs[qidx];
2610 void *source;
2611
2612 if (adapter->flags & USING_MSIX)
2613 source = qs;
2614 else
2615 source = adapter;
2616
2617 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2618 }
2619 }
2620 #endif
2621
2622 /*
2623 * Periodic accumulation of MAC statistics.
2624 */
mac_stats_update(struct adapter * adapter)2625 static void mac_stats_update(struct adapter *adapter)
2626 {
2627 int i;
2628
2629 for_each_port(adapter, i) {
2630 struct net_device *dev = adapter->port[i];
2631 struct port_info *p = netdev_priv(dev);
2632
2633 if (netif_running(dev)) {
2634 spin_lock(&adapter->stats_lock);
2635 t3_mac_update_stats(&p->mac);
2636 spin_unlock(&adapter->stats_lock);
2637 }
2638 }
2639 }
2640
check_link_status(struct adapter * adapter)2641 static void check_link_status(struct adapter *adapter)
2642 {
2643 int i;
2644
2645 for_each_port(adapter, i) {
2646 struct net_device *dev = adapter->port[i];
2647 struct port_info *p = netdev_priv(dev);
2648 int link_fault;
2649
2650 spin_lock_irq(&adapter->work_lock);
2651 link_fault = p->link_fault;
2652 spin_unlock_irq(&adapter->work_lock);
2653
2654 if (link_fault) {
2655 t3_link_fault(adapter, i);
2656 continue;
2657 }
2658
2659 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2660 t3_xgm_intr_disable(adapter, i);
2661 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2662
2663 t3_link_changed(adapter, i);
2664 t3_xgm_intr_enable(adapter, i);
2665 }
2666 }
2667 }
2668
check_t3b2_mac(struct adapter * adapter)2669 static void check_t3b2_mac(struct adapter *adapter)
2670 {
2671 int i;
2672
2673 if (!rtnl_trylock()) /* synchronize with ifdown */
2674 return;
2675
2676 for_each_port(adapter, i) {
2677 struct net_device *dev = adapter->port[i];
2678 struct port_info *p = netdev_priv(dev);
2679 int status;
2680
2681 if (!netif_running(dev))
2682 continue;
2683
2684 status = 0;
2685 if (netif_running(dev) && netif_carrier_ok(dev))
2686 status = t3b2_mac_watchdog_task(&p->mac);
2687 if (status == 1)
2688 p->mac.stats.num_toggled++;
2689 else if (status == 2) {
2690 struct cmac *mac = &p->mac;
2691
2692 t3_mac_set_mtu(mac, dev->mtu);
2693 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2694 cxgb_set_rxmode(dev);
2695 t3_link_start(&p->phy, mac, &p->link_config);
2696 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2697 t3_port_intr_enable(adapter, p->port_id);
2698 p->mac.stats.num_resets++;
2699 }
2700 }
2701 rtnl_unlock();
2702 }
2703
2704
t3_adap_check_task(struct work_struct * work)2705 static void t3_adap_check_task(struct work_struct *work)
2706 {
2707 struct adapter *adapter = container_of(work, struct adapter,
2708 adap_check_task.work);
2709 const struct adapter_params *p = &adapter->params;
2710 int port;
2711 unsigned int v, status, reset;
2712
2713 adapter->check_task_cnt++;
2714
2715 check_link_status(adapter);
2716
2717 /* Accumulate MAC stats if needed */
2718 if (!p->linkpoll_period ||
2719 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2720 p->stats_update_period) {
2721 mac_stats_update(adapter);
2722 adapter->check_task_cnt = 0;
2723 }
2724
2725 if (p->rev == T3_REV_B2)
2726 check_t3b2_mac(adapter);
2727
2728 /*
2729 * Scan the XGMAC's to check for various conditions which we want to
2730 * monitor in a periodic polling manner rather than via an interrupt
2731 * condition. This is used for conditions which would otherwise flood
2732 * the system with interrupts and we only really need to know that the
2733 * conditions are "happening" ... For each condition we count the
2734 * detection of the condition and reset it for the next polling loop.
2735 */
2736 for_each_port(adapter, port) {
2737 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2738 u32 cause;
2739
2740 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2741 reset = 0;
2742 if (cause & F_RXFIFO_OVERFLOW) {
2743 mac->stats.rx_fifo_ovfl++;
2744 reset |= F_RXFIFO_OVERFLOW;
2745 }
2746
2747 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2748 }
2749
2750 /*
2751 * We do the same as above for FL_EMPTY interrupts.
2752 */
2753 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2754 reset = 0;
2755
2756 if (status & F_FLEMPTY) {
2757 struct sge_qset *qs = &adapter->sge.qs[0];
2758 int i = 0;
2759
2760 reset |= F_FLEMPTY;
2761
2762 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2763 0xffff;
2764
2765 while (v) {
2766 qs->fl[i].empty += (v & 1);
2767 if (i)
2768 qs++;
2769 i ^= 1;
2770 v >>= 1;
2771 }
2772 }
2773
2774 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2775
2776 /* Schedule the next check update if any port is active. */
2777 spin_lock_irq(&adapter->work_lock);
2778 if (adapter->open_device_map & PORT_MASK)
2779 schedule_chk_task(adapter);
2780 spin_unlock_irq(&adapter->work_lock);
2781 }
2782
db_full_task(struct work_struct * work)2783 static void db_full_task(struct work_struct *work)
2784 {
2785 struct adapter *adapter = container_of(work, struct adapter,
2786 db_full_task);
2787
2788 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2789 }
2790
db_empty_task(struct work_struct * work)2791 static void db_empty_task(struct work_struct *work)
2792 {
2793 struct adapter *adapter = container_of(work, struct adapter,
2794 db_empty_task);
2795
2796 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2797 }
2798
db_drop_task(struct work_struct * work)2799 static void db_drop_task(struct work_struct *work)
2800 {
2801 struct adapter *adapter = container_of(work, struct adapter,
2802 db_drop_task);
2803 unsigned long delay = 1000;
2804 unsigned short r;
2805
2806 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2807
2808 /*
2809 * Sleep a while before ringing the driver qset dbs.
2810 * The delay is between 1000-2023 usecs.
2811 */
2812 get_random_bytes(&r, 2);
2813 delay += r & 1023;
2814 set_current_state(TASK_UNINTERRUPTIBLE);
2815 schedule_timeout(usecs_to_jiffies(delay));
2816 ring_dbs(adapter);
2817 }
2818
2819 /*
2820 * Processes external (PHY) interrupts in process context.
2821 */
ext_intr_task(struct work_struct * work)2822 static void ext_intr_task(struct work_struct *work)
2823 {
2824 struct adapter *adapter = container_of(work, struct adapter,
2825 ext_intr_handler_task);
2826 int i;
2827
2828 /* Disable link fault interrupts */
2829 for_each_port(adapter, i) {
2830 struct net_device *dev = adapter->port[i];
2831 struct port_info *p = netdev_priv(dev);
2832
2833 t3_xgm_intr_disable(adapter, i);
2834 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2835 }
2836
2837 /* Re-enable link fault interrupts */
2838 t3_phy_intr_handler(adapter);
2839
2840 for_each_port(adapter, i)
2841 t3_xgm_intr_enable(adapter, i);
2842
2843 /* Now reenable external interrupts */
2844 spin_lock_irq(&adapter->work_lock);
2845 if (adapter->slow_intr_mask) {
2846 adapter->slow_intr_mask |= F_T3DBG;
2847 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2848 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2849 adapter->slow_intr_mask);
2850 }
2851 spin_unlock_irq(&adapter->work_lock);
2852 }
2853
2854 /*
2855 * Interrupt-context handler for external (PHY) interrupts.
2856 */
t3_os_ext_intr_handler(struct adapter * adapter)2857 void t3_os_ext_intr_handler(struct adapter *adapter)
2858 {
2859 /*
2860 * Schedule a task to handle external interrupts as they may be slow
2861 * and we use a mutex to protect MDIO registers. We disable PHY
2862 * interrupts in the meantime and let the task reenable them when
2863 * it's done.
2864 */
2865 spin_lock(&adapter->work_lock);
2866 if (adapter->slow_intr_mask) {
2867 adapter->slow_intr_mask &= ~F_T3DBG;
2868 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2869 adapter->slow_intr_mask);
2870 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2871 }
2872 spin_unlock(&adapter->work_lock);
2873 }
2874
t3_os_link_fault_handler(struct adapter * adapter,int port_id)2875 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2876 {
2877 struct net_device *netdev = adapter->port[port_id];
2878 struct port_info *pi = netdev_priv(netdev);
2879
2880 spin_lock(&adapter->work_lock);
2881 pi->link_fault = 1;
2882 spin_unlock(&adapter->work_lock);
2883 }
2884
t3_adapter_error(struct adapter * adapter,int reset,int on_wq)2885 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2886 {
2887 int i, ret = 0;
2888
2889 if (is_offload(adapter) &&
2890 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2891 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2892 offload_close(&adapter->tdev);
2893 }
2894
2895 /* Stop all ports */
2896 for_each_port(adapter, i) {
2897 struct net_device *netdev = adapter->port[i];
2898
2899 if (netif_running(netdev))
2900 __cxgb_close(netdev, on_wq);
2901 }
2902
2903 /* Stop SGE timers */
2904 t3_stop_sge_timers(adapter);
2905
2906 adapter->flags &= ~FULL_INIT_DONE;
2907
2908 if (reset)
2909 ret = t3_reset_adapter(adapter);
2910
2911 pci_disable_device(adapter->pdev);
2912
2913 return ret;
2914 }
2915
t3_reenable_adapter(struct adapter * adapter)2916 static int t3_reenable_adapter(struct adapter *adapter)
2917 {
2918 if (pci_enable_device(adapter->pdev)) {
2919 dev_err(&adapter->pdev->dev,
2920 "Cannot re-enable PCI device after reset.\n");
2921 goto err;
2922 }
2923 pci_set_master(adapter->pdev);
2924 pci_restore_state(adapter->pdev);
2925 pci_save_state(adapter->pdev);
2926
2927 /* Free sge resources */
2928 t3_free_sge_resources(adapter);
2929
2930 if (t3_replay_prep_adapter(adapter))
2931 goto err;
2932
2933 return 0;
2934 err:
2935 return -1;
2936 }
2937
t3_resume_ports(struct adapter * adapter)2938 static void t3_resume_ports(struct adapter *adapter)
2939 {
2940 int i;
2941
2942 /* Restart the ports */
2943 for_each_port(adapter, i) {
2944 struct net_device *netdev = adapter->port[i];
2945
2946 if (netif_running(netdev)) {
2947 if (cxgb_open(netdev)) {
2948 dev_err(&adapter->pdev->dev,
2949 "can't bring device back up"
2950 " after reset\n");
2951 continue;
2952 }
2953 }
2954 }
2955
2956 if (is_offload(adapter) && !ofld_disable)
2957 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2958 }
2959
2960 /*
2961 * processes a fatal error.
2962 * Bring the ports down, reset the chip, bring the ports back up.
2963 */
fatal_error_task(struct work_struct * work)2964 static void fatal_error_task(struct work_struct *work)
2965 {
2966 struct adapter *adapter = container_of(work, struct adapter,
2967 fatal_error_handler_task);
2968 int err = 0;
2969
2970 rtnl_lock();
2971 err = t3_adapter_error(adapter, 1, 1);
2972 if (!err)
2973 err = t3_reenable_adapter(adapter);
2974 if (!err)
2975 t3_resume_ports(adapter);
2976
2977 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2978 rtnl_unlock();
2979 }
2980
t3_fatal_err(struct adapter * adapter)2981 void t3_fatal_err(struct adapter *adapter)
2982 {
2983 unsigned int fw_status[4];
2984
2985 if (adapter->flags & FULL_INIT_DONE) {
2986 t3_sge_stop(adapter);
2987 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2988 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2989 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2990 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2991
2992 spin_lock(&adapter->work_lock);
2993 t3_intr_disable(adapter);
2994 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2995 spin_unlock(&adapter->work_lock);
2996 }
2997 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2998 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2999 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
3000 fw_status[0], fw_status[1],
3001 fw_status[2], fw_status[3]);
3002 }
3003
3004 /**
3005 * t3_io_error_detected - called when PCI error is detected
3006 * @pdev: Pointer to PCI device
3007 * @state: The current pci connection state
3008 *
3009 * This function is called after a PCI bus error affecting
3010 * this device has been detected.
3011 */
t3_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3012 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3013 pci_channel_state_t state)
3014 {
3015 struct adapter *adapter = pci_get_drvdata(pdev);
3016
3017 if (state == pci_channel_io_perm_failure)
3018 return PCI_ERS_RESULT_DISCONNECT;
3019
3020 t3_adapter_error(adapter, 0, 0);
3021
3022 /* Request a slot reset. */
3023 return PCI_ERS_RESULT_NEED_RESET;
3024 }
3025
3026 /**
3027 * t3_io_slot_reset - called after the pci bus has been reset.
3028 * @pdev: Pointer to PCI device
3029 *
3030 * Restart the card from scratch, as if from a cold-boot.
3031 */
t3_io_slot_reset(struct pci_dev * pdev)3032 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3033 {
3034 struct adapter *adapter = pci_get_drvdata(pdev);
3035
3036 if (!t3_reenable_adapter(adapter))
3037 return PCI_ERS_RESULT_RECOVERED;
3038
3039 return PCI_ERS_RESULT_DISCONNECT;
3040 }
3041
3042 /**
3043 * t3_io_resume - called when traffic can start flowing again.
3044 * @pdev: Pointer to PCI device
3045 *
3046 * This callback is called when the error recovery driver tells us that
3047 * its OK to resume normal operation.
3048 */
t3_io_resume(struct pci_dev * pdev)3049 static void t3_io_resume(struct pci_dev *pdev)
3050 {
3051 struct adapter *adapter = pci_get_drvdata(pdev);
3052
3053 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3054 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3055
3056 t3_resume_ports(adapter);
3057 }
3058
3059 static struct pci_error_handlers t3_err_handler = {
3060 .error_detected = t3_io_error_detected,
3061 .slot_reset = t3_io_slot_reset,
3062 .resume = t3_io_resume,
3063 };
3064
3065 /*
3066 * Set the number of qsets based on the number of CPUs and the number of ports,
3067 * not to exceed the number of available qsets, assuming there are enough qsets
3068 * per port in HW.
3069 */
set_nqsets(struct adapter * adap)3070 static void set_nqsets(struct adapter *adap)
3071 {
3072 int i, j = 0;
3073 int num_cpus = num_online_cpus();
3074 int hwports = adap->params.nports;
3075 int nqsets = adap->msix_nvectors - 1;
3076
3077 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3078 if (hwports == 2 &&
3079 (hwports * nqsets > SGE_QSETS ||
3080 num_cpus >= nqsets / hwports))
3081 nqsets /= hwports;
3082 if (nqsets > num_cpus)
3083 nqsets = num_cpus;
3084 if (nqsets < 1 || hwports == 4)
3085 nqsets = 1;
3086 } else
3087 nqsets = 1;
3088
3089 for_each_port(adap, i) {
3090 struct port_info *pi = adap2pinfo(adap, i);
3091
3092 pi->first_qset = j;
3093 pi->nqsets = nqsets;
3094 j = pi->first_qset + nqsets;
3095
3096 dev_info(&adap->pdev->dev,
3097 "Port %d using %d queue sets.\n", i, nqsets);
3098 }
3099 }
3100
cxgb_enable_msix(struct adapter * adap)3101 static int __devinit cxgb_enable_msix(struct adapter *adap)
3102 {
3103 struct msix_entry entries[SGE_QSETS + 1];
3104 int vectors;
3105 int i, err;
3106
3107 vectors = ARRAY_SIZE(entries);
3108 for (i = 0; i < vectors; ++i)
3109 entries[i].entry = i;
3110
3111 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3112 vectors = err;
3113
3114 if (err < 0)
3115 pci_disable_msix(adap->pdev);
3116
3117 if (!err && vectors < (adap->params.nports + 1)) {
3118 pci_disable_msix(adap->pdev);
3119 err = -1;
3120 }
3121
3122 if (!err) {
3123 for (i = 0; i < vectors; ++i)
3124 adap->msix_info[i].vec = entries[i].vector;
3125 adap->msix_nvectors = vectors;
3126 }
3127
3128 return err;
3129 }
3130
print_port_info(struct adapter * adap,const struct adapter_info * ai)3131 static void __devinit print_port_info(struct adapter *adap,
3132 const struct adapter_info *ai)
3133 {
3134 static const char *pci_variant[] = {
3135 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3136 };
3137
3138 int i;
3139 char buf[80];
3140
3141 if (is_pcie(adap))
3142 snprintf(buf, sizeof(buf), "%s x%d",
3143 pci_variant[adap->params.pci.variant],
3144 adap->params.pci.width);
3145 else
3146 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3147 pci_variant[adap->params.pci.variant],
3148 adap->params.pci.speed, adap->params.pci.width);
3149
3150 for_each_port(adap, i) {
3151 struct net_device *dev = adap->port[i];
3152 const struct port_info *pi = netdev_priv(dev);
3153
3154 if (!test_bit(i, &adap->registered_device_map))
3155 continue;
3156 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3157 dev->name, ai->desc, pi->phy.desc,
3158 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3159 (adap->flags & USING_MSIX) ? " MSI-X" :
3160 (adap->flags & USING_MSI) ? " MSI" : "");
3161 if (adap->name == dev->name && adap->params.vpd.mclk)
3162 printk(KERN_INFO
3163 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3164 adap->name, t3_mc7_size(&adap->cm) >> 20,
3165 t3_mc7_size(&adap->pmtx) >> 20,
3166 t3_mc7_size(&adap->pmrx) >> 20,
3167 adap->params.vpd.sn);
3168 }
3169 }
3170
3171 static const struct net_device_ops cxgb_netdev_ops = {
3172 .ndo_open = cxgb_open,
3173 .ndo_stop = cxgb_close,
3174 .ndo_start_xmit = t3_eth_xmit,
3175 .ndo_get_stats = cxgb_get_stats,
3176 .ndo_validate_addr = eth_validate_addr,
3177 .ndo_set_multicast_list = cxgb_set_rxmode,
3178 .ndo_do_ioctl = cxgb_ioctl,
3179 .ndo_change_mtu = cxgb_change_mtu,
3180 .ndo_set_mac_address = cxgb_set_mac_addr,
3181 .ndo_vlan_rx_register = vlan_rx_register,
3182 #ifdef CONFIG_NET_POLL_CONTROLLER
3183 .ndo_poll_controller = cxgb_netpoll,
3184 #endif
3185 };
3186
cxgb3_init_iscsi_mac(struct net_device * dev)3187 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3188 {
3189 struct port_info *pi = netdev_priv(dev);
3190
3191 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3192 pi->iscsic.mac_addr[3] |= 0x80;
3193 }
3194
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)3195 static int __devinit init_one(struct pci_dev *pdev,
3196 const struct pci_device_id *ent)
3197 {
3198 static int version_printed;
3199
3200 int i, err, pci_using_dac = 0;
3201 resource_size_t mmio_start, mmio_len;
3202 const struct adapter_info *ai;
3203 struct adapter *adapter = NULL;
3204 struct port_info *pi;
3205
3206 if (!version_printed) {
3207 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3208 ++version_printed;
3209 }
3210
3211 if (!cxgb3_wq) {
3212 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3213 if (!cxgb3_wq) {
3214 printk(KERN_ERR DRV_NAME
3215 ": cannot initialize work queue\n");
3216 return -ENOMEM;
3217 }
3218 }
3219
3220 err = pci_enable_device(pdev);
3221 if (err) {
3222 dev_err(&pdev->dev, "cannot enable PCI device\n");
3223 goto out;
3224 }
3225
3226 err = pci_request_regions(pdev, DRV_NAME);
3227 if (err) {
3228 /* Just info, some other driver may have claimed the device. */
3229 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3230 goto out_disable_device;
3231 }
3232
3233 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3234 pci_using_dac = 1;
3235 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3236 if (err) {
3237 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3238 "coherent allocations\n");
3239 goto out_release_regions;
3240 }
3241 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3242 dev_err(&pdev->dev, "no usable DMA configuration\n");
3243 goto out_release_regions;
3244 }
3245
3246 pci_set_master(pdev);
3247 pci_save_state(pdev);
3248
3249 mmio_start = pci_resource_start(pdev, 0);
3250 mmio_len = pci_resource_len(pdev, 0);
3251 ai = t3_get_adapter_info(ent->driver_data);
3252
3253 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3254 if (!adapter) {
3255 err = -ENOMEM;
3256 goto out_release_regions;
3257 }
3258
3259 adapter->nofail_skb =
3260 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3261 if (!adapter->nofail_skb) {
3262 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3263 err = -ENOMEM;
3264 goto out_free_adapter;
3265 }
3266
3267 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3268 if (!adapter->regs) {
3269 dev_err(&pdev->dev, "cannot map device registers\n");
3270 err = -ENOMEM;
3271 goto out_free_adapter;
3272 }
3273
3274 adapter->pdev = pdev;
3275 adapter->name = pci_name(pdev);
3276 adapter->msg_enable = dflt_msg_enable;
3277 adapter->mmio_len = mmio_len;
3278
3279 mutex_init(&adapter->mdio_lock);
3280 spin_lock_init(&adapter->work_lock);
3281 spin_lock_init(&adapter->stats_lock);
3282
3283 INIT_LIST_HEAD(&adapter->adapter_list);
3284 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3285 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3286
3287 INIT_WORK(&adapter->db_full_task, db_full_task);
3288 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3289 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3290
3291 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3292
3293 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3294 struct net_device *netdev;
3295
3296 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3297 if (!netdev) {
3298 err = -ENOMEM;
3299 goto out_free_dev;
3300 }
3301
3302 SET_NETDEV_DEV(netdev, &pdev->dev);
3303
3304 adapter->port[i] = netdev;
3305 pi = netdev_priv(netdev);
3306 pi->adapter = adapter;
3307 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3308 pi->port_id = i;
3309 netif_carrier_off(netdev);
3310 netdev->irq = pdev->irq;
3311 netdev->mem_start = mmio_start;
3312 netdev->mem_end = mmio_start + mmio_len - 1;
3313 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3314 netdev->features |= NETIF_F_GRO;
3315 if (pci_using_dac)
3316 netdev->features |= NETIF_F_HIGHDMA;
3317
3318 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3319 netdev->netdev_ops = &cxgb_netdev_ops;
3320 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3321 }
3322
3323 pci_set_drvdata(pdev, adapter);
3324 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3325 err = -ENODEV;
3326 goto out_free_dev;
3327 }
3328
3329 /*
3330 * The card is now ready to go. If any errors occur during device
3331 * registration we do not fail the whole card but rather proceed only
3332 * with the ports we manage to register successfully. However we must
3333 * register at least one net device.
3334 */
3335 for_each_port(adapter, i) {
3336 err = register_netdev(adapter->port[i]);
3337 if (err)
3338 dev_warn(&pdev->dev,
3339 "cannot register net device %s, skipping\n",
3340 adapter->port[i]->name);
3341 else {
3342 /*
3343 * Change the name we use for messages to the name of
3344 * the first successfully registered interface.
3345 */
3346 if (!adapter->registered_device_map)
3347 adapter->name = adapter->port[i]->name;
3348
3349 __set_bit(i, &adapter->registered_device_map);
3350 }
3351 }
3352 if (!adapter->registered_device_map) {
3353 dev_err(&pdev->dev, "could not register any net devices\n");
3354 goto out_free_dev;
3355 }
3356
3357 for_each_port(adapter, i)
3358 cxgb3_init_iscsi_mac(adapter->port[i]);
3359
3360 /* Driver's ready. Reflect it on LEDs */
3361 t3_led_ready(adapter);
3362
3363 if (is_offload(adapter)) {
3364 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3365 cxgb3_adapter_ofld(adapter);
3366 }
3367
3368 /* See what interrupts we'll be using */
3369 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3370 adapter->flags |= USING_MSIX;
3371 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3372 adapter->flags |= USING_MSI;
3373
3374 set_nqsets(adapter);
3375
3376 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3377 &cxgb3_attr_group);
3378
3379 print_port_info(adapter, ai);
3380 return 0;
3381
3382 out_free_dev:
3383 iounmap(adapter->regs);
3384 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3385 if (adapter->port[i])
3386 free_netdev(adapter->port[i]);
3387
3388 out_free_adapter:
3389 kfree(adapter);
3390
3391 out_release_regions:
3392 pci_release_regions(pdev);
3393 out_disable_device:
3394 pci_disable_device(pdev);
3395 pci_set_drvdata(pdev, NULL);
3396 out:
3397 return err;
3398 }
3399
remove_one(struct pci_dev * pdev)3400 static void __devexit remove_one(struct pci_dev *pdev)
3401 {
3402 struct adapter *adapter = pci_get_drvdata(pdev);
3403
3404 if (adapter) {
3405 int i;
3406
3407 t3_sge_stop(adapter);
3408 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3409 &cxgb3_attr_group);
3410
3411 if (is_offload(adapter)) {
3412 cxgb3_adapter_unofld(adapter);
3413 if (test_bit(OFFLOAD_DEVMAP_BIT,
3414 &adapter->open_device_map))
3415 offload_close(&adapter->tdev);
3416 }
3417
3418 for_each_port(adapter, i)
3419 if (test_bit(i, &adapter->registered_device_map))
3420 unregister_netdev(adapter->port[i]);
3421
3422 t3_stop_sge_timers(adapter);
3423 t3_free_sge_resources(adapter);
3424 cxgb_disable_msi(adapter);
3425
3426 for_each_port(adapter, i)
3427 if (adapter->port[i])
3428 free_netdev(adapter->port[i]);
3429
3430 iounmap(adapter->regs);
3431 if (adapter->nofail_skb)
3432 kfree_skb(adapter->nofail_skb);
3433 kfree(adapter);
3434 pci_release_regions(pdev);
3435 pci_disable_device(pdev);
3436 pci_set_drvdata(pdev, NULL);
3437 }
3438 }
3439
3440 static struct pci_driver driver = {
3441 .name = DRV_NAME,
3442 .id_table = cxgb3_pci_tbl,
3443 .probe = init_one,
3444 .remove = __devexit_p(remove_one),
3445 .err_handler = &t3_err_handler,
3446 };
3447
cxgb3_init_module(void)3448 static int __init cxgb3_init_module(void)
3449 {
3450 int ret;
3451
3452 cxgb3_offload_init();
3453
3454 ret = pci_register_driver(&driver);
3455 return ret;
3456 }
3457
cxgb3_cleanup_module(void)3458 static void __exit cxgb3_cleanup_module(void)
3459 {
3460 pci_unregister_driver(&driver);
3461 if (cxgb3_wq)
3462 destroy_workqueue(cxgb3_wq);
3463 }
3464
3465 module_init(cxgb3_init_module);
3466 module_exit(cxgb3_cleanup_module);
3467