1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
57 #include <linux/prefetch.h>
58
59 #include "cpl5_cmd.h"
60 #include "sge.h"
61 #include "regs.h"
62 #include "espi.h"
63
64 /* This belongs in if_ether.h */
65 #define ETH_P_CPL5 0xf
66
67 #define SGE_CMDQ_N 2
68 #define SGE_FREELQ_N 2
69 #define SGE_CMDQ0_E_N 1024
70 #define SGE_CMDQ1_E_N 128
71 #define SGE_FREEL_SIZE 4096
72 #define SGE_JUMBO_FREEL_SIZE 512
73 #define SGE_FREEL_REFILL_THRESH 16
74 #define SGE_RESPQ_E_N 1024
75 #define SGE_INTRTIMER_NRES 1000
76 #define SGE_RX_SM_BUF_SIZE 1536
77 #define SGE_TX_DESC_MAX_PLEN 16384
78
79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80
81 /*
82 * Period of the TX buffer reclaim timer. This timer does not need to run
83 * frequently as TX buffers are usually reclaimed by new TX packets.
84 */
85 #define TX_RECLAIM_PERIOD (HZ / 4)
86
87 #define M_CMD_LEN 0x7fffffff
88 #define V_CMD_LEN(v) (v)
89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
90 #define V_CMD_GEN1(v) ((v) << 31)
91 #define V_CMD_GEN2(v) (v)
92 #define F_CMD_DATAVALID (1 << 1)
93 #define F_CMD_SOP (1 << 2)
94 #define V_CMD_EOP(v) ((v) << 3)
95
96 /*
97 * Command queue, receive buffer list, and response queue descriptors.
98 */
99 #if defined(__BIG_ENDIAN_BITFIELD)
100 struct cmdQ_e {
101 u32 addr_lo;
102 u32 len_gen;
103 u32 flags;
104 u32 addr_hi;
105 };
106
107 struct freelQ_e {
108 u32 addr_lo;
109 u32 len_gen;
110 u32 gen2;
111 u32 addr_hi;
112 };
113
114 struct respQ_e {
115 u32 Qsleeping : 4;
116 u32 Cmdq1CreditReturn : 5;
117 u32 Cmdq1DmaComplete : 5;
118 u32 Cmdq0CreditReturn : 5;
119 u32 Cmdq0DmaComplete : 5;
120 u32 FreelistQid : 2;
121 u32 CreditValid : 1;
122 u32 DataValid : 1;
123 u32 Offload : 1;
124 u32 Eop : 1;
125 u32 Sop : 1;
126 u32 GenerationBit : 1;
127 u32 BufferLength;
128 };
129 #elif defined(__LITTLE_ENDIAN_BITFIELD)
130 struct cmdQ_e {
131 u32 len_gen;
132 u32 addr_lo;
133 u32 addr_hi;
134 u32 flags;
135 };
136
137 struct freelQ_e {
138 u32 len_gen;
139 u32 addr_lo;
140 u32 addr_hi;
141 u32 gen2;
142 };
143
144 struct respQ_e {
145 u32 BufferLength;
146 u32 GenerationBit : 1;
147 u32 Sop : 1;
148 u32 Eop : 1;
149 u32 Offload : 1;
150 u32 DataValid : 1;
151 u32 CreditValid : 1;
152 u32 FreelistQid : 2;
153 u32 Cmdq0DmaComplete : 5;
154 u32 Cmdq0CreditReturn : 5;
155 u32 Cmdq1DmaComplete : 5;
156 u32 Cmdq1CreditReturn : 5;
157 u32 Qsleeping : 4;
158 } ;
159 #endif
160
161 /*
162 * SW Context Command and Freelist Queue Descriptors
163 */
164 struct cmdQ_ce {
165 struct sk_buff *skb;
166 DEFINE_DMA_UNMAP_ADDR(dma_addr);
167 DEFINE_DMA_UNMAP_LEN(dma_len);
168 };
169
170 struct freelQ_ce {
171 struct sk_buff *skb;
172 DEFINE_DMA_UNMAP_ADDR(dma_addr);
173 DEFINE_DMA_UNMAP_LEN(dma_len);
174 };
175
176 /*
177 * SW command, freelist and response rings
178 */
179 struct cmdQ {
180 unsigned long status; /* HW DMA fetch status */
181 unsigned int in_use; /* # of in-use command descriptors */
182 unsigned int size; /* # of descriptors */
183 unsigned int processed; /* total # of descs HW has processed */
184 unsigned int cleaned; /* total # of descs SW has reclaimed */
185 unsigned int stop_thres; /* SW TX queue suspend threshold */
186 u16 pidx; /* producer index (SW) */
187 u16 cidx; /* consumer index (HW) */
188 u8 genbit; /* current generation (=valid) bit */
189 u8 sop; /* is next entry start of packet? */
190 struct cmdQ_e *entries; /* HW command descriptor Q */
191 struct cmdQ_ce *centries; /* SW command context descriptor Q */
192 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
193 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
194 };
195
196 struct freelQ {
197 unsigned int credits; /* # of available RX buffers */
198 unsigned int size; /* free list capacity */
199 u16 pidx; /* producer index (SW) */
200 u16 cidx; /* consumer index (HW) */
201 u16 rx_buffer_size; /* Buffer size on this free list */
202 u16 dma_offset; /* DMA offset to align IP headers */
203 u16 recycleq_idx; /* skb recycle q to use */
204 u8 genbit; /* current generation (=valid) bit */
205 struct freelQ_e *entries; /* HW freelist descriptor Q */
206 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
207 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
208 };
209
210 struct respQ {
211 unsigned int credits; /* credits to be returned to SGE */
212 unsigned int size; /* # of response Q descriptors */
213 u16 cidx; /* consumer index (SW) */
214 u8 genbit; /* current generation(=valid) bit */
215 struct respQ_e *entries; /* HW response descriptor Q */
216 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
217 };
218
219 /* Bit flags for cmdQ.status */
220 enum {
221 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
222 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
223 };
224
225 /* T204 TX SW scheduler */
226
227 /* Per T204 TX port */
228 struct sched_port {
229 unsigned int avail; /* available bits - quota */
230 unsigned int drain_bits_per_1024ns; /* drain rate */
231 unsigned int speed; /* drain rate, mbps */
232 unsigned int mtu; /* mtu size */
233 struct sk_buff_head skbq; /* pending skbs */
234 };
235
236 /* Per T204 device */
237 struct sched {
238 ktime_t last_updated; /* last time quotas were computed */
239 unsigned int max_avail; /* max bits to be sent to any port */
240 unsigned int port; /* port index (round robin ports) */
241 unsigned int num; /* num skbs in per port queues */
242 struct sched_port p[MAX_NPORTS];
243 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
244 };
245 static void restart_sched(unsigned long);
246
247
248 /*
249 * Main SGE data structure
250 *
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
254 * contention.
255 */
256 struct sge {
257 struct adapter *adapter; /* adapter backpointer */
258 struct net_device *netdev; /* netdevice backpointer */
259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
260 struct respQ respQ; /* response Q */
261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
263 unsigned int jumbo_fl; /* jumbo freelist Q index */
264 unsigned int intrtimer_nres; /* no-resource interrupt timer */
265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267 struct timer_list espibug_timer;
268 unsigned long espibug_timeout;
269 struct sk_buff *espibug_skb[MAX_NPORTS];
270 u32 sge_control; /* shadow value of sge control reg */
271 struct sge_intr_counts stats;
272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
273 struct sched *tx_sched;
274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
275 };
276
277 static const u8 ch_mac_addr[ETH_ALEN] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279 };
280
281 /*
282 * stop tasklet and free all pending skb's
283 */
tx_sched_stop(struct sge * sge)284 static void tx_sched_stop(struct sge *sge)
285 {
286 struct sched *s = sge->tx_sched;
287 int i;
288
289 tasklet_kill(&s->sched_tsk);
290
291 for (i = 0; i < MAX_NPORTS; i++)
292 __skb_queue_purge(&s->p[s->port].skbq);
293 }
294
295 /*
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
298 */
t1_sched_update_parms(struct sge * sge,unsigned int port,unsigned int mtu,unsigned int speed)299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300 unsigned int mtu, unsigned int speed)
301 {
302 struct sched *s = sge->tx_sched;
303 struct sched_port *p = &s->p[port];
304 unsigned int max_avail_segs;
305
306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
307 if (speed)
308 p->speed = speed;
309 if (mtu)
310 p->mtu = mtu;
311
312 if (speed || mtu) {
313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314 do_div(drain, (p->mtu + 50) * 1000);
315 p->drain_bits_per_1024ns = (unsigned int) drain;
316
317 if (p->speed < 1000)
318 p->drain_bits_per_1024ns =
319 90 * p->drain_bits_per_1024ns / 100;
320 }
321
322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323 p->drain_bits_per_1024ns -= 16;
324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326 } else {
327 s->max_avail = 16384;
328 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329 }
330
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333 p->speed, s->max_avail, max_avail_segs,
334 p->drain_bits_per_1024ns);
335
336 return max_avail_segs * (p->mtu - 40);
337 }
338
339 #if 0
340
341 /*
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
344 */
345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346 {
347 struct sched *s = sge->tx_sched;
348 unsigned int i;
349
350 s->max_avail = val;
351 for (i = 0; i < MAX_NPORTS; i++)
352 t1_sched_update_parms(sge, i, 0, 0);
353 }
354
355 /*
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 * is draining.
358 */
359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360 unsigned int val)
361 {
362 struct sched *s = sge->tx_sched;
363 struct sched_port *p = &s->p[port];
364 p->drain_bits_per_1024ns = val * 1024 / 1000;
365 t1_sched_update_parms(sge, port, 0, 0);
366 }
367
368 #endif /* 0 */
369
370
371 /*
372 * get_clock() implements a ns clock (see ktime_get)
373 */
get_clock(void)374 static inline ktime_t get_clock(void)
375 {
376 struct timespec ts;
377
378 ktime_get_ts(&ts);
379 return timespec_to_ktime(ts);
380 }
381
382 /*
383 * tx_sched_init() allocates resources and does basic initialization.
384 */
tx_sched_init(struct sge * sge)385 static int tx_sched_init(struct sge *sge)
386 {
387 struct sched *s;
388 int i;
389
390 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
391 if (!s)
392 return -ENOMEM;
393
394 pr_debug("tx_sched_init\n");
395 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
396 sge->tx_sched = s;
397
398 for (i = 0; i < MAX_NPORTS; i++) {
399 skb_queue_head_init(&s->p[i].skbq);
400 t1_sched_update_parms(sge, i, 1500, 1000);
401 }
402
403 return 0;
404 }
405
406 /*
407 * sched_update_avail() computes the delta since the last time it was called
408 * and updates the per port quota (number of bits that can be sent to the any
409 * port).
410 */
sched_update_avail(struct sge * sge)411 static inline int sched_update_avail(struct sge *sge)
412 {
413 struct sched *s = sge->tx_sched;
414 ktime_t now = get_clock();
415 unsigned int i;
416 long long delta_time_ns;
417
418 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
419
420 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
421 if (delta_time_ns < 15000)
422 return 0;
423
424 for (i = 0; i < MAX_NPORTS; i++) {
425 struct sched_port *p = &s->p[i];
426 unsigned int delta_avail;
427
428 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
429 p->avail = min(p->avail + delta_avail, s->max_avail);
430 }
431
432 s->last_updated = now;
433
434 return 1;
435 }
436
437 /*
438 * sched_skb() is called from two different places. In the tx path, any
439 * packet generating load on an output port will call sched_skb()
440 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
441 * context (skb == NULL).
442 * The scheduler only returns a skb (which will then be sent) if the
443 * length of the skb is <= the current quota of the output port.
444 */
sched_skb(struct sge * sge,struct sk_buff * skb,unsigned int credits)445 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
446 unsigned int credits)
447 {
448 struct sched *s = sge->tx_sched;
449 struct sk_buff_head *skbq;
450 unsigned int i, len, update = 1;
451
452 pr_debug("sched_skb %p\n", skb);
453 if (!skb) {
454 if (!s->num)
455 return NULL;
456 } else {
457 skbq = &s->p[skb->dev->if_port].skbq;
458 __skb_queue_tail(skbq, skb);
459 s->num++;
460 skb = NULL;
461 }
462
463 if (credits < MAX_SKB_FRAGS + 1)
464 goto out;
465
466 again:
467 for (i = 0; i < MAX_NPORTS; i++) {
468 s->port = (s->port + 1) & (MAX_NPORTS - 1);
469 skbq = &s->p[s->port].skbq;
470
471 skb = skb_peek(skbq);
472
473 if (!skb)
474 continue;
475
476 len = skb->len;
477 if (len <= s->p[s->port].avail) {
478 s->p[s->port].avail -= len;
479 s->num--;
480 __skb_unlink(skb, skbq);
481 goto out;
482 }
483 skb = NULL;
484 }
485
486 if (update-- && sched_update_avail(sge))
487 goto again;
488
489 out:
490 /* If there are more pending skbs, we use the hardware to schedule us
491 * again.
492 */
493 if (s->num && !skb) {
494 struct cmdQ *q = &sge->cmdQ[0];
495 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
496 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
497 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
498 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
499 }
500 }
501 pr_debug("sched_skb ret %p\n", skb);
502
503 return skb;
504 }
505
506 /*
507 * PIO to indicate that memory mapped Q contains valid descriptor(s).
508 */
doorbell_pio(struct adapter * adapter,u32 val)509 static inline void doorbell_pio(struct adapter *adapter, u32 val)
510 {
511 wmb();
512 writel(val, adapter->regs + A_SG_DOORBELL);
513 }
514
515 /*
516 * Frees all RX buffers on the freelist Q. The caller must make sure that
517 * the SGE is turned off before calling this function.
518 */
free_freelQ_buffers(struct pci_dev * pdev,struct freelQ * q)519 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
520 {
521 unsigned int cidx = q->cidx;
522
523 while (q->credits--) {
524 struct freelQ_ce *ce = &q->centries[cidx];
525
526 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
527 dma_unmap_len(ce, dma_len),
528 PCI_DMA_FROMDEVICE);
529 dev_kfree_skb(ce->skb);
530 ce->skb = NULL;
531 if (++cidx == q->size)
532 cidx = 0;
533 }
534 }
535
536 /*
537 * Free RX free list and response queue resources.
538 */
free_rx_resources(struct sge * sge)539 static void free_rx_resources(struct sge *sge)
540 {
541 struct pci_dev *pdev = sge->adapter->pdev;
542 unsigned int size, i;
543
544 if (sge->respQ.entries) {
545 size = sizeof(struct respQ_e) * sge->respQ.size;
546 pci_free_consistent(pdev, size, sge->respQ.entries,
547 sge->respQ.dma_addr);
548 }
549
550 for (i = 0; i < SGE_FREELQ_N; i++) {
551 struct freelQ *q = &sge->freelQ[i];
552
553 if (q->centries) {
554 free_freelQ_buffers(pdev, q);
555 kfree(q->centries);
556 }
557 if (q->entries) {
558 size = sizeof(struct freelQ_e) * q->size;
559 pci_free_consistent(pdev, size, q->entries,
560 q->dma_addr);
561 }
562 }
563 }
564
565 /*
566 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
567 * response queue.
568 */
alloc_rx_resources(struct sge * sge,struct sge_params * p)569 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
570 {
571 struct pci_dev *pdev = sge->adapter->pdev;
572 unsigned int size, i;
573
574 for (i = 0; i < SGE_FREELQ_N; i++) {
575 struct freelQ *q = &sge->freelQ[i];
576
577 q->genbit = 1;
578 q->size = p->freelQ_size[i];
579 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
580 size = sizeof(struct freelQ_e) * q->size;
581 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
582 if (!q->entries)
583 goto err_no_mem;
584
585 size = sizeof(struct freelQ_ce) * q->size;
586 q->centries = kzalloc(size, GFP_KERNEL);
587 if (!q->centries)
588 goto err_no_mem;
589 }
590
591 /*
592 * Calculate the buffer sizes for the two free lists. FL0 accommodates
593 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
594 * including all the sk_buff overhead.
595 *
596 * Note: For T2 FL0 and FL1 are reversed.
597 */
598 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
599 sizeof(struct cpl_rx_data) +
600 sge->freelQ[!sge->jumbo_fl].dma_offset;
601
602 size = (16 * 1024) -
603 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
604
605 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
606
607 /*
608 * Setup which skb recycle Q should be used when recycling buffers from
609 * each free list.
610 */
611 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
612 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
613
614 sge->respQ.genbit = 1;
615 sge->respQ.size = SGE_RESPQ_E_N;
616 sge->respQ.credits = 0;
617 size = sizeof(struct respQ_e) * sge->respQ.size;
618 sge->respQ.entries =
619 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
620 if (!sge->respQ.entries)
621 goto err_no_mem;
622 return 0;
623
624 err_no_mem:
625 free_rx_resources(sge);
626 return -ENOMEM;
627 }
628
629 /*
630 * Reclaims n TX descriptors and frees the buffers associated with them.
631 */
free_cmdQ_buffers(struct sge * sge,struct cmdQ * q,unsigned int n)632 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
633 {
634 struct cmdQ_ce *ce;
635 struct pci_dev *pdev = sge->adapter->pdev;
636 unsigned int cidx = q->cidx;
637
638 q->in_use -= n;
639 ce = &q->centries[cidx];
640 while (n--) {
641 if (likely(dma_unmap_len(ce, dma_len))) {
642 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
643 dma_unmap_len(ce, dma_len),
644 PCI_DMA_TODEVICE);
645 if (q->sop)
646 q->sop = 0;
647 }
648 if (ce->skb) {
649 dev_kfree_skb_any(ce->skb);
650 q->sop = 1;
651 }
652 ce++;
653 if (++cidx == q->size) {
654 cidx = 0;
655 ce = q->centries;
656 }
657 }
658 q->cidx = cidx;
659 }
660
661 /*
662 * Free TX resources.
663 *
664 * Assumes that SGE is stopped and all interrupts are disabled.
665 */
free_tx_resources(struct sge * sge)666 static void free_tx_resources(struct sge *sge)
667 {
668 struct pci_dev *pdev = sge->adapter->pdev;
669 unsigned int size, i;
670
671 for (i = 0; i < SGE_CMDQ_N; i++) {
672 struct cmdQ *q = &sge->cmdQ[i];
673
674 if (q->centries) {
675 if (q->in_use)
676 free_cmdQ_buffers(sge, q, q->in_use);
677 kfree(q->centries);
678 }
679 if (q->entries) {
680 size = sizeof(struct cmdQ_e) * q->size;
681 pci_free_consistent(pdev, size, q->entries,
682 q->dma_addr);
683 }
684 }
685 }
686
687 /*
688 * Allocates basic TX resources, consisting of memory mapped command Qs.
689 */
alloc_tx_resources(struct sge * sge,struct sge_params * p)690 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
691 {
692 struct pci_dev *pdev = sge->adapter->pdev;
693 unsigned int size, i;
694
695 for (i = 0; i < SGE_CMDQ_N; i++) {
696 struct cmdQ *q = &sge->cmdQ[i];
697
698 q->genbit = 1;
699 q->sop = 1;
700 q->size = p->cmdQ_size[i];
701 q->in_use = 0;
702 q->status = 0;
703 q->processed = q->cleaned = 0;
704 q->stop_thres = 0;
705 spin_lock_init(&q->lock);
706 size = sizeof(struct cmdQ_e) * q->size;
707 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
708 if (!q->entries)
709 goto err_no_mem;
710
711 size = sizeof(struct cmdQ_ce) * q->size;
712 q->centries = kzalloc(size, GFP_KERNEL);
713 if (!q->centries)
714 goto err_no_mem;
715 }
716
717 /*
718 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
719 * only. For queue 0 set the stop threshold so we can handle one more
720 * packet from each port, plus reserve an additional 24 entries for
721 * Ethernet packets only. Queue 1 never suspends nor do we reserve
722 * space for Ethernet packets.
723 */
724 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
725 (MAX_SKB_FRAGS + 1);
726 return 0;
727
728 err_no_mem:
729 free_tx_resources(sge);
730 return -ENOMEM;
731 }
732
setup_ring_params(struct adapter * adapter,u64 addr,u32 size,int base_reg_lo,int base_reg_hi,int size_reg)733 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
734 u32 size, int base_reg_lo,
735 int base_reg_hi, int size_reg)
736 {
737 writel((u32)addr, adapter->regs + base_reg_lo);
738 writel(addr >> 32, adapter->regs + base_reg_hi);
739 writel(size, adapter->regs + size_reg);
740 }
741
742 /*
743 * Enable/disable VLAN acceleration.
744 */
t1_vlan_mode(struct adapter * adapter,netdev_features_t features)745 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
746 {
747 struct sge *sge = adapter->sge;
748
749 if (features & NETIF_F_HW_VLAN_RX)
750 sge->sge_control |= F_VLAN_XTRACT;
751 else
752 sge->sge_control &= ~F_VLAN_XTRACT;
753 if (adapter->open_device_map) {
754 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
755 readl(adapter->regs + A_SG_CONTROL); /* flush */
756 }
757 }
758
759 /*
760 * Programs the various SGE registers. However, the engine is not yet enabled,
761 * but sge->sge_control is setup and ready to go.
762 */
configure_sge(struct sge * sge,struct sge_params * p)763 static void configure_sge(struct sge *sge, struct sge_params *p)
764 {
765 struct adapter *ap = sge->adapter;
766
767 writel(0, ap->regs + A_SG_CONTROL);
768 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
769 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
770 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
771 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
772 setup_ring_params(ap, sge->freelQ[0].dma_addr,
773 sge->freelQ[0].size, A_SG_FL0BASELWR,
774 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
775 setup_ring_params(ap, sge->freelQ[1].dma_addr,
776 sge->freelQ[1].size, A_SG_FL1BASELWR,
777 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
778
779 /* The threshold comparison uses <. */
780 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
781
782 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
783 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
784 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
785
786 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
787 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
788 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
789 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
790
791 #if defined(__BIG_ENDIAN_BITFIELD)
792 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
793 #endif
794
795 /* Initialize no-resource timer */
796 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
797
798 t1_sge_set_coalesce_params(sge, p);
799 }
800
801 /*
802 * Return the payload capacity of the jumbo free-list buffers.
803 */
jumbo_payload_capacity(const struct sge * sge)804 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
805 {
806 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
807 sge->freelQ[sge->jumbo_fl].dma_offset -
808 sizeof(struct cpl_rx_data);
809 }
810
811 /*
812 * Frees all SGE related resources and the sge structure itself
813 */
t1_sge_destroy(struct sge * sge)814 void t1_sge_destroy(struct sge *sge)
815 {
816 int i;
817
818 for_each_port(sge->adapter, i)
819 free_percpu(sge->port_stats[i]);
820
821 kfree(sge->tx_sched);
822 free_tx_resources(sge);
823 free_rx_resources(sge);
824 kfree(sge);
825 }
826
827 /*
828 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
829 * context Q) until the Q is full or alloc_skb fails.
830 *
831 * It is possible that the generation bits already match, indicating that the
832 * buffer is already valid and nothing needs to be done. This happens when we
833 * copied a received buffer into a new sk_buff during the interrupt processing.
834 *
835 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
836 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
837 * aligned.
838 */
refill_free_list(struct sge * sge,struct freelQ * q)839 static void refill_free_list(struct sge *sge, struct freelQ *q)
840 {
841 struct pci_dev *pdev = sge->adapter->pdev;
842 struct freelQ_ce *ce = &q->centries[q->pidx];
843 struct freelQ_e *e = &q->entries[q->pidx];
844 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
845
846 while (q->credits < q->size) {
847 struct sk_buff *skb;
848 dma_addr_t mapping;
849
850 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
851 if (!skb)
852 break;
853
854 skb_reserve(skb, q->dma_offset);
855 mapping = pci_map_single(pdev, skb->data, dma_len,
856 PCI_DMA_FROMDEVICE);
857 skb_reserve(skb, sge->rx_pkt_pad);
858
859 ce->skb = skb;
860 dma_unmap_addr_set(ce, dma_addr, mapping);
861 dma_unmap_len_set(ce, dma_len, dma_len);
862 e->addr_lo = (u32)mapping;
863 e->addr_hi = (u64)mapping >> 32;
864 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
865 wmb();
866 e->gen2 = V_CMD_GEN2(q->genbit);
867
868 e++;
869 ce++;
870 if (++q->pidx == q->size) {
871 q->pidx = 0;
872 q->genbit ^= 1;
873 ce = q->centries;
874 e = q->entries;
875 }
876 q->credits++;
877 }
878 }
879
880 /*
881 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
882 * of both rings, we go into 'few interrupt mode' in order to give the system
883 * time to free up resources.
884 */
freelQs_empty(struct sge * sge)885 static void freelQs_empty(struct sge *sge)
886 {
887 struct adapter *adapter = sge->adapter;
888 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
889 u32 irqholdoff_reg;
890
891 refill_free_list(sge, &sge->freelQ[0]);
892 refill_free_list(sge, &sge->freelQ[1]);
893
894 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
895 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
896 irq_reg |= F_FL_EXHAUSTED;
897 irqholdoff_reg = sge->fixed_intrtimer;
898 } else {
899 /* Clear the F_FL_EXHAUSTED interrupts for now */
900 irq_reg &= ~F_FL_EXHAUSTED;
901 irqholdoff_reg = sge->intrtimer_nres;
902 }
903 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
904 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
905
906 /* We reenable the Qs to force a freelist GTS interrupt later */
907 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
908 }
909
910 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
911 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
912 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
913 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
914
915 /*
916 * Disable SGE Interrupts
917 */
t1_sge_intr_disable(struct sge * sge)918 void t1_sge_intr_disable(struct sge *sge)
919 {
920 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
921
922 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
923 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
924 }
925
926 /*
927 * Enable SGE interrupts.
928 */
t1_sge_intr_enable(struct sge * sge)929 void t1_sge_intr_enable(struct sge *sge)
930 {
931 u32 en = SGE_INT_ENABLE;
932 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
933
934 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
935 en &= ~F_PACKET_TOO_BIG;
936 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
937 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
938 }
939
940 /*
941 * Clear SGE interrupts.
942 */
t1_sge_intr_clear(struct sge * sge)943 void t1_sge_intr_clear(struct sge *sge)
944 {
945 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
946 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
947 }
948
949 /*
950 * SGE 'Error' interrupt handler
951 */
t1_sge_intr_error_handler(struct sge * sge)952 int t1_sge_intr_error_handler(struct sge *sge)
953 {
954 struct adapter *adapter = sge->adapter;
955 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
956
957 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
958 cause &= ~F_PACKET_TOO_BIG;
959 if (cause & F_RESPQ_EXHAUSTED)
960 sge->stats.respQ_empty++;
961 if (cause & F_RESPQ_OVERFLOW) {
962 sge->stats.respQ_overflow++;
963 pr_alert("%s: SGE response queue overflow\n",
964 adapter->name);
965 }
966 if (cause & F_FL_EXHAUSTED) {
967 sge->stats.freelistQ_empty++;
968 freelQs_empty(sge);
969 }
970 if (cause & F_PACKET_TOO_BIG) {
971 sge->stats.pkt_too_big++;
972 pr_alert("%s: SGE max packet size exceeded\n",
973 adapter->name);
974 }
975 if (cause & F_PACKET_MISMATCH) {
976 sge->stats.pkt_mismatch++;
977 pr_alert("%s: SGE packet mismatch\n", adapter->name);
978 }
979 if (cause & SGE_INT_FATAL)
980 t1_fatal_err(adapter);
981
982 writel(cause, adapter->regs + A_SG_INT_CAUSE);
983 return 0;
984 }
985
t1_sge_get_intr_counts(const struct sge * sge)986 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
987 {
988 return &sge->stats;
989 }
990
t1_sge_get_port_stats(const struct sge * sge,int port,struct sge_port_stats * ss)991 void t1_sge_get_port_stats(const struct sge *sge, int port,
992 struct sge_port_stats *ss)
993 {
994 int cpu;
995
996 memset(ss, 0, sizeof(*ss));
997 for_each_possible_cpu(cpu) {
998 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
999
1000 ss->rx_cso_good += st->rx_cso_good;
1001 ss->tx_cso += st->tx_cso;
1002 ss->tx_tso += st->tx_tso;
1003 ss->tx_need_hdrroom += st->tx_need_hdrroom;
1004 ss->vlan_xtract += st->vlan_xtract;
1005 ss->vlan_insert += st->vlan_insert;
1006 }
1007 }
1008
1009 /**
1010 * recycle_fl_buf - recycle a free list buffer
1011 * @fl: the free list
1012 * @idx: index of buffer to recycle
1013 *
1014 * Recycles the specified buffer on the given free list by adding it at
1015 * the next available slot on the list.
1016 */
recycle_fl_buf(struct freelQ * fl,int idx)1017 static void recycle_fl_buf(struct freelQ *fl, int idx)
1018 {
1019 struct freelQ_e *from = &fl->entries[idx];
1020 struct freelQ_e *to = &fl->entries[fl->pidx];
1021
1022 fl->centries[fl->pidx] = fl->centries[idx];
1023 to->addr_lo = from->addr_lo;
1024 to->addr_hi = from->addr_hi;
1025 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1026 wmb();
1027 to->gen2 = V_CMD_GEN2(fl->genbit);
1028 fl->credits++;
1029
1030 if (++fl->pidx == fl->size) {
1031 fl->pidx = 0;
1032 fl->genbit ^= 1;
1033 }
1034 }
1035
1036 static int copybreak __read_mostly = 256;
1037 module_param(copybreak, int, 0);
1038 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1039
1040 /**
1041 * get_packet - return the next ingress packet buffer
1042 * @pdev: the PCI device that received the packet
1043 * @fl: the SGE free list holding the packet
1044 * @len: the actual packet length, excluding any SGE padding
1045 *
1046 * Get the next packet from a free list and complete setup of the
1047 * sk_buff. If the packet is small we make a copy and recycle the
1048 * original buffer, otherwise we use the original buffer itself. If a
1049 * positive drop threshold is supplied packets are dropped and their
1050 * buffers recycled if (a) the number of remaining buffers is under the
1051 * threshold and the packet is too big to copy, or (b) the packet should
1052 * be copied but there is no memory for the copy.
1053 */
get_packet(struct pci_dev * pdev,struct freelQ * fl,unsigned int len)1054 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1055 struct freelQ *fl, unsigned int len)
1056 {
1057 struct sk_buff *skb;
1058 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1059
1060 if (len < copybreak) {
1061 skb = alloc_skb(len + 2, GFP_ATOMIC);
1062 if (!skb)
1063 goto use_orig_buf;
1064
1065 skb_reserve(skb, 2); /* align IP header */
1066 skb_put(skb, len);
1067 pci_dma_sync_single_for_cpu(pdev,
1068 dma_unmap_addr(ce, dma_addr),
1069 dma_unmap_len(ce, dma_len),
1070 PCI_DMA_FROMDEVICE);
1071 skb_copy_from_linear_data(ce->skb, skb->data, len);
1072 pci_dma_sync_single_for_device(pdev,
1073 dma_unmap_addr(ce, dma_addr),
1074 dma_unmap_len(ce, dma_len),
1075 PCI_DMA_FROMDEVICE);
1076 recycle_fl_buf(fl, fl->cidx);
1077 return skb;
1078 }
1079
1080 use_orig_buf:
1081 if (fl->credits < 2) {
1082 recycle_fl_buf(fl, fl->cidx);
1083 return NULL;
1084 }
1085
1086 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1087 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1088 skb = ce->skb;
1089 prefetch(skb->data);
1090
1091 skb_put(skb, len);
1092 return skb;
1093 }
1094
1095 /**
1096 * unexpected_offload - handle an unexpected offload packet
1097 * @adapter: the adapter
1098 * @fl: the free list that received the packet
1099 *
1100 * Called when we receive an unexpected offload packet (e.g., the TOE
1101 * function is disabled or the card is a NIC). Prints a message and
1102 * recycles the buffer.
1103 */
unexpected_offload(struct adapter * adapter,struct freelQ * fl)1104 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1105 {
1106 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1107 struct sk_buff *skb = ce->skb;
1108
1109 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1110 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1111 pr_err("%s: unexpected offload packet, cmd %u\n",
1112 adapter->name, *skb->data);
1113 recycle_fl_buf(fl, fl->cidx);
1114 }
1115
1116 /*
1117 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1118 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1119 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1120 * Note that the *_large_page_tx_descs stuff will be optimized out when
1121 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1122 *
1123 * compute_large_page_descs() computes how many additional descriptors are
1124 * required to break down the stack's request.
1125 */
compute_large_page_tx_descs(struct sk_buff * skb)1126 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1127 {
1128 unsigned int count = 0;
1129
1130 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1131 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1132 unsigned int i, len = skb_headlen(skb);
1133 while (len > SGE_TX_DESC_MAX_PLEN) {
1134 count++;
1135 len -= SGE_TX_DESC_MAX_PLEN;
1136 }
1137 for (i = 0; nfrags--; i++) {
1138 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1139 len = skb_frag_size(frag);
1140 while (len > SGE_TX_DESC_MAX_PLEN) {
1141 count++;
1142 len -= SGE_TX_DESC_MAX_PLEN;
1143 }
1144 }
1145 }
1146 return count;
1147 }
1148
1149 /*
1150 * Write a cmdQ entry.
1151 *
1152 * Since this function writes the 'flags' field, it must not be used to
1153 * write the first cmdQ entry.
1154 */
write_tx_desc(struct cmdQ_e * e,dma_addr_t mapping,unsigned int len,unsigned int gen,unsigned int eop)1155 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1156 unsigned int len, unsigned int gen,
1157 unsigned int eop)
1158 {
1159 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1160
1161 e->addr_lo = (u32)mapping;
1162 e->addr_hi = (u64)mapping >> 32;
1163 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1164 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1165 }
1166
1167 /*
1168 * See comment for previous function.
1169 *
1170 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1171 * *desc_len exceeds HW's capability.
1172 */
write_large_page_tx_descs(unsigned int pidx,struct cmdQ_e ** e,struct cmdQ_ce ** ce,unsigned int * gen,dma_addr_t * desc_mapping,unsigned int * desc_len,unsigned int nfrags,struct cmdQ * q)1173 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1174 struct cmdQ_e **e,
1175 struct cmdQ_ce **ce,
1176 unsigned int *gen,
1177 dma_addr_t *desc_mapping,
1178 unsigned int *desc_len,
1179 unsigned int nfrags,
1180 struct cmdQ *q)
1181 {
1182 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1183 struct cmdQ_e *e1 = *e;
1184 struct cmdQ_ce *ce1 = *ce;
1185
1186 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1187 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1188 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1189 *gen, nfrags == 0 && *desc_len == 0);
1190 ce1->skb = NULL;
1191 dma_unmap_len_set(ce1, dma_len, 0);
1192 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1193 if (*desc_len) {
1194 ce1++;
1195 e1++;
1196 if (++pidx == q->size) {
1197 pidx = 0;
1198 *gen ^= 1;
1199 ce1 = q->centries;
1200 e1 = q->entries;
1201 }
1202 }
1203 }
1204 *e = e1;
1205 *ce = ce1;
1206 }
1207 return pidx;
1208 }
1209
1210 /*
1211 * Write the command descriptors to transmit the given skb starting at
1212 * descriptor pidx with the given generation.
1213 */
write_tx_descs(struct adapter * adapter,struct sk_buff * skb,unsigned int pidx,unsigned int gen,struct cmdQ * q)1214 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1215 unsigned int pidx, unsigned int gen,
1216 struct cmdQ *q)
1217 {
1218 dma_addr_t mapping, desc_mapping;
1219 struct cmdQ_e *e, *e1;
1220 struct cmdQ_ce *ce;
1221 unsigned int i, flags, first_desc_len, desc_len,
1222 nfrags = skb_shinfo(skb)->nr_frags;
1223
1224 e = e1 = &q->entries[pidx];
1225 ce = &q->centries[pidx];
1226
1227 mapping = pci_map_single(adapter->pdev, skb->data,
1228 skb_headlen(skb), PCI_DMA_TODEVICE);
1229
1230 desc_mapping = mapping;
1231 desc_len = skb_headlen(skb);
1232
1233 flags = F_CMD_DATAVALID | F_CMD_SOP |
1234 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1235 V_CMD_GEN2(gen);
1236 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1237 desc_len : SGE_TX_DESC_MAX_PLEN;
1238 e->addr_lo = (u32)desc_mapping;
1239 e->addr_hi = (u64)desc_mapping >> 32;
1240 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1241 ce->skb = NULL;
1242 dma_unmap_len_set(ce, dma_len, 0);
1243
1244 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1245 desc_len > SGE_TX_DESC_MAX_PLEN) {
1246 desc_mapping += first_desc_len;
1247 desc_len -= first_desc_len;
1248 e1++;
1249 ce++;
1250 if (++pidx == q->size) {
1251 pidx = 0;
1252 gen ^= 1;
1253 e1 = q->entries;
1254 ce = q->centries;
1255 }
1256 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1257 &desc_mapping, &desc_len,
1258 nfrags, q);
1259
1260 if (likely(desc_len))
1261 write_tx_desc(e1, desc_mapping, desc_len, gen,
1262 nfrags == 0);
1263 }
1264
1265 ce->skb = NULL;
1266 dma_unmap_addr_set(ce, dma_addr, mapping);
1267 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1268
1269 for (i = 0; nfrags--; i++) {
1270 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1271 e1++;
1272 ce++;
1273 if (++pidx == q->size) {
1274 pidx = 0;
1275 gen ^= 1;
1276 e1 = q->entries;
1277 ce = q->centries;
1278 }
1279
1280 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1281 skb_frag_size(frag), DMA_TO_DEVICE);
1282 desc_mapping = mapping;
1283 desc_len = skb_frag_size(frag);
1284
1285 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1286 &desc_mapping, &desc_len,
1287 nfrags, q);
1288 if (likely(desc_len))
1289 write_tx_desc(e1, desc_mapping, desc_len, gen,
1290 nfrags == 0);
1291 ce->skb = NULL;
1292 dma_unmap_addr_set(ce, dma_addr, mapping);
1293 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1294 }
1295 ce->skb = skb;
1296 wmb();
1297 e->flags = flags;
1298 }
1299
1300 /*
1301 * Clean up completed Tx buffers.
1302 */
reclaim_completed_tx(struct sge * sge,struct cmdQ * q)1303 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1304 {
1305 unsigned int reclaim = q->processed - q->cleaned;
1306
1307 if (reclaim) {
1308 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1309 q->processed, q->cleaned);
1310 free_cmdQ_buffers(sge, q, reclaim);
1311 q->cleaned += reclaim;
1312 }
1313 }
1314
1315 /*
1316 * Called from tasklet. Checks the scheduler for any
1317 * pending skbs that can be sent.
1318 */
restart_sched(unsigned long arg)1319 static void restart_sched(unsigned long arg)
1320 {
1321 struct sge *sge = (struct sge *) arg;
1322 struct adapter *adapter = sge->adapter;
1323 struct cmdQ *q = &sge->cmdQ[0];
1324 struct sk_buff *skb;
1325 unsigned int credits, queued_skb = 0;
1326
1327 spin_lock(&q->lock);
1328 reclaim_completed_tx(sge, q);
1329
1330 credits = q->size - q->in_use;
1331 pr_debug("restart_sched credits=%d\n", credits);
1332 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1333 unsigned int genbit, pidx, count;
1334 count = 1 + skb_shinfo(skb)->nr_frags;
1335 count += compute_large_page_tx_descs(skb);
1336 q->in_use += count;
1337 genbit = q->genbit;
1338 pidx = q->pidx;
1339 q->pidx += count;
1340 if (q->pidx >= q->size) {
1341 q->pidx -= q->size;
1342 q->genbit ^= 1;
1343 }
1344 write_tx_descs(adapter, skb, pidx, genbit, q);
1345 credits = q->size - q->in_use;
1346 queued_skb = 1;
1347 }
1348
1349 if (queued_skb) {
1350 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1351 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1352 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1353 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1354 }
1355 }
1356 spin_unlock(&q->lock);
1357 }
1358
1359 /**
1360 * sge_rx - process an ingress ethernet packet
1361 * @sge: the sge structure
1362 * @fl: the free list that contains the packet buffer
1363 * @len: the packet length
1364 *
1365 * Process an ingress ethernet pakcet and deliver it to the stack.
1366 */
sge_rx(struct sge * sge,struct freelQ * fl,unsigned int len)1367 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1368 {
1369 struct sk_buff *skb;
1370 const struct cpl_rx_pkt *p;
1371 struct adapter *adapter = sge->adapter;
1372 struct sge_port_stats *st;
1373 struct net_device *dev;
1374
1375 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1376 if (unlikely(!skb)) {
1377 sge->stats.rx_drops++;
1378 return;
1379 }
1380
1381 p = (const struct cpl_rx_pkt *) skb->data;
1382 if (p->iff >= adapter->params.nports) {
1383 kfree_skb(skb);
1384 return;
1385 }
1386 __skb_pull(skb, sizeof(*p));
1387
1388 st = this_cpu_ptr(sge->port_stats[p->iff]);
1389 dev = adapter->port[p->iff].dev;
1390
1391 skb->protocol = eth_type_trans(skb, dev);
1392 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1393 skb->protocol == htons(ETH_P_IP) &&
1394 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1395 ++st->rx_cso_good;
1396 skb->ip_summed = CHECKSUM_UNNECESSARY;
1397 } else
1398 skb_checksum_none_assert(skb);
1399
1400 if (p->vlan_valid) {
1401 st->vlan_xtract++;
1402 __vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
1403 }
1404 netif_receive_skb(skb);
1405 }
1406
1407 /*
1408 * Returns true if a command queue has enough available descriptors that
1409 * we can resume Tx operation after temporarily disabling its packet queue.
1410 */
enough_free_Tx_descs(const struct cmdQ * q)1411 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1412 {
1413 unsigned int r = q->processed - q->cleaned;
1414
1415 return q->in_use - r < (q->size >> 1);
1416 }
1417
1418 /*
1419 * Called when sufficient space has become available in the SGE command queues
1420 * after the Tx packet schedulers have been suspended to restart the Tx path.
1421 */
restart_tx_queues(struct sge * sge)1422 static void restart_tx_queues(struct sge *sge)
1423 {
1424 struct adapter *adap = sge->adapter;
1425 int i;
1426
1427 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1428 return;
1429
1430 for_each_port(adap, i) {
1431 struct net_device *nd = adap->port[i].dev;
1432
1433 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1434 netif_running(nd)) {
1435 sge->stats.cmdQ_restarted[2]++;
1436 netif_wake_queue(nd);
1437 }
1438 }
1439 }
1440
1441 /*
1442 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1443 * information.
1444 */
update_tx_info(struct adapter * adapter,unsigned int flags,unsigned int pr0)1445 static unsigned int update_tx_info(struct adapter *adapter,
1446 unsigned int flags,
1447 unsigned int pr0)
1448 {
1449 struct sge *sge = adapter->sge;
1450 struct cmdQ *cmdq = &sge->cmdQ[0];
1451
1452 cmdq->processed += pr0;
1453 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1454 freelQs_empty(sge);
1455 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1456 }
1457 if (flags & F_CMDQ0_ENABLE) {
1458 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1459
1460 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1461 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1462 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1463 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1464 }
1465 if (sge->tx_sched)
1466 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1467
1468 flags &= ~F_CMDQ0_ENABLE;
1469 }
1470
1471 if (unlikely(sge->stopped_tx_queues != 0))
1472 restart_tx_queues(sge);
1473
1474 return flags;
1475 }
1476
1477 /*
1478 * Process SGE responses, up to the supplied budget. Returns the number of
1479 * responses processed. A negative budget is effectively unlimited.
1480 */
process_responses(struct adapter * adapter,int budget)1481 static int process_responses(struct adapter *adapter, int budget)
1482 {
1483 struct sge *sge = adapter->sge;
1484 struct respQ *q = &sge->respQ;
1485 struct respQ_e *e = &q->entries[q->cidx];
1486 int done = 0;
1487 unsigned int flags = 0;
1488 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1489
1490 while (done < budget && e->GenerationBit == q->genbit) {
1491 flags |= e->Qsleeping;
1492
1493 cmdq_processed[0] += e->Cmdq0CreditReturn;
1494 cmdq_processed[1] += e->Cmdq1CreditReturn;
1495
1496 /* We batch updates to the TX side to avoid cacheline
1497 * ping-pong of TX state information on MP where the sender
1498 * might run on a different CPU than this function...
1499 */
1500 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1501 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1502 cmdq_processed[0] = 0;
1503 }
1504
1505 if (unlikely(cmdq_processed[1] > 16)) {
1506 sge->cmdQ[1].processed += cmdq_processed[1];
1507 cmdq_processed[1] = 0;
1508 }
1509
1510 if (likely(e->DataValid)) {
1511 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1512
1513 BUG_ON(!e->Sop || !e->Eop);
1514 if (unlikely(e->Offload))
1515 unexpected_offload(adapter, fl);
1516 else
1517 sge_rx(sge, fl, e->BufferLength);
1518
1519 ++done;
1520
1521 /*
1522 * Note: this depends on each packet consuming a
1523 * single free-list buffer; cf. the BUG above.
1524 */
1525 if (++fl->cidx == fl->size)
1526 fl->cidx = 0;
1527 prefetch(fl->centries[fl->cidx].skb);
1528
1529 if (unlikely(--fl->credits <
1530 fl->size - SGE_FREEL_REFILL_THRESH))
1531 refill_free_list(sge, fl);
1532 } else
1533 sge->stats.pure_rsps++;
1534
1535 e++;
1536 if (unlikely(++q->cidx == q->size)) {
1537 q->cidx = 0;
1538 q->genbit ^= 1;
1539 e = q->entries;
1540 }
1541 prefetch(e);
1542
1543 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1544 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1545 q->credits = 0;
1546 }
1547 }
1548
1549 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1550 sge->cmdQ[1].processed += cmdq_processed[1];
1551
1552 return done;
1553 }
1554
responses_pending(const struct adapter * adapter)1555 static inline int responses_pending(const struct adapter *adapter)
1556 {
1557 const struct respQ *Q = &adapter->sge->respQ;
1558 const struct respQ_e *e = &Q->entries[Q->cidx];
1559
1560 return e->GenerationBit == Q->genbit;
1561 }
1562
1563 /*
1564 * A simpler version of process_responses() that handles only pure (i.e.,
1565 * non data-carrying) responses. Such respones are too light-weight to justify
1566 * calling a softirq when using NAPI, so we handle them specially in hard
1567 * interrupt context. The function is called with a pointer to a response,
1568 * which the caller must ensure is a valid pure response. Returns 1 if it
1569 * encounters a valid data-carrying response, 0 otherwise.
1570 */
process_pure_responses(struct adapter * adapter)1571 static int process_pure_responses(struct adapter *adapter)
1572 {
1573 struct sge *sge = adapter->sge;
1574 struct respQ *q = &sge->respQ;
1575 struct respQ_e *e = &q->entries[q->cidx];
1576 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1577 unsigned int flags = 0;
1578 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1579
1580 prefetch(fl->centries[fl->cidx].skb);
1581 if (e->DataValid)
1582 return 1;
1583
1584 do {
1585 flags |= e->Qsleeping;
1586
1587 cmdq_processed[0] += e->Cmdq0CreditReturn;
1588 cmdq_processed[1] += e->Cmdq1CreditReturn;
1589
1590 e++;
1591 if (unlikely(++q->cidx == q->size)) {
1592 q->cidx = 0;
1593 q->genbit ^= 1;
1594 e = q->entries;
1595 }
1596 prefetch(e);
1597
1598 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1599 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1600 q->credits = 0;
1601 }
1602 sge->stats.pure_rsps++;
1603 } while (e->GenerationBit == q->genbit && !e->DataValid);
1604
1605 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1606 sge->cmdQ[1].processed += cmdq_processed[1];
1607
1608 return e->GenerationBit == q->genbit;
1609 }
1610
1611 /*
1612 * Handler for new data events when using NAPI. This does not need any locking
1613 * or protection from interrupts as data interrupts are off at this point and
1614 * other adapter interrupts do not interfere.
1615 */
t1_poll(struct napi_struct * napi,int budget)1616 int t1_poll(struct napi_struct *napi, int budget)
1617 {
1618 struct adapter *adapter = container_of(napi, struct adapter, napi);
1619 int work_done = process_responses(adapter, budget);
1620
1621 if (likely(work_done < budget)) {
1622 napi_complete(napi);
1623 writel(adapter->sge->respQ.cidx,
1624 adapter->regs + A_SG_SLEEPING);
1625 }
1626 return work_done;
1627 }
1628
t1_interrupt(int irq,void * data)1629 irqreturn_t t1_interrupt(int irq, void *data)
1630 {
1631 struct adapter *adapter = data;
1632 struct sge *sge = adapter->sge;
1633 int handled;
1634
1635 if (likely(responses_pending(adapter))) {
1636 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1637
1638 if (napi_schedule_prep(&adapter->napi)) {
1639 if (process_pure_responses(adapter))
1640 __napi_schedule(&adapter->napi);
1641 else {
1642 /* no data, no NAPI needed */
1643 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1644 /* undo schedule_prep */
1645 napi_enable(&adapter->napi);
1646 }
1647 }
1648 return IRQ_HANDLED;
1649 }
1650
1651 spin_lock(&adapter->async_lock);
1652 handled = t1_slow_intr_handler(adapter);
1653 spin_unlock(&adapter->async_lock);
1654
1655 if (!handled)
1656 sge->stats.unhandled_irqs++;
1657
1658 return IRQ_RETVAL(handled != 0);
1659 }
1660
1661 /*
1662 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1663 *
1664 * The code figures out how many entries the sk_buff will require in the
1665 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1666 * has complete. Then, it doesn't access the global structure anymore, but
1667 * uses the corresponding fields on the stack. In conjunction with a spinlock
1668 * around that code, we can make the function reentrant without holding the
1669 * lock when we actually enqueue (which might be expensive, especially on
1670 * architectures with IO MMUs).
1671 *
1672 * This runs with softirqs disabled.
1673 */
t1_sge_tx(struct sk_buff * skb,struct adapter * adapter,unsigned int qid,struct net_device * dev)1674 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1675 unsigned int qid, struct net_device *dev)
1676 {
1677 struct sge *sge = adapter->sge;
1678 struct cmdQ *q = &sge->cmdQ[qid];
1679 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1680
1681 if (!spin_trylock(&q->lock))
1682 return NETDEV_TX_LOCKED;
1683
1684 reclaim_completed_tx(sge, q);
1685
1686 pidx = q->pidx;
1687 credits = q->size - q->in_use;
1688 count = 1 + skb_shinfo(skb)->nr_frags;
1689 count += compute_large_page_tx_descs(skb);
1690
1691 /* Ethernet packet */
1692 if (unlikely(credits < count)) {
1693 if (!netif_queue_stopped(dev)) {
1694 netif_stop_queue(dev);
1695 set_bit(dev->if_port, &sge->stopped_tx_queues);
1696 sge->stats.cmdQ_full[2]++;
1697 pr_err("%s: Tx ring full while queue awake!\n",
1698 adapter->name);
1699 }
1700 spin_unlock(&q->lock);
1701 return NETDEV_TX_BUSY;
1702 }
1703
1704 if (unlikely(credits - count < q->stop_thres)) {
1705 netif_stop_queue(dev);
1706 set_bit(dev->if_port, &sge->stopped_tx_queues);
1707 sge->stats.cmdQ_full[2]++;
1708 }
1709
1710 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1711 * through the scheduler.
1712 */
1713 if (sge->tx_sched && !qid && skb->dev) {
1714 use_sched:
1715 use_sched_skb = 1;
1716 /* Note that the scheduler might return a different skb than
1717 * the one passed in.
1718 */
1719 skb = sched_skb(sge, skb, credits);
1720 if (!skb) {
1721 spin_unlock(&q->lock);
1722 return NETDEV_TX_OK;
1723 }
1724 pidx = q->pidx;
1725 count = 1 + skb_shinfo(skb)->nr_frags;
1726 count += compute_large_page_tx_descs(skb);
1727 }
1728
1729 q->in_use += count;
1730 genbit = q->genbit;
1731 pidx = q->pidx;
1732 q->pidx += count;
1733 if (q->pidx >= q->size) {
1734 q->pidx -= q->size;
1735 q->genbit ^= 1;
1736 }
1737 spin_unlock(&q->lock);
1738
1739 write_tx_descs(adapter, skb, pidx, genbit, q);
1740
1741 /*
1742 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1743 * the doorbell if the Q is asleep. There is a natural race, where
1744 * the hardware is going to sleep just after we checked, however,
1745 * then the interrupt handler will detect the outstanding TX packet
1746 * and ring the doorbell for us.
1747 */
1748 if (qid)
1749 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1750 else {
1751 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1752 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1753 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1754 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1755 }
1756 }
1757
1758 if (use_sched_skb) {
1759 if (spin_trylock(&q->lock)) {
1760 credits = q->size - q->in_use;
1761 skb = NULL;
1762 goto use_sched;
1763 }
1764 }
1765 return NETDEV_TX_OK;
1766 }
1767
1768 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1769
1770 /*
1771 * eth_hdr_len - return the length of an Ethernet header
1772 * @data: pointer to the start of the Ethernet header
1773 *
1774 * Returns the length of an Ethernet header, including optional VLAN tag.
1775 */
eth_hdr_len(const void * data)1776 static inline int eth_hdr_len(const void *data)
1777 {
1778 const struct ethhdr *e = data;
1779
1780 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1781 }
1782
1783 /*
1784 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1785 */
t1_start_xmit(struct sk_buff * skb,struct net_device * dev)1786 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1787 {
1788 struct adapter *adapter = dev->ml_priv;
1789 struct sge *sge = adapter->sge;
1790 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1791 struct cpl_tx_pkt *cpl;
1792 struct sk_buff *orig_skb = skb;
1793 int ret;
1794
1795 if (skb->protocol == htons(ETH_P_CPL5))
1796 goto send;
1797
1798 /*
1799 * We are using a non-standard hard_header_len.
1800 * Allocate more header room in the rare cases it is not big enough.
1801 */
1802 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1803 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1804 ++st->tx_need_hdrroom;
1805 dev_kfree_skb_any(orig_skb);
1806 if (!skb)
1807 return NETDEV_TX_OK;
1808 }
1809
1810 if (skb_shinfo(skb)->gso_size) {
1811 int eth_type;
1812 struct cpl_tx_pkt_lso *hdr;
1813
1814 ++st->tx_tso;
1815
1816 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1817 CPL_ETH_II : CPL_ETH_II_VLAN;
1818
1819 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1820 hdr->opcode = CPL_TX_PKT_LSO;
1821 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1822 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1823 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1824 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1825 skb_shinfo(skb)->gso_size));
1826 hdr->len = htonl(skb->len - sizeof(*hdr));
1827 cpl = (struct cpl_tx_pkt *)hdr;
1828 } else {
1829 /*
1830 * Packets shorter than ETH_HLEN can break the MAC, drop them
1831 * early. Also, we may get oversized packets because some
1832 * parts of the kernel don't handle our unusual hard_header_len
1833 * right, drop those too.
1834 */
1835 if (unlikely(skb->len < ETH_HLEN ||
1836 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1837 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1838 skb->len, eth_hdr_len(skb->data), dev->mtu);
1839 dev_kfree_skb_any(skb);
1840 return NETDEV_TX_OK;
1841 }
1842
1843 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1844 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1845 if (unlikely(skb_checksum_help(skb))) {
1846 pr_debug("%s: unable to do udp checksum\n", dev->name);
1847 dev_kfree_skb_any(skb);
1848 return NETDEV_TX_OK;
1849 }
1850 }
1851
1852 /* Hmmm, assuming to catch the gratious arp... and we'll use
1853 * it to flush out stuck espi packets...
1854 */
1855 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1856 if (skb->protocol == htons(ETH_P_ARP) &&
1857 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1858 adapter->sge->espibug_skb[dev->if_port] = skb;
1859 /* We want to re-use this skb later. We
1860 * simply bump the reference count and it
1861 * will not be freed...
1862 */
1863 skb = skb_get(skb);
1864 }
1865 }
1866
1867 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1868 cpl->opcode = CPL_TX_PKT;
1869 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1870 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1871 /* the length field isn't used so don't bother setting it */
1872
1873 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1874 }
1875 cpl->iff = dev->if_port;
1876
1877 if (vlan_tx_tag_present(skb)) {
1878 cpl->vlan_valid = 1;
1879 cpl->vlan = htons(vlan_tx_tag_get(skb));
1880 st->vlan_insert++;
1881 } else
1882 cpl->vlan_valid = 0;
1883
1884 send:
1885 ret = t1_sge_tx(skb, adapter, 0, dev);
1886
1887 /* If transmit busy, and we reallocated skb's due to headroom limit,
1888 * then silently discard to avoid leak.
1889 */
1890 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1891 dev_kfree_skb_any(skb);
1892 ret = NETDEV_TX_OK;
1893 }
1894 return ret;
1895 }
1896
1897 /*
1898 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1899 */
sge_tx_reclaim_cb(unsigned long data)1900 static void sge_tx_reclaim_cb(unsigned long data)
1901 {
1902 int i;
1903 struct sge *sge = (struct sge *)data;
1904
1905 for (i = 0; i < SGE_CMDQ_N; ++i) {
1906 struct cmdQ *q = &sge->cmdQ[i];
1907
1908 if (!spin_trylock(&q->lock))
1909 continue;
1910
1911 reclaim_completed_tx(sge, q);
1912 if (i == 0 && q->in_use) { /* flush pending credits */
1913 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1914 }
1915 spin_unlock(&q->lock);
1916 }
1917 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1918 }
1919
1920 /*
1921 * Propagate changes of the SGE coalescing parameters to the HW.
1922 */
t1_sge_set_coalesce_params(struct sge * sge,struct sge_params * p)1923 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1924 {
1925 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1926 core_ticks_per_usec(sge->adapter);
1927 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1928 return 0;
1929 }
1930
1931 /*
1932 * Allocates both RX and TX resources and configures the SGE. However,
1933 * the hardware is not enabled yet.
1934 */
t1_sge_configure(struct sge * sge,struct sge_params * p)1935 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1936 {
1937 if (alloc_rx_resources(sge, p))
1938 return -ENOMEM;
1939 if (alloc_tx_resources(sge, p)) {
1940 free_rx_resources(sge);
1941 return -ENOMEM;
1942 }
1943 configure_sge(sge, p);
1944
1945 /*
1946 * Now that we have sized the free lists calculate the payload
1947 * capacity of the large buffers. Other parts of the driver use
1948 * this to set the max offload coalescing size so that RX packets
1949 * do not overflow our large buffers.
1950 */
1951 p->large_buf_capacity = jumbo_payload_capacity(sge);
1952 return 0;
1953 }
1954
1955 /*
1956 * Disables the DMA engine.
1957 */
t1_sge_stop(struct sge * sge)1958 void t1_sge_stop(struct sge *sge)
1959 {
1960 int i;
1961 writel(0, sge->adapter->regs + A_SG_CONTROL);
1962 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1963
1964 if (is_T2(sge->adapter))
1965 del_timer_sync(&sge->espibug_timer);
1966
1967 del_timer_sync(&sge->tx_reclaim_timer);
1968 if (sge->tx_sched)
1969 tx_sched_stop(sge);
1970
1971 for (i = 0; i < MAX_NPORTS; i++)
1972 kfree_skb(sge->espibug_skb[i]);
1973 }
1974
1975 /*
1976 * Enables the DMA engine.
1977 */
t1_sge_start(struct sge * sge)1978 void t1_sge_start(struct sge *sge)
1979 {
1980 refill_free_list(sge, &sge->freelQ[0]);
1981 refill_free_list(sge, &sge->freelQ[1]);
1982
1983 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1984 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1985 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1986
1987 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1988
1989 if (is_T2(sge->adapter))
1990 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1991 }
1992
1993 /*
1994 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1995 */
espibug_workaround_t204(unsigned long data)1996 static void espibug_workaround_t204(unsigned long data)
1997 {
1998 struct adapter *adapter = (struct adapter *)data;
1999 struct sge *sge = adapter->sge;
2000 unsigned int nports = adapter->params.nports;
2001 u32 seop[MAX_NPORTS];
2002
2003 if (adapter->open_device_map & PORT_MASK) {
2004 int i;
2005
2006 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2007 return;
2008
2009 for (i = 0; i < nports; i++) {
2010 struct sk_buff *skb = sge->espibug_skb[i];
2011
2012 if (!netif_running(adapter->port[i].dev) ||
2013 netif_queue_stopped(adapter->port[i].dev) ||
2014 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2015 continue;
2016
2017 if (!skb->cb[0]) {
2018 skb_copy_to_linear_data_offset(skb,
2019 sizeof(struct cpl_tx_pkt),
2020 ch_mac_addr,
2021 ETH_ALEN);
2022 skb_copy_to_linear_data_offset(skb,
2023 skb->len - 10,
2024 ch_mac_addr,
2025 ETH_ALEN);
2026 skb->cb[0] = 0xff;
2027 }
2028
2029 /* bump the reference count to avoid freeing of
2030 * the skb once the DMA has completed.
2031 */
2032 skb = skb_get(skb);
2033 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2034 }
2035 }
2036 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2037 }
2038
espibug_workaround(unsigned long data)2039 static void espibug_workaround(unsigned long data)
2040 {
2041 struct adapter *adapter = (struct adapter *)data;
2042 struct sge *sge = adapter->sge;
2043
2044 if (netif_running(adapter->port[0].dev)) {
2045 struct sk_buff *skb = sge->espibug_skb[0];
2046 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2047
2048 if ((seop & 0xfff0fff) == 0xfff && skb) {
2049 if (!skb->cb[0]) {
2050 skb_copy_to_linear_data_offset(skb,
2051 sizeof(struct cpl_tx_pkt),
2052 ch_mac_addr,
2053 ETH_ALEN);
2054 skb_copy_to_linear_data_offset(skb,
2055 skb->len - 10,
2056 ch_mac_addr,
2057 ETH_ALEN);
2058 skb->cb[0] = 0xff;
2059 }
2060
2061 /* bump the reference count to avoid freeing of the
2062 * skb once the DMA has completed.
2063 */
2064 skb = skb_get(skb);
2065 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2066 }
2067 }
2068 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2069 }
2070
2071 /*
2072 * Creates a t1_sge structure and returns suggested resource parameters.
2073 */
t1_sge_create(struct adapter * adapter,struct sge_params * p)2074 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2075 struct sge_params *p)
2076 {
2077 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2078 int i;
2079
2080 if (!sge)
2081 return NULL;
2082
2083 sge->adapter = adapter;
2084 sge->netdev = adapter->port[0].dev;
2085 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2086 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2087
2088 for_each_port(adapter, i) {
2089 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2090 if (!sge->port_stats[i])
2091 goto nomem_port;
2092 }
2093
2094 init_timer(&sge->tx_reclaim_timer);
2095 sge->tx_reclaim_timer.data = (unsigned long)sge;
2096 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2097
2098 if (is_T2(sge->adapter)) {
2099 init_timer(&sge->espibug_timer);
2100
2101 if (adapter->params.nports > 1) {
2102 tx_sched_init(sge);
2103 sge->espibug_timer.function = espibug_workaround_t204;
2104 } else
2105 sge->espibug_timer.function = espibug_workaround;
2106 sge->espibug_timer.data = (unsigned long)sge->adapter;
2107
2108 sge->espibug_timeout = 1;
2109 /* for T204, every 10ms */
2110 if (adapter->params.nports > 1)
2111 sge->espibug_timeout = HZ/100;
2112 }
2113
2114
2115 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2116 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2117 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2118 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2119 if (sge->tx_sched) {
2120 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2121 p->rx_coalesce_usecs = 15;
2122 else
2123 p->rx_coalesce_usecs = 50;
2124 } else
2125 p->rx_coalesce_usecs = 50;
2126
2127 p->coalesce_enable = 0;
2128 p->sample_interval_usecs = 0;
2129
2130 return sge;
2131 nomem_port:
2132 while (i >= 0) {
2133 free_percpu(sge->port_stats[i]);
2134 --i;
2135 }
2136 kfree(sge);
2137 return NULL;
2138
2139 }
2140