1 /*****************************************************************************
2 * *
3 * File: subr.c *
4 * $Revision: 1.27 $ *
5 * $Date: 2005/06/22 01:08:36 $ *
6 * Description: *
7 * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40 #include "common.h"
41 #include "elmer0.h"
42 #include "regs.h"
43 #include "gmac.h"
44 #include "cphy.h"
45 #include "sge.h"
46 #include "tp.h"
47 #include "espi.h"
48
49 /**
50 * t1_wait_op_done - wait until an operation is completed
51 * @adapter: the adapter performing the operation
52 * @reg: the register to check for completion
53 * @mask: a single-bit field within @reg that indicates completion
54 * @polarity: the value of the field when the operation is completed
55 * @attempts: number of check iterations
56 * @delay: delay in usecs between iterations
57 *
58 * Wait until an operation is completed by checking a bit in a register
59 * up to @attempts times. Returns %0 if the operation completes and %1
60 * otherwise.
61 */
t1_wait_op_done(adapter_t * adapter,int reg,u32 mask,int polarity,int attempts,int delay)62 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
63 int attempts, int delay)
64 {
65 while (1) {
66 u32 val = readl(adapter->regs + reg) & mask;
67
68 if (!!val == polarity)
69 return 0;
70 if (--attempts == 0)
71 return 1;
72 if (delay)
73 udelay(delay);
74 }
75 }
76
77 #define TPI_ATTEMPTS 50
78
79 /*
80 * Write a register over the TPI interface (unlocked and locked versions).
81 */
__t1_tpi_write(adapter_t * adapter,u32 addr,u32 value)82 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
83 {
84 int tpi_busy;
85
86 writel(addr, adapter->regs + A_TPI_ADDR);
87 writel(value, adapter->regs + A_TPI_WR_DATA);
88 writel(F_TPIWR, adapter->regs + A_TPI_CSR);
89
90 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
91 TPI_ATTEMPTS, 3);
92 if (tpi_busy)
93 pr_alert("%s: TPI write to 0x%x failed\n",
94 adapter->name, addr);
95 return tpi_busy;
96 }
97
t1_tpi_write(adapter_t * adapter,u32 addr,u32 value)98 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
99 {
100 int ret;
101
102 spin_lock(&adapter->tpi_lock);
103 ret = __t1_tpi_write(adapter, addr, value);
104 spin_unlock(&adapter->tpi_lock);
105 return ret;
106 }
107
108 /*
109 * Read a register over the TPI interface (unlocked and locked versions).
110 */
__t1_tpi_read(adapter_t * adapter,u32 addr,u32 * valp)111 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
112 {
113 int tpi_busy;
114
115 writel(addr, adapter->regs + A_TPI_ADDR);
116 writel(0, adapter->regs + A_TPI_CSR);
117
118 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
119 TPI_ATTEMPTS, 3);
120 if (tpi_busy)
121 pr_alert("%s: TPI read from 0x%x failed\n",
122 adapter->name, addr);
123 else
124 *valp = readl(adapter->regs + A_TPI_RD_DATA);
125 return tpi_busy;
126 }
127
t1_tpi_read(adapter_t * adapter,u32 addr,u32 * valp)128 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
129 {
130 int ret;
131
132 spin_lock(&adapter->tpi_lock);
133 ret = __t1_tpi_read(adapter, addr, valp);
134 spin_unlock(&adapter->tpi_lock);
135 return ret;
136 }
137
138 /*
139 * Set a TPI parameter.
140 */
t1_tpi_par(adapter_t * adapter,u32 value)141 static void t1_tpi_par(adapter_t *adapter, u32 value)
142 {
143 writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
144 }
145
146 /*
147 * Called when a port's link settings change to propagate the new values to the
148 * associated PHY and MAC. After performing the common tasks it invokes an
149 * OS-specific handler.
150 */
t1_link_changed(adapter_t * adapter,int port_id)151 void t1_link_changed(adapter_t *adapter, int port_id)
152 {
153 int link_ok, speed, duplex, fc;
154 struct cphy *phy = adapter->port[port_id].phy;
155 struct link_config *lc = &adapter->port[port_id].link_config;
156
157 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
158
159 lc->speed = speed < 0 ? SPEED_INVALID : speed;
160 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
161 if (!(lc->requested_fc & PAUSE_AUTONEG))
162 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
163
164 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
165 /* Set MAC speed, duplex, and flow control to match PHY. */
166 struct cmac *mac = adapter->port[port_id].mac;
167
168 mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
169 lc->fc = (unsigned char)fc;
170 }
171 t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
172 }
173
t1_pci_intr_handler(adapter_t * adapter)174 static int t1_pci_intr_handler(adapter_t *adapter)
175 {
176 u32 pcix_cause;
177
178 pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
179
180 if (pcix_cause) {
181 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
182 pcix_cause);
183 t1_fatal_err(adapter); /* PCI errors are fatal */
184 }
185 return 0;
186 }
187
188 #ifdef CONFIG_CHELSIO_T1_1G
189 #include "fpga_defs.h"
190
191 /*
192 * PHY interrupt handler for FPGA boards.
193 */
fpga_phy_intr_handler(adapter_t * adapter)194 static int fpga_phy_intr_handler(adapter_t *adapter)
195 {
196 int p;
197 u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
198
199 for_each_port(adapter, p)
200 if (cause & (1 << p)) {
201 struct cphy *phy = adapter->port[p].phy;
202 int phy_cause = phy->ops->interrupt_handler(phy);
203
204 if (phy_cause & cphy_cause_link_change)
205 t1_link_changed(adapter, p);
206 }
207 writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
208 return 0;
209 }
210
211 /*
212 * Slow path interrupt handler for FPGAs.
213 */
fpga_slow_intr(adapter_t * adapter)214 static int fpga_slow_intr(adapter_t *adapter)
215 {
216 u32 cause = readl(adapter->regs + A_PL_CAUSE);
217
218 cause &= ~F_PL_INTR_SGE_DATA;
219 if (cause & F_PL_INTR_SGE_ERR)
220 t1_sge_intr_error_handler(adapter->sge);
221
222 if (cause & FPGA_PCIX_INTERRUPT_GMAC)
223 fpga_phy_intr_handler(adapter);
224
225 if (cause & FPGA_PCIX_INTERRUPT_TP) {
226 /*
227 * FPGA doesn't support MC4 interrupts and it requires
228 * this odd layer of indirection for MC5.
229 */
230 u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
231
232 /* Clear TP interrupt */
233 writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
234 }
235 if (cause & FPGA_PCIX_INTERRUPT_PCIX)
236 t1_pci_intr_handler(adapter);
237
238 /* Clear the interrupts just processed. */
239 if (cause)
240 writel(cause, adapter->regs + A_PL_CAUSE);
241
242 return cause != 0;
243 }
244 #endif
245
246 /*
247 * Wait until Elmer's MI1 interface is ready for new operations.
248 */
mi1_wait_until_ready(adapter_t * adapter,int mi1_reg)249 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
250 {
251 int attempts = 100, busy;
252
253 do {
254 u32 val;
255
256 __t1_tpi_read(adapter, mi1_reg, &val);
257 busy = val & F_MI1_OP_BUSY;
258 if (busy)
259 udelay(10);
260 } while (busy && --attempts);
261 if (busy)
262 pr_alert("%s: MDIO operation timed out\n", adapter->name);
263 return busy;
264 }
265
266 /*
267 * MI1 MDIO initialization.
268 */
mi1_mdio_init(adapter_t * adapter,const struct board_info * bi)269 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
270 {
271 u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
272 u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
273 V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
274
275 if (!(bi->caps & SUPPORTED_10000baseT_Full))
276 val |= V_MI1_SOF(1);
277 t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
278 }
279
280 #if defined(CONFIG_CHELSIO_T1_1G)
281 /*
282 * Elmer MI1 MDIO read/write operations.
283 */
mi1_mdio_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)284 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
285 u16 reg_addr)
286 {
287 struct adapter *adapter = dev->ml_priv;
288 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
289 unsigned int val;
290
291 spin_lock(&adapter->tpi_lock);
292 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
293 __t1_tpi_write(adapter,
294 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
295 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
296 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
297 spin_unlock(&adapter->tpi_lock);
298 return val;
299 }
300
mi1_mdio_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)301 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
302 u16 reg_addr, u16 val)
303 {
304 struct adapter *adapter = dev->ml_priv;
305 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
306
307 spin_lock(&adapter->tpi_lock);
308 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
309 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
310 __t1_tpi_write(adapter,
311 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
312 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
313 spin_unlock(&adapter->tpi_lock);
314 return 0;
315 }
316
317 static const struct mdio_ops mi1_mdio_ops = {
318 .init = mi1_mdio_init,
319 .read = mi1_mdio_read,
320 .write = mi1_mdio_write,
321 .mode_support = MDIO_SUPPORTS_C22
322 };
323
324 #endif
325
mi1_mdio_ext_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)326 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
327 u16 reg_addr)
328 {
329 struct adapter *adapter = dev->ml_priv;
330 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
331 unsigned int val;
332
333 spin_lock(&adapter->tpi_lock);
334
335 /* Write the address we want. */
336 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
337 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
338 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
339 MI1_OP_INDIRECT_ADDRESS);
340 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
341
342 /* Write the operation we want. */
343 __t1_tpi_write(adapter,
344 A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
345 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
346
347 /* Read the data. */
348 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
349 spin_unlock(&adapter->tpi_lock);
350 return val;
351 }
352
mi1_mdio_ext_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)353 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
354 int mmd_addr, u16 reg_addr, u16 val)
355 {
356 struct adapter *adapter = dev->ml_priv;
357 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
358
359 spin_lock(&adapter->tpi_lock);
360
361 /* Write the address we want. */
362 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
363 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
364 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
365 MI1_OP_INDIRECT_ADDRESS);
366 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
367
368 /* Write the data. */
369 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
370 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
371 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
372 spin_unlock(&adapter->tpi_lock);
373 return 0;
374 }
375
376 static const struct mdio_ops mi1_mdio_ext_ops = {
377 .init = mi1_mdio_init,
378 .read = mi1_mdio_ext_read,
379 .write = mi1_mdio_ext_write,
380 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
381 };
382
383 enum {
384 CH_BRD_T110_1CU,
385 CH_BRD_N110_1F,
386 CH_BRD_N210_1F,
387 CH_BRD_T210_1F,
388 CH_BRD_T210_1CU,
389 CH_BRD_N204_4CU,
390 };
391
392 static const struct board_info t1_board[] = {
393 {
394 .board = CHBT_BOARD_CHT110,
395 .port_number = 1,
396 .caps = SUPPORTED_10000baseT_Full,
397 .chip_term = CHBT_TERM_T1,
398 .chip_mac = CHBT_MAC_PM3393,
399 .chip_phy = CHBT_PHY_MY3126,
400 .clock_core = 125000000,
401 .clock_mc3 = 150000000,
402 .clock_mc4 = 125000000,
403 .espi_nports = 1,
404 .clock_elmer0 = 44,
405 .mdio_mdien = 1,
406 .mdio_mdiinv = 1,
407 .mdio_mdc = 1,
408 .mdio_phybaseaddr = 1,
409 .gmac = &t1_pm3393_ops,
410 .gphy = &t1_my3126_ops,
411 .mdio_ops = &mi1_mdio_ext_ops,
412 .desc = "Chelsio T110 1x10GBase-CX4 TOE",
413 },
414
415 {
416 .board = CHBT_BOARD_N110,
417 .port_number = 1,
418 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
419 .chip_term = CHBT_TERM_T1,
420 .chip_mac = CHBT_MAC_PM3393,
421 .chip_phy = CHBT_PHY_88X2010,
422 .clock_core = 125000000,
423 .espi_nports = 1,
424 .clock_elmer0 = 44,
425 .mdio_mdien = 0,
426 .mdio_mdiinv = 0,
427 .mdio_mdc = 1,
428 .mdio_phybaseaddr = 0,
429 .gmac = &t1_pm3393_ops,
430 .gphy = &t1_mv88x201x_ops,
431 .mdio_ops = &mi1_mdio_ext_ops,
432 .desc = "Chelsio N110 1x10GBaseX NIC",
433 },
434
435 {
436 .board = CHBT_BOARD_N210,
437 .port_number = 1,
438 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
439 .chip_term = CHBT_TERM_T2,
440 .chip_mac = CHBT_MAC_PM3393,
441 .chip_phy = CHBT_PHY_88X2010,
442 .clock_core = 125000000,
443 .espi_nports = 1,
444 .clock_elmer0 = 44,
445 .mdio_mdien = 0,
446 .mdio_mdiinv = 0,
447 .mdio_mdc = 1,
448 .mdio_phybaseaddr = 0,
449 .gmac = &t1_pm3393_ops,
450 .gphy = &t1_mv88x201x_ops,
451 .mdio_ops = &mi1_mdio_ext_ops,
452 .desc = "Chelsio N210 1x10GBaseX NIC",
453 },
454
455 {
456 .board = CHBT_BOARD_CHT210,
457 .port_number = 1,
458 .caps = SUPPORTED_10000baseT_Full,
459 .chip_term = CHBT_TERM_T2,
460 .chip_mac = CHBT_MAC_PM3393,
461 .chip_phy = CHBT_PHY_88X2010,
462 .clock_core = 125000000,
463 .clock_mc3 = 133000000,
464 .clock_mc4 = 125000000,
465 .espi_nports = 1,
466 .clock_elmer0 = 44,
467 .mdio_mdien = 0,
468 .mdio_mdiinv = 0,
469 .mdio_mdc = 1,
470 .mdio_phybaseaddr = 0,
471 .gmac = &t1_pm3393_ops,
472 .gphy = &t1_mv88x201x_ops,
473 .mdio_ops = &mi1_mdio_ext_ops,
474 .desc = "Chelsio T210 1x10GBaseX TOE",
475 },
476
477 {
478 .board = CHBT_BOARD_CHT210,
479 .port_number = 1,
480 .caps = SUPPORTED_10000baseT_Full,
481 .chip_term = CHBT_TERM_T2,
482 .chip_mac = CHBT_MAC_PM3393,
483 .chip_phy = CHBT_PHY_MY3126,
484 .clock_core = 125000000,
485 .clock_mc3 = 133000000,
486 .clock_mc4 = 125000000,
487 .espi_nports = 1,
488 .clock_elmer0 = 44,
489 .mdio_mdien = 1,
490 .mdio_mdiinv = 1,
491 .mdio_mdc = 1,
492 .mdio_phybaseaddr = 1,
493 .gmac = &t1_pm3393_ops,
494 .gphy = &t1_my3126_ops,
495 .mdio_ops = &mi1_mdio_ext_ops,
496 .desc = "Chelsio T210 1x10GBase-CX4 TOE",
497 },
498
499 #ifdef CONFIG_CHELSIO_T1_1G
500 {
501 .board = CHBT_BOARD_CHN204,
502 .port_number = 4,
503 .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
504 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
505 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
506 SUPPORTED_PAUSE | SUPPORTED_TP,
507 .chip_term = CHBT_TERM_T2,
508 .chip_mac = CHBT_MAC_VSC7321,
509 .chip_phy = CHBT_PHY_88E1111,
510 .clock_core = 100000000,
511 .espi_nports = 4,
512 .clock_elmer0 = 44,
513 .mdio_mdien = 0,
514 .mdio_mdiinv = 0,
515 .mdio_mdc = 0,
516 .mdio_phybaseaddr = 4,
517 .gmac = &t1_vsc7326_ops,
518 .gphy = &t1_mv88e1xxx_ops,
519 .mdio_ops = &mi1_mdio_ops,
520 .desc = "Chelsio N204 4x100/1000BaseT NIC",
521 },
522 #endif
523
524 };
525
526 DEFINE_PCI_DEVICE_TABLE(t1_pci_tbl) = {
527 CH_DEVICE(8, 0, CH_BRD_T110_1CU),
528 CH_DEVICE(8, 1, CH_BRD_T110_1CU),
529 CH_DEVICE(7, 0, CH_BRD_N110_1F),
530 CH_DEVICE(10, 1, CH_BRD_N210_1F),
531 CH_DEVICE(11, 1, CH_BRD_T210_1F),
532 CH_DEVICE(14, 1, CH_BRD_T210_1CU),
533 CH_DEVICE(16, 1, CH_BRD_N204_4CU),
534 { 0 }
535 };
536
537 MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
538
539 /*
540 * Return the board_info structure with a given index. Out-of-range indices
541 * return NULL.
542 */
t1_get_board_info(unsigned int board_id)543 const struct board_info *t1_get_board_info(unsigned int board_id)
544 {
545 return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
546 }
547
548 struct chelsio_vpd_t {
549 u32 format_version;
550 u8 serial_number[16];
551 u8 mac_base_address[6];
552 u8 pad[2]; /* make multiple-of-4 size requirement explicit */
553 };
554
555 #define EEPROMSIZE (8 * 1024)
556 #define EEPROM_MAX_POLL 4
557
558 /*
559 * Read SEEPROM. A zero is written to the flag register when the address is
560 * written to the Control register. The hardware device will set the flag to a
561 * one when 4B have been transferred to the Data register.
562 */
t1_seeprom_read(adapter_t * adapter,u32 addr,__le32 * data)563 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
564 {
565 int i = EEPROM_MAX_POLL;
566 u16 val;
567 u32 v;
568
569 if (addr >= EEPROMSIZE || (addr & 3))
570 return -EINVAL;
571
572 pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
573 do {
574 udelay(50);
575 pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
576 } while (!(val & F_VPD_OP_FLAG) && --i);
577
578 if (!(val & F_VPD_OP_FLAG)) {
579 pr_err("%s: reading EEPROM address 0x%x failed\n",
580 adapter->name, addr);
581 return -EIO;
582 }
583 pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
584 *data = cpu_to_le32(v);
585 return 0;
586 }
587
t1_eeprom_vpd_get(adapter_t * adapter,struct chelsio_vpd_t * vpd)588 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
589 {
590 int addr, ret = 0;
591
592 for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
593 ret = t1_seeprom_read(adapter, addr,
594 (__le32 *)((u8 *)vpd + addr));
595
596 return ret;
597 }
598
599 /*
600 * Read a port's MAC address from the VPD ROM.
601 */
vpd_macaddress_get(adapter_t * adapter,int index,u8 mac_addr[])602 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
603 {
604 struct chelsio_vpd_t vpd;
605
606 if (t1_eeprom_vpd_get(adapter, &vpd))
607 return 1;
608 memcpy(mac_addr, vpd.mac_base_address, 5);
609 mac_addr[5] = vpd.mac_base_address[5] + index;
610 return 0;
611 }
612
613 /*
614 * Set up the MAC/PHY according to the requested link settings.
615 *
616 * If the PHY can auto-negotiate first decide what to advertise, then
617 * enable/disable auto-negotiation as desired and reset.
618 *
619 * If the PHY does not auto-negotiate we just reset it.
620 *
621 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
622 * otherwise do it later based on the outcome of auto-negotiation.
623 */
t1_link_start(struct cphy * phy,struct cmac * mac,struct link_config * lc)624 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
625 {
626 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
627
628 if (lc->supported & SUPPORTED_Autoneg) {
629 lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
630 if (fc) {
631 if (fc == ((PAUSE_RX | PAUSE_TX) &
632 (mac->adapter->params.nports < 2)))
633 lc->advertising |= ADVERTISED_PAUSE;
634 else {
635 lc->advertising |= ADVERTISED_ASYM_PAUSE;
636 if (fc == PAUSE_RX)
637 lc->advertising |= ADVERTISED_PAUSE;
638 }
639 }
640 phy->ops->advertise(phy, lc->advertising);
641
642 if (lc->autoneg == AUTONEG_DISABLE) {
643 lc->speed = lc->requested_speed;
644 lc->duplex = lc->requested_duplex;
645 lc->fc = (unsigned char)fc;
646 mac->ops->set_speed_duplex_fc(mac, lc->speed,
647 lc->duplex, fc);
648 /* Also disables autoneg */
649 phy->state = PHY_AUTONEG_RDY;
650 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
651 phy->ops->reset(phy, 0);
652 } else {
653 phy->state = PHY_AUTONEG_EN;
654 phy->ops->autoneg_enable(phy); /* also resets PHY */
655 }
656 } else {
657 phy->state = PHY_AUTONEG_RDY;
658 mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
659 lc->fc = (unsigned char)fc;
660 phy->ops->reset(phy, 0);
661 }
662 return 0;
663 }
664
665 /*
666 * External interrupt handler for boards using elmer0.
667 */
t1_elmer0_ext_intr_handler(adapter_t * adapter)668 int t1_elmer0_ext_intr_handler(adapter_t *adapter)
669 {
670 struct cphy *phy;
671 int phy_cause;
672 u32 cause;
673
674 t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
675
676 switch (board_info(adapter)->board) {
677 #ifdef CONFIG_CHELSIO_T1_1G
678 case CHBT_BOARD_CHT204:
679 case CHBT_BOARD_CHT204E:
680 case CHBT_BOARD_CHN204:
681 case CHBT_BOARD_CHT204V: {
682 int i, port_bit;
683 for_each_port(adapter, i) {
684 port_bit = i + 1;
685 if (!(cause & (1 << port_bit)))
686 continue;
687
688 phy = adapter->port[i].phy;
689 phy_cause = phy->ops->interrupt_handler(phy);
690 if (phy_cause & cphy_cause_link_change)
691 t1_link_changed(adapter, i);
692 }
693 break;
694 }
695 case CHBT_BOARD_CHT101:
696 if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
697 phy = adapter->port[0].phy;
698 phy_cause = phy->ops->interrupt_handler(phy);
699 if (phy_cause & cphy_cause_link_change)
700 t1_link_changed(adapter, 0);
701 }
702 break;
703 case CHBT_BOARD_7500: {
704 int p;
705 /*
706 * Elmer0's interrupt cause isn't useful here because there is
707 * only one bit that can be set for all 4 ports. This means
708 * we are forced to check every PHY's interrupt status
709 * register to see who initiated the interrupt.
710 */
711 for_each_port(adapter, p) {
712 phy = adapter->port[p].phy;
713 phy_cause = phy->ops->interrupt_handler(phy);
714 if (phy_cause & cphy_cause_link_change)
715 t1_link_changed(adapter, p);
716 }
717 break;
718 }
719 #endif
720 case CHBT_BOARD_CHT210:
721 case CHBT_BOARD_N210:
722 case CHBT_BOARD_N110:
723 if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
724 phy = adapter->port[0].phy;
725 phy_cause = phy->ops->interrupt_handler(phy);
726 if (phy_cause & cphy_cause_link_change)
727 t1_link_changed(adapter, 0);
728 }
729 break;
730 case CHBT_BOARD_8000:
731 case CHBT_BOARD_CHT110:
732 if (netif_msg_intr(adapter))
733 dev_dbg(&adapter->pdev->dev,
734 "External interrupt cause 0x%x\n", cause);
735 if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */
736 struct cmac *mac = adapter->port[0].mac;
737
738 mac->ops->interrupt_handler(mac);
739 }
740 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
741 u32 mod_detect;
742
743 t1_tpi_read(adapter,
744 A_ELMER0_GPI_STAT, &mod_detect);
745 if (netif_msg_link(adapter))
746 dev_info(&adapter->pdev->dev, "XPAK %s\n",
747 mod_detect ? "removed" : "inserted");
748 }
749 break;
750 }
751 t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
752 return 0;
753 }
754
755 /* Enables all interrupts. */
t1_interrupts_enable(adapter_t * adapter)756 void t1_interrupts_enable(adapter_t *adapter)
757 {
758 unsigned int i;
759
760 adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
761
762 t1_sge_intr_enable(adapter->sge);
763 t1_tp_intr_enable(adapter->tp);
764 if (adapter->espi) {
765 adapter->slow_intr_mask |= F_PL_INTR_ESPI;
766 t1_espi_intr_enable(adapter->espi);
767 }
768
769 /* Enable MAC/PHY interrupts for each port. */
770 for_each_port(adapter, i) {
771 adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
772 adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
773 }
774
775 /* Enable PCIX & external chip interrupts on ASIC boards. */
776 if (t1_is_asic(adapter)) {
777 u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
778
779 /* PCI-X interrupts */
780 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
781 0xffffffff);
782
783 adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
784 pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
785 writel(pl_intr, adapter->regs + A_PL_ENABLE);
786 }
787 }
788
789 /* Disables all interrupts. */
t1_interrupts_disable(adapter_t * adapter)790 void t1_interrupts_disable(adapter_t* adapter)
791 {
792 unsigned int i;
793
794 t1_sge_intr_disable(adapter->sge);
795 t1_tp_intr_disable(adapter->tp);
796 if (adapter->espi)
797 t1_espi_intr_disable(adapter->espi);
798
799 /* Disable MAC/PHY interrupts for each port. */
800 for_each_port(adapter, i) {
801 adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
802 adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
803 }
804
805 /* Disable PCIX & external chip interrupts. */
806 if (t1_is_asic(adapter))
807 writel(0, adapter->regs + A_PL_ENABLE);
808
809 /* PCI-X interrupts */
810 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
811
812 adapter->slow_intr_mask = 0;
813 }
814
815 /* Clears all interrupts */
t1_interrupts_clear(adapter_t * adapter)816 void t1_interrupts_clear(adapter_t* adapter)
817 {
818 unsigned int i;
819
820 t1_sge_intr_clear(adapter->sge);
821 t1_tp_intr_clear(adapter->tp);
822 if (adapter->espi)
823 t1_espi_intr_clear(adapter->espi);
824
825 /* Clear MAC/PHY interrupts for each port. */
826 for_each_port(adapter, i) {
827 adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
828 adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
829 }
830
831 /* Enable interrupts for external devices. */
832 if (t1_is_asic(adapter)) {
833 u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
834
835 writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
836 adapter->regs + A_PL_CAUSE);
837 }
838
839 /* PCI-X interrupts */
840 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
841 }
842
843 /*
844 * Slow path interrupt handler for ASICs.
845 */
asic_slow_intr(adapter_t * adapter)846 static int asic_slow_intr(adapter_t *adapter)
847 {
848 u32 cause = readl(adapter->regs + A_PL_CAUSE);
849
850 cause &= adapter->slow_intr_mask;
851 if (!cause)
852 return 0;
853 if (cause & F_PL_INTR_SGE_ERR)
854 t1_sge_intr_error_handler(adapter->sge);
855 if (cause & F_PL_INTR_TP)
856 t1_tp_intr_handler(adapter->tp);
857 if (cause & F_PL_INTR_ESPI)
858 t1_espi_intr_handler(adapter->espi);
859 if (cause & F_PL_INTR_PCIX)
860 t1_pci_intr_handler(adapter);
861 if (cause & F_PL_INTR_EXT)
862 t1_elmer0_ext_intr(adapter);
863
864 /* Clear the interrupts just processed. */
865 writel(cause, adapter->regs + A_PL_CAUSE);
866 readl(adapter->regs + A_PL_CAUSE); /* flush writes */
867 return 1;
868 }
869
t1_slow_intr_handler(adapter_t * adapter)870 int t1_slow_intr_handler(adapter_t *adapter)
871 {
872 #ifdef CONFIG_CHELSIO_T1_1G
873 if (!t1_is_asic(adapter))
874 return fpga_slow_intr(adapter);
875 #endif
876 return asic_slow_intr(adapter);
877 }
878
879 /* Power sequencing is a work-around for Intel's XPAKs. */
power_sequence_xpak(adapter_t * adapter)880 static void power_sequence_xpak(adapter_t* adapter)
881 {
882 u32 mod_detect;
883 u32 gpo;
884
885 /* Check for XPAK */
886 t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
887 if (!(ELMER0_GP_BIT5 & mod_detect)) {
888 /* XPAK is present */
889 t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
890 gpo |= ELMER0_GP_BIT18;
891 t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
892 }
893 }
894
t1_get_board_rev(adapter_t * adapter,const struct board_info * bi,struct adapter_params * p)895 int __devinit t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
896 struct adapter_params *p)
897 {
898 p->chip_version = bi->chip_term;
899 p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
900 if (p->chip_version == CHBT_TERM_T1 ||
901 p->chip_version == CHBT_TERM_T2 ||
902 p->chip_version == CHBT_TERM_FPGA) {
903 u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
904
905 val = G_TP_PC_REV(val);
906 if (val == 2)
907 p->chip_revision = TERM_T1B;
908 else if (val == 3)
909 p->chip_revision = TERM_T2;
910 else
911 return -1;
912 } else
913 return -1;
914 return 0;
915 }
916
917 /*
918 * Enable board components other than the Chelsio chip, such as external MAC
919 * and PHY.
920 */
board_init(adapter_t * adapter,const struct board_info * bi)921 static int board_init(adapter_t *adapter, const struct board_info *bi)
922 {
923 switch (bi->board) {
924 case CHBT_BOARD_8000:
925 case CHBT_BOARD_N110:
926 case CHBT_BOARD_N210:
927 case CHBT_BOARD_CHT210:
928 t1_tpi_par(adapter, 0xf);
929 t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
930 break;
931 case CHBT_BOARD_CHT110:
932 t1_tpi_par(adapter, 0xf);
933 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
934
935 /* TBD XXX Might not need. This fixes a problem
936 * described in the Intel SR XPAK errata.
937 */
938 power_sequence_xpak(adapter);
939 break;
940 #ifdef CONFIG_CHELSIO_T1_1G
941 case CHBT_BOARD_CHT204E:
942 /* add config space write here */
943 case CHBT_BOARD_CHT204:
944 case CHBT_BOARD_CHT204V:
945 case CHBT_BOARD_CHN204:
946 t1_tpi_par(adapter, 0xf);
947 t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
948 break;
949 case CHBT_BOARD_CHT101:
950 case CHBT_BOARD_7500:
951 t1_tpi_par(adapter, 0xf);
952 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
953 break;
954 #endif
955 }
956 return 0;
957 }
958
959 /*
960 * Initialize and configure the Terminator HW modules. Note that external
961 * MAC and PHYs are initialized separately.
962 */
t1_init_hw_modules(adapter_t * adapter)963 int t1_init_hw_modules(adapter_t *adapter)
964 {
965 int err = -EIO;
966 const struct board_info *bi = board_info(adapter);
967
968 if (!bi->clock_mc4) {
969 u32 val = readl(adapter->regs + A_MC4_CFG);
970
971 writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
972 writel(F_M_BUS_ENABLE | F_TCAM_RESET,
973 adapter->regs + A_MC5_CONFIG);
974 }
975
976 if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
977 bi->espi_nports))
978 goto out_err;
979
980 if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
981 goto out_err;
982
983 err = t1_sge_configure(adapter->sge, &adapter->params.sge);
984 if (err)
985 goto out_err;
986
987 err = 0;
988 out_err:
989 return err;
990 }
991
992 /*
993 * Determine a card's PCI mode.
994 */
get_pci_mode(adapter_t * adapter,struct chelsio_pci_params * p)995 static void __devinit get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
996 {
997 static const unsigned short speed_map[] = { 33, 66, 100, 133 };
998 u32 pci_mode;
999
1000 pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1001 p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1002 p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1003 p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1004 }
1005
1006 /*
1007 * Release the structures holding the SW per-Terminator-HW-module state.
1008 */
t1_free_sw_modules(adapter_t * adapter)1009 void t1_free_sw_modules(adapter_t *adapter)
1010 {
1011 unsigned int i;
1012
1013 for_each_port(adapter, i) {
1014 struct cmac *mac = adapter->port[i].mac;
1015 struct cphy *phy = adapter->port[i].phy;
1016
1017 if (mac)
1018 mac->ops->destroy(mac);
1019 if (phy)
1020 phy->ops->destroy(phy);
1021 }
1022
1023 if (adapter->sge)
1024 t1_sge_destroy(adapter->sge);
1025 if (adapter->tp)
1026 t1_tp_destroy(adapter->tp);
1027 if (adapter->espi)
1028 t1_espi_destroy(adapter->espi);
1029 }
1030
init_link_config(struct link_config * lc,const struct board_info * bi)1031 static void __devinit init_link_config(struct link_config *lc,
1032 const struct board_info *bi)
1033 {
1034 lc->supported = bi->caps;
1035 lc->requested_speed = lc->speed = SPEED_INVALID;
1036 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1037 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1038 if (lc->supported & SUPPORTED_Autoneg) {
1039 lc->advertising = lc->supported;
1040 lc->autoneg = AUTONEG_ENABLE;
1041 lc->requested_fc |= PAUSE_AUTONEG;
1042 } else {
1043 lc->advertising = 0;
1044 lc->autoneg = AUTONEG_DISABLE;
1045 }
1046 }
1047
1048 /*
1049 * Allocate and initialize the data structures that hold the SW state of
1050 * the Terminator HW modules.
1051 */
t1_init_sw_modules(adapter_t * adapter,const struct board_info * bi)1052 int __devinit t1_init_sw_modules(adapter_t *adapter,
1053 const struct board_info *bi)
1054 {
1055 unsigned int i;
1056
1057 adapter->params.brd_info = bi;
1058 adapter->params.nports = bi->port_number;
1059 adapter->params.stats_update_period = bi->gmac->stats_update_period;
1060
1061 adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1062 if (!adapter->sge) {
1063 pr_err("%s: SGE initialization failed\n",
1064 adapter->name);
1065 goto error;
1066 }
1067
1068 if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1069 pr_err("%s: ESPI initialization failed\n",
1070 adapter->name);
1071 goto error;
1072 }
1073
1074 adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1075 if (!adapter->tp) {
1076 pr_err("%s: TP initialization failed\n",
1077 adapter->name);
1078 goto error;
1079 }
1080
1081 board_init(adapter, bi);
1082 bi->mdio_ops->init(adapter, bi);
1083 if (bi->gphy->reset)
1084 bi->gphy->reset(adapter);
1085 if (bi->gmac->reset)
1086 bi->gmac->reset(adapter);
1087
1088 for_each_port(adapter, i) {
1089 u8 hw_addr[6];
1090 struct cmac *mac;
1091 int phy_addr = bi->mdio_phybaseaddr + i;
1092
1093 adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
1094 phy_addr, bi->mdio_ops);
1095 if (!adapter->port[i].phy) {
1096 pr_err("%s: PHY %d initialization failed\n",
1097 adapter->name, i);
1098 goto error;
1099 }
1100
1101 adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1102 if (!mac) {
1103 pr_err("%s: MAC %d initialization failed\n",
1104 adapter->name, i);
1105 goto error;
1106 }
1107
1108 /*
1109 * Get the port's MAC addresses either from the EEPROM if one
1110 * exists or the one hardcoded in the MAC.
1111 */
1112 if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1113 mac->ops->macaddress_get(mac, hw_addr);
1114 else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1115 pr_err("%s: could not read MAC address from VPD ROM\n",
1116 adapter->port[i].dev->name);
1117 goto error;
1118 }
1119 memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN);
1120 init_link_config(&adapter->port[i].link_config, bi);
1121 }
1122
1123 get_pci_mode(adapter, &adapter->params.pci);
1124 t1_interrupts_clear(adapter);
1125 return 0;
1126
1127 error:
1128 t1_free_sw_modules(adapter);
1129 return -1;
1130 }
1131