1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21 
22 /*
23  * compact_control is used to track pages being migrated and the free pages
24  * they are being migrated to during memory compaction. The free_pfn starts
25  * at the end of a zone and migrate_pfn begins at the start. Movable pages
26  * are moved to the end of a zone during a compaction run and the run
27  * completes when free_pfn <= migrate_pfn
28  */
29 struct compact_control {
30 	struct list_head freepages;	/* List of free pages to migrate to */
31 	struct list_head migratepages;	/* List of pages being migrated */
32 	unsigned long nr_freepages;	/* Number of isolated free pages */
33 	unsigned long nr_migratepages;	/* Number of pages to migrate */
34 	unsigned long free_pfn;		/* isolate_freepages search base */
35 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36 	bool sync;			/* Synchronous migration */
37 
38 	/* Account for isolated anon and file pages */
39 	unsigned long nr_anon;
40 	unsigned long nr_file;
41 
42 	unsigned int order;		/* order a direct compactor needs */
43 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
44 	struct zone *zone;
45 };
46 
release_freepages(struct list_head * freelist)47 static unsigned long release_freepages(struct list_head *freelist)
48 {
49 	struct page *page, *next;
50 	unsigned long count = 0;
51 
52 	list_for_each_entry_safe(page, next, freelist, lru) {
53 		list_del(&page->lru);
54 		__free_page(page);
55 		count++;
56 	}
57 
58 	return count;
59 }
60 
61 /* Isolate free pages onto a private freelist. Must hold zone->lock */
isolate_freepages_block(struct zone * zone,unsigned long blockpfn,struct list_head * freelist)62 static unsigned long isolate_freepages_block(struct zone *zone,
63 				unsigned long blockpfn,
64 				struct list_head *freelist)
65 {
66 	unsigned long zone_end_pfn, end_pfn;
67 	int nr_scanned = 0, total_isolated = 0;
68 	struct page *cursor;
69 
70 	/* Get the last PFN we should scan for free pages at */
71 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
72 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
73 
74 	/* Find the first usable PFN in the block to initialse page cursor */
75 	for (; blockpfn < end_pfn; blockpfn++) {
76 		if (pfn_valid_within(blockpfn))
77 			break;
78 	}
79 	cursor = pfn_to_page(blockpfn);
80 
81 	/* Isolate free pages. This assumes the block is valid */
82 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
83 		int isolated, i;
84 		struct page *page = cursor;
85 
86 		if (!pfn_valid_within(blockpfn))
87 			continue;
88 		nr_scanned++;
89 
90 		if (!PageBuddy(page))
91 			continue;
92 
93 		/* Found a free page, break it into order-0 pages */
94 		isolated = split_free_page(page);
95 		total_isolated += isolated;
96 		for (i = 0; i < isolated; i++) {
97 			list_add(&page->lru, freelist);
98 			page++;
99 		}
100 
101 		/* If a page was split, advance to the end of it */
102 		if (isolated) {
103 			blockpfn += isolated - 1;
104 			cursor += isolated - 1;
105 		}
106 	}
107 
108 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109 	return total_isolated;
110 }
111 
112 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct page * page)113 static bool suitable_migration_target(struct page *page)
114 {
115 
116 	int migratetype = get_pageblock_migratetype(page);
117 
118 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
119 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
120 		return false;
121 
122 	/* If the page is a large free page, then allow migration */
123 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
124 		return true;
125 
126 	/* If the block is MIGRATE_MOVABLE, allow migration */
127 	if (migratetype == MIGRATE_MOVABLE)
128 		return true;
129 
130 	/* Otherwise skip the block */
131 	return false;
132 }
133 
134 /*
135  * Based on information in the current compact_control, find blocks
136  * suitable for isolating free pages from and then isolate them.
137  */
isolate_freepages(struct zone * zone,struct compact_control * cc)138 static void isolate_freepages(struct zone *zone,
139 				struct compact_control *cc)
140 {
141 	struct page *page;
142 	unsigned long high_pfn, low_pfn, pfn;
143 	unsigned long flags;
144 	int nr_freepages = cc->nr_freepages;
145 	struct list_head *freelist = &cc->freepages;
146 
147 	pfn = cc->free_pfn;
148 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
149 	high_pfn = low_pfn;
150 
151 	/*
152 	 * Isolate free pages until enough are available to migrate the
153 	 * pages on cc->migratepages. We stop searching if the migrate
154 	 * and free page scanners meet or enough free pages are isolated.
155 	 */
156 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
157 					pfn -= pageblock_nr_pages) {
158 		unsigned long isolated;
159 
160 		if (!pfn_valid(pfn))
161 			continue;
162 
163 		/*
164 		 * Check for overlapping nodes/zones. It's possible on some
165 		 * configurations to have a setup like
166 		 * node0 node1 node0
167 		 * i.e. it's possible that all pages within a zones range of
168 		 * pages do not belong to a single zone.
169 		 */
170 		page = pfn_to_page(pfn);
171 		if (page_zone(page) != zone)
172 			continue;
173 
174 		/* Check the block is suitable for migration */
175 		if (!suitable_migration_target(page))
176 			continue;
177 
178 		/*
179 		 * Found a block suitable for isolating free pages from. Now
180 		 * we disabled interrupts, double check things are ok and
181 		 * isolate the pages. This is to minimise the time IRQs
182 		 * are disabled
183 		 */
184 		isolated = 0;
185 		spin_lock_irqsave(&zone->lock, flags);
186 		if (suitable_migration_target(page)) {
187 			isolated = isolate_freepages_block(zone, pfn, freelist);
188 			nr_freepages += isolated;
189 		}
190 		spin_unlock_irqrestore(&zone->lock, flags);
191 
192 		/*
193 		 * Record the highest PFN we isolated pages from. When next
194 		 * looking for free pages, the search will restart here as
195 		 * page migration may have returned some pages to the allocator
196 		 */
197 		if (isolated)
198 			high_pfn = max(high_pfn, pfn);
199 	}
200 
201 	/* split_free_page does not map the pages */
202 	list_for_each_entry(page, freelist, lru) {
203 		arch_alloc_page(page, 0);
204 		kernel_map_pages(page, 1, 1);
205 	}
206 
207 	cc->free_pfn = high_pfn;
208 	cc->nr_freepages = nr_freepages;
209 }
210 
211 /* Update the number of anon and file isolated pages in the zone */
acct_isolated(struct zone * zone,struct compact_control * cc)212 static void acct_isolated(struct zone *zone, struct compact_control *cc)
213 {
214 	struct page *page;
215 	unsigned int count[NR_LRU_LISTS] = { 0, };
216 
217 	list_for_each_entry(page, &cc->migratepages, lru) {
218 		int lru = page_lru_base_type(page);
219 		count[lru]++;
220 	}
221 
222 	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
223 	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
224 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
225 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
226 }
227 
228 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)229 static bool too_many_isolated(struct zone *zone)
230 {
231 	unsigned long active, inactive, isolated;
232 
233 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
234 					zone_page_state(zone, NR_INACTIVE_ANON);
235 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
236 					zone_page_state(zone, NR_ACTIVE_ANON);
237 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
238 					zone_page_state(zone, NR_ISOLATED_ANON);
239 
240 	return isolated > (inactive + active) / 2;
241 }
242 
243 /*
244  * Isolate all pages that can be migrated from the block pointed to by
245  * the migrate scanner within compact_control.
246  */
isolate_migratepages(struct zone * zone,struct compact_control * cc)247 static unsigned long isolate_migratepages(struct zone *zone,
248 					struct compact_control *cc)
249 {
250 	unsigned long low_pfn, end_pfn;
251 	unsigned long last_pageblock_nr = 0, pageblock_nr;
252 	unsigned long nr_scanned = 0, nr_isolated = 0;
253 	struct list_head *migratelist = &cc->migratepages;
254 
255 	/* Do not scan outside zone boundaries */
256 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
257 
258 	/* Only scan within a pageblock boundary */
259 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
260 
261 	/* Do not cross the free scanner or scan within a memory hole */
262 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
263 		cc->migrate_pfn = end_pfn;
264 		return 0;
265 	}
266 
267 	/*
268 	 * Ensure that there are not too many pages isolated from the LRU
269 	 * list by either parallel reclaimers or compaction. If there are,
270 	 * delay for some time until fewer pages are isolated
271 	 */
272 	while (unlikely(too_many_isolated(zone))) {
273 		congestion_wait(BLK_RW_ASYNC, HZ/10);
274 
275 		if (fatal_signal_pending(current))
276 			return 0;
277 	}
278 
279 	/* Time to isolate some pages for migration */
280 	cond_resched();
281 	spin_lock_irq(&zone->lru_lock);
282 	for (; low_pfn < end_pfn; low_pfn++) {
283 		struct page *page;
284 		bool locked = true;
285 
286 		/* give a chance to irqs before checking need_resched() */
287 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
288 			spin_unlock_irq(&zone->lru_lock);
289 			locked = false;
290 		}
291 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
292 			if (locked)
293 				spin_unlock_irq(&zone->lru_lock);
294 			cond_resched();
295 			spin_lock_irq(&zone->lru_lock);
296 			if (fatal_signal_pending(current))
297 				break;
298 		} else if (!locked)
299 			spin_lock_irq(&zone->lru_lock);
300 
301 		if (!pfn_valid_within(low_pfn))
302 			continue;
303 		nr_scanned++;
304 
305 		/* Get the page and skip if free */
306 		page = pfn_to_page(low_pfn);
307 		if (PageBuddy(page))
308 			continue;
309 
310 		/*
311 		 * For async migration, also only scan in MOVABLE blocks. Async
312 		 * migration is optimistic to see if the minimum amount of work
313 		 * satisfies the allocation
314 		 */
315 		pageblock_nr = low_pfn >> pageblock_order;
316 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
317 				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
318 			low_pfn += pageblock_nr_pages;
319 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
320 			last_pageblock_nr = pageblock_nr;
321 			continue;
322 		}
323 
324 		if (!PageLRU(page))
325 			continue;
326 
327 		/*
328 		 * PageLRU is set, and lru_lock excludes isolation,
329 		 * splitting and collapsing (collapsing has already
330 		 * happened if PageLRU is set).
331 		 */
332 		if (PageTransHuge(page)) {
333 			low_pfn += (1 << compound_order(page)) - 1;
334 			continue;
335 		}
336 
337 		/* Try isolate the page */
338 		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
339 			continue;
340 
341 		VM_BUG_ON(PageTransCompound(page));
342 
343 		/* Successfully isolated */
344 		del_page_from_lru_list(zone, page, page_lru(page));
345 		list_add(&page->lru, migratelist);
346 		cc->nr_migratepages++;
347 		nr_isolated++;
348 
349 		/* Avoid isolating too much */
350 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
351 			break;
352 	}
353 
354 	acct_isolated(zone, cc);
355 
356 	spin_unlock_irq(&zone->lru_lock);
357 	cc->migrate_pfn = low_pfn;
358 
359 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
360 
361 	return cc->nr_migratepages;
362 }
363 
364 /*
365  * This is a migrate-callback that "allocates" freepages by taking pages
366  * from the isolated freelists in the block we are migrating to.
367  */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)368 static struct page *compaction_alloc(struct page *migratepage,
369 					unsigned long data,
370 					int **result)
371 {
372 	struct compact_control *cc = (struct compact_control *)data;
373 	struct page *freepage;
374 
375 	/* Isolate free pages if necessary */
376 	if (list_empty(&cc->freepages)) {
377 		isolate_freepages(cc->zone, cc);
378 
379 		if (list_empty(&cc->freepages))
380 			return NULL;
381 	}
382 
383 	freepage = list_entry(cc->freepages.next, struct page, lru);
384 	list_del(&freepage->lru);
385 	cc->nr_freepages--;
386 
387 	return freepage;
388 }
389 
390 /*
391  * We cannot control nr_migratepages and nr_freepages fully when migration is
392  * running as migrate_pages() has no knowledge of compact_control. When
393  * migration is complete, we count the number of pages on the lists by hand.
394  */
update_nr_listpages(struct compact_control * cc)395 static void update_nr_listpages(struct compact_control *cc)
396 {
397 	int nr_migratepages = 0;
398 	int nr_freepages = 0;
399 	struct page *page;
400 
401 	list_for_each_entry(page, &cc->migratepages, lru)
402 		nr_migratepages++;
403 	list_for_each_entry(page, &cc->freepages, lru)
404 		nr_freepages++;
405 
406 	cc->nr_migratepages = nr_migratepages;
407 	cc->nr_freepages = nr_freepages;
408 }
409 
compact_finished(struct zone * zone,struct compact_control * cc)410 static int compact_finished(struct zone *zone,
411 			    struct compact_control *cc)
412 {
413 	unsigned int order;
414 	unsigned long watermark;
415 
416 	if (fatal_signal_pending(current))
417 		return COMPACT_PARTIAL;
418 
419 	/* Compaction run completes if the migrate and free scanner meet */
420 	if (cc->free_pfn <= cc->migrate_pfn)
421 		return COMPACT_COMPLETE;
422 
423 	/* Compaction run is not finished if the watermark is not met */
424 	watermark = low_wmark_pages(zone);
425 	watermark += (1 << cc->order);
426 
427 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
428 		return COMPACT_CONTINUE;
429 
430 	/*
431 	 * order == -1 is expected when compacting via
432 	 * /proc/sys/vm/compact_memory
433 	 */
434 	if (cc->order == -1)
435 		return COMPACT_CONTINUE;
436 
437 	/* Direct compactor: Is a suitable page free? */
438 	for (order = cc->order; order < MAX_ORDER; order++) {
439 		/* Job done if page is free of the right migratetype */
440 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
441 			return COMPACT_PARTIAL;
442 
443 		/* Job done if allocation would set block type */
444 		if (order >= pageblock_order && zone->free_area[order].nr_free)
445 			return COMPACT_PARTIAL;
446 	}
447 
448 	return COMPACT_CONTINUE;
449 }
450 
451 /*
452  * compaction_suitable: Is this suitable to run compaction on this zone now?
453  * Returns
454  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
455  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
456  *   COMPACT_CONTINUE - If compaction should run now
457  */
compaction_suitable(struct zone * zone,int order)458 unsigned long compaction_suitable(struct zone *zone, int order)
459 {
460 	int fragindex;
461 	unsigned long watermark;
462 
463 	/*
464 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
465 	 * This is because during migration, copies of pages need to be
466 	 * allocated and for a short time, the footprint is higher
467 	 */
468 	watermark = low_wmark_pages(zone) + (2UL << order);
469 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
470 		return COMPACT_SKIPPED;
471 
472 	/*
473 	 * order == -1 is expected when compacting via
474 	 * /proc/sys/vm/compact_memory
475 	 */
476 	if (order == -1)
477 		return COMPACT_CONTINUE;
478 
479 	/*
480 	 * fragmentation index determines if allocation failures are due to
481 	 * low memory or external fragmentation
482 	 *
483 	 * index of -1 implies allocations might succeed dependingon watermarks
484 	 * index towards 0 implies failure is due to lack of memory
485 	 * index towards 1000 implies failure is due to fragmentation
486 	 *
487 	 * Only compact if a failure would be due to fragmentation.
488 	 */
489 	fragindex = fragmentation_index(zone, order);
490 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
491 		return COMPACT_SKIPPED;
492 
493 	if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0))
494 		return COMPACT_PARTIAL;
495 
496 	return COMPACT_CONTINUE;
497 }
498 
compact_zone(struct zone * zone,struct compact_control * cc)499 static int compact_zone(struct zone *zone, struct compact_control *cc)
500 {
501 	int ret;
502 
503 	ret = compaction_suitable(zone, cc->order);
504 	switch (ret) {
505 	case COMPACT_PARTIAL:
506 	case COMPACT_SKIPPED:
507 		/* Compaction is likely to fail */
508 		return ret;
509 	case COMPACT_CONTINUE:
510 		/* Fall through to compaction */
511 		;
512 	}
513 
514 	/* Setup to move all movable pages to the end of the zone */
515 	cc->migrate_pfn = zone->zone_start_pfn;
516 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
517 	cc->free_pfn &= ~(pageblock_nr_pages-1);
518 
519 	migrate_prep_local();
520 
521 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
522 		unsigned long nr_migrate, nr_remaining;
523 		int err;
524 
525 		if (!isolate_migratepages(zone, cc))
526 			continue;
527 
528 		nr_migrate = cc->nr_migratepages;
529 		err = migrate_pages(&cc->migratepages, compaction_alloc,
530 				(unsigned long)cc, false,
531 				cc->sync);
532 		update_nr_listpages(cc);
533 		nr_remaining = cc->nr_migratepages;
534 
535 		count_vm_event(COMPACTBLOCKS);
536 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
537 		if (nr_remaining)
538 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
539 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
540 						nr_remaining);
541 
542 		/* Release LRU pages not migrated */
543 		if (err) {
544 			putback_lru_pages(&cc->migratepages);
545 			cc->nr_migratepages = 0;
546 		}
547 
548 	}
549 
550 	/* Release free pages and check accounting */
551 	cc->nr_freepages -= release_freepages(&cc->freepages);
552 	VM_BUG_ON(cc->nr_freepages != 0);
553 
554 	return ret;
555 }
556 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,bool sync)557 unsigned long compact_zone_order(struct zone *zone,
558 				 int order, gfp_t gfp_mask,
559 				 bool sync)
560 {
561 	struct compact_control cc = {
562 		.nr_freepages = 0,
563 		.nr_migratepages = 0,
564 		.order = order,
565 		.migratetype = allocflags_to_migratetype(gfp_mask),
566 		.zone = zone,
567 		.sync = sync,
568 	};
569 	INIT_LIST_HEAD(&cc.freepages);
570 	INIT_LIST_HEAD(&cc.migratepages);
571 
572 	return compact_zone(zone, &cc);
573 }
574 
575 int sysctl_extfrag_threshold = 500;
576 
577 /**
578  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
579  * @zonelist: The zonelist used for the current allocation
580  * @order: The order of the current allocation
581  * @gfp_mask: The GFP mask of the current allocation
582  * @nodemask: The allowed nodes to allocate from
583  * @sync: Whether migration is synchronous or not
584  *
585  * This is the main entry point for direct page compaction.
586  */
try_to_compact_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask,bool sync)587 unsigned long try_to_compact_pages(struct zonelist *zonelist,
588 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
589 			bool sync)
590 {
591 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
592 	int may_enter_fs = gfp_mask & __GFP_FS;
593 	int may_perform_io = gfp_mask & __GFP_IO;
594 	struct zoneref *z;
595 	struct zone *zone;
596 	int rc = COMPACT_SKIPPED;
597 
598 	/*
599 	 * Check whether it is worth even starting compaction. The order check is
600 	 * made because an assumption is made that the page allocator can satisfy
601 	 * the "cheaper" orders without taking special steps
602 	 */
603 	if (!order || !may_enter_fs || !may_perform_io)
604 		return rc;
605 
606 	count_vm_event(COMPACTSTALL);
607 
608 	/* Compact each zone in the list */
609 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
610 								nodemask) {
611 		int status;
612 
613 		status = compact_zone_order(zone, order, gfp_mask, sync);
614 		rc = max(status, rc);
615 
616 		/* If a normal allocation would succeed, stop compacting */
617 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
618 			break;
619 	}
620 
621 	return rc;
622 }
623 
624 
625 /* Compact all zones within a node */
compact_node(int nid)626 static int compact_node(int nid)
627 {
628 	int zoneid;
629 	pg_data_t *pgdat;
630 	struct zone *zone;
631 
632 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
633 		return -EINVAL;
634 	pgdat = NODE_DATA(nid);
635 
636 	/* Flush pending updates to the LRU lists */
637 	lru_add_drain_all();
638 
639 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
640 		struct compact_control cc = {
641 			.nr_freepages = 0,
642 			.nr_migratepages = 0,
643 			.order = -1,
644 		};
645 
646 		zone = &pgdat->node_zones[zoneid];
647 		if (!populated_zone(zone))
648 			continue;
649 
650 		cc.zone = zone;
651 		INIT_LIST_HEAD(&cc.freepages);
652 		INIT_LIST_HEAD(&cc.migratepages);
653 
654 		compact_zone(zone, &cc);
655 
656 		VM_BUG_ON(!list_empty(&cc.freepages));
657 		VM_BUG_ON(!list_empty(&cc.migratepages));
658 	}
659 
660 	return 0;
661 }
662 
663 /* Compact all nodes in the system */
compact_nodes(void)664 static int compact_nodes(void)
665 {
666 	int nid;
667 
668 	for_each_online_node(nid)
669 		compact_node(nid);
670 
671 	return COMPACT_COMPLETE;
672 }
673 
674 /* The written value is actually unused, all memory is compacted */
675 int sysctl_compact_memory;
676 
677 /* This is the entry point for compacting all nodes via /proc/sys/vm */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)678 int sysctl_compaction_handler(struct ctl_table *table, int write,
679 			void __user *buffer, size_t *length, loff_t *ppos)
680 {
681 	if (write)
682 		return compact_nodes();
683 
684 	return 0;
685 }
686 
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)687 int sysctl_extfrag_handler(struct ctl_table *table, int write,
688 			void __user *buffer, size_t *length, loff_t *ppos)
689 {
690 	proc_dointvec_minmax(table, write, buffer, length, ppos);
691 
692 	return 0;
693 }
694 
695 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct sys_device * dev,struct sysdev_attribute * attr,const char * buf,size_t count)696 ssize_t sysfs_compact_node(struct sys_device *dev,
697 			struct sysdev_attribute *attr,
698 			const char *buf, size_t count)
699 {
700 	compact_node(dev->id);
701 
702 	return count;
703 }
704 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
705 
compaction_register_node(struct node * node)706 int compaction_register_node(struct node *node)
707 {
708 	return sysdev_create_file(&node->sysdev, &attr_compact);
709 }
710 
compaction_unregister_node(struct node * node)711 void compaction_unregister_node(struct node *node)
712 {
713 	return sysdev_remove_file(&node->sysdev, &attr_compact);
714 }
715 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
716