1 /*
2  *	AARP:		An implementation of the AppleTalk AARP protocol for
3  *			Ethernet 'ELAP'.
4  *
5  *		Alan Cox  <Alan.Cox@linux.org>
6  *
7  *	This doesn't fit cleanly with the IP arp. Potentially we can use
8  *	the generic neighbour discovery code to clean this up.
9  *
10  *	FIXME:
11  *		We ought to handle the retransmits with a single list and a
12  *	separate fast timer for when it is needed.
13  *		Use neighbour discovery code.
14  *		Token Ring Support.
15  *
16  *		This program is free software; you can redistribute it and/or
17  *		modify it under the terms of the GNU General Public License
18  *		as published by the Free Software Foundation; either version
19  *		2 of the License, or (at your option) any later version.
20  *
21  *
22  *	References:
23  *		Inside AppleTalk (2nd Ed).
24  *	Fixes:
25  *		Jaume Grau	-	flush caches on AARP_PROBE
26  *		Rob Newberry	-	Added proxy AARP and AARP proc fs,
27  *					moved probing from DDP module.
28  *		Arnaldo C. Melo -	don't mangle rx packets
29  *
30  */
31 
32 #include <linux/if_arp.h>
33 #include <linux/slab.h>
34 #include <net/sock.h>
35 #include <net/datalink.h>
36 #include <net/psnap.h>
37 #include <linux/atalk.h>
38 #include <linux/delay.h>
39 #include <linux/init.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/export.h>
43 
44 int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME;
45 int sysctl_aarp_tick_time = AARP_TICK_TIME;
46 int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT;
47 int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME;
48 
49 /* Lists of aarp entries */
50 /**
51  *	struct aarp_entry - AARP entry
52  *	@last_sent - Last time we xmitted the aarp request
53  *	@packet_queue - Queue of frames wait for resolution
54  *	@status - Used for proxy AARP
55  *	expires_at - Entry expiry time
56  *	target_addr - DDP Address
57  *	dev - Device to use
58  *	hwaddr - Physical i/f address of target/router
59  *	xmit_count - When this hits 10 we give up
60  *	next - Next entry in chain
61  */
62 struct aarp_entry {
63 	/* These first two are only used for unresolved entries */
64 	unsigned long		last_sent;
65 	struct sk_buff_head	packet_queue;
66 	int			status;
67 	unsigned long		expires_at;
68 	struct atalk_addr	target_addr;
69 	struct net_device	*dev;
70 	char			hwaddr[6];
71 	unsigned short		xmit_count;
72 	struct aarp_entry	*next;
73 };
74 
75 /* Hashed list of resolved, unresolved and proxy entries */
76 static struct aarp_entry *resolved[AARP_HASH_SIZE];
77 static struct aarp_entry *unresolved[AARP_HASH_SIZE];
78 static struct aarp_entry *proxies[AARP_HASH_SIZE];
79 static int unresolved_count;
80 
81 /* One lock protects it all. */
82 static DEFINE_RWLOCK(aarp_lock);
83 
84 /* Used to walk the list and purge/kick entries.  */
85 static struct timer_list aarp_timer;
86 
87 /*
88  *	Delete an aarp queue
89  *
90  *	Must run under aarp_lock.
91  */
__aarp_expire(struct aarp_entry * a)92 static void __aarp_expire(struct aarp_entry *a)
93 {
94 	skb_queue_purge(&a->packet_queue);
95 	kfree(a);
96 }
97 
98 /*
99  *	Send an aarp queue entry request
100  *
101  *	Must run under aarp_lock.
102  */
__aarp_send_query(struct aarp_entry * a)103 static void __aarp_send_query(struct aarp_entry *a)
104 {
105 	static unsigned char aarp_eth_multicast[ETH_ALEN] =
106 					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
107 	struct net_device *dev = a->dev;
108 	struct elapaarp *eah;
109 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
110 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
111 	struct atalk_addr *sat = atalk_find_dev_addr(dev);
112 
113 	if (!skb)
114 		return;
115 
116 	if (!sat) {
117 		kfree_skb(skb);
118 		return;
119 	}
120 
121 	/* Set up the buffer */
122 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
123 	skb_reset_network_header(skb);
124 	skb_reset_transport_header(skb);
125 	skb_put(skb, sizeof(*eah));
126 	skb->protocol    = htons(ETH_P_ATALK);
127 	skb->dev	 = dev;
128 	eah		 = aarp_hdr(skb);
129 
130 	/* Set up the ARP */
131 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
132 	eah->pa_type	 = htons(ETH_P_ATALK);
133 	eah->hw_len	 = ETH_ALEN;
134 	eah->pa_len	 = AARP_PA_ALEN;
135 	eah->function	 = htons(AARP_REQUEST);
136 
137 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
138 
139 	eah->pa_src_zero = 0;
140 	eah->pa_src_net	 = sat->s_net;
141 	eah->pa_src_node = sat->s_node;
142 
143 	memset(eah->hw_dst, '\0', ETH_ALEN);
144 
145 	eah->pa_dst_zero = 0;
146 	eah->pa_dst_net	 = a->target_addr.s_net;
147 	eah->pa_dst_node = a->target_addr.s_node;
148 
149 	/* Send it */
150 	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
151 	/* Update the sending count */
152 	a->xmit_count++;
153 	a->last_sent = jiffies;
154 }
155 
156 /* This runs under aarp_lock and in softint context, so only atomic memory
157  * allocations can be used. */
aarp_send_reply(struct net_device * dev,struct atalk_addr * us,struct atalk_addr * them,unsigned char * sha)158 static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us,
159 			    struct atalk_addr *them, unsigned char *sha)
160 {
161 	struct elapaarp *eah;
162 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
163 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
164 
165 	if (!skb)
166 		return;
167 
168 	/* Set up the buffer */
169 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
170 	skb_reset_network_header(skb);
171 	skb_reset_transport_header(skb);
172 	skb_put(skb, sizeof(*eah));
173 	skb->protocol    = htons(ETH_P_ATALK);
174 	skb->dev	 = dev;
175 	eah		 = aarp_hdr(skb);
176 
177 	/* Set up the ARP */
178 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
179 	eah->pa_type	 = htons(ETH_P_ATALK);
180 	eah->hw_len	 = ETH_ALEN;
181 	eah->pa_len	 = AARP_PA_ALEN;
182 	eah->function	 = htons(AARP_REPLY);
183 
184 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
185 
186 	eah->pa_src_zero = 0;
187 	eah->pa_src_net	 = us->s_net;
188 	eah->pa_src_node = us->s_node;
189 
190 	if (!sha)
191 		memset(eah->hw_dst, '\0', ETH_ALEN);
192 	else
193 		memcpy(eah->hw_dst, sha, ETH_ALEN);
194 
195 	eah->pa_dst_zero = 0;
196 	eah->pa_dst_net	 = them->s_net;
197 	eah->pa_dst_node = them->s_node;
198 
199 	/* Send it */
200 	aarp_dl->request(aarp_dl, skb, sha);
201 }
202 
203 /*
204  *	Send probe frames. Called from aarp_probe_network and
205  *	aarp_proxy_probe_network.
206  */
207 
aarp_send_probe(struct net_device * dev,struct atalk_addr * us)208 static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us)
209 {
210 	struct elapaarp *eah;
211 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
212 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
213 	static unsigned char aarp_eth_multicast[ETH_ALEN] =
214 					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
215 
216 	if (!skb)
217 		return;
218 
219 	/* Set up the buffer */
220 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
221 	skb_reset_network_header(skb);
222 	skb_reset_transport_header(skb);
223 	skb_put(skb, sizeof(*eah));
224 	skb->protocol    = htons(ETH_P_ATALK);
225 	skb->dev	 = dev;
226 	eah		 = aarp_hdr(skb);
227 
228 	/* Set up the ARP */
229 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
230 	eah->pa_type	 = htons(ETH_P_ATALK);
231 	eah->hw_len	 = ETH_ALEN;
232 	eah->pa_len	 = AARP_PA_ALEN;
233 	eah->function	 = htons(AARP_PROBE);
234 
235 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
236 
237 	eah->pa_src_zero = 0;
238 	eah->pa_src_net	 = us->s_net;
239 	eah->pa_src_node = us->s_node;
240 
241 	memset(eah->hw_dst, '\0', ETH_ALEN);
242 
243 	eah->pa_dst_zero = 0;
244 	eah->pa_dst_net	 = us->s_net;
245 	eah->pa_dst_node = us->s_node;
246 
247 	/* Send it */
248 	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
249 }
250 
251 /*
252  *	Handle an aarp timer expire
253  *
254  *	Must run under the aarp_lock.
255  */
256 
__aarp_expire_timer(struct aarp_entry ** n)257 static void __aarp_expire_timer(struct aarp_entry **n)
258 {
259 	struct aarp_entry *t;
260 
261 	while (*n)
262 		/* Expired ? */
263 		if (time_after(jiffies, (*n)->expires_at)) {
264 			t = *n;
265 			*n = (*n)->next;
266 			__aarp_expire(t);
267 		} else
268 			n = &((*n)->next);
269 }
270 
271 /*
272  *	Kick all pending requests 5 times a second.
273  *
274  *	Must run under the aarp_lock.
275  */
__aarp_kick(struct aarp_entry ** n)276 static void __aarp_kick(struct aarp_entry **n)
277 {
278 	struct aarp_entry *t;
279 
280 	while (*n)
281 		/* Expired: if this will be the 11th tx, we delete instead. */
282 		if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
283 			t = *n;
284 			*n = (*n)->next;
285 			__aarp_expire(t);
286 		} else {
287 			__aarp_send_query(*n);
288 			n = &((*n)->next);
289 		}
290 }
291 
292 /*
293  *	A device has gone down. Take all entries referring to the device
294  *	and remove them.
295  *
296  *	Must run under the aarp_lock.
297  */
__aarp_expire_device(struct aarp_entry ** n,struct net_device * dev)298 static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
299 {
300 	struct aarp_entry *t;
301 
302 	while (*n)
303 		if ((*n)->dev == dev) {
304 			t = *n;
305 			*n = (*n)->next;
306 			__aarp_expire(t);
307 		} else
308 			n = &((*n)->next);
309 }
310 
311 /* Handle the timer event */
aarp_expire_timeout(unsigned long unused)312 static void aarp_expire_timeout(unsigned long unused)
313 {
314 	int ct;
315 
316 	write_lock_bh(&aarp_lock);
317 
318 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
319 		__aarp_expire_timer(&resolved[ct]);
320 		__aarp_kick(&unresolved[ct]);
321 		__aarp_expire_timer(&unresolved[ct]);
322 		__aarp_expire_timer(&proxies[ct]);
323 	}
324 
325 	write_unlock_bh(&aarp_lock);
326 	mod_timer(&aarp_timer, jiffies +
327 			       (unresolved_count ? sysctl_aarp_tick_time :
328 				sysctl_aarp_expiry_time));
329 }
330 
331 /* Network device notifier chain handler. */
aarp_device_event(struct notifier_block * this,unsigned long event,void * ptr)332 static int aarp_device_event(struct notifier_block *this, unsigned long event,
333 			     void *ptr)
334 {
335 	struct net_device *dev = ptr;
336 	int ct;
337 
338 	if (!net_eq(dev_net(dev), &init_net))
339 		return NOTIFY_DONE;
340 
341 	if (event == NETDEV_DOWN) {
342 		write_lock_bh(&aarp_lock);
343 
344 		for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
345 			__aarp_expire_device(&resolved[ct], dev);
346 			__aarp_expire_device(&unresolved[ct], dev);
347 			__aarp_expire_device(&proxies[ct], dev);
348 		}
349 
350 		write_unlock_bh(&aarp_lock);
351 	}
352 	return NOTIFY_DONE;
353 }
354 
355 /* Expire all entries in a hash chain */
__aarp_expire_all(struct aarp_entry ** n)356 static void __aarp_expire_all(struct aarp_entry **n)
357 {
358 	struct aarp_entry *t;
359 
360 	while (*n) {
361 		t = *n;
362 		*n = (*n)->next;
363 		__aarp_expire(t);
364 	}
365 }
366 
367 /* Cleanup all hash chains -- module unloading */
aarp_purge(void)368 static void aarp_purge(void)
369 {
370 	int ct;
371 
372 	write_lock_bh(&aarp_lock);
373 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
374 		__aarp_expire_all(&resolved[ct]);
375 		__aarp_expire_all(&unresolved[ct]);
376 		__aarp_expire_all(&proxies[ct]);
377 	}
378 	write_unlock_bh(&aarp_lock);
379 }
380 
381 /*
382  *	Create a new aarp entry.  This must use GFP_ATOMIC because it
383  *	runs while holding spinlocks.
384  */
aarp_alloc(void)385 static struct aarp_entry *aarp_alloc(void)
386 {
387 	struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC);
388 
389 	if (a)
390 		skb_queue_head_init(&a->packet_queue);
391 	return a;
392 }
393 
394 /*
395  * Find an entry. We might return an expired but not yet purged entry. We
396  * don't care as it will do no harm.
397  *
398  * This must run under the aarp_lock.
399  */
__aarp_find_entry(struct aarp_entry * list,struct net_device * dev,struct atalk_addr * sat)400 static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
401 					    struct net_device *dev,
402 					    struct atalk_addr *sat)
403 {
404 	while (list) {
405 		if (list->target_addr.s_net == sat->s_net &&
406 		    list->target_addr.s_node == sat->s_node &&
407 		    list->dev == dev)
408 			break;
409 		list = list->next;
410 	}
411 
412 	return list;
413 }
414 
415 /* Called from the DDP code, and thus must be exported. */
aarp_proxy_remove(struct net_device * dev,struct atalk_addr * sa)416 void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa)
417 {
418 	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
419 	struct aarp_entry *a;
420 
421 	write_lock_bh(&aarp_lock);
422 
423 	a = __aarp_find_entry(proxies[hash], dev, sa);
424 	if (a)
425 		a->expires_at = jiffies - 1;
426 
427 	write_unlock_bh(&aarp_lock);
428 }
429 
430 /* This must run under aarp_lock. */
__aarp_proxy_find(struct net_device * dev,struct atalk_addr * sa)431 static struct atalk_addr *__aarp_proxy_find(struct net_device *dev,
432 					    struct atalk_addr *sa)
433 {
434 	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
435 	struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
436 
437 	return a ? sa : NULL;
438 }
439 
440 /*
441  * Probe a Phase 1 device or a device that requires its Net:Node to
442  * be set via an ioctl.
443  */
aarp_send_probe_phase1(struct atalk_iface * iface)444 static void aarp_send_probe_phase1(struct atalk_iface *iface)
445 {
446 	struct ifreq atreq;
447 	struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
448 	const struct net_device_ops *ops = iface->dev->netdev_ops;
449 
450 	sa->sat_addr.s_node = iface->address.s_node;
451 	sa->sat_addr.s_net = ntohs(iface->address.s_net);
452 
453 	/* We pass the Net:Node to the drivers/cards by a Device ioctl. */
454 	if (!(ops->ndo_do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
455 		ops->ndo_do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
456 		if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
457 		    iface->address.s_node != sa->sat_addr.s_node)
458 			iface->status |= ATIF_PROBE_FAIL;
459 
460 		iface->address.s_net  = htons(sa->sat_addr.s_net);
461 		iface->address.s_node = sa->sat_addr.s_node;
462 	}
463 }
464 
465 
aarp_probe_network(struct atalk_iface * atif)466 void aarp_probe_network(struct atalk_iface *atif)
467 {
468 	if (atif->dev->type == ARPHRD_LOCALTLK ||
469 	    atif->dev->type == ARPHRD_PPP)
470 		aarp_send_probe_phase1(atif);
471 	else {
472 		unsigned int count;
473 
474 		for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
475 			aarp_send_probe(atif->dev, &atif->address);
476 
477 			/* Defer 1/10th */
478 			msleep(100);
479 
480 			if (atif->status & ATIF_PROBE_FAIL)
481 				break;
482 		}
483 	}
484 }
485 
aarp_proxy_probe_network(struct atalk_iface * atif,struct atalk_addr * sa)486 int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa)
487 {
488 	int hash, retval = -EPROTONOSUPPORT;
489 	struct aarp_entry *entry;
490 	unsigned int count;
491 
492 	/*
493 	 * we don't currently support LocalTalk or PPP for proxy AARP;
494 	 * if someone wants to try and add it, have fun
495 	 */
496 	if (atif->dev->type == ARPHRD_LOCALTLK ||
497 	    atif->dev->type == ARPHRD_PPP)
498 		goto out;
499 
500 	/*
501 	 * create a new AARP entry with the flags set to be published --
502 	 * we need this one to hang around even if it's in use
503 	 */
504 	entry = aarp_alloc();
505 	retval = -ENOMEM;
506 	if (!entry)
507 		goto out;
508 
509 	entry->expires_at = -1;
510 	entry->status = ATIF_PROBE;
511 	entry->target_addr.s_node = sa->s_node;
512 	entry->target_addr.s_net = sa->s_net;
513 	entry->dev = atif->dev;
514 
515 	write_lock_bh(&aarp_lock);
516 
517 	hash = sa->s_node % (AARP_HASH_SIZE - 1);
518 	entry->next = proxies[hash];
519 	proxies[hash] = entry;
520 
521 	for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
522 		aarp_send_probe(atif->dev, sa);
523 
524 		/* Defer 1/10th */
525 		write_unlock_bh(&aarp_lock);
526 		msleep(100);
527 		write_lock_bh(&aarp_lock);
528 
529 		if (entry->status & ATIF_PROBE_FAIL)
530 			break;
531 	}
532 
533 	if (entry->status & ATIF_PROBE_FAIL) {
534 		entry->expires_at = jiffies - 1; /* free the entry */
535 		retval = -EADDRINUSE; /* return network full */
536 	} else { /* clear the probing flag */
537 		entry->status &= ~ATIF_PROBE;
538 		retval = 1;
539 	}
540 
541 	write_unlock_bh(&aarp_lock);
542 out:
543 	return retval;
544 }
545 
546 /* Send a DDP frame */
aarp_send_ddp(struct net_device * dev,struct sk_buff * skb,struct atalk_addr * sa,void * hwaddr)547 int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb,
548 		  struct atalk_addr *sa, void *hwaddr)
549 {
550 	static char ddp_eth_multicast[ETH_ALEN] =
551 		{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
552 	int hash;
553 	struct aarp_entry *a;
554 
555 	skb_reset_network_header(skb);
556 
557 	/* Check for LocalTalk first */
558 	if (dev->type == ARPHRD_LOCALTLK) {
559 		struct atalk_addr *at = atalk_find_dev_addr(dev);
560 		struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
561 		int ft = 2;
562 
563 		/*
564 		 * Compressible ?
565 		 *
566 		 * IFF: src_net == dest_net == device_net
567 		 * (zero matches anything)
568 		 */
569 
570 		if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
571 		    (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
572 			skb_pull(skb, sizeof(*ddp) - 4);
573 
574 			/*
575 			 *	The upper two remaining bytes are the port
576 			 *	numbers	we just happen to need. Now put the
577 			 *	length in the lower two.
578 			 */
579 			*((__be16 *)skb->data) = htons(skb->len);
580 			ft = 1;
581 		}
582 		/*
583 		 * Nice and easy. No AARP type protocols occur here so we can
584 		 * just shovel it out with a 3 byte LLAP header
585 		 */
586 
587 		skb_push(skb, 3);
588 		skb->data[0] = sa->s_node;
589 		skb->data[1] = at->s_node;
590 		skb->data[2] = ft;
591 		skb->dev     = dev;
592 		goto sendit;
593 	}
594 
595 	/* On a PPP link we neither compress nor aarp.  */
596 	if (dev->type == ARPHRD_PPP) {
597 		skb->protocol = htons(ETH_P_PPPTALK);
598 		skb->dev = dev;
599 		goto sendit;
600 	}
601 
602 	/* Non ELAP we cannot do. */
603 	if (dev->type != ARPHRD_ETHER)
604 		goto free_it;
605 
606 	skb->dev = dev;
607 	skb->protocol = htons(ETH_P_ATALK);
608 	hash = sa->s_node % (AARP_HASH_SIZE - 1);
609 
610 	/* Do we have a resolved entry? */
611 	if (sa->s_node == ATADDR_BCAST) {
612 		/* Send it */
613 		ddp_dl->request(ddp_dl, skb, ddp_eth_multicast);
614 		goto sent;
615 	}
616 
617 	write_lock_bh(&aarp_lock);
618 	a = __aarp_find_entry(resolved[hash], dev, sa);
619 
620 	if (a) { /* Return 1 and fill in the address */
621 		a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10);
622 		ddp_dl->request(ddp_dl, skb, a->hwaddr);
623 		write_unlock_bh(&aarp_lock);
624 		goto sent;
625 	}
626 
627 	/* Do we have an unresolved entry: This is the less common path */
628 	a = __aarp_find_entry(unresolved[hash], dev, sa);
629 	if (a) { /* Queue onto the unresolved queue */
630 		skb_queue_tail(&a->packet_queue, skb);
631 		goto out_unlock;
632 	}
633 
634 	/* Allocate a new entry */
635 	a = aarp_alloc();
636 	if (!a) {
637 		/* Whoops slipped... good job it's an unreliable protocol 8) */
638 		write_unlock_bh(&aarp_lock);
639 		goto free_it;
640 	}
641 
642 	/* Set up the queue */
643 	skb_queue_tail(&a->packet_queue, skb);
644 	a->expires_at	 = jiffies + sysctl_aarp_resolve_time;
645 	a->dev		 = dev;
646 	a->next		 = unresolved[hash];
647 	a->target_addr	 = *sa;
648 	a->xmit_count	 = 0;
649 	unresolved[hash] = a;
650 	unresolved_count++;
651 
652 	/* Send an initial request for the address */
653 	__aarp_send_query(a);
654 
655 	/*
656 	 * Switch to fast timer if needed (That is if this is the first
657 	 * unresolved entry to get added)
658 	 */
659 
660 	if (unresolved_count == 1)
661 		mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
662 
663 	/* Now finally, it is safe to drop the lock. */
664 out_unlock:
665 	write_unlock_bh(&aarp_lock);
666 
667 	/* Tell the ddp layer we have taken over for this frame. */
668 	goto sent;
669 
670 sendit:
671 	if (skb->sk)
672 		skb->priority = skb->sk->sk_priority;
673 	if (dev_queue_xmit(skb))
674 		goto drop;
675 sent:
676 	return NET_XMIT_SUCCESS;
677 free_it:
678 	kfree_skb(skb);
679 drop:
680 	return NET_XMIT_DROP;
681 }
682 EXPORT_SYMBOL(aarp_send_ddp);
683 
684 /*
685  *	An entry in the aarp unresolved queue has become resolved. Send
686  *	all the frames queued under it.
687  *
688  *	Must run under aarp_lock.
689  */
__aarp_resolved(struct aarp_entry ** list,struct aarp_entry * a,int hash)690 static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
691 			    int hash)
692 {
693 	struct sk_buff *skb;
694 
695 	while (*list)
696 		if (*list == a) {
697 			unresolved_count--;
698 			*list = a->next;
699 
700 			/* Move into the resolved list */
701 			a->next = resolved[hash];
702 			resolved[hash] = a;
703 
704 			/* Kick frames off */
705 			while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
706 				a->expires_at = jiffies +
707 						sysctl_aarp_expiry_time * 10;
708 				ddp_dl->request(ddp_dl, skb, a->hwaddr);
709 			}
710 		} else
711 			list = &((*list)->next);
712 }
713 
714 /*
715  *	This is called by the SNAP driver whenever we see an AARP SNAP
716  *	frame. We currently only support Ethernet.
717  */
aarp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)718 static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
719 		    struct packet_type *pt, struct net_device *orig_dev)
720 {
721 	struct elapaarp *ea = aarp_hdr(skb);
722 	int hash, ret = 0;
723 	__u16 function;
724 	struct aarp_entry *a;
725 	struct atalk_addr sa, *ma, da;
726 	struct atalk_iface *ifa;
727 
728 	if (!net_eq(dev_net(dev), &init_net))
729 		goto out0;
730 
731 	/* We only do Ethernet SNAP AARP. */
732 	if (dev->type != ARPHRD_ETHER)
733 		goto out0;
734 
735 	/* Frame size ok? */
736 	if (!skb_pull(skb, sizeof(*ea)))
737 		goto out0;
738 
739 	function = ntohs(ea->function);
740 
741 	/* Sanity check fields. */
742 	if (function < AARP_REQUEST || function > AARP_PROBE ||
743 	    ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
744 	    ea->pa_src_zero || ea->pa_dst_zero)
745 		goto out0;
746 
747 	/* Looks good. */
748 	hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
749 
750 	/* Build an address. */
751 	sa.s_node = ea->pa_src_node;
752 	sa.s_net = ea->pa_src_net;
753 
754 	/* Process the packet. Check for replies of me. */
755 	ifa = atalk_find_dev(dev);
756 	if (!ifa)
757 		goto out1;
758 
759 	if (ifa->status & ATIF_PROBE &&
760 	    ifa->address.s_node == ea->pa_dst_node &&
761 	    ifa->address.s_net == ea->pa_dst_net) {
762 		ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
763 		goto out1;
764 	}
765 
766 	/* Check for replies of proxy AARP entries */
767 	da.s_node = ea->pa_dst_node;
768 	da.s_net  = ea->pa_dst_net;
769 
770 	write_lock_bh(&aarp_lock);
771 	a = __aarp_find_entry(proxies[hash], dev, &da);
772 
773 	if (a && a->status & ATIF_PROBE) {
774 		a->status |= ATIF_PROBE_FAIL;
775 		/*
776 		 * we do not respond to probe or request packets for
777 		 * this address while we are probing this address
778 		 */
779 		goto unlock;
780 	}
781 
782 	switch (function) {
783 	case AARP_REPLY:
784 		if (!unresolved_count)	/* Speed up */
785 			break;
786 
787 		/* Find the entry.  */
788 		a = __aarp_find_entry(unresolved[hash], dev, &sa);
789 		if (!a || dev != a->dev)
790 			break;
791 
792 		/* We can fill one in - this is good. */
793 		memcpy(a->hwaddr, ea->hw_src, ETH_ALEN);
794 		__aarp_resolved(&unresolved[hash], a, hash);
795 		if (!unresolved_count)
796 			mod_timer(&aarp_timer,
797 				  jiffies + sysctl_aarp_expiry_time);
798 		break;
799 
800 	case AARP_REQUEST:
801 	case AARP_PROBE:
802 
803 		/*
804 		 * If it is my address set ma to my address and reply.
805 		 * We can treat probe and request the same.  Probe
806 		 * simply means we shouldn't cache the querying host,
807 		 * as in a probe they are proposing an address not
808 		 * using one.
809 		 *
810 		 * Support for proxy-AARP added. We check if the
811 		 * address is one of our proxies before we toss the
812 		 * packet out.
813 		 */
814 
815 		sa.s_node = ea->pa_dst_node;
816 		sa.s_net  = ea->pa_dst_net;
817 
818 		/* See if we have a matching proxy. */
819 		ma = __aarp_proxy_find(dev, &sa);
820 		if (!ma)
821 			ma = &ifa->address;
822 		else { /* We need to make a copy of the entry. */
823 			da.s_node = sa.s_node;
824 			da.s_net = sa.s_net;
825 			ma = &da;
826 		}
827 
828 		if (function == AARP_PROBE) {
829 			/*
830 			 * A probe implies someone trying to get an
831 			 * address. So as a precaution flush any
832 			 * entries we have for this address.
833 			 */
834 			a = __aarp_find_entry(resolved[sa.s_node %
835 						       (AARP_HASH_SIZE - 1)],
836 					      skb->dev, &sa);
837 
838 			/*
839 			 * Make it expire next tick - that avoids us
840 			 * getting into a probe/flush/learn/probe/
841 			 * flush/learn cycle during probing of a slow
842 			 * to respond host addr.
843 			 */
844 			if (a) {
845 				a->expires_at = jiffies - 1;
846 				mod_timer(&aarp_timer, jiffies +
847 					  sysctl_aarp_tick_time);
848 			}
849 		}
850 
851 		if (sa.s_node != ma->s_node)
852 			break;
853 
854 		if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
855 			break;
856 
857 		sa.s_node = ea->pa_src_node;
858 		sa.s_net = ea->pa_src_net;
859 
860 		/* aarp_my_address has found the address to use for us.
861 		 */
862 		aarp_send_reply(dev, ma, &sa, ea->hw_src);
863 		break;
864 	}
865 
866 unlock:
867 	write_unlock_bh(&aarp_lock);
868 out1:
869 	ret = 1;
870 out0:
871 	kfree_skb(skb);
872 	return ret;
873 }
874 
875 static struct notifier_block aarp_notifier = {
876 	.notifier_call = aarp_device_event,
877 };
878 
879 static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
880 
aarp_proto_init(void)881 void __init aarp_proto_init(void)
882 {
883 	aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
884 	if (!aarp_dl)
885 		printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
886 	setup_timer(&aarp_timer, aarp_expire_timeout, 0);
887 	aarp_timer.expires  = jiffies + sysctl_aarp_expiry_time;
888 	add_timer(&aarp_timer);
889 	register_netdevice_notifier(&aarp_notifier);
890 }
891 
892 /* Remove the AARP entries associated with a device. */
aarp_device_down(struct net_device * dev)893 void aarp_device_down(struct net_device *dev)
894 {
895 	int ct;
896 
897 	write_lock_bh(&aarp_lock);
898 
899 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
900 		__aarp_expire_device(&resolved[ct], dev);
901 		__aarp_expire_device(&unresolved[ct], dev);
902 		__aarp_expire_device(&proxies[ct], dev);
903 	}
904 
905 	write_unlock_bh(&aarp_lock);
906 }
907 
908 #ifdef CONFIG_PROC_FS
909 struct aarp_iter_state {
910 	int bucket;
911 	struct aarp_entry **table;
912 };
913 
914 /*
915  * Get the aarp entry that is in the chain described
916  * by the iterator.
917  * If pos is set then skip till that index.
918  * pos = 1 is the first entry
919  */
iter_next(struct aarp_iter_state * iter,loff_t * pos)920 static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos)
921 {
922 	int ct = iter->bucket;
923 	struct aarp_entry **table = iter->table;
924 	loff_t off = 0;
925 	struct aarp_entry *entry;
926 
927  rescan:
928 	while(ct < AARP_HASH_SIZE) {
929 		for (entry = table[ct]; entry; entry = entry->next) {
930 			if (!pos || ++off == *pos) {
931 				iter->table = table;
932 				iter->bucket = ct;
933 				return entry;
934 			}
935 		}
936 		++ct;
937 	}
938 
939 	if (table == resolved) {
940 		ct = 0;
941 		table = unresolved;
942 		goto rescan;
943 	}
944 	if (table == unresolved) {
945 		ct = 0;
946 		table = proxies;
947 		goto rescan;
948 	}
949 	return NULL;
950 }
951 
aarp_seq_start(struct seq_file * seq,loff_t * pos)952 static void *aarp_seq_start(struct seq_file *seq, loff_t *pos)
953 	__acquires(aarp_lock)
954 {
955 	struct aarp_iter_state *iter = seq->private;
956 
957 	read_lock_bh(&aarp_lock);
958 	iter->table     = resolved;
959 	iter->bucket    = 0;
960 
961 	return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN;
962 }
963 
aarp_seq_next(struct seq_file * seq,void * v,loff_t * pos)964 static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
965 {
966 	struct aarp_entry *entry = v;
967 	struct aarp_iter_state *iter = seq->private;
968 
969 	++*pos;
970 
971 	/* first line after header */
972 	if (v == SEQ_START_TOKEN)
973 		entry = iter_next(iter, NULL);
974 
975 	/* next entry in current bucket */
976 	else if (entry->next)
977 		entry = entry->next;
978 
979 	/* next bucket or table */
980 	else {
981 		++iter->bucket;
982 		entry = iter_next(iter, NULL);
983 	}
984 	return entry;
985 }
986 
aarp_seq_stop(struct seq_file * seq,void * v)987 static void aarp_seq_stop(struct seq_file *seq, void *v)
988 	__releases(aarp_lock)
989 {
990 	read_unlock_bh(&aarp_lock);
991 }
992 
dt2str(unsigned long ticks)993 static const char *dt2str(unsigned long ticks)
994 {
995 	static char buf[32];
996 
997 	sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ);
998 
999 	return buf;
1000 }
1001 
aarp_seq_show(struct seq_file * seq,void * v)1002 static int aarp_seq_show(struct seq_file *seq, void *v)
1003 {
1004 	struct aarp_iter_state *iter = seq->private;
1005 	struct aarp_entry *entry = v;
1006 	unsigned long now = jiffies;
1007 
1008 	if (v == SEQ_START_TOKEN)
1009 		seq_puts(seq,
1010 			 "Address  Interface   Hardware Address"
1011 			 "   Expires LastSend  Retry Status\n");
1012 	else {
1013 		seq_printf(seq, "%04X:%02X  %-12s",
1014 			   ntohs(entry->target_addr.s_net),
1015 			   (unsigned int) entry->target_addr.s_node,
1016 			   entry->dev ? entry->dev->name : "????");
1017 		seq_printf(seq, "%pM", entry->hwaddr);
1018 		seq_printf(seq, " %8s",
1019 			   dt2str((long)entry->expires_at - (long)now));
1020 		if (iter->table == unresolved)
1021 			seq_printf(seq, " %8s %6hu",
1022 				   dt2str(now - entry->last_sent),
1023 				   entry->xmit_count);
1024 		else
1025 			seq_puts(seq, "                ");
1026 		seq_printf(seq, " %s\n",
1027 			   (iter->table == resolved) ? "resolved"
1028 			   : (iter->table == unresolved) ? "unresolved"
1029 			   : (iter->table == proxies) ? "proxies"
1030 			   : "unknown");
1031 	}
1032 	return 0;
1033 }
1034 
1035 static const struct seq_operations aarp_seq_ops = {
1036 	.start  = aarp_seq_start,
1037 	.next   = aarp_seq_next,
1038 	.stop   = aarp_seq_stop,
1039 	.show   = aarp_seq_show,
1040 };
1041 
aarp_seq_open(struct inode * inode,struct file * file)1042 static int aarp_seq_open(struct inode *inode, struct file *file)
1043 {
1044 	return seq_open_private(file, &aarp_seq_ops,
1045 			sizeof(struct aarp_iter_state));
1046 }
1047 
1048 const struct file_operations atalk_seq_arp_fops = {
1049 	.owner		= THIS_MODULE,
1050 	.open           = aarp_seq_open,
1051 	.read           = seq_read,
1052 	.llseek         = seq_lseek,
1053 	.release	= seq_release_private,
1054 };
1055 #endif
1056 
1057 /* General module cleanup. Called from cleanup_module() in ddp.c. */
aarp_cleanup_module(void)1058 void aarp_cleanup_module(void)
1059 {
1060 	del_timer_sync(&aarp_timer);
1061 	unregister_netdevice_notifier(&aarp_notifier);
1062 	unregister_snap_client(aarp_dl);
1063 	aarp_purge();
1064 }
1065