1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
60 
61 #include "kprobes-common.h"
62 
63 void jprobe_return_end(void);
64 
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67 
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
72 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
73 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
74 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
75 	 << (row % 32))
76 	/*
77 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 	 * Groups, and some special opcodes can not boost.
79 	 * This is non-const and volatile to keep gcc from statically
80 	 * optimizing it out, as variable_test_bit makes gcc think only
81 	 * *(unsigned long*) is used.
82 	 */
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
85 	/*      ----------------------------------------------          */
86 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
88 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
102 	/*      -----------------------------------------------         */
103 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
104 };
105 #undef W
106 
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 	{"__switch_to", }, /* This function switches only current task, but
109 			      doesn't switch kernel stack.*/
110 	{NULL, NULL}	/* Terminator */
111 };
112 
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114 
__synthesize_relative_insn(void * from,void * to,u8 op)115 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
116 {
117 	struct __arch_relative_insn {
118 		u8 op;
119 		s32 raddr;
120 	} __attribute__((packed)) *insn;
121 
122 	insn = (struct __arch_relative_insn *)from;
123 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
124 	insn->op = op;
125 }
126 
127 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)128 void __kprobes synthesize_reljump(void *from, void *to)
129 {
130 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
131 }
132 
133 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)134 void __kprobes synthesize_relcall(void *from, void *to)
135 {
136 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
137 }
138 
139 /*
140  * Skip the prefixes of the instruction.
141  */
skip_prefixes(kprobe_opcode_t * insn)142 static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
143 {
144 	insn_attr_t attr;
145 
146 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
147 	while (inat_is_legacy_prefix(attr)) {
148 		insn++;
149 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 	}
151 #ifdef CONFIG_X86_64
152 	if (inat_is_rex_prefix(attr))
153 		insn++;
154 #endif
155 	return insn;
156 }
157 
158 /*
159  * Returns non-zero if opcode is boostable.
160  * RIP relative instructions are adjusted at copying time in 64 bits mode
161  */
can_boost(kprobe_opcode_t * opcodes)162 int __kprobes can_boost(kprobe_opcode_t *opcodes)
163 {
164 	kprobe_opcode_t opcode;
165 	kprobe_opcode_t *orig_opcodes = opcodes;
166 
167 	if (search_exception_tables((unsigned long)opcodes))
168 		return 0;	/* Page fault may occur on this address. */
169 
170 retry:
171 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
172 		return 0;
173 	opcode = *(opcodes++);
174 
175 	/* 2nd-byte opcode */
176 	if (opcode == 0x0f) {
177 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
178 			return 0;
179 		return test_bit(*opcodes,
180 				(unsigned long *)twobyte_is_boostable);
181 	}
182 
183 	switch (opcode & 0xf0) {
184 #ifdef CONFIG_X86_64
185 	case 0x40:
186 		goto retry; /* REX prefix is boostable */
187 #endif
188 	case 0x60:
189 		if (0x63 < opcode && opcode < 0x67)
190 			goto retry; /* prefixes */
191 		/* can't boost Address-size override and bound */
192 		return (opcode != 0x62 && opcode != 0x67);
193 	case 0x70:
194 		return 0; /* can't boost conditional jump */
195 	case 0xc0:
196 		/* can't boost software-interruptions */
197 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
198 	case 0xd0:
199 		/* can boost AA* and XLAT */
200 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
201 	case 0xe0:
202 		/* can boost in/out and absolute jmps */
203 		return ((opcode & 0x04) || opcode == 0xea);
204 	case 0xf0:
205 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
206 			goto retry; /* lock/rep(ne) prefix */
207 		/* clear and set flags are boostable */
208 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
209 	default:
210 		/* segment override prefixes are boostable */
211 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
212 			goto retry; /* prefixes */
213 		/* CS override prefix and call are not boostable */
214 		return (opcode != 0x2e && opcode != 0x9a);
215 	}
216 }
217 
218 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)219 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
220 {
221 	struct kprobe *kp;
222 
223 	kp = get_kprobe((void *)addr);
224 	/* There is no probe, return original address */
225 	if (!kp)
226 		return addr;
227 
228 	/*
229 	 *  Basically, kp->ainsn.insn has an original instruction.
230 	 *  However, RIP-relative instruction can not do single-stepping
231 	 *  at different place, __copy_instruction() tweaks the displacement of
232 	 *  that instruction. In that case, we can't recover the instruction
233 	 *  from the kp->ainsn.insn.
234 	 *
235 	 *  On the other hand, kp->opcode has a copy of the first byte of
236 	 *  the probed instruction, which is overwritten by int3. And
237 	 *  the instruction at kp->addr is not modified by kprobes except
238 	 *  for the first byte, we can recover the original instruction
239 	 *  from it and kp->opcode.
240 	 */
241 	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
242 	buf[0] = kp->opcode;
243 	return (unsigned long)buf;
244 }
245 
246 /*
247  * Recover the probed instruction at addr for further analysis.
248  * Caller must lock kprobes by kprobe_mutex, or disable preemption
249  * for preventing to release referencing kprobes.
250  */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)251 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
252 {
253 	unsigned long __addr;
254 
255 	__addr = __recover_optprobed_insn(buf, addr);
256 	if (__addr != addr)
257 		return __addr;
258 
259 	return __recover_probed_insn(buf, addr);
260 }
261 
262 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)263 static int __kprobes can_probe(unsigned long paddr)
264 {
265 	unsigned long addr, __addr, offset = 0;
266 	struct insn insn;
267 	kprobe_opcode_t buf[MAX_INSN_SIZE];
268 
269 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
270 		return 0;
271 
272 	/* Decode instructions */
273 	addr = paddr - offset;
274 	while (addr < paddr) {
275 		/*
276 		 * Check if the instruction has been modified by another
277 		 * kprobe, in which case we replace the breakpoint by the
278 		 * original instruction in our buffer.
279 		 * Also, jump optimization will change the breakpoint to
280 		 * relative-jump. Since the relative-jump itself is
281 		 * normally used, we just go through if there is no kprobe.
282 		 */
283 		__addr = recover_probed_instruction(buf, addr);
284 		kernel_insn_init(&insn, (void *)__addr);
285 		insn_get_length(&insn);
286 
287 		/*
288 		 * Another debugging subsystem might insert this breakpoint.
289 		 * In that case, we can't recover it.
290 		 */
291 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
292 			return 0;
293 		addr += insn.length;
294 	}
295 
296 	return (addr == paddr);
297 }
298 
299 /*
300  * Returns non-zero if opcode modifies the interrupt flag.
301  */
is_IF_modifier(kprobe_opcode_t * insn)302 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
303 {
304 	/* Skip prefixes */
305 	insn = skip_prefixes(insn);
306 
307 	switch (*insn) {
308 	case 0xfa:		/* cli */
309 	case 0xfb:		/* sti */
310 	case 0xcf:		/* iret/iretd */
311 	case 0x9d:		/* popf/popfd */
312 		return 1;
313 	}
314 
315 	return 0;
316 }
317 
318 /*
319  * Copy an instruction and adjust the displacement if the instruction
320  * uses the %rip-relative addressing mode.
321  * If it does, Return the address of the 32-bit displacement word.
322  * If not, return null.
323  * Only applicable to 64-bit x86.
324  */
__copy_instruction(u8 * dest,u8 * src)325 int __kprobes __copy_instruction(u8 *dest, u8 *src)
326 {
327 	struct insn insn;
328 	kprobe_opcode_t buf[MAX_INSN_SIZE];
329 
330 	kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
331 	insn_get_length(&insn);
332 	/* Another subsystem puts a breakpoint, failed to recover */
333 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
334 		return 0;
335 	memcpy(dest, insn.kaddr, insn.length);
336 
337 #ifdef CONFIG_X86_64
338 	if (insn_rip_relative(&insn)) {
339 		s64 newdisp;
340 		u8 *disp;
341 		kernel_insn_init(&insn, dest);
342 		insn_get_displacement(&insn);
343 		/*
344 		 * The copied instruction uses the %rip-relative addressing
345 		 * mode.  Adjust the displacement for the difference between
346 		 * the original location of this instruction and the location
347 		 * of the copy that will actually be run.  The tricky bit here
348 		 * is making sure that the sign extension happens correctly in
349 		 * this calculation, since we need a signed 32-bit result to
350 		 * be sign-extended to 64 bits when it's added to the %rip
351 		 * value and yield the same 64-bit result that the sign-
352 		 * extension of the original signed 32-bit displacement would
353 		 * have given.
354 		 */
355 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
356 		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
357 		disp = (u8 *) dest + insn_offset_displacement(&insn);
358 		*(s32 *) disp = (s32) newdisp;
359 	}
360 #endif
361 	return insn.length;
362 }
363 
arch_copy_kprobe(struct kprobe * p)364 static void __kprobes arch_copy_kprobe(struct kprobe *p)
365 {
366 	/* Copy an instruction with recovering if other optprobe modifies it.*/
367 	__copy_instruction(p->ainsn.insn, p->addr);
368 
369 	/*
370 	 * __copy_instruction can modify the displacement of the instruction,
371 	 * but it doesn't affect boostable check.
372 	 */
373 	if (can_boost(p->ainsn.insn))
374 		p->ainsn.boostable = 0;
375 	else
376 		p->ainsn.boostable = -1;
377 
378 	/* Also, displacement change doesn't affect the first byte */
379 	p->opcode = p->ainsn.insn[0];
380 }
381 
arch_prepare_kprobe(struct kprobe * p)382 int __kprobes arch_prepare_kprobe(struct kprobe *p)
383 {
384 	if (alternatives_text_reserved(p->addr, p->addr))
385 		return -EINVAL;
386 
387 	if (!can_probe((unsigned long)p->addr))
388 		return -EILSEQ;
389 	/* insn: must be on special executable page on x86. */
390 	p->ainsn.insn = get_insn_slot();
391 	if (!p->ainsn.insn)
392 		return -ENOMEM;
393 	arch_copy_kprobe(p);
394 	return 0;
395 }
396 
arch_arm_kprobe(struct kprobe * p)397 void __kprobes arch_arm_kprobe(struct kprobe *p)
398 {
399 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
400 }
401 
arch_disarm_kprobe(struct kprobe * p)402 void __kprobes arch_disarm_kprobe(struct kprobe *p)
403 {
404 	text_poke(p->addr, &p->opcode, 1);
405 }
406 
arch_remove_kprobe(struct kprobe * p)407 void __kprobes arch_remove_kprobe(struct kprobe *p)
408 {
409 	if (p->ainsn.insn) {
410 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
411 		p->ainsn.insn = NULL;
412 	}
413 }
414 
save_previous_kprobe(struct kprobe_ctlblk * kcb)415 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
416 {
417 	kcb->prev_kprobe.kp = kprobe_running();
418 	kcb->prev_kprobe.status = kcb->kprobe_status;
419 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
420 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
421 }
422 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)423 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
424 {
425 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
426 	kcb->kprobe_status = kcb->prev_kprobe.status;
427 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
428 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
429 }
430 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)431 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
432 				struct kprobe_ctlblk *kcb)
433 {
434 	__this_cpu_write(current_kprobe, p);
435 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
436 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
437 	if (is_IF_modifier(p->ainsn.insn))
438 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
439 }
440 
clear_btf(void)441 static void __kprobes clear_btf(void)
442 {
443 	if (test_thread_flag(TIF_BLOCKSTEP)) {
444 		unsigned long debugctl = get_debugctlmsr();
445 
446 		debugctl &= ~DEBUGCTLMSR_BTF;
447 		update_debugctlmsr(debugctl);
448 	}
449 }
450 
restore_btf(void)451 static void __kprobes restore_btf(void)
452 {
453 	if (test_thread_flag(TIF_BLOCKSTEP)) {
454 		unsigned long debugctl = get_debugctlmsr();
455 
456 		debugctl |= DEBUGCTLMSR_BTF;
457 		update_debugctlmsr(debugctl);
458 	}
459 }
460 
461 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)462 arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
463 {
464 	unsigned long *sara = stack_addr(regs);
465 
466 	ri->ret_addr = (kprobe_opcode_t *) *sara;
467 
468 	/* Replace the return addr with trampoline addr */
469 	*sara = (unsigned long) &kretprobe_trampoline;
470 }
471 
472 static void __kprobes
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)473 setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
474 {
475 	if (setup_detour_execution(p, regs, reenter))
476 		return;
477 
478 #if !defined(CONFIG_PREEMPT)
479 	if (p->ainsn.boostable == 1 && !p->post_handler) {
480 		/* Boost up -- we can execute copied instructions directly */
481 		if (!reenter)
482 			reset_current_kprobe();
483 		/*
484 		 * Reentering boosted probe doesn't reset current_kprobe,
485 		 * nor set current_kprobe, because it doesn't use single
486 		 * stepping.
487 		 */
488 		regs->ip = (unsigned long)p->ainsn.insn;
489 		preempt_enable_no_resched();
490 		return;
491 	}
492 #endif
493 	if (reenter) {
494 		save_previous_kprobe(kcb);
495 		set_current_kprobe(p, regs, kcb);
496 		kcb->kprobe_status = KPROBE_REENTER;
497 	} else
498 		kcb->kprobe_status = KPROBE_HIT_SS;
499 	/* Prepare real single stepping */
500 	clear_btf();
501 	regs->flags |= X86_EFLAGS_TF;
502 	regs->flags &= ~X86_EFLAGS_IF;
503 	/* single step inline if the instruction is an int3 */
504 	if (p->opcode == BREAKPOINT_INSTRUCTION)
505 		regs->ip = (unsigned long)p->addr;
506 	else
507 		regs->ip = (unsigned long)p->ainsn.insn;
508 }
509 
510 /*
511  * We have reentered the kprobe_handler(), since another probe was hit while
512  * within the handler. We save the original kprobes variables and just single
513  * step on the instruction of the new probe without calling any user handlers.
514  */
515 static int __kprobes
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)516 reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
517 {
518 	switch (kcb->kprobe_status) {
519 	case KPROBE_HIT_SSDONE:
520 	case KPROBE_HIT_ACTIVE:
521 		kprobes_inc_nmissed_count(p);
522 		setup_singlestep(p, regs, kcb, 1);
523 		break;
524 	case KPROBE_HIT_SS:
525 		/* A probe has been hit in the codepath leading up to, or just
526 		 * after, single-stepping of a probed instruction. This entire
527 		 * codepath should strictly reside in .kprobes.text section.
528 		 * Raise a BUG or we'll continue in an endless reentering loop
529 		 * and eventually a stack overflow.
530 		 */
531 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
532 		       p->addr);
533 		dump_kprobe(p);
534 		BUG();
535 	default:
536 		/* impossible cases */
537 		WARN_ON(1);
538 		return 0;
539 	}
540 
541 	return 1;
542 }
543 
544 /*
545  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
546  * remain disabled throughout this function.
547  */
kprobe_handler(struct pt_regs * regs)548 static int __kprobes kprobe_handler(struct pt_regs *regs)
549 {
550 	kprobe_opcode_t *addr;
551 	struct kprobe *p;
552 	struct kprobe_ctlblk *kcb;
553 
554 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
555 	/*
556 	 * We don't want to be preempted for the entire
557 	 * duration of kprobe processing. We conditionally
558 	 * re-enable preemption at the end of this function,
559 	 * and also in reenter_kprobe() and setup_singlestep().
560 	 */
561 	preempt_disable();
562 
563 	kcb = get_kprobe_ctlblk();
564 	p = get_kprobe(addr);
565 
566 	if (p) {
567 		if (kprobe_running()) {
568 			if (reenter_kprobe(p, regs, kcb))
569 				return 1;
570 		} else {
571 			set_current_kprobe(p, regs, kcb);
572 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
573 
574 			/*
575 			 * If we have no pre-handler or it returned 0, we
576 			 * continue with normal processing.  If we have a
577 			 * pre-handler and it returned non-zero, it prepped
578 			 * for calling the break_handler below on re-entry
579 			 * for jprobe processing, so get out doing nothing
580 			 * more here.
581 			 */
582 			if (!p->pre_handler || !p->pre_handler(p, regs))
583 				setup_singlestep(p, regs, kcb, 0);
584 			return 1;
585 		}
586 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
587 		/*
588 		 * The breakpoint instruction was removed right
589 		 * after we hit it.  Another cpu has removed
590 		 * either a probepoint or a debugger breakpoint
591 		 * at this address.  In either case, no further
592 		 * handling of this interrupt is appropriate.
593 		 * Back up over the (now missing) int3 and run
594 		 * the original instruction.
595 		 */
596 		regs->ip = (unsigned long)addr;
597 		preempt_enable_no_resched();
598 		return 1;
599 	} else if (kprobe_running()) {
600 		p = __this_cpu_read(current_kprobe);
601 		if (p->break_handler && p->break_handler(p, regs)) {
602 			setup_singlestep(p, regs, kcb, 0);
603 			return 1;
604 		}
605 	} /* else: not a kprobe fault; let the kernel handle it */
606 
607 	preempt_enable_no_resched();
608 	return 0;
609 }
610 
611 /*
612  * When a retprobed function returns, this code saves registers and
613  * calls trampoline_handler() runs, which calls the kretprobe's handler.
614  */
kretprobe_trampoline_holder(void)615 static void __used __kprobes kretprobe_trampoline_holder(void)
616 {
617 	asm volatile (
618 			".global kretprobe_trampoline\n"
619 			"kretprobe_trampoline: \n"
620 #ifdef CONFIG_X86_64
621 			/* We don't bother saving the ss register */
622 			"	pushq %rsp\n"
623 			"	pushfq\n"
624 			SAVE_REGS_STRING
625 			"	movq %rsp, %rdi\n"
626 			"	call trampoline_handler\n"
627 			/* Replace saved sp with true return address. */
628 			"	movq %rax, 152(%rsp)\n"
629 			RESTORE_REGS_STRING
630 			"	popfq\n"
631 #else
632 			"	pushf\n"
633 			SAVE_REGS_STRING
634 			"	movl %esp, %eax\n"
635 			"	call trampoline_handler\n"
636 			/* Move flags to cs */
637 			"	movl 56(%esp), %edx\n"
638 			"	movl %edx, 52(%esp)\n"
639 			/* Replace saved flags with true return address. */
640 			"	movl %eax, 56(%esp)\n"
641 			RESTORE_REGS_STRING
642 			"	popf\n"
643 #endif
644 			"	ret\n");
645 }
646 
647 /*
648  * Called from kretprobe_trampoline
649  */
trampoline_handler(struct pt_regs * regs)650 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
651 {
652 	struct kretprobe_instance *ri = NULL;
653 	struct hlist_head *head, empty_rp;
654 	struct hlist_node *node, *tmp;
655 	unsigned long flags, orig_ret_address = 0;
656 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
657 	kprobe_opcode_t *correct_ret_addr = NULL;
658 
659 	INIT_HLIST_HEAD(&empty_rp);
660 	kretprobe_hash_lock(current, &head, &flags);
661 	/* fixup registers */
662 #ifdef CONFIG_X86_64
663 	regs->cs = __KERNEL_CS;
664 #else
665 	regs->cs = __KERNEL_CS | get_kernel_rpl();
666 	regs->gs = 0;
667 #endif
668 	regs->ip = trampoline_address;
669 	regs->orig_ax = ~0UL;
670 
671 	/*
672 	 * It is possible to have multiple instances associated with a given
673 	 * task either because multiple functions in the call path have
674 	 * return probes installed on them, and/or more than one
675 	 * return probe was registered for a target function.
676 	 *
677 	 * We can handle this because:
678 	 *     - instances are always pushed into the head of the list
679 	 *     - when multiple return probes are registered for the same
680 	 *	 function, the (chronologically) first instance's ret_addr
681 	 *	 will be the real return address, and all the rest will
682 	 *	 point to kretprobe_trampoline.
683 	 */
684 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
685 		if (ri->task != current)
686 			/* another task is sharing our hash bucket */
687 			continue;
688 
689 		orig_ret_address = (unsigned long)ri->ret_addr;
690 
691 		if (orig_ret_address != trampoline_address)
692 			/*
693 			 * This is the real return address. Any other
694 			 * instances associated with this task are for
695 			 * other calls deeper on the call stack
696 			 */
697 			break;
698 	}
699 
700 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
701 
702 	correct_ret_addr = ri->ret_addr;
703 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
704 		if (ri->task != current)
705 			/* another task is sharing our hash bucket */
706 			continue;
707 
708 		orig_ret_address = (unsigned long)ri->ret_addr;
709 		if (ri->rp && ri->rp->handler) {
710 			__this_cpu_write(current_kprobe, &ri->rp->kp);
711 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
712 			ri->ret_addr = correct_ret_addr;
713 			ri->rp->handler(ri, regs);
714 			__this_cpu_write(current_kprobe, NULL);
715 		}
716 
717 		recycle_rp_inst(ri, &empty_rp);
718 
719 		if (orig_ret_address != trampoline_address)
720 			/*
721 			 * This is the real return address. Any other
722 			 * instances associated with this task are for
723 			 * other calls deeper on the call stack
724 			 */
725 			break;
726 	}
727 
728 	kretprobe_hash_unlock(current, &flags);
729 
730 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
731 		hlist_del(&ri->hlist);
732 		kfree(ri);
733 	}
734 	return (void *)orig_ret_address;
735 }
736 
737 /*
738  * Called after single-stepping.  p->addr is the address of the
739  * instruction whose first byte has been replaced by the "int 3"
740  * instruction.  To avoid the SMP problems that can occur when we
741  * temporarily put back the original opcode to single-step, we
742  * single-stepped a copy of the instruction.  The address of this
743  * copy is p->ainsn.insn.
744  *
745  * This function prepares to return from the post-single-step
746  * interrupt.  We have to fix up the stack as follows:
747  *
748  * 0) Except in the case of absolute or indirect jump or call instructions,
749  * the new ip is relative to the copied instruction.  We need to make
750  * it relative to the original instruction.
751  *
752  * 1) If the single-stepped instruction was pushfl, then the TF and IF
753  * flags are set in the just-pushed flags, and may need to be cleared.
754  *
755  * 2) If the single-stepped instruction was a call, the return address
756  * that is atop the stack is the address following the copied instruction.
757  * We need to make it the address following the original instruction.
758  *
759  * If this is the first time we've single-stepped the instruction at
760  * this probepoint, and the instruction is boostable, boost it: add a
761  * jump instruction after the copied instruction, that jumps to the next
762  * instruction after the probepoint.
763  */
764 static void __kprobes
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)765 resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
766 {
767 	unsigned long *tos = stack_addr(regs);
768 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
769 	unsigned long orig_ip = (unsigned long)p->addr;
770 	kprobe_opcode_t *insn = p->ainsn.insn;
771 
772 	/* Skip prefixes */
773 	insn = skip_prefixes(insn);
774 
775 	regs->flags &= ~X86_EFLAGS_TF;
776 	switch (*insn) {
777 	case 0x9c:	/* pushfl */
778 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
779 		*tos |= kcb->kprobe_old_flags;
780 		break;
781 	case 0xc2:	/* iret/ret/lret */
782 	case 0xc3:
783 	case 0xca:
784 	case 0xcb:
785 	case 0xcf:
786 	case 0xea:	/* jmp absolute -- ip is correct */
787 		/* ip is already adjusted, no more changes required */
788 		p->ainsn.boostable = 1;
789 		goto no_change;
790 	case 0xe8:	/* call relative - Fix return addr */
791 		*tos = orig_ip + (*tos - copy_ip);
792 		break;
793 #ifdef CONFIG_X86_32
794 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
795 		*tos = orig_ip + (*tos - copy_ip);
796 		goto no_change;
797 #endif
798 	case 0xff:
799 		if ((insn[1] & 0x30) == 0x10) {
800 			/*
801 			 * call absolute, indirect
802 			 * Fix return addr; ip is correct.
803 			 * But this is not boostable
804 			 */
805 			*tos = orig_ip + (*tos - copy_ip);
806 			goto no_change;
807 		} else if (((insn[1] & 0x31) == 0x20) ||
808 			   ((insn[1] & 0x31) == 0x21)) {
809 			/*
810 			 * jmp near and far, absolute indirect
811 			 * ip is correct. And this is boostable
812 			 */
813 			p->ainsn.boostable = 1;
814 			goto no_change;
815 		}
816 	default:
817 		break;
818 	}
819 
820 	if (p->ainsn.boostable == 0) {
821 		if ((regs->ip > copy_ip) &&
822 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
823 			/*
824 			 * These instructions can be executed directly if it
825 			 * jumps back to correct address.
826 			 */
827 			synthesize_reljump((void *)regs->ip,
828 				(void *)orig_ip + (regs->ip - copy_ip));
829 			p->ainsn.boostable = 1;
830 		} else {
831 			p->ainsn.boostable = -1;
832 		}
833 	}
834 
835 	regs->ip += orig_ip - copy_ip;
836 
837 no_change:
838 	restore_btf();
839 }
840 
841 /*
842  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
843  * remain disabled throughout this function.
844  */
post_kprobe_handler(struct pt_regs * regs)845 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
846 {
847 	struct kprobe *cur = kprobe_running();
848 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
849 
850 	if (!cur)
851 		return 0;
852 
853 	resume_execution(cur, regs, kcb);
854 	regs->flags |= kcb->kprobe_saved_flags;
855 
856 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
857 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
858 		cur->post_handler(cur, regs, 0);
859 	}
860 
861 	/* Restore back the original saved kprobes variables and continue. */
862 	if (kcb->kprobe_status == KPROBE_REENTER) {
863 		restore_previous_kprobe(kcb);
864 		goto out;
865 	}
866 	reset_current_kprobe();
867 out:
868 	preempt_enable_no_resched();
869 
870 	/*
871 	 * if somebody else is singlestepping across a probe point, flags
872 	 * will have TF set, in which case, continue the remaining processing
873 	 * of do_debug, as if this is not a probe hit.
874 	 */
875 	if (regs->flags & X86_EFLAGS_TF)
876 		return 0;
877 
878 	return 1;
879 }
880 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)881 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
882 {
883 	struct kprobe *cur = kprobe_running();
884 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
885 
886 	switch (kcb->kprobe_status) {
887 	case KPROBE_HIT_SS:
888 	case KPROBE_REENTER:
889 		/*
890 		 * We are here because the instruction being single
891 		 * stepped caused a page fault. We reset the current
892 		 * kprobe and the ip points back to the probe address
893 		 * and allow the page fault handler to continue as a
894 		 * normal page fault.
895 		 */
896 		regs->ip = (unsigned long)cur->addr;
897 		regs->flags |= kcb->kprobe_old_flags;
898 		if (kcb->kprobe_status == KPROBE_REENTER)
899 			restore_previous_kprobe(kcb);
900 		else
901 			reset_current_kprobe();
902 		preempt_enable_no_resched();
903 		break;
904 	case KPROBE_HIT_ACTIVE:
905 	case KPROBE_HIT_SSDONE:
906 		/*
907 		 * We increment the nmissed count for accounting,
908 		 * we can also use npre/npostfault count for accounting
909 		 * these specific fault cases.
910 		 */
911 		kprobes_inc_nmissed_count(cur);
912 
913 		/*
914 		 * We come here because instructions in the pre/post
915 		 * handler caused the page_fault, this could happen
916 		 * if handler tries to access user space by
917 		 * copy_from_user(), get_user() etc. Let the
918 		 * user-specified handler try to fix it first.
919 		 */
920 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
921 			return 1;
922 
923 		/*
924 		 * In case the user-specified fault handler returned
925 		 * zero, try to fix up.
926 		 */
927 		if (fixup_exception(regs))
928 			return 1;
929 
930 		/*
931 		 * fixup routine could not handle it,
932 		 * Let do_page_fault() fix it.
933 		 */
934 		break;
935 	default:
936 		break;
937 	}
938 	return 0;
939 }
940 
941 /*
942  * Wrapper routine for handling exceptions.
943  */
944 int __kprobes
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)945 kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
946 {
947 	struct die_args *args = data;
948 	int ret = NOTIFY_DONE;
949 
950 	if (args->regs && user_mode_vm(args->regs))
951 		return ret;
952 
953 	switch (val) {
954 	case DIE_INT3:
955 		if (kprobe_handler(args->regs))
956 			ret = NOTIFY_STOP;
957 		break;
958 	case DIE_DEBUG:
959 		if (post_kprobe_handler(args->regs)) {
960 			/*
961 			 * Reset the BS bit in dr6 (pointed by args->err) to
962 			 * denote completion of processing
963 			 */
964 			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
965 			ret = NOTIFY_STOP;
966 		}
967 		break;
968 	case DIE_GPF:
969 		/*
970 		 * To be potentially processing a kprobe fault and to
971 		 * trust the result from kprobe_running(), we have
972 		 * be non-preemptible.
973 		 */
974 		if (!preemptible() && kprobe_running() &&
975 		    kprobe_fault_handler(args->regs, args->trapnr))
976 			ret = NOTIFY_STOP;
977 		break;
978 	default:
979 		break;
980 	}
981 	return ret;
982 }
983 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)984 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
985 {
986 	struct jprobe *jp = container_of(p, struct jprobe, kp);
987 	unsigned long addr;
988 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
989 
990 	kcb->jprobe_saved_regs = *regs;
991 	kcb->jprobe_saved_sp = stack_addr(regs);
992 	addr = (unsigned long)(kcb->jprobe_saved_sp);
993 
994 	/*
995 	 * As Linus pointed out, gcc assumes that the callee
996 	 * owns the argument space and could overwrite it, e.g.
997 	 * tailcall optimization. So, to be absolutely safe
998 	 * we also save and restore enough stack bytes to cover
999 	 * the argument area.
1000 	 */
1001 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1002 	       MIN_STACK_SIZE(addr));
1003 	regs->flags &= ~X86_EFLAGS_IF;
1004 	trace_hardirqs_off();
1005 	regs->ip = (unsigned long)(jp->entry);
1006 	return 1;
1007 }
1008 
jprobe_return(void)1009 void __kprobes jprobe_return(void)
1010 {
1011 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1012 
1013 	asm volatile (
1014 #ifdef CONFIG_X86_64
1015 			"       xchg   %%rbx,%%rsp	\n"
1016 #else
1017 			"       xchgl   %%ebx,%%esp	\n"
1018 #endif
1019 			"       int3			\n"
1020 			"       .globl jprobe_return_end\n"
1021 			"       jprobe_return_end:	\n"
1022 			"       nop			\n"::"b"
1023 			(kcb->jprobe_saved_sp):"memory");
1024 }
1025 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1026 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1027 {
1028 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1029 	u8 *addr = (u8 *) (regs->ip - 1);
1030 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1031 
1032 	if ((addr > (u8 *) jprobe_return) &&
1033 	    (addr < (u8 *) jprobe_return_end)) {
1034 		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1035 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1036 			printk(KERN_ERR
1037 			       "current sp %p does not match saved sp %p\n",
1038 			       stack_addr(regs), kcb->jprobe_saved_sp);
1039 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1040 			show_registers(saved_regs);
1041 			printk(KERN_ERR "Current registers\n");
1042 			show_registers(regs);
1043 			BUG();
1044 		}
1045 		*regs = kcb->jprobe_saved_regs;
1046 		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1047 		       kcb->jprobes_stack,
1048 		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1049 		preempt_enable_no_resched();
1050 		return 1;
1051 	}
1052 	return 0;
1053 }
1054 
arch_init_kprobes(void)1055 int __init arch_init_kprobes(void)
1056 {
1057 	return arch_init_optprobes();
1058 }
1059 
arch_trampoline_kprobe(struct kprobe * p)1060 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1061 {
1062 	return 0;
1063 }
1064