1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
writeback_in_progress(struct backing_dev_info * bdi)67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
inode_to_bdi(struct inode * inode)72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
wb_inode(struct list_head * head)82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
bdi_wakeup_flusher(struct backing_dev_info * bdi)88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
89 {
90 	if (bdi->wb.task) {
91 		wake_up_process(bdi->wb.task);
92 	} else {
93 		/*
94 		 * The bdi thread isn't there, wake up the forker thread which
95 		 * will create and run it.
96 		 */
97 		wake_up_process(default_backing_dev_info.wb.task);
98 	}
99 }
100 
bdi_queue_work(struct backing_dev_info * bdi,struct wb_writeback_work * work)101 static void bdi_queue_work(struct backing_dev_info *bdi,
102 			   struct wb_writeback_work *work)
103 {
104 	trace_writeback_queue(bdi, work);
105 
106 	spin_lock_bh(&bdi->wb_lock);
107 	list_add_tail(&work->list, &bdi->work_list);
108 	if (!bdi->wb.task)
109 		trace_writeback_nothread(bdi, work);
110 	bdi_wakeup_flusher(bdi);
111 	spin_unlock_bh(&bdi->wb_lock);
112 }
113 
114 static void
__bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,bool range_cyclic)115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
116 		      bool range_cyclic)
117 {
118 	struct wb_writeback_work *work;
119 
120 	/*
121 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
122 	 * wakeup the thread for old dirty data writeback
123 	 */
124 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
125 	if (!work) {
126 		if (bdi->wb.task) {
127 			trace_writeback_nowork(bdi);
128 			wake_up_process(bdi->wb.task);
129 		}
130 		return;
131 	}
132 
133 	work->sync_mode	= WB_SYNC_NONE;
134 	work->nr_pages	= nr_pages;
135 	work->range_cyclic = range_cyclic;
136 
137 	bdi_queue_work(bdi, work);
138 }
139 
140 /**
141  * bdi_start_writeback - start writeback
142  * @bdi: the backing device to write from
143  * @nr_pages: the number of pages to write
144  *
145  * Description:
146  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
147  *   started when this function returns, we make no guarantees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  *
150  */
bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages)151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153 	__bdi_start_writeback(bdi, nr_pages, true);
154 }
155 
156 /**
157  * bdi_start_background_writeback - start background writeback
158  * @bdi: the backing device to write from
159  *
160  * Description:
161  *   This makes sure WB_SYNC_NONE background writeback happens. When
162  *   this function returns, it is only guaranteed that for given BDI
163  *   some IO is happening if we are over background dirty threshold.
164  *   Caller need not hold sb s_umount semaphore.
165  */
bdi_start_background_writeback(struct backing_dev_info * bdi)166 void bdi_start_background_writeback(struct backing_dev_info *bdi)
167 {
168 	/*
169 	 * We just wake up the flusher thread. It will perform background
170 	 * writeback as soon as there is no other work to do.
171 	 */
172 	trace_writeback_wake_background(bdi);
173 	spin_lock_bh(&bdi->wb_lock);
174 	bdi_wakeup_flusher(bdi);
175 	spin_unlock_bh(&bdi->wb_lock);
176 }
177 
178 /*
179  * Remove the inode from the writeback list it is on.
180  */
inode_wb_list_del(struct inode * inode)181 void inode_wb_list_del(struct inode *inode)
182 {
183 	spin_lock(&inode_wb_list_lock);
184 	list_del_init(&inode->i_wb_list);
185 	spin_unlock(&inode_wb_list_lock);
186 }
187 
188 
189 /*
190  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
191  * furthest end of its superblock's dirty-inode list.
192  *
193  * Before stamping the inode's ->dirtied_when, we check to see whether it is
194  * already the most-recently-dirtied inode on the b_dirty list.  If that is
195  * the case then the inode must have been redirtied while it was being written
196  * out and we don't reset its dirtied_when.
197  */
redirty_tail(struct inode * inode)198 static void redirty_tail(struct inode *inode)
199 {
200 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
201 
202 	assert_spin_locked(&inode_wb_list_lock);
203 	if (!list_empty(&wb->b_dirty)) {
204 		struct inode *tail;
205 
206 		tail = wb_inode(wb->b_dirty.next);
207 		if (time_before(inode->dirtied_when, tail->dirtied_when))
208 			inode->dirtied_when = jiffies;
209 	}
210 	list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212 
213 /*
214  * requeue inode for re-scanning after bdi->b_io list is exhausted.
215  */
requeue_io(struct inode * inode)216 static void requeue_io(struct inode *inode)
217 {
218 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
219 
220 	assert_spin_locked(&inode_wb_list_lock);
221 	list_move(&inode->i_wb_list, &wb->b_more_io);
222 }
223 
inode_sync_complete(struct inode * inode)224 static void inode_sync_complete(struct inode *inode)
225 {
226 	/*
227 	 * Prevent speculative execution through
228 	 * spin_unlock(&inode_wb_list_lock);
229 	 */
230 
231 	smp_mb();
232 	wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234 
inode_dirtied_after(struct inode * inode,unsigned long t)235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 	bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 	/*
240 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 	 * It _appears_ to be in the future, but is actually in distant past.
242 	 * This test is necessary to prevent such wrapped-around relative times
243 	 * from permanently stopping the whole bdi writeback.
244 	 */
245 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 	return ret;
248 }
249 
250 /*
251  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
252  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long * older_than_this)253 static void move_expired_inodes(struct list_head *delaying_queue,
254 			       struct list_head *dispatch_queue,
255 				unsigned long *older_than_this)
256 {
257 	LIST_HEAD(tmp);
258 	struct list_head *pos, *node;
259 	struct super_block *sb = NULL;
260 	struct inode *inode;
261 	int do_sb_sort = 0;
262 
263 	while (!list_empty(delaying_queue)) {
264 		inode = wb_inode(delaying_queue->prev);
265 		if (older_than_this &&
266 		    inode_dirtied_after(inode, *older_than_this))
267 			break;
268 		if (sb && sb != inode->i_sb)
269 			do_sb_sort = 1;
270 		sb = inode->i_sb;
271 		list_move(&inode->i_wb_list, &tmp);
272 	}
273 
274 	/* just one sb in list, splice to dispatch_queue and we're done */
275 	if (!do_sb_sort) {
276 		list_splice(&tmp, dispatch_queue);
277 		return;
278 	}
279 
280 	/* Move inodes from one superblock together */
281 	while (!list_empty(&tmp)) {
282 		sb = wb_inode(tmp.prev)->i_sb;
283 		list_for_each_prev_safe(pos, node, &tmp) {
284 			inode = wb_inode(pos);
285 			if (inode->i_sb == sb)
286 				list_move(&inode->i_wb_list, dispatch_queue);
287 		}
288 	}
289 }
290 
291 /*
292  * Queue all expired dirty inodes for io, eldest first.
293  * Before
294  *         newly dirtied     b_dirty    b_io    b_more_io
295  *         =============>    gf         edc     BA
296  * After
297  *         newly dirtied     b_dirty    b_io    b_more_io
298  *         =============>    g          fBAedc
299  *                                           |
300  *                                           +--> dequeue for IO
301  */
queue_io(struct bdi_writeback * wb,unsigned long * older_than_this)302 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
303 {
304 	assert_spin_locked(&inode_wb_list_lock);
305 	list_splice_init(&wb->b_more_io, &wb->b_io);
306 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
307 }
308 
write_inode(struct inode * inode,struct writeback_control * wbc)309 static int write_inode(struct inode *inode, struct writeback_control *wbc)
310 {
311 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
312 		return inode->i_sb->s_op->write_inode(inode, wbc);
313 	return 0;
314 }
315 
316 /*
317  * Wait for writeback on an inode to complete.
318  */
inode_wait_for_writeback(struct inode * inode)319 static void inode_wait_for_writeback(struct inode *inode)
320 {
321 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322 	wait_queue_head_t *wqh;
323 
324 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325 	while (inode->i_state & I_SYNC) {
326 		spin_unlock(&inode->i_lock);
327 		spin_unlock(&inode_wb_list_lock);
328 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
329 		spin_lock(&inode_wb_list_lock);
330 		spin_lock(&inode->i_lock);
331 	}
332 }
333 
334 /*
335  * Write out an inode's dirty pages.  Called under inode_wb_list_lock and
336  * inode->i_lock.  Either the caller has an active reference on the inode or
337  * the inode has I_WILL_FREE set.
338  *
339  * If `wait' is set, wait on the writeout.
340  *
341  * The whole writeout design is quite complex and fragile.  We want to avoid
342  * starvation of particular inodes when others are being redirtied, prevent
343  * livelocks, etc.
344  */
345 static int
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)346 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
347 {
348 	struct address_space *mapping = inode->i_mapping;
349 	unsigned dirty;
350 	int ret;
351 
352 	assert_spin_locked(&inode_wb_list_lock);
353 	assert_spin_locked(&inode->i_lock);
354 
355 	if (!atomic_read(&inode->i_count))
356 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
357 	else
358 		WARN_ON(inode->i_state & I_WILL_FREE);
359 
360 	if (inode->i_state & I_SYNC) {
361 		/*
362 		 * If this inode is locked for writeback and we are not doing
363 		 * writeback-for-data-integrity, move it to b_more_io so that
364 		 * writeback can proceed with the other inodes on s_io.
365 		 *
366 		 * We'll have another go at writing back this inode when we
367 		 * completed a full scan of b_io.
368 		 */
369 		if (wbc->sync_mode != WB_SYNC_ALL) {
370 			requeue_io(inode);
371 			return 0;
372 		}
373 
374 		/*
375 		 * It's a data-integrity sync.  We must wait.
376 		 */
377 		inode_wait_for_writeback(inode);
378 	}
379 
380 	BUG_ON(inode->i_state & I_SYNC);
381 
382 	/* Set I_SYNC, reset I_DIRTY_PAGES */
383 	inode->i_state |= I_SYNC;
384 	inode->i_state &= ~I_DIRTY_PAGES;
385 	spin_unlock(&inode->i_lock);
386 	spin_unlock(&inode_wb_list_lock);
387 
388 	ret = do_writepages(mapping, wbc);
389 
390 	/*
391 	 * Make sure to wait on the data before writing out the metadata.
392 	 * This is important for filesystems that modify metadata on data
393 	 * I/O completion.
394 	 */
395 	if (wbc->sync_mode == WB_SYNC_ALL) {
396 		int err = filemap_fdatawait(mapping);
397 		if (ret == 0)
398 			ret = err;
399 	}
400 
401 	/*
402 	 * Some filesystems may redirty the inode during the writeback
403 	 * due to delalloc, clear dirty metadata flags right before
404 	 * write_inode()
405 	 */
406 	spin_lock(&inode->i_lock);
407 	dirty = inode->i_state & I_DIRTY;
408 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
409 	spin_unlock(&inode->i_lock);
410 	/* Don't write the inode if only I_DIRTY_PAGES was set */
411 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
412 		int err = write_inode(inode, wbc);
413 		if (ret == 0)
414 			ret = err;
415 	}
416 
417 	spin_lock(&inode_wb_list_lock);
418 	spin_lock(&inode->i_lock);
419 	inode->i_state &= ~I_SYNC;
420 	if (!(inode->i_state & I_FREEING)) {
421 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
422 			/*
423 			 * We didn't write back all the pages.  nfs_writepages()
424 			 * sometimes bales out without doing anything.
425 			 */
426 			inode->i_state |= I_DIRTY_PAGES;
427 			if (wbc->nr_to_write <= 0) {
428 				/*
429 				 * slice used up: queue for next turn
430 				 */
431 				requeue_io(inode);
432 			} else {
433 				/*
434 				 * Writeback blocked by something other than
435 				 * congestion. Delay the inode for some time to
436 				 * avoid spinning on the CPU (100% iowait)
437 				 * retrying writeback of the dirty page/inode
438 				 * that cannot be performed immediately.
439 				 */
440 				redirty_tail(inode);
441 			}
442 		} else if (inode->i_state & I_DIRTY) {
443 			/*
444 			 * Filesystems can dirty the inode during writeback
445 			 * operations, such as delayed allocation during
446 			 * submission or metadata updates after data IO
447 			 * completion.
448 			 */
449 			redirty_tail(inode);
450 		} else {
451 			/*
452 			 * The inode is clean.  At this point we either have
453 			 * a reference to the inode or it's on it's way out.
454 			 * No need to add it back to the LRU.
455 			 */
456 			list_del_init(&inode->i_wb_list);
457 		}
458 	}
459 	inode_sync_complete(inode);
460 	return ret;
461 }
462 
463 /*
464  * For background writeback the caller does not have the sb pinned
465  * before calling writeback. So make sure that we do pin it, so it doesn't
466  * go away while we are writing inodes from it.
467  */
pin_sb_for_writeback(struct super_block * sb)468 static bool pin_sb_for_writeback(struct super_block *sb)
469 {
470 	spin_lock(&sb_lock);
471 	if (list_empty(&sb->s_instances)) {
472 		spin_unlock(&sb_lock);
473 		return false;
474 	}
475 
476 	sb->s_count++;
477 	spin_unlock(&sb_lock);
478 
479 	if (down_read_trylock(&sb->s_umount)) {
480 		if (sb->s_root)
481 			return true;
482 		up_read(&sb->s_umount);
483 	}
484 
485 	put_super(sb);
486 	return false;
487 }
488 
489 /*
490  * Write a portion of b_io inodes which belong to @sb.
491  *
492  * If @only_this_sb is true, then find and write all such
493  * inodes. Otherwise write only ones which go sequentially
494  * in reverse order.
495  *
496  * Return 1, if the caller writeback routine should be
497  * interrupted. Otherwise return 0.
498  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct writeback_control * wbc,bool only_this_sb)499 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
500 		struct writeback_control *wbc, bool only_this_sb)
501 {
502 	while (!list_empty(&wb->b_io)) {
503 		long pages_skipped;
504 		struct inode *inode = wb_inode(wb->b_io.prev);
505 
506 		if (inode->i_sb != sb) {
507 			if (only_this_sb) {
508 				/*
509 				 * We only want to write back data for this
510 				 * superblock, move all inodes not belonging
511 				 * to it back onto the dirty list.
512 				 */
513 				redirty_tail(inode);
514 				continue;
515 			}
516 
517 			/*
518 			 * The inode belongs to a different superblock.
519 			 * Bounce back to the caller to unpin this and
520 			 * pin the next superblock.
521 			 */
522 			return 0;
523 		}
524 
525 		/*
526 		 * Don't bother with new inodes or inodes beeing freed, first
527 		 * kind does not need peridic writeout yet, and for the latter
528 		 * kind writeout is handled by the freer.
529 		 */
530 		spin_lock(&inode->i_lock);
531 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
532 			spin_unlock(&inode->i_lock);
533 			requeue_io(inode);
534 			continue;
535 		}
536 
537 		/*
538 		 * Was this inode dirtied after sync_sb_inodes was called?
539 		 * This keeps sync from extra jobs and livelock.
540 		 */
541 		if (inode_dirtied_after(inode, wbc->wb_start)) {
542 			spin_unlock(&inode->i_lock);
543 			return 1;
544 		}
545 
546 		__iget(inode);
547 
548 		pages_skipped = wbc->pages_skipped;
549 		writeback_single_inode(inode, wbc);
550 		if (wbc->pages_skipped != pages_skipped) {
551 			/*
552 			 * writeback is not making progress due to locked
553 			 * buffers.  Skip this inode for now.
554 			 */
555 			redirty_tail(inode);
556 		}
557 		spin_unlock(&inode->i_lock);
558 		spin_unlock(&inode_wb_list_lock);
559 		iput(inode);
560 		cond_resched();
561 		spin_lock(&inode_wb_list_lock);
562 		if (wbc->nr_to_write <= 0) {
563 			wbc->more_io = 1;
564 			return 1;
565 		}
566 		if (!list_empty(&wb->b_more_io))
567 			wbc->more_io = 1;
568 	}
569 	/* b_io is empty */
570 	return 1;
571 }
572 
writeback_inodes_wb(struct bdi_writeback * wb,struct writeback_control * wbc)573 void writeback_inodes_wb(struct bdi_writeback *wb,
574 		struct writeback_control *wbc)
575 {
576 	int ret = 0;
577 
578 	if (!wbc->wb_start)
579 		wbc->wb_start = jiffies; /* livelock avoidance */
580 	spin_lock(&inode_wb_list_lock);
581 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
582 		queue_io(wb, wbc->older_than_this);
583 
584 	while (!list_empty(&wb->b_io)) {
585 		struct inode *inode = wb_inode(wb->b_io.prev);
586 		struct super_block *sb = inode->i_sb;
587 
588 		if (!pin_sb_for_writeback(sb)) {
589 			requeue_io(inode);
590 			continue;
591 		}
592 		ret = writeback_sb_inodes(sb, wb, wbc, false);
593 		drop_super(sb);
594 
595 		if (ret)
596 			break;
597 	}
598 	spin_unlock(&inode_wb_list_lock);
599 	/* Leave any unwritten inodes on b_io */
600 }
601 
__writeback_inodes_sb(struct super_block * sb,struct bdi_writeback * wb,struct writeback_control * wbc)602 static void __writeback_inodes_sb(struct super_block *sb,
603 		struct bdi_writeback *wb, struct writeback_control *wbc)
604 {
605 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
606 
607 	spin_lock(&inode_wb_list_lock);
608 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
609 		queue_io(wb, wbc->older_than_this);
610 	writeback_sb_inodes(sb, wb, wbc, true);
611 	spin_unlock(&inode_wb_list_lock);
612 }
613 
614 /*
615  * The maximum number of pages to writeout in a single bdi flush/kupdate
616  * operation.  We do this so we don't hold I_SYNC against an inode for
617  * enormous amounts of time, which would block a userspace task which has
618  * been forced to throttle against that inode.  Also, the code reevaluates
619  * the dirty each time it has written this many pages.
620  */
621 #define MAX_WRITEBACK_PAGES     1024
622 
over_bground_thresh(void)623 static inline bool over_bground_thresh(void)
624 {
625 	unsigned long background_thresh, dirty_thresh;
626 
627 	global_dirty_limits(&background_thresh, &dirty_thresh);
628 
629 	return (global_page_state(NR_FILE_DIRTY) +
630 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
631 }
632 
633 /*
634  * Explicit flushing or periodic writeback of "old" data.
635  *
636  * Define "old": the first time one of an inode's pages is dirtied, we mark the
637  * dirtying-time in the inode's address_space.  So this periodic writeback code
638  * just walks the superblock inode list, writing back any inodes which are
639  * older than a specific point in time.
640  *
641  * Try to run once per dirty_writeback_interval.  But if a writeback event
642  * takes longer than a dirty_writeback_interval interval, then leave a
643  * one-second gap.
644  *
645  * older_than_this takes precedence over nr_to_write.  So we'll only write back
646  * all dirty pages if they are all attached to "old" mappings.
647  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)648 static long wb_writeback(struct bdi_writeback *wb,
649 			 struct wb_writeback_work *work)
650 {
651 	struct writeback_control wbc = {
652 		.sync_mode		= work->sync_mode,
653 		.older_than_this	= NULL,
654 		.for_kupdate		= work->for_kupdate,
655 		.for_background		= work->for_background,
656 		.range_cyclic		= work->range_cyclic,
657 	};
658 	unsigned long oldest_jif;
659 	long wrote = 0;
660 	long write_chunk;
661 	struct inode *inode;
662 
663 	if (wbc.for_kupdate) {
664 		wbc.older_than_this = &oldest_jif;
665 		oldest_jif = jiffies -
666 				msecs_to_jiffies(dirty_expire_interval * 10);
667 	}
668 	if (!wbc.range_cyclic) {
669 		wbc.range_start = 0;
670 		wbc.range_end = LLONG_MAX;
671 	}
672 
673 	/*
674 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
675 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
676 	 * here avoids calling into writeback_inodes_wb() more than once.
677 	 *
678 	 * The intended call sequence for WB_SYNC_ALL writeback is:
679 	 *
680 	 *      wb_writeback()
681 	 *          __writeback_inodes_sb()     <== called only once
682 	 *              write_cache_pages()     <== called once for each inode
683 	 *                   (quickly) tag currently dirty pages
684 	 *                   (maybe slowly) sync all tagged pages
685 	 */
686 	if (wbc.sync_mode == WB_SYNC_NONE)
687 		write_chunk = MAX_WRITEBACK_PAGES;
688 	else
689 		write_chunk = LONG_MAX;
690 
691 	wbc.wb_start = jiffies; /* livelock avoidance */
692 	for (;;) {
693 		/*
694 		 * Stop writeback when nr_pages has been consumed
695 		 */
696 		if (work->nr_pages <= 0)
697 			break;
698 
699 		/*
700 		 * Background writeout and kupdate-style writeback may
701 		 * run forever. Stop them if there is other work to do
702 		 * so that e.g. sync can proceed. They'll be restarted
703 		 * after the other works are all done.
704 		 */
705 		if ((work->for_background || work->for_kupdate) &&
706 		    !list_empty(&wb->bdi->work_list))
707 			break;
708 
709 		/*
710 		 * For background writeout, stop when we are below the
711 		 * background dirty threshold
712 		 */
713 		if (work->for_background && !over_bground_thresh())
714 			break;
715 
716 		wbc.more_io = 0;
717 		wbc.nr_to_write = write_chunk;
718 		wbc.pages_skipped = 0;
719 
720 		trace_wbc_writeback_start(&wbc, wb->bdi);
721 		if (work->sb)
722 			__writeback_inodes_sb(work->sb, wb, &wbc);
723 		else
724 			writeback_inodes_wb(wb, &wbc);
725 		trace_wbc_writeback_written(&wbc, wb->bdi);
726 
727 		work->nr_pages -= write_chunk - wbc.nr_to_write;
728 		wrote += write_chunk - wbc.nr_to_write;
729 
730 		/*
731 		 * If we consumed everything, see if we have more
732 		 */
733 		if (wbc.nr_to_write <= 0)
734 			continue;
735 		/*
736 		 * Didn't write everything and we don't have more IO, bail
737 		 */
738 		if (!wbc.more_io)
739 			break;
740 		/*
741 		 * Did we write something? Try for more
742 		 */
743 		if (wbc.nr_to_write < write_chunk)
744 			continue;
745 		/*
746 		 * Nothing written. Wait for some inode to
747 		 * become available for writeback. Otherwise
748 		 * we'll just busyloop.
749 		 */
750 		spin_lock(&inode_wb_list_lock);
751 		if (!list_empty(&wb->b_more_io))  {
752 			inode = wb_inode(wb->b_more_io.prev);
753 			trace_wbc_writeback_wait(&wbc, wb->bdi);
754 			spin_lock(&inode->i_lock);
755 			inode_wait_for_writeback(inode);
756 			spin_unlock(&inode->i_lock);
757 		}
758 		spin_unlock(&inode_wb_list_lock);
759 	}
760 
761 	return wrote;
762 }
763 
764 /*
765  * Return the next wb_writeback_work struct that hasn't been processed yet.
766  */
767 static struct wb_writeback_work *
get_next_work_item(struct backing_dev_info * bdi)768 get_next_work_item(struct backing_dev_info *bdi)
769 {
770 	struct wb_writeback_work *work = NULL;
771 
772 	spin_lock_bh(&bdi->wb_lock);
773 	if (!list_empty(&bdi->work_list)) {
774 		work = list_entry(bdi->work_list.next,
775 				  struct wb_writeback_work, list);
776 		list_del_init(&work->list);
777 	}
778 	spin_unlock_bh(&bdi->wb_lock);
779 	return work;
780 }
781 
782 /*
783  * Add in the number of potentially dirty inodes, because each inode
784  * write can dirty pagecache in the underlying blockdev.
785  */
get_nr_dirty_pages(void)786 static unsigned long get_nr_dirty_pages(void)
787 {
788 	return global_page_state(NR_FILE_DIRTY) +
789 		global_page_state(NR_UNSTABLE_NFS) +
790 		get_nr_dirty_inodes();
791 }
792 
wb_check_background_flush(struct bdi_writeback * wb)793 static long wb_check_background_flush(struct bdi_writeback *wb)
794 {
795 	if (over_bground_thresh()) {
796 
797 		struct wb_writeback_work work = {
798 			.nr_pages	= LONG_MAX,
799 			.sync_mode	= WB_SYNC_NONE,
800 			.for_background	= 1,
801 			.range_cyclic	= 1,
802 		};
803 
804 		return wb_writeback(wb, &work);
805 	}
806 
807 	return 0;
808 }
809 
wb_check_old_data_flush(struct bdi_writeback * wb)810 static long wb_check_old_data_flush(struct bdi_writeback *wb)
811 {
812 	unsigned long expired;
813 	long nr_pages;
814 
815 	/*
816 	 * When set to zero, disable periodic writeback
817 	 */
818 	if (!dirty_writeback_interval)
819 		return 0;
820 
821 	expired = wb->last_old_flush +
822 			msecs_to_jiffies(dirty_writeback_interval * 10);
823 	if (time_before(jiffies, expired))
824 		return 0;
825 
826 	wb->last_old_flush = jiffies;
827 	nr_pages = get_nr_dirty_pages();
828 
829 	if (nr_pages) {
830 		struct wb_writeback_work work = {
831 			.nr_pages	= nr_pages,
832 			.sync_mode	= WB_SYNC_NONE,
833 			.for_kupdate	= 1,
834 			.range_cyclic	= 1,
835 		};
836 
837 		return wb_writeback(wb, &work);
838 	}
839 
840 	return 0;
841 }
842 
843 /*
844  * Retrieve work items and do the writeback they describe
845  */
wb_do_writeback(struct bdi_writeback * wb,int force_wait)846 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
847 {
848 	struct backing_dev_info *bdi = wb->bdi;
849 	struct wb_writeback_work *work;
850 	long wrote = 0;
851 
852 	set_bit(BDI_writeback_running, &wb->bdi->state);
853 	while ((work = get_next_work_item(bdi)) != NULL) {
854 		/*
855 		 * Override sync mode, in case we must wait for completion
856 		 * because this thread is exiting now.
857 		 */
858 		if (force_wait)
859 			work->sync_mode = WB_SYNC_ALL;
860 
861 		trace_writeback_exec(bdi, work);
862 
863 		wrote += wb_writeback(wb, work);
864 
865 		/*
866 		 * Notify the caller of completion if this is a synchronous
867 		 * work item, otherwise just free it.
868 		 */
869 		if (work->done)
870 			complete(work->done);
871 		else
872 			kfree(work);
873 	}
874 
875 	/*
876 	 * Check for periodic writeback, kupdated() style
877 	 */
878 	wrote += wb_check_old_data_flush(wb);
879 	wrote += wb_check_background_flush(wb);
880 	clear_bit(BDI_writeback_running, &wb->bdi->state);
881 
882 	return wrote;
883 }
884 
885 /*
886  * Handle writeback of dirty data for the device backed by this bdi. Also
887  * wakes up periodically and does kupdated style flushing.
888  */
bdi_writeback_thread(void * data)889 int bdi_writeback_thread(void *data)
890 {
891 	struct bdi_writeback *wb = data;
892 	struct backing_dev_info *bdi = wb->bdi;
893 	long pages_written;
894 
895 	current->flags |= PF_SWAPWRITE;
896 	set_freezable();
897 	wb->last_active = jiffies;
898 
899 	/*
900 	 * Our parent may run at a different priority, just set us to normal
901 	 */
902 	set_user_nice(current, 0);
903 
904 	trace_writeback_thread_start(bdi);
905 
906 	while (!kthread_should_stop()) {
907 		/*
908 		 * Remove own delayed wake-up timer, since we are already awake
909 		 * and we'll take care of the preriodic write-back.
910 		 */
911 		del_timer(&wb->wakeup_timer);
912 
913 		pages_written = wb_do_writeback(wb, 0);
914 
915 		trace_writeback_pages_written(pages_written);
916 
917 		if (pages_written)
918 			wb->last_active = jiffies;
919 
920 		set_current_state(TASK_INTERRUPTIBLE);
921 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
922 			__set_current_state(TASK_RUNNING);
923 			continue;
924 		}
925 
926 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
927 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
928 		else {
929 			/*
930 			 * We have nothing to do, so can go sleep without any
931 			 * timeout and save power. When a work is queued or
932 			 * something is made dirty - we will be woken up.
933 			 */
934 			schedule();
935 		}
936 
937 		try_to_freeze();
938 	}
939 
940 	/* Flush any work that raced with us exiting */
941 	if (!list_empty(&bdi->work_list))
942 		wb_do_writeback(wb, 1);
943 
944 	trace_writeback_thread_stop(bdi);
945 	return 0;
946 }
947 
948 
949 /*
950  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
951  * the whole world.
952  */
wakeup_flusher_threads(long nr_pages)953 void wakeup_flusher_threads(long nr_pages)
954 {
955 	struct backing_dev_info *bdi;
956 
957 	if (!nr_pages) {
958 		nr_pages = global_page_state(NR_FILE_DIRTY) +
959 				global_page_state(NR_UNSTABLE_NFS);
960 	}
961 
962 	rcu_read_lock();
963 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
964 		if (!bdi_has_dirty_io(bdi))
965 			continue;
966 		__bdi_start_writeback(bdi, nr_pages, false);
967 	}
968 	rcu_read_unlock();
969 }
970 
block_dump___mark_inode_dirty(struct inode * inode)971 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
972 {
973 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
974 		struct dentry *dentry;
975 		const char *name = "?";
976 
977 		dentry = d_find_alias(inode);
978 		if (dentry) {
979 			spin_lock(&dentry->d_lock);
980 			name = (const char *) dentry->d_name.name;
981 		}
982 		printk(KERN_DEBUG
983 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
984 		       current->comm, task_pid_nr(current), inode->i_ino,
985 		       name, inode->i_sb->s_id);
986 		if (dentry) {
987 			spin_unlock(&dentry->d_lock);
988 			dput(dentry);
989 		}
990 	}
991 }
992 
993 /**
994  *	__mark_inode_dirty -	internal function
995  *	@inode: inode to mark
996  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
997  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
998  *  	mark_inode_dirty_sync.
999  *
1000  * Put the inode on the super block's dirty list.
1001  *
1002  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1003  * dirty list only if it is hashed or if it refers to a blockdev.
1004  * If it was not hashed, it will never be added to the dirty list
1005  * even if it is later hashed, as it will have been marked dirty already.
1006  *
1007  * In short, make sure you hash any inodes _before_ you start marking
1008  * them dirty.
1009  *
1010  * This function *must* be atomic for the I_DIRTY_PAGES case -
1011  * set_page_dirty() is called under spinlock in several places.
1012  *
1013  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1014  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1015  * the kernel-internal blockdev inode represents the dirtying time of the
1016  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1017  * page->mapping->host, so the page-dirtying time is recorded in the internal
1018  * blockdev inode.
1019  */
__mark_inode_dirty(struct inode * inode,int flags)1020 void __mark_inode_dirty(struct inode *inode, int flags)
1021 {
1022 	struct super_block *sb = inode->i_sb;
1023 	struct backing_dev_info *bdi = NULL;
1024 
1025 	/*
1026 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1027 	 * dirty the inode itself
1028 	 */
1029 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1030 		if (sb->s_op->dirty_inode)
1031 			sb->s_op->dirty_inode(inode);
1032 	}
1033 
1034 	/*
1035 	 * make sure that changes are seen by all cpus before we test i_state
1036 	 * -- mikulas
1037 	 */
1038 	smp_mb();
1039 
1040 	/* avoid the locking if we can */
1041 	if ((inode->i_state & flags) == flags)
1042 		return;
1043 
1044 	if (unlikely(block_dump))
1045 		block_dump___mark_inode_dirty(inode);
1046 
1047 	spin_lock(&inode->i_lock);
1048 	if ((inode->i_state & flags) != flags) {
1049 		const int was_dirty = inode->i_state & I_DIRTY;
1050 
1051 		inode->i_state |= flags;
1052 
1053 		/*
1054 		 * If the inode is being synced, just update its dirty state.
1055 		 * The unlocker will place the inode on the appropriate
1056 		 * superblock list, based upon its state.
1057 		 */
1058 		if (inode->i_state & I_SYNC)
1059 			goto out_unlock_inode;
1060 
1061 		/*
1062 		 * Only add valid (hashed) inodes to the superblock's
1063 		 * dirty list.  Add blockdev inodes as well.
1064 		 */
1065 		if (!S_ISBLK(inode->i_mode)) {
1066 			if (inode_unhashed(inode))
1067 				goto out_unlock_inode;
1068 		}
1069 		if (inode->i_state & I_FREEING)
1070 			goto out_unlock_inode;
1071 
1072 		/*
1073 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1074 		 * reposition it (that would break b_dirty time-ordering).
1075 		 */
1076 		if (!was_dirty) {
1077 			bool wakeup_bdi = false;
1078 			bdi = inode_to_bdi(inode);
1079 
1080 			if (bdi_cap_writeback_dirty(bdi)) {
1081 				WARN(!test_bit(BDI_registered, &bdi->state),
1082 				     "bdi-%s not registered\n", bdi->name);
1083 
1084 				/*
1085 				 * If this is the first dirty inode for this
1086 				 * bdi, we have to wake-up the corresponding
1087 				 * bdi thread to make sure background
1088 				 * write-back happens later.
1089 				 */
1090 				if (!wb_has_dirty_io(&bdi->wb))
1091 					wakeup_bdi = true;
1092 			}
1093 
1094 			spin_unlock(&inode->i_lock);
1095 			spin_lock(&inode_wb_list_lock);
1096 			inode->dirtied_when = jiffies;
1097 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1098 			spin_unlock(&inode_wb_list_lock);
1099 
1100 			if (wakeup_bdi)
1101 				bdi_wakeup_thread_delayed(bdi);
1102 			return;
1103 		}
1104 	}
1105 out_unlock_inode:
1106 	spin_unlock(&inode->i_lock);
1107 
1108 }
1109 EXPORT_SYMBOL(__mark_inode_dirty);
1110 
1111 /*
1112  * Write out a superblock's list of dirty inodes.  A wait will be performed
1113  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1114  *
1115  * If older_than_this is non-NULL, then only write out inodes which
1116  * had their first dirtying at a time earlier than *older_than_this.
1117  *
1118  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1119  * This function assumes that the blockdev superblock's inodes are backed by
1120  * a variety of queues, so all inodes are searched.  For other superblocks,
1121  * assume that all inodes are backed by the same queue.
1122  *
1123  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1124  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1125  * on the writer throttling path, and we get decent balancing between many
1126  * throttled threads: we don't want them all piling up on inode_sync_wait.
1127  */
wait_sb_inodes(struct super_block * sb)1128 static void wait_sb_inodes(struct super_block *sb)
1129 {
1130 	struct inode *inode, *old_inode = NULL;
1131 
1132 	/*
1133 	 * We need to be protected against the filesystem going from
1134 	 * r/o to r/w or vice versa.
1135 	 */
1136 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1137 
1138 	spin_lock(&inode_sb_list_lock);
1139 
1140 	/*
1141 	 * Data integrity sync. Must wait for all pages under writeback,
1142 	 * because there may have been pages dirtied before our sync
1143 	 * call, but which had writeout started before we write it out.
1144 	 * In which case, the inode may not be on the dirty list, but
1145 	 * we still have to wait for that writeout.
1146 	 */
1147 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1148 		struct address_space *mapping = inode->i_mapping;
1149 
1150 		spin_lock(&inode->i_lock);
1151 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1152 		    (mapping->nrpages == 0)) {
1153 			spin_unlock(&inode->i_lock);
1154 			continue;
1155 		}
1156 		__iget(inode);
1157 		spin_unlock(&inode->i_lock);
1158 		spin_unlock(&inode_sb_list_lock);
1159 
1160 		/*
1161 		 * We hold a reference to 'inode' so it couldn't have been
1162 		 * removed from s_inodes list while we dropped the
1163 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1164 		 * be holding the last reference and we cannot iput it under
1165 		 * inode_sb_list_lock. So we keep the reference and iput it
1166 		 * later.
1167 		 */
1168 		iput(old_inode);
1169 		old_inode = inode;
1170 
1171 		filemap_fdatawait(mapping);
1172 
1173 		cond_resched();
1174 
1175 		spin_lock(&inode_sb_list_lock);
1176 	}
1177 	spin_unlock(&inode_sb_list_lock);
1178 	iput(old_inode);
1179 }
1180 
1181 /**
1182  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1183  * @sb: the superblock
1184  * @nr: the number of pages to write
1185  *
1186  * Start writeback on some inodes on this super_block. No guarantees are made
1187  * on how many (if any) will be written, and this function does not wait
1188  * for IO completion of submitted IO.
1189  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr)1190 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1191 {
1192 	DECLARE_COMPLETION_ONSTACK(done);
1193 	struct wb_writeback_work work = {
1194 		.sb		= sb,
1195 		.sync_mode	= WB_SYNC_NONE,
1196 		.done		= &done,
1197 		.nr_pages	= nr,
1198 	};
1199 
1200 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1201 	bdi_queue_work(sb->s_bdi, &work);
1202 	wait_for_completion(&done);
1203 }
1204 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1205 
1206 /**
1207  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1208  * @sb: the superblock
1209  *
1210  * Start writeback on some inodes on this super_block. No guarantees are made
1211  * on how many (if any) will be written, and this function does not wait
1212  * for IO completion of submitted IO.
1213  */
writeback_inodes_sb(struct super_block * sb)1214 void writeback_inodes_sb(struct super_block *sb)
1215 {
1216 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1217 }
1218 EXPORT_SYMBOL(writeback_inodes_sb);
1219 
1220 /**
1221  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1222  * @sb: the superblock
1223  *
1224  * Invoke writeback_inodes_sb if no writeback is currently underway.
1225  * Returns 1 if writeback was started, 0 if not.
1226  */
writeback_inodes_sb_if_idle(struct super_block * sb)1227 int writeback_inodes_sb_if_idle(struct super_block *sb)
1228 {
1229 	if (!writeback_in_progress(sb->s_bdi)) {
1230 		down_read(&sb->s_umount);
1231 		writeback_inodes_sb(sb);
1232 		up_read(&sb->s_umount);
1233 		return 1;
1234 	} else
1235 		return 0;
1236 }
1237 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1238 
1239 /**
1240  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1241  * @sb: the superblock
1242  * @nr: the number of pages to write
1243  *
1244  * Invoke writeback_inodes_sb if no writeback is currently underway.
1245  * Returns 1 if writeback was started, 0 if not.
1246  */
writeback_inodes_sb_nr_if_idle(struct super_block * sb,unsigned long nr)1247 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1248 				   unsigned long nr)
1249 {
1250 	if (!writeback_in_progress(sb->s_bdi)) {
1251 		down_read(&sb->s_umount);
1252 		writeback_inodes_sb_nr(sb, nr);
1253 		up_read(&sb->s_umount);
1254 		return 1;
1255 	} else
1256 		return 0;
1257 }
1258 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1259 
1260 /**
1261  * sync_inodes_sb	-	sync sb inode pages
1262  * @sb: the superblock
1263  *
1264  * This function writes and waits on any dirty inode belonging to this
1265  * super_block.
1266  */
sync_inodes_sb(struct super_block * sb)1267 void sync_inodes_sb(struct super_block *sb)
1268 {
1269 	DECLARE_COMPLETION_ONSTACK(done);
1270 	struct wb_writeback_work work = {
1271 		.sb		= sb,
1272 		.sync_mode	= WB_SYNC_ALL,
1273 		.nr_pages	= LONG_MAX,
1274 		.range_cyclic	= 0,
1275 		.done		= &done,
1276 	};
1277 
1278 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1279 
1280 	bdi_queue_work(sb->s_bdi, &work);
1281 	wait_for_completion(&done);
1282 
1283 	wait_sb_inodes(sb);
1284 }
1285 EXPORT_SYMBOL(sync_inodes_sb);
1286 
1287 /**
1288  * write_inode_now	-	write an inode to disk
1289  * @inode: inode to write to disk
1290  * @sync: whether the write should be synchronous or not
1291  *
1292  * This function commits an inode to disk immediately if it is dirty. This is
1293  * primarily needed by knfsd.
1294  *
1295  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1296  */
write_inode_now(struct inode * inode,int sync)1297 int write_inode_now(struct inode *inode, int sync)
1298 {
1299 	int ret;
1300 	struct writeback_control wbc = {
1301 		.nr_to_write = LONG_MAX,
1302 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1303 		.range_start = 0,
1304 		.range_end = LLONG_MAX,
1305 	};
1306 
1307 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1308 		wbc.nr_to_write = 0;
1309 
1310 	might_sleep();
1311 	spin_lock(&inode_wb_list_lock);
1312 	spin_lock(&inode->i_lock);
1313 	ret = writeback_single_inode(inode, &wbc);
1314 	spin_unlock(&inode->i_lock);
1315 	spin_unlock(&inode_wb_list_lock);
1316 	if (sync)
1317 		inode_sync_wait(inode);
1318 	return ret;
1319 }
1320 EXPORT_SYMBOL(write_inode_now);
1321 
1322 /**
1323  * sync_inode - write an inode and its pages to disk.
1324  * @inode: the inode to sync
1325  * @wbc: controls the writeback mode
1326  *
1327  * sync_inode() will write an inode and its pages to disk.  It will also
1328  * correctly update the inode on its superblock's dirty inode lists and will
1329  * update inode->i_state.
1330  *
1331  * The caller must have a ref on the inode.
1332  */
sync_inode(struct inode * inode,struct writeback_control * wbc)1333 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1334 {
1335 	int ret;
1336 
1337 	spin_lock(&inode_wb_list_lock);
1338 	spin_lock(&inode->i_lock);
1339 	ret = writeback_single_inode(inode, wbc);
1340 	spin_unlock(&inode->i_lock);
1341 	spin_unlock(&inode_wb_list_lock);
1342 	return ret;
1343 }
1344 EXPORT_SYMBOL(sync_inode);
1345 
1346 /**
1347  * sync_inode_metadata - write an inode to disk
1348  * @inode: the inode to sync
1349  * @wait: wait for I/O to complete.
1350  *
1351  * Write an inode to disk and adjust its dirty state after completion.
1352  *
1353  * Note: only writes the actual inode, no associated data or other metadata.
1354  */
sync_inode_metadata(struct inode * inode,int wait)1355 int sync_inode_metadata(struct inode *inode, int wait)
1356 {
1357 	struct writeback_control wbc = {
1358 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1359 		.nr_to_write = 0, /* metadata-only */
1360 	};
1361 
1362 	return sync_inode(inode, &wbc);
1363 }
1364 EXPORT_SYMBOL(sync_inode_metadata);
1365