1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 /*
39  *	The swap map is a data structure used for keeping track of each page
40  *	written to a swap partition.  It consists of many swap_map_page
41  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42  *	These structures are stored on the swap and linked together with the
43  *	help of the .next_swap member.
44  *
45  *	The swap map is created during suspend.  The swap map pages are
46  *	allocated and populated one at a time, so we only need one memory
47  *	page to set up the entire structure.
48  *
49  *	During resume we pick up all swap_map_page structures into a list.
50  */
51 
52 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
53 
54 /*
55  * Number of free pages that are not high.
56  */
low_free_pages(void)57 static inline unsigned long low_free_pages(void)
58 {
59 	return nr_free_pages() - nr_free_highpages();
60 }
61 
62 /*
63  * Number of pages required to be kept free while writing the image. Always
64  * half of all available low pages before the writing starts.
65  */
reqd_free_pages(void)66 static inline unsigned long reqd_free_pages(void)
67 {
68 	return low_free_pages() / 2;
69 }
70 
71 struct swap_map_page {
72 	sector_t entries[MAP_PAGE_ENTRIES];
73 	sector_t next_swap;
74 };
75 
76 struct swap_map_page_list {
77 	struct swap_map_page *map;
78 	struct swap_map_page_list *next;
79 };
80 
81 /**
82  *	The swap_map_handle structure is used for handling swap in
83  *	a file-alike way
84  */
85 
86 struct swap_map_handle {
87 	struct swap_map_page *cur;
88 	struct swap_map_page_list *maps;
89 	sector_t cur_swap;
90 	sector_t first_sector;
91 	unsigned int k;
92 	unsigned long reqd_free_pages;
93 	u32 crc32;
94 };
95 
96 struct swsusp_header {
97 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
98 	              sizeof(u32)];
99 	u32	crc32;
100 	sector_t image;
101 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
102 	char	orig_sig[10];
103 	char	sig[10];
104 } __attribute__((packed));
105 
106 static struct swsusp_header *swsusp_header;
107 
108 /**
109  *	The following functions are used for tracing the allocated
110  *	swap pages, so that they can be freed in case of an error.
111  */
112 
113 struct swsusp_extent {
114 	struct rb_node node;
115 	unsigned long start;
116 	unsigned long end;
117 };
118 
119 static struct rb_root swsusp_extents = RB_ROOT;
120 
swsusp_extents_insert(unsigned long swap_offset)121 static int swsusp_extents_insert(unsigned long swap_offset)
122 {
123 	struct rb_node **new = &(swsusp_extents.rb_node);
124 	struct rb_node *parent = NULL;
125 	struct swsusp_extent *ext;
126 
127 	/* Figure out where to put the new node */
128 	while (*new) {
129 		ext = container_of(*new, struct swsusp_extent, node);
130 		parent = *new;
131 		if (swap_offset < ext->start) {
132 			/* Try to merge */
133 			if (swap_offset == ext->start - 1) {
134 				ext->start--;
135 				return 0;
136 			}
137 			new = &((*new)->rb_left);
138 		} else if (swap_offset > ext->end) {
139 			/* Try to merge */
140 			if (swap_offset == ext->end + 1) {
141 				ext->end++;
142 				return 0;
143 			}
144 			new = &((*new)->rb_right);
145 		} else {
146 			/* It already is in the tree */
147 			return -EINVAL;
148 		}
149 	}
150 	/* Add the new node and rebalance the tree. */
151 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
152 	if (!ext)
153 		return -ENOMEM;
154 
155 	ext->start = swap_offset;
156 	ext->end = swap_offset;
157 	rb_link_node(&ext->node, parent, new);
158 	rb_insert_color(&ext->node, &swsusp_extents);
159 	return 0;
160 }
161 
162 /**
163  *	alloc_swapdev_block - allocate a swap page and register that it has
164  *	been allocated, so that it can be freed in case of an error.
165  */
166 
alloc_swapdev_block(int swap)167 sector_t alloc_swapdev_block(int swap)
168 {
169 	unsigned long offset;
170 
171 	offset = swp_offset(get_swap_page_of_type(swap));
172 	if (offset) {
173 		if (swsusp_extents_insert(offset))
174 			swap_free(swp_entry(swap, offset));
175 		else
176 			return swapdev_block(swap, offset);
177 	}
178 	return 0;
179 }
180 
181 /**
182  *	free_all_swap_pages - free swap pages allocated for saving image data.
183  *	It also frees the extents used to register which swap entries had been
184  *	allocated.
185  */
186 
free_all_swap_pages(int swap)187 void free_all_swap_pages(int swap)
188 {
189 	struct rb_node *node;
190 
191 	while ((node = swsusp_extents.rb_node)) {
192 		struct swsusp_extent *ext;
193 		unsigned long offset;
194 
195 		ext = container_of(node, struct swsusp_extent, node);
196 		rb_erase(node, &swsusp_extents);
197 		for (offset = ext->start; offset <= ext->end; offset++)
198 			swap_free(swp_entry(swap, offset));
199 
200 		kfree(ext);
201 	}
202 }
203 
swsusp_swap_in_use(void)204 int swsusp_swap_in_use(void)
205 {
206 	return (swsusp_extents.rb_node != NULL);
207 }
208 
209 /*
210  * General things
211  */
212 
213 static unsigned short root_swap = 0xffff;
214 struct block_device *hib_resume_bdev;
215 
216 /*
217  * Saving part
218  */
219 
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)220 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
221 {
222 	int error;
223 
224 	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
225 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
226 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
227 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
228 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
229 		swsusp_header->image = handle->first_sector;
230 		swsusp_header->flags = flags;
231 		if (flags & SF_CRC32_MODE)
232 			swsusp_header->crc32 = handle->crc32;
233 		error = hib_bio_write_page(swsusp_resume_block,
234 					swsusp_header, NULL);
235 	} else {
236 		printk(KERN_ERR "PM: Swap header not found!\n");
237 		error = -ENODEV;
238 	}
239 	return error;
240 }
241 
242 /**
243  *	swsusp_swap_check - check if the resume device is a swap device
244  *	and get its index (if so)
245  *
246  *	This is called before saving image
247  */
swsusp_swap_check(void)248 static int swsusp_swap_check(void)
249 {
250 	int res;
251 
252 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
253 			&hib_resume_bdev);
254 	if (res < 0)
255 		return res;
256 
257 	root_swap = res;
258 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
259 	if (res)
260 		return res;
261 
262 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
263 	if (res < 0)
264 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
265 
266 	return res;
267 }
268 
269 /**
270  *	write_page - Write one page to given swap location.
271  *	@buf:		Address we're writing.
272  *	@offset:	Offset of the swap page we're writing to.
273  *	@bio_chain:	Link the next write BIO here
274  */
275 
write_page(void * buf,sector_t offset,struct bio ** bio_chain)276 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
277 {
278 	void *src;
279 	int ret;
280 
281 	if (!offset)
282 		return -ENOSPC;
283 
284 	if (bio_chain) {
285 		src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
286 		                              __GFP_NORETRY);
287 		if (src) {
288 			copy_page(src, buf);
289 		} else {
290 			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
291 			if (ret)
292 				return ret;
293 			src = (void *)__get_free_page(__GFP_WAIT |
294 			                              __GFP_NOWARN |
295 			                              __GFP_NORETRY);
296 			if (src) {
297 				copy_page(src, buf);
298 			} else {
299 				WARN_ON_ONCE(1);
300 				bio_chain = NULL;	/* Go synchronous */
301 				src = buf;
302 			}
303 		}
304 	} else {
305 		src = buf;
306 	}
307 	return hib_bio_write_page(offset, src, bio_chain);
308 }
309 
release_swap_writer(struct swap_map_handle * handle)310 static void release_swap_writer(struct swap_map_handle *handle)
311 {
312 	if (handle->cur)
313 		free_page((unsigned long)handle->cur);
314 	handle->cur = NULL;
315 }
316 
get_swap_writer(struct swap_map_handle * handle)317 static int get_swap_writer(struct swap_map_handle *handle)
318 {
319 	int ret;
320 
321 	ret = swsusp_swap_check();
322 	if (ret) {
323 		if (ret != -ENOSPC)
324 			printk(KERN_ERR "PM: Cannot find swap device, try "
325 					"swapon -a.\n");
326 		return ret;
327 	}
328 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
329 	if (!handle->cur) {
330 		ret = -ENOMEM;
331 		goto err_close;
332 	}
333 	handle->cur_swap = alloc_swapdev_block(root_swap);
334 	if (!handle->cur_swap) {
335 		ret = -ENOSPC;
336 		goto err_rel;
337 	}
338 	handle->k = 0;
339 	handle->reqd_free_pages = reqd_free_pages();
340 	handle->first_sector = handle->cur_swap;
341 	return 0;
342 err_rel:
343 	release_swap_writer(handle);
344 err_close:
345 	swsusp_close(FMODE_WRITE);
346 	return ret;
347 }
348 
swap_write_page(struct swap_map_handle * handle,void * buf,struct bio ** bio_chain)349 static int swap_write_page(struct swap_map_handle *handle, void *buf,
350 				struct bio **bio_chain)
351 {
352 	int error = 0;
353 	sector_t offset;
354 
355 	if (!handle->cur)
356 		return -EINVAL;
357 	offset = alloc_swapdev_block(root_swap);
358 	error = write_page(buf, offset, bio_chain);
359 	if (error)
360 		return error;
361 	handle->cur->entries[handle->k++] = offset;
362 	if (handle->k >= MAP_PAGE_ENTRIES) {
363 		offset = alloc_swapdev_block(root_swap);
364 		if (!offset)
365 			return -ENOSPC;
366 		handle->cur->next_swap = offset;
367 		error = write_page(handle->cur, handle->cur_swap, bio_chain);
368 		if (error)
369 			goto out;
370 		clear_page(handle->cur);
371 		handle->cur_swap = offset;
372 		handle->k = 0;
373 
374 		if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
375 			error = hib_wait_on_bio_chain(bio_chain);
376 			if (error)
377 				goto out;
378 			/*
379 			 * Recalculate the number of required free pages, to
380 			 * make sure we never take more than half.
381 			 */
382 			handle->reqd_free_pages = reqd_free_pages();
383 		}
384 	}
385  out:
386 	return error;
387 }
388 
flush_swap_writer(struct swap_map_handle * handle)389 static int flush_swap_writer(struct swap_map_handle *handle)
390 {
391 	if (handle->cur && handle->cur_swap)
392 		return write_page(handle->cur, handle->cur_swap, NULL);
393 	else
394 		return -EINVAL;
395 }
396 
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)397 static int swap_writer_finish(struct swap_map_handle *handle,
398 		unsigned int flags, int error)
399 {
400 	if (!error) {
401 		flush_swap_writer(handle);
402 		printk(KERN_INFO "PM: S");
403 		error = mark_swapfiles(handle, flags);
404 		printk("|\n");
405 	}
406 
407 	if (error)
408 		free_all_swap_pages(root_swap);
409 	release_swap_writer(handle);
410 	swsusp_close(FMODE_WRITE);
411 
412 	return error;
413 }
414 
415 /* We need to remember how much compressed data we need to read. */
416 #define LZO_HEADER	sizeof(size_t)
417 
418 /* Number of pages/bytes we'll compress at one time. */
419 #define LZO_UNC_PAGES	32
420 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
421 
422 /* Number of pages/bytes we need for compressed data (worst case). */
423 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
424 			             LZO_HEADER, PAGE_SIZE)
425 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
426 
427 /* Maximum number of threads for compression/decompression. */
428 #define LZO_THREADS	3
429 
430 /* Minimum/maximum number of pages for read buffering. */
431 #define LZO_MIN_RD_PAGES	1024
432 #define LZO_MAX_RD_PAGES	8192
433 
434 
435 /**
436  *	save_image - save the suspend image data
437  */
438 
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)439 static int save_image(struct swap_map_handle *handle,
440                       struct snapshot_handle *snapshot,
441                       unsigned int nr_to_write)
442 {
443 	unsigned int m;
444 	int ret;
445 	int nr_pages;
446 	int err2;
447 	struct bio *bio;
448 	struct timeval start;
449 	struct timeval stop;
450 
451 	printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
452 		nr_to_write);
453 	m = nr_to_write / 100;
454 	if (!m)
455 		m = 1;
456 	nr_pages = 0;
457 	bio = NULL;
458 	do_gettimeofday(&start);
459 	while (1) {
460 		ret = snapshot_read_next(snapshot);
461 		if (ret <= 0)
462 			break;
463 		ret = swap_write_page(handle, data_of(*snapshot), &bio);
464 		if (ret)
465 			break;
466 		if (!(nr_pages % m))
467 			printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
468 		nr_pages++;
469 	}
470 	err2 = hib_wait_on_bio_chain(&bio);
471 	do_gettimeofday(&stop);
472 	if (!ret)
473 		ret = err2;
474 	if (!ret)
475 		printk(KERN_CONT "\b\b\b\bdone\n");
476 	else
477 		printk(KERN_CONT "\n");
478 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
479 	return ret;
480 }
481 
482 /**
483  * Structure used for CRC32.
484  */
485 struct crc_data {
486 	struct task_struct *thr;                  /* thread */
487 	atomic_t ready;                           /* ready to start flag */
488 	atomic_t stop;                            /* ready to stop flag */
489 	unsigned run_threads;                     /* nr current threads */
490 	wait_queue_head_t go;                     /* start crc update */
491 	wait_queue_head_t done;                   /* crc update done */
492 	u32 *crc32;                               /* points to handle's crc32 */
493 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
494 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
495 };
496 
497 /**
498  * CRC32 update function that runs in its own thread.
499  */
crc32_threadfn(void * data)500 static int crc32_threadfn(void *data)
501 {
502 	struct crc_data *d = data;
503 	unsigned i;
504 
505 	while (1) {
506 		wait_event(d->go, atomic_read(&d->ready) ||
507 		                  kthread_should_stop());
508 		if (kthread_should_stop()) {
509 			d->thr = NULL;
510 			atomic_set(&d->stop, 1);
511 			wake_up(&d->done);
512 			break;
513 		}
514 		atomic_set(&d->ready, 0);
515 
516 		for (i = 0; i < d->run_threads; i++)
517 			*d->crc32 = crc32_le(*d->crc32,
518 			                     d->unc[i], *d->unc_len[i]);
519 		atomic_set(&d->stop, 1);
520 		wake_up(&d->done);
521 	}
522 	return 0;
523 }
524 /**
525  * Structure used for LZO data compression.
526  */
527 struct cmp_data {
528 	struct task_struct *thr;                  /* thread */
529 	atomic_t ready;                           /* ready to start flag */
530 	atomic_t stop;                            /* ready to stop flag */
531 	int ret;                                  /* return code */
532 	wait_queue_head_t go;                     /* start compression */
533 	wait_queue_head_t done;                   /* compression done */
534 	size_t unc_len;                           /* uncompressed length */
535 	size_t cmp_len;                           /* compressed length */
536 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
537 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
538 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
539 };
540 
541 /**
542  * Compression function that runs in its own thread.
543  */
lzo_compress_threadfn(void * data)544 static int lzo_compress_threadfn(void *data)
545 {
546 	struct cmp_data *d = data;
547 
548 	while (1) {
549 		wait_event(d->go, atomic_read(&d->ready) ||
550 		                  kthread_should_stop());
551 		if (kthread_should_stop()) {
552 			d->thr = NULL;
553 			d->ret = -1;
554 			atomic_set(&d->stop, 1);
555 			wake_up(&d->done);
556 			break;
557 		}
558 		atomic_set(&d->ready, 0);
559 
560 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
561 		                          d->cmp + LZO_HEADER, &d->cmp_len,
562 		                          d->wrk);
563 		atomic_set(&d->stop, 1);
564 		wake_up(&d->done);
565 	}
566 	return 0;
567 }
568 
569 /**
570  * save_image_lzo - Save the suspend image data compressed with LZO.
571  * @handle: Swap mam handle to use for saving the image.
572  * @snapshot: Image to read data from.
573  * @nr_to_write: Number of pages to save.
574  */
save_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)575 static int save_image_lzo(struct swap_map_handle *handle,
576                           struct snapshot_handle *snapshot,
577                           unsigned int nr_to_write)
578 {
579 	unsigned int m;
580 	int ret = 0;
581 	int nr_pages;
582 	int err2;
583 	struct bio *bio;
584 	struct timeval start;
585 	struct timeval stop;
586 	size_t off;
587 	unsigned thr, run_threads, nr_threads;
588 	unsigned char *page = NULL;
589 	struct cmp_data *data = NULL;
590 	struct crc_data *crc = NULL;
591 
592 	/*
593 	 * We'll limit the number of threads for compression to limit memory
594 	 * footprint.
595 	 */
596 	nr_threads = num_online_cpus() - 1;
597 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
598 
599 	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
600 	if (!page) {
601 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
602 		ret = -ENOMEM;
603 		goto out_clean;
604 	}
605 
606 	data = vmalloc(sizeof(*data) * nr_threads);
607 	if (!data) {
608 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
609 		ret = -ENOMEM;
610 		goto out_clean;
611 	}
612 	for (thr = 0; thr < nr_threads; thr++)
613 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
614 
615 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
616 	if (!crc) {
617 		printk(KERN_ERR "PM: Failed to allocate crc\n");
618 		ret = -ENOMEM;
619 		goto out_clean;
620 	}
621 	memset(crc, 0, offsetof(struct crc_data, go));
622 
623 	/*
624 	 * Start the compression threads.
625 	 */
626 	for (thr = 0; thr < nr_threads; thr++) {
627 		init_waitqueue_head(&data[thr].go);
628 		init_waitqueue_head(&data[thr].done);
629 
630 		data[thr].thr = kthread_run(lzo_compress_threadfn,
631 		                            &data[thr],
632 		                            "image_compress/%u", thr);
633 		if (IS_ERR(data[thr].thr)) {
634 			data[thr].thr = NULL;
635 			printk(KERN_ERR
636 			       "PM: Cannot start compression threads\n");
637 			ret = -ENOMEM;
638 			goto out_clean;
639 		}
640 	}
641 
642 	/*
643 	 * Start the CRC32 thread.
644 	 */
645 	init_waitqueue_head(&crc->go);
646 	init_waitqueue_head(&crc->done);
647 
648 	handle->crc32 = 0;
649 	crc->crc32 = &handle->crc32;
650 	for (thr = 0; thr < nr_threads; thr++) {
651 		crc->unc[thr] = data[thr].unc;
652 		crc->unc_len[thr] = &data[thr].unc_len;
653 	}
654 
655 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
656 	if (IS_ERR(crc->thr)) {
657 		crc->thr = NULL;
658 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
659 		ret = -ENOMEM;
660 		goto out_clean;
661 	}
662 
663 	/*
664 	 * Adjust the number of required free pages after all allocations have
665 	 * been done. We don't want to run out of pages when writing.
666 	 */
667 	handle->reqd_free_pages = reqd_free_pages();
668 
669 	printk(KERN_INFO
670 		"PM: Using %u thread(s) for compression.\n"
671 		"PM: Compressing and saving image data (%u pages) ...     ",
672 		nr_threads, nr_to_write);
673 	m = nr_to_write / 100;
674 	if (!m)
675 		m = 1;
676 	nr_pages = 0;
677 	bio = NULL;
678 	do_gettimeofday(&start);
679 	for (;;) {
680 		for (thr = 0; thr < nr_threads; thr++) {
681 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
682 				ret = snapshot_read_next(snapshot);
683 				if (ret < 0)
684 					goto out_finish;
685 
686 				if (!ret)
687 					break;
688 
689 				memcpy(data[thr].unc + off,
690 				       data_of(*snapshot), PAGE_SIZE);
691 
692 				if (!(nr_pages % m))
693 					printk(KERN_CONT "\b\b\b\b%3d%%",
694 				               nr_pages / m);
695 				nr_pages++;
696 			}
697 			if (!off)
698 				break;
699 
700 			data[thr].unc_len = off;
701 
702 			atomic_set(&data[thr].ready, 1);
703 			wake_up(&data[thr].go);
704 		}
705 
706 		if (!thr)
707 			break;
708 
709 		crc->run_threads = thr;
710 		atomic_set(&crc->ready, 1);
711 		wake_up(&crc->go);
712 
713 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
714 			wait_event(data[thr].done,
715 			           atomic_read(&data[thr].stop));
716 			atomic_set(&data[thr].stop, 0);
717 
718 			ret = data[thr].ret;
719 
720 			if (ret < 0) {
721 				printk(KERN_ERR "PM: LZO compression failed\n");
722 				goto out_finish;
723 			}
724 
725 			if (unlikely(!data[thr].cmp_len ||
726 			             data[thr].cmp_len >
727 			             lzo1x_worst_compress(data[thr].unc_len))) {
728 				printk(KERN_ERR
729 				       "PM: Invalid LZO compressed length\n");
730 				ret = -1;
731 				goto out_finish;
732 			}
733 
734 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
735 
736 			/*
737 			 * Given we are writing one page at a time to disk, we
738 			 * copy that much from the buffer, although the last
739 			 * bit will likely be smaller than full page. This is
740 			 * OK - we saved the length of the compressed data, so
741 			 * any garbage at the end will be discarded when we
742 			 * read it.
743 			 */
744 			for (off = 0;
745 			     off < LZO_HEADER + data[thr].cmp_len;
746 			     off += PAGE_SIZE) {
747 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
748 
749 				ret = swap_write_page(handle, page, &bio);
750 				if (ret)
751 					goto out_finish;
752 			}
753 		}
754 
755 		wait_event(crc->done, atomic_read(&crc->stop));
756 		atomic_set(&crc->stop, 0);
757 	}
758 
759 out_finish:
760 	err2 = hib_wait_on_bio_chain(&bio);
761 	do_gettimeofday(&stop);
762 	if (!ret)
763 		ret = err2;
764 	if (!ret) {
765 		printk(KERN_CONT "\b\b\b\bdone\n");
766 	} else {
767 		printk(KERN_CONT "\n");
768 	}
769 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
770 out_clean:
771 	if (crc) {
772 		if (crc->thr)
773 			kthread_stop(crc->thr);
774 		kfree(crc);
775 	}
776 	if (data) {
777 		for (thr = 0; thr < nr_threads; thr++)
778 			if (data[thr].thr)
779 				kthread_stop(data[thr].thr);
780 		vfree(data);
781 	}
782 	if (page) free_page((unsigned long)page);
783 
784 	return ret;
785 }
786 
787 /**
788  *	enough_swap - Make sure we have enough swap to save the image.
789  *
790  *	Returns TRUE or FALSE after checking the total amount of swap
791  *	space avaiable from the resume partition.
792  */
793 
enough_swap(unsigned int nr_pages,unsigned int flags)794 static int enough_swap(unsigned int nr_pages, unsigned int flags)
795 {
796 	unsigned int free_swap = count_swap_pages(root_swap, 1);
797 	unsigned int required;
798 
799 	pr_debug("PM: Free swap pages: %u\n", free_swap);
800 
801 	required = PAGES_FOR_IO + nr_pages;
802 	return free_swap > required;
803 }
804 
805 /**
806  *	swsusp_write - Write entire image and metadata.
807  *	@flags: flags to pass to the "boot" kernel in the image header
808  *
809  *	It is important _NOT_ to umount filesystems at this point. We want
810  *	them synced (in case something goes wrong) but we DO not want to mark
811  *	filesystem clean: it is not. (And it does not matter, if we resume
812  *	correctly, we'll mark system clean, anyway.)
813  */
814 
swsusp_write(unsigned int flags)815 int swsusp_write(unsigned int flags)
816 {
817 	struct swap_map_handle handle;
818 	struct snapshot_handle snapshot;
819 	struct swsusp_info *header;
820 	unsigned long pages;
821 	int error;
822 
823 	pages = snapshot_get_image_size();
824 	error = get_swap_writer(&handle);
825 	if (error) {
826 		printk(KERN_ERR "PM: Cannot get swap writer\n");
827 		return error;
828 	}
829 	if (flags & SF_NOCOMPRESS_MODE) {
830 		if (!enough_swap(pages, flags)) {
831 			printk(KERN_ERR "PM: Not enough free swap\n");
832 			error = -ENOSPC;
833 			goto out_finish;
834 		}
835 	}
836 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
837 	error = snapshot_read_next(&snapshot);
838 	if (error < PAGE_SIZE) {
839 		if (error >= 0)
840 			error = -EFAULT;
841 
842 		goto out_finish;
843 	}
844 	header = (struct swsusp_info *)data_of(snapshot);
845 	error = swap_write_page(&handle, header, NULL);
846 	if (!error) {
847 		error = (flags & SF_NOCOMPRESS_MODE) ?
848 			save_image(&handle, &snapshot, pages - 1) :
849 			save_image_lzo(&handle, &snapshot, pages - 1);
850 	}
851 out_finish:
852 	error = swap_writer_finish(&handle, flags, error);
853 	return error;
854 }
855 
856 /**
857  *	The following functions allow us to read data using a swap map
858  *	in a file-alike way
859  */
860 
release_swap_reader(struct swap_map_handle * handle)861 static void release_swap_reader(struct swap_map_handle *handle)
862 {
863 	struct swap_map_page_list *tmp;
864 
865 	while (handle->maps) {
866 		if (handle->maps->map)
867 			free_page((unsigned long)handle->maps->map);
868 		tmp = handle->maps;
869 		handle->maps = handle->maps->next;
870 		kfree(tmp);
871 	}
872 	handle->cur = NULL;
873 }
874 
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)875 static int get_swap_reader(struct swap_map_handle *handle,
876 		unsigned int *flags_p)
877 {
878 	int error;
879 	struct swap_map_page_list *tmp, *last;
880 	sector_t offset;
881 
882 	*flags_p = swsusp_header->flags;
883 
884 	if (!swsusp_header->image) /* how can this happen? */
885 		return -EINVAL;
886 
887 	handle->cur = NULL;
888 	last = handle->maps = NULL;
889 	offset = swsusp_header->image;
890 	while (offset) {
891 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
892 		if (!tmp) {
893 			release_swap_reader(handle);
894 			return -ENOMEM;
895 		}
896 		memset(tmp, 0, sizeof(*tmp));
897 		if (!handle->maps)
898 			handle->maps = tmp;
899 		if (last)
900 			last->next = tmp;
901 		last = tmp;
902 
903 		tmp->map = (struct swap_map_page *)
904 		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
905 		if (!tmp->map) {
906 			release_swap_reader(handle);
907 			return -ENOMEM;
908 		}
909 
910 		error = hib_bio_read_page(offset, tmp->map, NULL);
911 		if (error) {
912 			release_swap_reader(handle);
913 			return error;
914 		}
915 		offset = tmp->map->next_swap;
916 	}
917 	handle->k = 0;
918 	handle->cur = handle->maps->map;
919 	return 0;
920 }
921 
swap_read_page(struct swap_map_handle * handle,void * buf,struct bio ** bio_chain)922 static int swap_read_page(struct swap_map_handle *handle, void *buf,
923 				struct bio **bio_chain)
924 {
925 	sector_t offset;
926 	int error;
927 	struct swap_map_page_list *tmp;
928 
929 	if (!handle->cur)
930 		return -EINVAL;
931 	offset = handle->cur->entries[handle->k];
932 	if (!offset)
933 		return -EFAULT;
934 	error = hib_bio_read_page(offset, buf, bio_chain);
935 	if (error)
936 		return error;
937 	if (++handle->k >= MAP_PAGE_ENTRIES) {
938 		handle->k = 0;
939 		free_page((unsigned long)handle->maps->map);
940 		tmp = handle->maps;
941 		handle->maps = handle->maps->next;
942 		kfree(tmp);
943 		if (!handle->maps)
944 			release_swap_reader(handle);
945 		else
946 			handle->cur = handle->maps->map;
947 	}
948 	return error;
949 }
950 
swap_reader_finish(struct swap_map_handle * handle)951 static int swap_reader_finish(struct swap_map_handle *handle)
952 {
953 	release_swap_reader(handle);
954 
955 	return 0;
956 }
957 
958 /**
959  *	load_image - load the image using the swap map handle
960  *	@handle and the snapshot handle @snapshot
961  *	(assume there are @nr_pages pages to load)
962  */
963 
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)964 static int load_image(struct swap_map_handle *handle,
965                       struct snapshot_handle *snapshot,
966                       unsigned int nr_to_read)
967 {
968 	unsigned int m;
969 	int ret = 0;
970 	struct timeval start;
971 	struct timeval stop;
972 	struct bio *bio;
973 	int err2;
974 	unsigned nr_pages;
975 
976 	printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
977 		nr_to_read);
978 	m = nr_to_read / 100;
979 	if (!m)
980 		m = 1;
981 	nr_pages = 0;
982 	bio = NULL;
983 	do_gettimeofday(&start);
984 	for ( ; ; ) {
985 		ret = snapshot_write_next(snapshot);
986 		if (ret <= 0)
987 			break;
988 		ret = swap_read_page(handle, data_of(*snapshot), &bio);
989 		if (ret)
990 			break;
991 		if (snapshot->sync_read)
992 			ret = hib_wait_on_bio_chain(&bio);
993 		if (ret)
994 			break;
995 		if (!(nr_pages % m))
996 			printk("\b\b\b\b%3d%%", nr_pages / m);
997 		nr_pages++;
998 	}
999 	err2 = hib_wait_on_bio_chain(&bio);
1000 	do_gettimeofday(&stop);
1001 	if (!ret)
1002 		ret = err2;
1003 	if (!ret) {
1004 		printk("\b\b\b\bdone\n");
1005 		snapshot_write_finalize(snapshot);
1006 		if (!snapshot_image_loaded(snapshot))
1007 			ret = -ENODATA;
1008 	} else
1009 		printk("\n");
1010 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1011 	return ret;
1012 }
1013 
1014 /**
1015  * Structure used for LZO data decompression.
1016  */
1017 struct dec_data {
1018 	struct task_struct *thr;                  /* thread */
1019 	atomic_t ready;                           /* ready to start flag */
1020 	atomic_t stop;                            /* ready to stop flag */
1021 	int ret;                                  /* return code */
1022 	wait_queue_head_t go;                     /* start decompression */
1023 	wait_queue_head_t done;                   /* decompression done */
1024 	size_t unc_len;                           /* uncompressed length */
1025 	size_t cmp_len;                           /* compressed length */
1026 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1027 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1028 };
1029 
1030 /**
1031  * Deompression function that runs in its own thread.
1032  */
lzo_decompress_threadfn(void * data)1033 static int lzo_decompress_threadfn(void *data)
1034 {
1035 	struct dec_data *d = data;
1036 
1037 	while (1) {
1038 		wait_event(d->go, atomic_read(&d->ready) ||
1039 		                  kthread_should_stop());
1040 		if (kthread_should_stop()) {
1041 			d->thr = NULL;
1042 			d->ret = -1;
1043 			atomic_set(&d->stop, 1);
1044 			wake_up(&d->done);
1045 			break;
1046 		}
1047 		atomic_set(&d->ready, 0);
1048 
1049 		d->unc_len = LZO_UNC_SIZE;
1050 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1051 		                               d->unc, &d->unc_len);
1052 		atomic_set(&d->stop, 1);
1053 		wake_up(&d->done);
1054 	}
1055 	return 0;
1056 }
1057 
1058 /**
1059  * load_image_lzo - Load compressed image data and decompress them with LZO.
1060  * @handle: Swap map handle to use for loading data.
1061  * @snapshot: Image to copy uncompressed data into.
1062  * @nr_to_read: Number of pages to load.
1063  */
load_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1064 static int load_image_lzo(struct swap_map_handle *handle,
1065                           struct snapshot_handle *snapshot,
1066                           unsigned int nr_to_read)
1067 {
1068 	unsigned int m;
1069 	int ret = 0;
1070 	int eof = 0;
1071 	struct bio *bio;
1072 	struct timeval start;
1073 	struct timeval stop;
1074 	unsigned nr_pages;
1075 	size_t off;
1076 	unsigned i, thr, run_threads, nr_threads;
1077 	unsigned ring = 0, pg = 0, ring_size = 0,
1078 	         have = 0, want, need, asked = 0;
1079 	unsigned long read_pages = 0;
1080 	unsigned char **page = NULL;
1081 	struct dec_data *data = NULL;
1082 	struct crc_data *crc = NULL;
1083 
1084 	/*
1085 	 * We'll limit the number of threads for decompression to limit memory
1086 	 * footprint.
1087 	 */
1088 	nr_threads = num_online_cpus() - 1;
1089 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1090 
1091 	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1092 	if (!page) {
1093 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1094 		ret = -ENOMEM;
1095 		goto out_clean;
1096 	}
1097 
1098 	data = vmalloc(sizeof(*data) * nr_threads);
1099 	if (!data) {
1100 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1101 		ret = -ENOMEM;
1102 		goto out_clean;
1103 	}
1104 	for (thr = 0; thr < nr_threads; thr++)
1105 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1106 
1107 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1108 	if (!crc) {
1109 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1110 		ret = -ENOMEM;
1111 		goto out_clean;
1112 	}
1113 	memset(crc, 0, offsetof(struct crc_data, go));
1114 
1115 	/*
1116 	 * Start the decompression threads.
1117 	 */
1118 	for (thr = 0; thr < nr_threads; thr++) {
1119 		init_waitqueue_head(&data[thr].go);
1120 		init_waitqueue_head(&data[thr].done);
1121 
1122 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1123 		                            &data[thr],
1124 		                            "image_decompress/%u", thr);
1125 		if (IS_ERR(data[thr].thr)) {
1126 			data[thr].thr = NULL;
1127 			printk(KERN_ERR
1128 			       "PM: Cannot start decompression threads\n");
1129 			ret = -ENOMEM;
1130 			goto out_clean;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Start the CRC32 thread.
1136 	 */
1137 	init_waitqueue_head(&crc->go);
1138 	init_waitqueue_head(&crc->done);
1139 
1140 	handle->crc32 = 0;
1141 	crc->crc32 = &handle->crc32;
1142 	for (thr = 0; thr < nr_threads; thr++) {
1143 		crc->unc[thr] = data[thr].unc;
1144 		crc->unc_len[thr] = &data[thr].unc_len;
1145 	}
1146 
1147 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1148 	if (IS_ERR(crc->thr)) {
1149 		crc->thr = NULL;
1150 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1151 		ret = -ENOMEM;
1152 		goto out_clean;
1153 	}
1154 
1155 	/*
1156 	 * Set the number of pages for read buffering.
1157 	 * This is complete guesswork, because we'll only know the real
1158 	 * picture once prepare_image() is called, which is much later on
1159 	 * during the image load phase. We'll assume the worst case and
1160 	 * say that none of the image pages are from high memory.
1161 	 */
1162 	if (low_free_pages() > snapshot_get_image_size())
1163 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1164 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1165 
1166 	for (i = 0; i < read_pages; i++) {
1167 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1168 		                                  __GFP_WAIT | __GFP_HIGH :
1169 		                                  __GFP_WAIT | __GFP_NOWARN |
1170 		                                  __GFP_NORETRY);
1171 
1172 		if (!page[i]) {
1173 			if (i < LZO_CMP_PAGES) {
1174 				ring_size = i;
1175 				printk(KERN_ERR
1176 				       "PM: Failed to allocate LZO pages\n");
1177 				ret = -ENOMEM;
1178 				goto out_clean;
1179 			} else {
1180 				break;
1181 			}
1182 		}
1183 	}
1184 	want = ring_size = i;
1185 
1186 	printk(KERN_INFO
1187 		"PM: Using %u thread(s) for decompression.\n"
1188 		"PM: Loading and decompressing image data (%u pages) ...     ",
1189 		nr_threads, nr_to_read);
1190 	m = nr_to_read / 100;
1191 	if (!m)
1192 		m = 1;
1193 	nr_pages = 0;
1194 	bio = NULL;
1195 	do_gettimeofday(&start);
1196 
1197 	ret = snapshot_write_next(snapshot);
1198 	if (ret <= 0)
1199 		goto out_finish;
1200 
1201 	for(;;) {
1202 		for (i = 0; !eof && i < want; i++) {
1203 			ret = swap_read_page(handle, page[ring], &bio);
1204 			if (ret) {
1205 				/*
1206 				 * On real read error, finish. On end of data,
1207 				 * set EOF flag and just exit the read loop.
1208 				 */
1209 				if (handle->cur &&
1210 				    handle->cur->entries[handle->k]) {
1211 					goto out_finish;
1212 				} else {
1213 					eof = 1;
1214 					break;
1215 				}
1216 			}
1217 			if (++ring >= ring_size)
1218 				ring = 0;
1219 		}
1220 		asked += i;
1221 		want -= i;
1222 
1223 		/*
1224 		 * We are out of data, wait for some more.
1225 		 */
1226 		if (!have) {
1227 			if (!asked)
1228 				break;
1229 
1230 			ret = hib_wait_on_bio_chain(&bio);
1231 			if (ret)
1232 				goto out_finish;
1233 			have += asked;
1234 			asked = 0;
1235 			if (eof)
1236 				eof = 2;
1237 		}
1238 
1239 		if (crc->run_threads) {
1240 			wait_event(crc->done, atomic_read(&crc->stop));
1241 			atomic_set(&crc->stop, 0);
1242 			crc->run_threads = 0;
1243 		}
1244 
1245 		for (thr = 0; have && thr < nr_threads; thr++) {
1246 			data[thr].cmp_len = *(size_t *)page[pg];
1247 			if (unlikely(!data[thr].cmp_len ||
1248 			             data[thr].cmp_len >
1249 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1250 				printk(KERN_ERR
1251 				       "PM: Invalid LZO compressed length\n");
1252 				ret = -1;
1253 				goto out_finish;
1254 			}
1255 
1256 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1257 			                    PAGE_SIZE);
1258 			if (need > have) {
1259 				if (eof > 1) {
1260 					ret = -1;
1261 					goto out_finish;
1262 				}
1263 				break;
1264 			}
1265 
1266 			for (off = 0;
1267 			     off < LZO_HEADER + data[thr].cmp_len;
1268 			     off += PAGE_SIZE) {
1269 				memcpy(data[thr].cmp + off,
1270 				       page[pg], PAGE_SIZE);
1271 				have--;
1272 				want++;
1273 				if (++pg >= ring_size)
1274 					pg = 0;
1275 			}
1276 
1277 			atomic_set(&data[thr].ready, 1);
1278 			wake_up(&data[thr].go);
1279 		}
1280 
1281 		/*
1282 		 * Wait for more data while we are decompressing.
1283 		 */
1284 		if (have < LZO_CMP_PAGES && asked) {
1285 			ret = hib_wait_on_bio_chain(&bio);
1286 			if (ret)
1287 				goto out_finish;
1288 			have += asked;
1289 			asked = 0;
1290 			if (eof)
1291 				eof = 2;
1292 		}
1293 
1294 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1295 			wait_event(data[thr].done,
1296 			           atomic_read(&data[thr].stop));
1297 			atomic_set(&data[thr].stop, 0);
1298 
1299 			ret = data[thr].ret;
1300 
1301 			if (ret < 0) {
1302 				printk(KERN_ERR
1303 				       "PM: LZO decompression failed\n");
1304 				goto out_finish;
1305 			}
1306 
1307 			if (unlikely(!data[thr].unc_len ||
1308 			             data[thr].unc_len > LZO_UNC_SIZE ||
1309 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1310 				printk(KERN_ERR
1311 				       "PM: Invalid LZO uncompressed length\n");
1312 				ret = -1;
1313 				goto out_finish;
1314 			}
1315 
1316 			for (off = 0;
1317 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1318 				memcpy(data_of(*snapshot),
1319 				       data[thr].unc + off, PAGE_SIZE);
1320 
1321 				if (!(nr_pages % m))
1322 					printk("\b\b\b\b%3d%%", nr_pages / m);
1323 				nr_pages++;
1324 
1325 				ret = snapshot_write_next(snapshot);
1326 				if (ret <= 0) {
1327 					crc->run_threads = thr + 1;
1328 					atomic_set(&crc->ready, 1);
1329 					wake_up(&crc->go);
1330 					goto out_finish;
1331 				}
1332 			}
1333 		}
1334 
1335 		crc->run_threads = thr;
1336 		atomic_set(&crc->ready, 1);
1337 		wake_up(&crc->go);
1338 	}
1339 
1340 out_finish:
1341 	if (crc->run_threads) {
1342 		wait_event(crc->done, atomic_read(&crc->stop));
1343 		atomic_set(&crc->stop, 0);
1344 	}
1345 	do_gettimeofday(&stop);
1346 	if (!ret) {
1347 		printk("\b\b\b\bdone\n");
1348 		snapshot_write_finalize(snapshot);
1349 		if (!snapshot_image_loaded(snapshot))
1350 			ret = -ENODATA;
1351 		if (!ret) {
1352 			if (swsusp_header->flags & SF_CRC32_MODE) {
1353 				if(handle->crc32 != swsusp_header->crc32) {
1354 					printk(KERN_ERR
1355 					       "PM: Invalid image CRC32!\n");
1356 					ret = -ENODATA;
1357 				}
1358 			}
1359 		}
1360 	} else
1361 		printk("\n");
1362 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363 out_clean:
1364 	for (i = 0; i < ring_size; i++)
1365 		free_page((unsigned long)page[i]);
1366 	if (crc) {
1367 		if (crc->thr)
1368 			kthread_stop(crc->thr);
1369 		kfree(crc);
1370 	}
1371 	if (data) {
1372 		for (thr = 0; thr < nr_threads; thr++)
1373 			if (data[thr].thr)
1374 				kthread_stop(data[thr].thr);
1375 		vfree(data);
1376 	}
1377 	if (page) vfree(page);
1378 
1379 	return ret;
1380 }
1381 
1382 /**
1383  *	swsusp_read - read the hibernation image.
1384  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1385  *		  be written into this memory location
1386  */
1387 
swsusp_read(unsigned int * flags_p)1388 int swsusp_read(unsigned int *flags_p)
1389 {
1390 	int error;
1391 	struct swap_map_handle handle;
1392 	struct snapshot_handle snapshot;
1393 	struct swsusp_info *header;
1394 
1395 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396 	error = snapshot_write_next(&snapshot);
1397 	if (error < PAGE_SIZE)
1398 		return error < 0 ? error : -EFAULT;
1399 	header = (struct swsusp_info *)data_of(snapshot);
1400 	error = get_swap_reader(&handle, flags_p);
1401 	if (error)
1402 		goto end;
1403 	if (!error)
1404 		error = swap_read_page(&handle, header, NULL);
1405 	if (!error) {
1406 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407 			load_image(&handle, &snapshot, header->pages - 1) :
1408 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1409 	}
1410 	swap_reader_finish(&handle);
1411 end:
1412 	if (!error)
1413 		pr_debug("PM: Image successfully loaded\n");
1414 	else
1415 		pr_debug("PM: Error %d resuming\n", error);
1416 	return error;
1417 }
1418 
1419 /**
1420  *      swsusp_check - Check for swsusp signature in the resume device
1421  */
1422 
swsusp_check(void)1423 int swsusp_check(void)
1424 {
1425 	int error;
1426 
1427 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428 					    FMODE_READ, NULL);
1429 	if (!IS_ERR(hib_resume_bdev)) {
1430 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431 		clear_page(swsusp_header);
1432 		error = hib_bio_read_page(swsusp_resume_block,
1433 					swsusp_header, NULL);
1434 		if (error)
1435 			goto put;
1436 
1437 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439 			/* Reset swap signature now */
1440 			error = hib_bio_write_page(swsusp_resume_block,
1441 						swsusp_header, NULL);
1442 		} else {
1443 			error = -EINVAL;
1444 		}
1445 
1446 put:
1447 		if (error)
1448 			blkdev_put(hib_resume_bdev, FMODE_READ);
1449 		else
1450 			pr_debug("PM: Image signature found, resuming\n");
1451 	} else {
1452 		error = PTR_ERR(hib_resume_bdev);
1453 	}
1454 
1455 	if (error)
1456 		pr_debug("PM: Image not found (code %d)\n", error);
1457 
1458 	return error;
1459 }
1460 
1461 /**
1462  *	swsusp_close - close swap device.
1463  */
1464 
swsusp_close(fmode_t mode)1465 void swsusp_close(fmode_t mode)
1466 {
1467 	if (IS_ERR(hib_resume_bdev)) {
1468 		pr_debug("PM: Image device not initialised\n");
1469 		return;
1470 	}
1471 
1472 	blkdev_put(hib_resume_bdev, mode);
1473 }
1474 
swsusp_header_init(void)1475 static int swsusp_header_init(void)
1476 {
1477 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1478 	if (!swsusp_header)
1479 		panic("Could not allocate memory for swsusp_header\n");
1480 	return 0;
1481 }
1482 
1483 core_initcall(swsusp_header_init);
1484