1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/power/swap.c
4 *
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
7 *
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/lzo.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33
34 #include "power.h"
35
36 #define HIBERNATE_SIG "S1SUSPEND"
37
38 u32 swsusp_hardware_signature;
39
40 /*
41 * When reading an {un,}compressed image, we may restore pages in place,
42 * in which case some architectures need these pages cleaning before they
43 * can be executed. We don't know which pages these may be, so clean the lot.
44 */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47
48 /*
49 * The swap map is a data structure used for keeping track of each page
50 * written to a swap partition. It consists of many swap_map_page
51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52 * These structures are stored on the swap and linked together with the
53 * help of the .next_swap member.
54 *
55 * The swap map is created during suspend. The swap map pages are
56 * allocated and populated one at a time, so we only need one memory
57 * page to set up the entire structure.
58 *
59 * During resume we pick up all swap_map_page structures into a list.
60 */
61
62 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
63
64 /*
65 * Number of free pages that are not high.
66 */
low_free_pages(void)67 static inline unsigned long low_free_pages(void)
68 {
69 return nr_free_pages() - nr_free_highpages();
70 }
71
72 /*
73 * Number of pages required to be kept free while writing the image. Always
74 * half of all available low pages before the writing starts.
75 */
reqd_free_pages(void)76 static inline unsigned long reqd_free_pages(void)
77 {
78 return low_free_pages() / 2;
79 }
80
81 struct swap_map_page {
82 sector_t entries[MAP_PAGE_ENTRIES];
83 sector_t next_swap;
84 };
85
86 struct swap_map_page_list {
87 struct swap_map_page *map;
88 struct swap_map_page_list *next;
89 };
90
91 /*
92 * The swap_map_handle structure is used for handling swap in
93 * a file-alike way
94 */
95
96 struct swap_map_handle {
97 struct swap_map_page *cur;
98 struct swap_map_page_list *maps;
99 sector_t cur_swap;
100 sector_t first_sector;
101 unsigned int k;
102 unsigned long reqd_free_pages;
103 u32 crc32;
104 };
105
106 struct swsusp_header {
107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 sizeof(u32) - sizeof(u32)];
109 u32 hw_sig;
110 u32 crc32;
111 sector_t image;
112 unsigned int flags; /* Flags to pass to the "boot" kernel */
113 char orig_sig[10];
114 char sig[10];
115 } __packed;
116
117 static struct swsusp_header *swsusp_header;
118
119 /*
120 * The following functions are used for tracing the allocated
121 * swap pages, so that they can be freed in case of an error.
122 */
123
124 struct swsusp_extent {
125 struct rb_node node;
126 unsigned long start;
127 unsigned long end;
128 };
129
130 static struct rb_root swsusp_extents = RB_ROOT;
131
swsusp_extents_insert(unsigned long swap_offset)132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 struct rb_node **new = &(swsusp_extents.rb_node);
135 struct rb_node *parent = NULL;
136 struct swsusp_extent *ext;
137
138 /* Figure out where to put the new node */
139 while (*new) {
140 ext = rb_entry(*new, struct swsusp_extent, node);
141 parent = *new;
142 if (swap_offset < ext->start) {
143 /* Try to merge */
144 if (swap_offset == ext->start - 1) {
145 ext->start--;
146 return 0;
147 }
148 new = &((*new)->rb_left);
149 } else if (swap_offset > ext->end) {
150 /* Try to merge */
151 if (swap_offset == ext->end + 1) {
152 ext->end++;
153 return 0;
154 }
155 new = &((*new)->rb_right);
156 } else {
157 /* It already is in the tree */
158 return -EINVAL;
159 }
160 }
161 /* Add the new node and rebalance the tree. */
162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 if (!ext)
164 return -ENOMEM;
165
166 ext->start = swap_offset;
167 ext->end = swap_offset;
168 rb_link_node(&ext->node, parent, new);
169 rb_insert_color(&ext->node, &swsusp_extents);
170 return 0;
171 }
172
173 /*
174 * alloc_swapdev_block - allocate a swap page and register that it has
175 * been allocated, so that it can be freed in case of an error.
176 */
177
alloc_swapdev_block(int swap)178 sector_t alloc_swapdev_block(int swap)
179 {
180 unsigned long offset;
181
182 offset = swp_offset(get_swap_page_of_type(swap));
183 if (offset) {
184 if (swsusp_extents_insert(offset))
185 swap_free(swp_entry(swap, offset));
186 else
187 return swapdev_block(swap, offset);
188 }
189 return 0;
190 }
191
192 /*
193 * free_all_swap_pages - free swap pages allocated for saving image data.
194 * It also frees the extents used to register which swap entries had been
195 * allocated.
196 */
197
free_all_swap_pages(int swap)198 void free_all_swap_pages(int swap)
199 {
200 struct rb_node *node;
201
202 while ((node = swsusp_extents.rb_node)) {
203 struct swsusp_extent *ext;
204 unsigned long offset;
205
206 ext = rb_entry(node, struct swsusp_extent, node);
207 rb_erase(node, &swsusp_extents);
208 for (offset = ext->start; offset <= ext->end; offset++)
209 swap_free(swp_entry(swap, offset));
210
211 kfree(ext);
212 }
213 }
214
swsusp_swap_in_use(void)215 int swsusp_swap_in_use(void)
216 {
217 return (swsusp_extents.rb_node != NULL);
218 }
219
220 /*
221 * General things
222 */
223
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
226
227 struct hib_bio_batch {
228 atomic_t count;
229 wait_queue_head_t wait;
230 blk_status_t error;
231 struct blk_plug plug;
232 };
233
hib_init_batch(struct hib_bio_batch * hb)234 static void hib_init_batch(struct hib_bio_batch *hb)
235 {
236 atomic_set(&hb->count, 0);
237 init_waitqueue_head(&hb->wait);
238 hb->error = BLK_STS_OK;
239 blk_start_plug(&hb->plug);
240 }
241
hib_finish_batch(struct hib_bio_batch * hb)242 static void hib_finish_batch(struct hib_bio_batch *hb)
243 {
244 blk_finish_plug(&hb->plug);
245 }
246
hib_end_io(struct bio * bio)247 static void hib_end_io(struct bio *bio)
248 {
249 struct hib_bio_batch *hb = bio->bi_private;
250 struct page *page = bio_first_page_all(bio);
251
252 if (bio->bi_status) {
253 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255 (unsigned long long)bio->bi_iter.bi_sector);
256 }
257
258 if (bio_data_dir(bio) == WRITE)
259 put_page(page);
260 else if (clean_pages_on_read)
261 flush_icache_range((unsigned long)page_address(page),
262 (unsigned long)page_address(page) + PAGE_SIZE);
263
264 if (bio->bi_status && !hb->error)
265 hb->error = bio->bi_status;
266 if (atomic_dec_and_test(&hb->count))
267 wake_up(&hb->wait);
268
269 bio_put(bio);
270 }
271
hib_submit_io(int op,int op_flags,pgoff_t page_off,void * addr,struct hib_bio_batch * hb)272 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
273 struct hib_bio_batch *hb)
274 {
275 struct page *page = virt_to_page(addr);
276 struct bio *bio;
277 int error = 0;
278
279 bio = bio_alloc(hib_resume_bdev, 1, op | op_flags,
280 GFP_NOIO | __GFP_HIGH);
281 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282
283 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
284 pr_err("Adding page to bio failed at %llu\n",
285 (unsigned long long)bio->bi_iter.bi_sector);
286 bio_put(bio);
287 return -EFAULT;
288 }
289
290 if (hb) {
291 bio->bi_end_io = hib_end_io;
292 bio->bi_private = hb;
293 atomic_inc(&hb->count);
294 submit_bio(bio);
295 } else {
296 error = submit_bio_wait(bio);
297 bio_put(bio);
298 }
299
300 return error;
301 }
302
hib_wait_io(struct hib_bio_batch * hb)303 static int hib_wait_io(struct hib_bio_batch *hb)
304 {
305 /*
306 * We are relying on the behavior of blk_plug that a thread with
307 * a plug will flush the plug list before sleeping.
308 */
309 wait_event(hb->wait, atomic_read(&hb->count) == 0);
310 return blk_status_to_errno(hb->error);
311 }
312
313 /*
314 * Saving part
315 */
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
317 {
318 int error;
319
320 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
321 swsusp_header, NULL);
322 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
323 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
324 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
325 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
326 swsusp_header->image = handle->first_sector;
327 if (swsusp_hardware_signature) {
328 swsusp_header->hw_sig = swsusp_hardware_signature;
329 flags |= SF_HW_SIG;
330 }
331 swsusp_header->flags = flags;
332 if (flags & SF_CRC32_MODE)
333 swsusp_header->crc32 = handle->crc32;
334 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
335 swsusp_resume_block, swsusp_header, NULL);
336 } else {
337 pr_err("Swap header not found!\n");
338 error = -ENODEV;
339 }
340 return error;
341 }
342
343 /**
344 * swsusp_swap_check - check if the resume device is a swap device
345 * and get its index (if so)
346 *
347 * This is called before saving image
348 */
swsusp_swap_check(void)349 static int swsusp_swap_check(void)
350 {
351 int res;
352
353 if (swsusp_resume_device)
354 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
355 else
356 res = find_first_swap(&swsusp_resume_device);
357 if (res < 0)
358 return res;
359 root_swap = res;
360
361 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
362 NULL);
363 if (IS_ERR(hib_resume_bdev))
364 return PTR_ERR(hib_resume_bdev);
365
366 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
367 if (res < 0)
368 blkdev_put(hib_resume_bdev, FMODE_WRITE);
369
370 return res;
371 }
372
373 /**
374 * write_page - Write one page to given swap location.
375 * @buf: Address we're writing.
376 * @offset: Offset of the swap page we're writing to.
377 * @hb: bio completion batch
378 */
379
write_page(void * buf,sector_t offset,struct hib_bio_batch * hb)380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
381 {
382 void *src;
383 int ret;
384
385 if (!offset)
386 return -ENOSPC;
387
388 if (hb) {
389 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
390 __GFP_NORETRY);
391 if (src) {
392 copy_page(src, buf);
393 } else {
394 ret = hib_wait_io(hb); /* Free pages */
395 if (ret)
396 return ret;
397 src = (void *)__get_free_page(GFP_NOIO |
398 __GFP_NOWARN |
399 __GFP_NORETRY);
400 if (src) {
401 copy_page(src, buf);
402 } else {
403 WARN_ON_ONCE(1);
404 hb = NULL; /* Go synchronous */
405 src = buf;
406 }
407 }
408 } else {
409 src = buf;
410 }
411 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
412 }
413
release_swap_writer(struct swap_map_handle * handle)414 static void release_swap_writer(struct swap_map_handle *handle)
415 {
416 if (handle->cur)
417 free_page((unsigned long)handle->cur);
418 handle->cur = NULL;
419 }
420
get_swap_writer(struct swap_map_handle * handle)421 static int get_swap_writer(struct swap_map_handle *handle)
422 {
423 int ret;
424
425 ret = swsusp_swap_check();
426 if (ret) {
427 if (ret != -ENOSPC)
428 pr_err("Cannot find swap device, try swapon -a\n");
429 return ret;
430 }
431 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
432 if (!handle->cur) {
433 ret = -ENOMEM;
434 goto err_close;
435 }
436 handle->cur_swap = alloc_swapdev_block(root_swap);
437 if (!handle->cur_swap) {
438 ret = -ENOSPC;
439 goto err_rel;
440 }
441 handle->k = 0;
442 handle->reqd_free_pages = reqd_free_pages();
443 handle->first_sector = handle->cur_swap;
444 return 0;
445 err_rel:
446 release_swap_writer(handle);
447 err_close:
448 swsusp_close(FMODE_WRITE);
449 return ret;
450 }
451
swap_write_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)452 static int swap_write_page(struct swap_map_handle *handle, void *buf,
453 struct hib_bio_batch *hb)
454 {
455 int error = 0;
456 sector_t offset;
457
458 if (!handle->cur)
459 return -EINVAL;
460 offset = alloc_swapdev_block(root_swap);
461 error = write_page(buf, offset, hb);
462 if (error)
463 return error;
464 handle->cur->entries[handle->k++] = offset;
465 if (handle->k >= MAP_PAGE_ENTRIES) {
466 offset = alloc_swapdev_block(root_swap);
467 if (!offset)
468 return -ENOSPC;
469 handle->cur->next_swap = offset;
470 error = write_page(handle->cur, handle->cur_swap, hb);
471 if (error)
472 goto out;
473 clear_page(handle->cur);
474 handle->cur_swap = offset;
475 handle->k = 0;
476
477 if (hb && low_free_pages() <= handle->reqd_free_pages) {
478 error = hib_wait_io(hb);
479 if (error)
480 goto out;
481 /*
482 * Recalculate the number of required free pages, to
483 * make sure we never take more than half.
484 */
485 handle->reqd_free_pages = reqd_free_pages();
486 }
487 }
488 out:
489 return error;
490 }
491
flush_swap_writer(struct swap_map_handle * handle)492 static int flush_swap_writer(struct swap_map_handle *handle)
493 {
494 if (handle->cur && handle->cur_swap)
495 return write_page(handle->cur, handle->cur_swap, NULL);
496 else
497 return -EINVAL;
498 }
499
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)500 static int swap_writer_finish(struct swap_map_handle *handle,
501 unsigned int flags, int error)
502 {
503 if (!error) {
504 pr_info("S");
505 error = mark_swapfiles(handle, flags);
506 pr_cont("|\n");
507 flush_swap_writer(handle);
508 }
509
510 if (error)
511 free_all_swap_pages(root_swap);
512 release_swap_writer(handle);
513 swsusp_close(FMODE_WRITE);
514
515 return error;
516 }
517
518 /* We need to remember how much compressed data we need to read. */
519 #define LZO_HEADER sizeof(size_t)
520
521 /* Number of pages/bytes we'll compress at one time. */
522 #define LZO_UNC_PAGES 32
523 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
524
525 /* Number of pages/bytes we need for compressed data (worst case). */
526 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
527 LZO_HEADER, PAGE_SIZE)
528 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
529
530 /* Maximum number of threads for compression/decompression. */
531 #define LZO_THREADS 3
532
533 /* Minimum/maximum number of pages for read buffering. */
534 #define LZO_MIN_RD_PAGES 1024
535 #define LZO_MAX_RD_PAGES 8192
536
537
538 /**
539 * save_image - save the suspend image data
540 */
541
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)542 static int save_image(struct swap_map_handle *handle,
543 struct snapshot_handle *snapshot,
544 unsigned int nr_to_write)
545 {
546 unsigned int m;
547 int ret;
548 int nr_pages;
549 int err2;
550 struct hib_bio_batch hb;
551 ktime_t start;
552 ktime_t stop;
553
554 hib_init_batch(&hb);
555
556 pr_info("Saving image data pages (%u pages)...\n",
557 nr_to_write);
558 m = nr_to_write / 10;
559 if (!m)
560 m = 1;
561 nr_pages = 0;
562 start = ktime_get();
563 while (1) {
564 ret = snapshot_read_next(snapshot);
565 if (ret <= 0)
566 break;
567 ret = swap_write_page(handle, data_of(*snapshot), &hb);
568 if (ret)
569 break;
570 if (!(nr_pages % m))
571 pr_info("Image saving progress: %3d%%\n",
572 nr_pages / m * 10);
573 nr_pages++;
574 }
575 err2 = hib_wait_io(&hb);
576 hib_finish_batch(&hb);
577 stop = ktime_get();
578 if (!ret)
579 ret = err2;
580 if (!ret)
581 pr_info("Image saving done\n");
582 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
583 return ret;
584 }
585
586 /**
587 * Structure used for CRC32.
588 */
589 struct crc_data {
590 struct task_struct *thr; /* thread */
591 atomic_t ready; /* ready to start flag */
592 atomic_t stop; /* ready to stop flag */
593 unsigned run_threads; /* nr current threads */
594 wait_queue_head_t go; /* start crc update */
595 wait_queue_head_t done; /* crc update done */
596 u32 *crc32; /* points to handle's crc32 */
597 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
598 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
599 };
600
601 /**
602 * CRC32 update function that runs in its own thread.
603 */
crc32_threadfn(void * data)604 static int crc32_threadfn(void *data)
605 {
606 struct crc_data *d = data;
607 unsigned i;
608
609 while (1) {
610 wait_event(d->go, atomic_read(&d->ready) ||
611 kthread_should_stop());
612 if (kthread_should_stop()) {
613 d->thr = NULL;
614 atomic_set(&d->stop, 1);
615 wake_up(&d->done);
616 break;
617 }
618 atomic_set(&d->ready, 0);
619
620 for (i = 0; i < d->run_threads; i++)
621 *d->crc32 = crc32_le(*d->crc32,
622 d->unc[i], *d->unc_len[i]);
623 atomic_set(&d->stop, 1);
624 wake_up(&d->done);
625 }
626 return 0;
627 }
628 /**
629 * Structure used for LZO data compression.
630 */
631 struct cmp_data {
632 struct task_struct *thr; /* thread */
633 atomic_t ready; /* ready to start flag */
634 atomic_t stop; /* ready to stop flag */
635 int ret; /* return code */
636 wait_queue_head_t go; /* start compression */
637 wait_queue_head_t done; /* compression done */
638 size_t unc_len; /* uncompressed length */
639 size_t cmp_len; /* compressed length */
640 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
641 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
642 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
643 };
644
645 /**
646 * Compression function that runs in its own thread.
647 */
lzo_compress_threadfn(void * data)648 static int lzo_compress_threadfn(void *data)
649 {
650 struct cmp_data *d = data;
651
652 while (1) {
653 wait_event(d->go, atomic_read(&d->ready) ||
654 kthread_should_stop());
655 if (kthread_should_stop()) {
656 d->thr = NULL;
657 d->ret = -1;
658 atomic_set(&d->stop, 1);
659 wake_up(&d->done);
660 break;
661 }
662 atomic_set(&d->ready, 0);
663
664 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
665 d->cmp + LZO_HEADER, &d->cmp_len,
666 d->wrk);
667 atomic_set(&d->stop, 1);
668 wake_up(&d->done);
669 }
670 return 0;
671 }
672
673 /**
674 * save_image_lzo - Save the suspend image data compressed with LZO.
675 * @handle: Swap map handle to use for saving the image.
676 * @snapshot: Image to read data from.
677 * @nr_to_write: Number of pages to save.
678 */
save_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)679 static int save_image_lzo(struct swap_map_handle *handle,
680 struct snapshot_handle *snapshot,
681 unsigned int nr_to_write)
682 {
683 unsigned int m;
684 int ret = 0;
685 int nr_pages;
686 int err2;
687 struct hib_bio_batch hb;
688 ktime_t start;
689 ktime_t stop;
690 size_t off;
691 unsigned thr, run_threads, nr_threads;
692 unsigned char *page = NULL;
693 struct cmp_data *data = NULL;
694 struct crc_data *crc = NULL;
695
696 hib_init_batch(&hb);
697
698 /*
699 * We'll limit the number of threads for compression to limit memory
700 * footprint.
701 */
702 nr_threads = num_online_cpus() - 1;
703 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
704
705 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
706 if (!page) {
707 pr_err("Failed to allocate LZO page\n");
708 ret = -ENOMEM;
709 goto out_clean;
710 }
711
712 data = vzalloc(array_size(nr_threads, sizeof(*data)));
713 if (!data) {
714 pr_err("Failed to allocate LZO data\n");
715 ret = -ENOMEM;
716 goto out_clean;
717 }
718
719 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
720 if (!crc) {
721 pr_err("Failed to allocate crc\n");
722 ret = -ENOMEM;
723 goto out_clean;
724 }
725
726 /*
727 * Start the compression threads.
728 */
729 for (thr = 0; thr < nr_threads; thr++) {
730 init_waitqueue_head(&data[thr].go);
731 init_waitqueue_head(&data[thr].done);
732
733 data[thr].thr = kthread_run(lzo_compress_threadfn,
734 &data[thr],
735 "image_compress/%u", thr);
736 if (IS_ERR(data[thr].thr)) {
737 data[thr].thr = NULL;
738 pr_err("Cannot start compression threads\n");
739 ret = -ENOMEM;
740 goto out_clean;
741 }
742 }
743
744 /*
745 * Start the CRC32 thread.
746 */
747 init_waitqueue_head(&crc->go);
748 init_waitqueue_head(&crc->done);
749
750 handle->crc32 = 0;
751 crc->crc32 = &handle->crc32;
752 for (thr = 0; thr < nr_threads; thr++) {
753 crc->unc[thr] = data[thr].unc;
754 crc->unc_len[thr] = &data[thr].unc_len;
755 }
756
757 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
758 if (IS_ERR(crc->thr)) {
759 crc->thr = NULL;
760 pr_err("Cannot start CRC32 thread\n");
761 ret = -ENOMEM;
762 goto out_clean;
763 }
764
765 /*
766 * Adjust the number of required free pages after all allocations have
767 * been done. We don't want to run out of pages when writing.
768 */
769 handle->reqd_free_pages = reqd_free_pages();
770
771 pr_info("Using %u thread(s) for compression\n", nr_threads);
772 pr_info("Compressing and saving image data (%u pages)...\n",
773 nr_to_write);
774 m = nr_to_write / 10;
775 if (!m)
776 m = 1;
777 nr_pages = 0;
778 start = ktime_get();
779 for (;;) {
780 for (thr = 0; thr < nr_threads; thr++) {
781 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
782 ret = snapshot_read_next(snapshot);
783 if (ret < 0)
784 goto out_finish;
785
786 if (!ret)
787 break;
788
789 memcpy(data[thr].unc + off,
790 data_of(*snapshot), PAGE_SIZE);
791
792 if (!(nr_pages % m))
793 pr_info("Image saving progress: %3d%%\n",
794 nr_pages / m * 10);
795 nr_pages++;
796 }
797 if (!off)
798 break;
799
800 data[thr].unc_len = off;
801
802 atomic_set(&data[thr].ready, 1);
803 wake_up(&data[thr].go);
804 }
805
806 if (!thr)
807 break;
808
809 crc->run_threads = thr;
810 atomic_set(&crc->ready, 1);
811 wake_up(&crc->go);
812
813 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
814 wait_event(data[thr].done,
815 atomic_read(&data[thr].stop));
816 atomic_set(&data[thr].stop, 0);
817
818 ret = data[thr].ret;
819
820 if (ret < 0) {
821 pr_err("LZO compression failed\n");
822 goto out_finish;
823 }
824
825 if (unlikely(!data[thr].cmp_len ||
826 data[thr].cmp_len >
827 lzo1x_worst_compress(data[thr].unc_len))) {
828 pr_err("Invalid LZO compressed length\n");
829 ret = -1;
830 goto out_finish;
831 }
832
833 *(size_t *)data[thr].cmp = data[thr].cmp_len;
834
835 /*
836 * Given we are writing one page at a time to disk, we
837 * copy that much from the buffer, although the last
838 * bit will likely be smaller than full page. This is
839 * OK - we saved the length of the compressed data, so
840 * any garbage at the end will be discarded when we
841 * read it.
842 */
843 for (off = 0;
844 off < LZO_HEADER + data[thr].cmp_len;
845 off += PAGE_SIZE) {
846 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
847
848 ret = swap_write_page(handle, page, &hb);
849 if (ret)
850 goto out_finish;
851 }
852 }
853
854 wait_event(crc->done, atomic_read(&crc->stop));
855 atomic_set(&crc->stop, 0);
856 }
857
858 out_finish:
859 err2 = hib_wait_io(&hb);
860 stop = ktime_get();
861 if (!ret)
862 ret = err2;
863 if (!ret)
864 pr_info("Image saving done\n");
865 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
866 out_clean:
867 hib_finish_batch(&hb);
868 if (crc) {
869 if (crc->thr)
870 kthread_stop(crc->thr);
871 kfree(crc);
872 }
873 if (data) {
874 for (thr = 0; thr < nr_threads; thr++)
875 if (data[thr].thr)
876 kthread_stop(data[thr].thr);
877 vfree(data);
878 }
879 if (page) free_page((unsigned long)page);
880
881 return ret;
882 }
883
884 /**
885 * enough_swap - Make sure we have enough swap to save the image.
886 *
887 * Returns TRUE or FALSE after checking the total amount of swap
888 * space available from the resume partition.
889 */
890
enough_swap(unsigned int nr_pages)891 static int enough_swap(unsigned int nr_pages)
892 {
893 unsigned int free_swap = count_swap_pages(root_swap, 1);
894 unsigned int required;
895
896 pr_debug("Free swap pages: %u\n", free_swap);
897
898 required = PAGES_FOR_IO + nr_pages;
899 return free_swap > required;
900 }
901
902 /**
903 * swsusp_write - Write entire image and metadata.
904 * @flags: flags to pass to the "boot" kernel in the image header
905 *
906 * It is important _NOT_ to umount filesystems at this point. We want
907 * them synced (in case something goes wrong) but we DO not want to mark
908 * filesystem clean: it is not. (And it does not matter, if we resume
909 * correctly, we'll mark system clean, anyway.)
910 */
911
swsusp_write(unsigned int flags)912 int swsusp_write(unsigned int flags)
913 {
914 struct swap_map_handle handle;
915 struct snapshot_handle snapshot;
916 struct swsusp_info *header;
917 unsigned long pages;
918 int error;
919
920 pages = snapshot_get_image_size();
921 error = get_swap_writer(&handle);
922 if (error) {
923 pr_err("Cannot get swap writer\n");
924 return error;
925 }
926 if (flags & SF_NOCOMPRESS_MODE) {
927 if (!enough_swap(pages)) {
928 pr_err("Not enough free swap\n");
929 error = -ENOSPC;
930 goto out_finish;
931 }
932 }
933 memset(&snapshot, 0, sizeof(struct snapshot_handle));
934 error = snapshot_read_next(&snapshot);
935 if (error < (int)PAGE_SIZE) {
936 if (error >= 0)
937 error = -EFAULT;
938
939 goto out_finish;
940 }
941 header = (struct swsusp_info *)data_of(snapshot);
942 error = swap_write_page(&handle, header, NULL);
943 if (!error) {
944 error = (flags & SF_NOCOMPRESS_MODE) ?
945 save_image(&handle, &snapshot, pages - 1) :
946 save_image_lzo(&handle, &snapshot, pages - 1);
947 }
948 out_finish:
949 error = swap_writer_finish(&handle, flags, error);
950 return error;
951 }
952
953 /**
954 * The following functions allow us to read data using a swap map
955 * in a file-alike way
956 */
957
release_swap_reader(struct swap_map_handle * handle)958 static void release_swap_reader(struct swap_map_handle *handle)
959 {
960 struct swap_map_page_list *tmp;
961
962 while (handle->maps) {
963 if (handle->maps->map)
964 free_page((unsigned long)handle->maps->map);
965 tmp = handle->maps;
966 handle->maps = handle->maps->next;
967 kfree(tmp);
968 }
969 handle->cur = NULL;
970 }
971
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)972 static int get_swap_reader(struct swap_map_handle *handle,
973 unsigned int *flags_p)
974 {
975 int error;
976 struct swap_map_page_list *tmp, *last;
977 sector_t offset;
978
979 *flags_p = swsusp_header->flags;
980
981 if (!swsusp_header->image) /* how can this happen? */
982 return -EINVAL;
983
984 handle->cur = NULL;
985 last = handle->maps = NULL;
986 offset = swsusp_header->image;
987 while (offset) {
988 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
989 if (!tmp) {
990 release_swap_reader(handle);
991 return -ENOMEM;
992 }
993 if (!handle->maps)
994 handle->maps = tmp;
995 if (last)
996 last->next = tmp;
997 last = tmp;
998
999 tmp->map = (struct swap_map_page *)
1000 __get_free_page(GFP_NOIO | __GFP_HIGH);
1001 if (!tmp->map) {
1002 release_swap_reader(handle);
1003 return -ENOMEM;
1004 }
1005
1006 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1007 if (error) {
1008 release_swap_reader(handle);
1009 return error;
1010 }
1011 offset = tmp->map->next_swap;
1012 }
1013 handle->k = 0;
1014 handle->cur = handle->maps->map;
1015 return 0;
1016 }
1017
swap_read_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)1018 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1019 struct hib_bio_batch *hb)
1020 {
1021 sector_t offset;
1022 int error;
1023 struct swap_map_page_list *tmp;
1024
1025 if (!handle->cur)
1026 return -EINVAL;
1027 offset = handle->cur->entries[handle->k];
1028 if (!offset)
1029 return -EFAULT;
1030 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1031 if (error)
1032 return error;
1033 if (++handle->k >= MAP_PAGE_ENTRIES) {
1034 handle->k = 0;
1035 free_page((unsigned long)handle->maps->map);
1036 tmp = handle->maps;
1037 handle->maps = handle->maps->next;
1038 kfree(tmp);
1039 if (!handle->maps)
1040 release_swap_reader(handle);
1041 else
1042 handle->cur = handle->maps->map;
1043 }
1044 return error;
1045 }
1046
swap_reader_finish(struct swap_map_handle * handle)1047 static int swap_reader_finish(struct swap_map_handle *handle)
1048 {
1049 release_swap_reader(handle);
1050
1051 return 0;
1052 }
1053
1054 /**
1055 * load_image - load the image using the swap map handle
1056 * @handle and the snapshot handle @snapshot
1057 * (assume there are @nr_pages pages to load)
1058 */
1059
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1060 static int load_image(struct swap_map_handle *handle,
1061 struct snapshot_handle *snapshot,
1062 unsigned int nr_to_read)
1063 {
1064 unsigned int m;
1065 int ret = 0;
1066 ktime_t start;
1067 ktime_t stop;
1068 struct hib_bio_batch hb;
1069 int err2;
1070 unsigned nr_pages;
1071
1072 hib_init_batch(&hb);
1073
1074 clean_pages_on_read = true;
1075 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1076 m = nr_to_read / 10;
1077 if (!m)
1078 m = 1;
1079 nr_pages = 0;
1080 start = ktime_get();
1081 for ( ; ; ) {
1082 ret = snapshot_write_next(snapshot);
1083 if (ret <= 0)
1084 break;
1085 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1086 if (ret)
1087 break;
1088 if (snapshot->sync_read)
1089 ret = hib_wait_io(&hb);
1090 if (ret)
1091 break;
1092 if (!(nr_pages % m))
1093 pr_info("Image loading progress: %3d%%\n",
1094 nr_pages / m * 10);
1095 nr_pages++;
1096 }
1097 err2 = hib_wait_io(&hb);
1098 hib_finish_batch(&hb);
1099 stop = ktime_get();
1100 if (!ret)
1101 ret = err2;
1102 if (!ret) {
1103 pr_info("Image loading done\n");
1104 snapshot_write_finalize(snapshot);
1105 if (!snapshot_image_loaded(snapshot))
1106 ret = -ENODATA;
1107 }
1108 swsusp_show_speed(start, stop, nr_to_read, "Read");
1109 return ret;
1110 }
1111
1112 /**
1113 * Structure used for LZO data decompression.
1114 */
1115 struct dec_data {
1116 struct task_struct *thr; /* thread */
1117 atomic_t ready; /* ready to start flag */
1118 atomic_t stop; /* ready to stop flag */
1119 int ret; /* return code */
1120 wait_queue_head_t go; /* start decompression */
1121 wait_queue_head_t done; /* decompression done */
1122 size_t unc_len; /* uncompressed length */
1123 size_t cmp_len; /* compressed length */
1124 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1125 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1126 };
1127
1128 /**
1129 * Decompression function that runs in its own thread.
1130 */
lzo_decompress_threadfn(void * data)1131 static int lzo_decompress_threadfn(void *data)
1132 {
1133 struct dec_data *d = data;
1134
1135 while (1) {
1136 wait_event(d->go, atomic_read(&d->ready) ||
1137 kthread_should_stop());
1138 if (kthread_should_stop()) {
1139 d->thr = NULL;
1140 d->ret = -1;
1141 atomic_set(&d->stop, 1);
1142 wake_up(&d->done);
1143 break;
1144 }
1145 atomic_set(&d->ready, 0);
1146
1147 d->unc_len = LZO_UNC_SIZE;
1148 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1149 d->unc, &d->unc_len);
1150 if (clean_pages_on_decompress)
1151 flush_icache_range((unsigned long)d->unc,
1152 (unsigned long)d->unc + d->unc_len);
1153
1154 atomic_set(&d->stop, 1);
1155 wake_up(&d->done);
1156 }
1157 return 0;
1158 }
1159
1160 /**
1161 * load_image_lzo - Load compressed image data and decompress them with LZO.
1162 * @handle: Swap map handle to use for loading data.
1163 * @snapshot: Image to copy uncompressed data into.
1164 * @nr_to_read: Number of pages to load.
1165 */
load_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1166 static int load_image_lzo(struct swap_map_handle *handle,
1167 struct snapshot_handle *snapshot,
1168 unsigned int nr_to_read)
1169 {
1170 unsigned int m;
1171 int ret = 0;
1172 int eof = 0;
1173 struct hib_bio_batch hb;
1174 ktime_t start;
1175 ktime_t stop;
1176 unsigned nr_pages;
1177 size_t off;
1178 unsigned i, thr, run_threads, nr_threads;
1179 unsigned ring = 0, pg = 0, ring_size = 0,
1180 have = 0, want, need, asked = 0;
1181 unsigned long read_pages = 0;
1182 unsigned char **page = NULL;
1183 struct dec_data *data = NULL;
1184 struct crc_data *crc = NULL;
1185
1186 hib_init_batch(&hb);
1187
1188 /*
1189 * We'll limit the number of threads for decompression to limit memory
1190 * footprint.
1191 */
1192 nr_threads = num_online_cpus() - 1;
1193 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1194
1195 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1196 if (!page) {
1197 pr_err("Failed to allocate LZO page\n");
1198 ret = -ENOMEM;
1199 goto out_clean;
1200 }
1201
1202 data = vzalloc(array_size(nr_threads, sizeof(*data)));
1203 if (!data) {
1204 pr_err("Failed to allocate LZO data\n");
1205 ret = -ENOMEM;
1206 goto out_clean;
1207 }
1208
1209 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1210 if (!crc) {
1211 pr_err("Failed to allocate crc\n");
1212 ret = -ENOMEM;
1213 goto out_clean;
1214 }
1215
1216 clean_pages_on_decompress = true;
1217
1218 /*
1219 * Start the decompression threads.
1220 */
1221 for (thr = 0; thr < nr_threads; thr++) {
1222 init_waitqueue_head(&data[thr].go);
1223 init_waitqueue_head(&data[thr].done);
1224
1225 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1226 &data[thr],
1227 "image_decompress/%u", thr);
1228 if (IS_ERR(data[thr].thr)) {
1229 data[thr].thr = NULL;
1230 pr_err("Cannot start decompression threads\n");
1231 ret = -ENOMEM;
1232 goto out_clean;
1233 }
1234 }
1235
1236 /*
1237 * Start the CRC32 thread.
1238 */
1239 init_waitqueue_head(&crc->go);
1240 init_waitqueue_head(&crc->done);
1241
1242 handle->crc32 = 0;
1243 crc->crc32 = &handle->crc32;
1244 for (thr = 0; thr < nr_threads; thr++) {
1245 crc->unc[thr] = data[thr].unc;
1246 crc->unc_len[thr] = &data[thr].unc_len;
1247 }
1248
1249 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1250 if (IS_ERR(crc->thr)) {
1251 crc->thr = NULL;
1252 pr_err("Cannot start CRC32 thread\n");
1253 ret = -ENOMEM;
1254 goto out_clean;
1255 }
1256
1257 /*
1258 * Set the number of pages for read buffering.
1259 * This is complete guesswork, because we'll only know the real
1260 * picture once prepare_image() is called, which is much later on
1261 * during the image load phase. We'll assume the worst case and
1262 * say that none of the image pages are from high memory.
1263 */
1264 if (low_free_pages() > snapshot_get_image_size())
1265 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1266 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1267
1268 for (i = 0; i < read_pages; i++) {
1269 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1270 GFP_NOIO | __GFP_HIGH :
1271 GFP_NOIO | __GFP_NOWARN |
1272 __GFP_NORETRY);
1273
1274 if (!page[i]) {
1275 if (i < LZO_CMP_PAGES) {
1276 ring_size = i;
1277 pr_err("Failed to allocate LZO pages\n");
1278 ret = -ENOMEM;
1279 goto out_clean;
1280 } else {
1281 break;
1282 }
1283 }
1284 }
1285 want = ring_size = i;
1286
1287 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1288 pr_info("Loading and decompressing image data (%u pages)...\n",
1289 nr_to_read);
1290 m = nr_to_read / 10;
1291 if (!m)
1292 m = 1;
1293 nr_pages = 0;
1294 start = ktime_get();
1295
1296 ret = snapshot_write_next(snapshot);
1297 if (ret <= 0)
1298 goto out_finish;
1299
1300 for(;;) {
1301 for (i = 0; !eof && i < want; i++) {
1302 ret = swap_read_page(handle, page[ring], &hb);
1303 if (ret) {
1304 /*
1305 * On real read error, finish. On end of data,
1306 * set EOF flag and just exit the read loop.
1307 */
1308 if (handle->cur &&
1309 handle->cur->entries[handle->k]) {
1310 goto out_finish;
1311 } else {
1312 eof = 1;
1313 break;
1314 }
1315 }
1316 if (++ring >= ring_size)
1317 ring = 0;
1318 }
1319 asked += i;
1320 want -= i;
1321
1322 /*
1323 * We are out of data, wait for some more.
1324 */
1325 if (!have) {
1326 if (!asked)
1327 break;
1328
1329 ret = hib_wait_io(&hb);
1330 if (ret)
1331 goto out_finish;
1332 have += asked;
1333 asked = 0;
1334 if (eof)
1335 eof = 2;
1336 }
1337
1338 if (crc->run_threads) {
1339 wait_event(crc->done, atomic_read(&crc->stop));
1340 atomic_set(&crc->stop, 0);
1341 crc->run_threads = 0;
1342 }
1343
1344 for (thr = 0; have && thr < nr_threads; thr++) {
1345 data[thr].cmp_len = *(size_t *)page[pg];
1346 if (unlikely(!data[thr].cmp_len ||
1347 data[thr].cmp_len >
1348 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1349 pr_err("Invalid LZO compressed length\n");
1350 ret = -1;
1351 goto out_finish;
1352 }
1353
1354 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1355 PAGE_SIZE);
1356 if (need > have) {
1357 if (eof > 1) {
1358 ret = -1;
1359 goto out_finish;
1360 }
1361 break;
1362 }
1363
1364 for (off = 0;
1365 off < LZO_HEADER + data[thr].cmp_len;
1366 off += PAGE_SIZE) {
1367 memcpy(data[thr].cmp + off,
1368 page[pg], PAGE_SIZE);
1369 have--;
1370 want++;
1371 if (++pg >= ring_size)
1372 pg = 0;
1373 }
1374
1375 atomic_set(&data[thr].ready, 1);
1376 wake_up(&data[thr].go);
1377 }
1378
1379 /*
1380 * Wait for more data while we are decompressing.
1381 */
1382 if (have < LZO_CMP_PAGES && asked) {
1383 ret = hib_wait_io(&hb);
1384 if (ret)
1385 goto out_finish;
1386 have += asked;
1387 asked = 0;
1388 if (eof)
1389 eof = 2;
1390 }
1391
1392 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1393 wait_event(data[thr].done,
1394 atomic_read(&data[thr].stop));
1395 atomic_set(&data[thr].stop, 0);
1396
1397 ret = data[thr].ret;
1398
1399 if (ret < 0) {
1400 pr_err("LZO decompression failed\n");
1401 goto out_finish;
1402 }
1403
1404 if (unlikely(!data[thr].unc_len ||
1405 data[thr].unc_len > LZO_UNC_SIZE ||
1406 data[thr].unc_len & (PAGE_SIZE - 1))) {
1407 pr_err("Invalid LZO uncompressed length\n");
1408 ret = -1;
1409 goto out_finish;
1410 }
1411
1412 for (off = 0;
1413 off < data[thr].unc_len; off += PAGE_SIZE) {
1414 memcpy(data_of(*snapshot),
1415 data[thr].unc + off, PAGE_SIZE);
1416
1417 if (!(nr_pages % m))
1418 pr_info("Image loading progress: %3d%%\n",
1419 nr_pages / m * 10);
1420 nr_pages++;
1421
1422 ret = snapshot_write_next(snapshot);
1423 if (ret <= 0) {
1424 crc->run_threads = thr + 1;
1425 atomic_set(&crc->ready, 1);
1426 wake_up(&crc->go);
1427 goto out_finish;
1428 }
1429 }
1430 }
1431
1432 crc->run_threads = thr;
1433 atomic_set(&crc->ready, 1);
1434 wake_up(&crc->go);
1435 }
1436
1437 out_finish:
1438 if (crc->run_threads) {
1439 wait_event(crc->done, atomic_read(&crc->stop));
1440 atomic_set(&crc->stop, 0);
1441 }
1442 stop = ktime_get();
1443 if (!ret) {
1444 pr_info("Image loading done\n");
1445 snapshot_write_finalize(snapshot);
1446 if (!snapshot_image_loaded(snapshot))
1447 ret = -ENODATA;
1448 if (!ret) {
1449 if (swsusp_header->flags & SF_CRC32_MODE) {
1450 if(handle->crc32 != swsusp_header->crc32) {
1451 pr_err("Invalid image CRC32!\n");
1452 ret = -ENODATA;
1453 }
1454 }
1455 }
1456 }
1457 swsusp_show_speed(start, stop, nr_to_read, "Read");
1458 out_clean:
1459 hib_finish_batch(&hb);
1460 for (i = 0; i < ring_size; i++)
1461 free_page((unsigned long)page[i]);
1462 if (crc) {
1463 if (crc->thr)
1464 kthread_stop(crc->thr);
1465 kfree(crc);
1466 }
1467 if (data) {
1468 for (thr = 0; thr < nr_threads; thr++)
1469 if (data[thr].thr)
1470 kthread_stop(data[thr].thr);
1471 vfree(data);
1472 }
1473 vfree(page);
1474
1475 return ret;
1476 }
1477
1478 /**
1479 * swsusp_read - read the hibernation image.
1480 * @flags_p: flags passed by the "frozen" kernel in the image header should
1481 * be written into this memory location
1482 */
1483
swsusp_read(unsigned int * flags_p)1484 int swsusp_read(unsigned int *flags_p)
1485 {
1486 int error;
1487 struct swap_map_handle handle;
1488 struct snapshot_handle snapshot;
1489 struct swsusp_info *header;
1490
1491 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1492 error = snapshot_write_next(&snapshot);
1493 if (error < (int)PAGE_SIZE)
1494 return error < 0 ? error : -EFAULT;
1495 header = (struct swsusp_info *)data_of(snapshot);
1496 error = get_swap_reader(&handle, flags_p);
1497 if (error)
1498 goto end;
1499 if (!error)
1500 error = swap_read_page(&handle, header, NULL);
1501 if (!error) {
1502 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1503 load_image(&handle, &snapshot, header->pages - 1) :
1504 load_image_lzo(&handle, &snapshot, header->pages - 1);
1505 }
1506 swap_reader_finish(&handle);
1507 end:
1508 if (!error)
1509 pr_debug("Image successfully loaded\n");
1510 else
1511 pr_debug("Error %d resuming\n", error);
1512 return error;
1513 }
1514
1515 /**
1516 * swsusp_check - Check for swsusp signature in the resume device
1517 */
1518
swsusp_check(void)1519 int swsusp_check(void)
1520 {
1521 int error;
1522 void *holder;
1523
1524 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1525 FMODE_READ | FMODE_EXCL, &holder);
1526 if (!IS_ERR(hib_resume_bdev)) {
1527 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1528 clear_page(swsusp_header);
1529 error = hib_submit_io(REQ_OP_READ, 0,
1530 swsusp_resume_block,
1531 swsusp_header, NULL);
1532 if (error)
1533 goto put;
1534
1535 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1536 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1537 /* Reset swap signature now */
1538 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1539 swsusp_resume_block,
1540 swsusp_header, NULL);
1541 } else {
1542 error = -EINVAL;
1543 }
1544 if (!error && swsusp_header->flags & SF_HW_SIG &&
1545 swsusp_header->hw_sig != swsusp_hardware_signature) {
1546 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1547 swsusp_header->hw_sig, swsusp_hardware_signature);
1548 error = -EINVAL;
1549 }
1550
1551 put:
1552 if (error)
1553 blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1554 else
1555 pr_debug("Image signature found, resuming\n");
1556 } else {
1557 error = PTR_ERR(hib_resume_bdev);
1558 }
1559
1560 if (error)
1561 pr_debug("Image not found (code %d)\n", error);
1562
1563 return error;
1564 }
1565
1566 /**
1567 * swsusp_close - close swap device.
1568 */
1569
swsusp_close(fmode_t mode)1570 void swsusp_close(fmode_t mode)
1571 {
1572 if (IS_ERR(hib_resume_bdev)) {
1573 pr_debug("Image device not initialised\n");
1574 return;
1575 }
1576
1577 blkdev_put(hib_resume_bdev, mode);
1578 }
1579
1580 /**
1581 * swsusp_unmark - Unmark swsusp signature in the resume device
1582 */
1583
1584 #ifdef CONFIG_SUSPEND
swsusp_unmark(void)1585 int swsusp_unmark(void)
1586 {
1587 int error;
1588
1589 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1590 swsusp_header, NULL);
1591 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1592 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1593 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1594 swsusp_resume_block,
1595 swsusp_header, NULL);
1596 } else {
1597 pr_err("Cannot find swsusp signature!\n");
1598 error = -ENODEV;
1599 }
1600
1601 /*
1602 * We just returned from suspend, we don't need the image any more.
1603 */
1604 free_all_swap_pages(root_swap);
1605
1606 return error;
1607 }
1608 #endif
1609
swsusp_header_init(void)1610 static int __init swsusp_header_init(void)
1611 {
1612 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1613 if (!swsusp_header)
1614 panic("Could not allocate memory for swsusp_header\n");
1615 return 0;
1616 }
1617
1618 core_initcall(swsusp_header_init);
1619